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The astrophysical r process plays a vital role in the production of heavy elements. Modeling of the r process 
is sensitive to masses and further requires knowledge of masses beyond current experimental reach. Therefore, 
simulations of the r process offer a unique test bed for predicting mass extrapolations. We take a Machine-
Learning (ML) approach to model the masses across the entire chart of nuclides. For the first time, we simulate 
r-process nucleosynthesis with a physics-based ML mass model. We compare simulated abundances to solar 
data in order to evaluate the model’s performance far from stability. The resulting r-process abundances up 
to thorium and uranium qualitatively match those of the observed solar system abundance pattern, with the 
characteristic peaks well positioned. We propagate the mass uncertainties obtained from the ML model to 
r-process abundance yields to estimate an uncertainty band associated with our approach. The size of the 
uncertainty band is approximately one order of magnitude which aligns with the uncertainty reported using 
alternative techniques.

1.

di

(r

is

[5

so

th

ab

pr

Se

ro

ex

ita

ac

ac

[8

pr

th

th

fo

*

ht

Re
 Introduction

The synthesis of heavy elements in our universe is a difficult inter-
sciplinary question. The astrophysical rapid neutron capture process 
process) is believed to be responsible for creating half of the heavy 
otopes up to bismuth and all of thorium and uranium in our Universe 
]. To describe the r-process nucleosynthesis, uncertainties from two 
urces need to be well understood.
For astrophysical sites, there are many viable places that provide 
e necessary conditions for the r process, contributing to the overall 
undance of r-process elements in the Galaxy. Collapsars were first 
oposed and studied by MacFadyen and Woosley in the 1990s [22]. 
veral groups performed detailed studies of nucleosynthesis in rapidly 
tating core collapse [25,27,39]. NSMs as the production sites are 
pected theoretically [15,18]) and confirmed by the observed grav-
tional wave in GW170817 [1,37]. Analysis of the kilonovae that 
companied GW170817 identified delayed outflows from a remnant 
cretion disk as the important source of heavy r-process material 
,40,50]. Neutrino-driven wind (NDW) is also a favored model for r-
ocess nucleosynthesis for years. Although, Refs. [12,47] have found 
e NDW to be inadequate as an r-process site, Ref. [43] shows that 
e Magnetic Neutrino-Driven Wind can be an appropriate condition 
r the r-process nuclei creation. In addition, studies from Refs. [7,38]
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demonstrate that mergers of a black hole and a neutron star can also 
eject extremely neutron-rich materials that allow the r process to occur. 
Magneto-rotational hypernovae reported in Ref. [51] and magneto-
hydrodynamic jet supernovas in Ref. [34] may also be candidate sites. 
The astrophysical conditions vary dramatically in these environments 
and are thus one source of uncertainty in simulating heavy element for-
mation.

Nuclear properties play another influential role in the r process. 
In particular, atomic masses are used in the computation of all nu-
clear transmutations (neutron capture rates, photo-dissociation rates, 
𝛽-decay rates, etc.). Around 2500 nuclei have been measured exper-
imentally. However, more than 7000 isotopes are predicted to exist 
in the nuclear landscape [9]. Therefore, it is imperative to produce 
reliable theoretical predictions for atomic masses. Tremendous efforts 
have been made in developing nuclear mass models, e.g., KTUY model 
[16], Finite Range Droplet Model (FRDM) [28], Duflo–Zuker (DZ) [49], 
and Hartree–Fock–Bogoliubov (HFB) model [11]. All of these models 
give a reasonable fit to known experimental masses, however devia-
tions between model predictions rapidly grow in neutron-rich nuclei 
that participate in the r process.

With recent advances in computation, Machine Learning (ML) has 
been widely applied with success in many fields. In recent nuclear 
mass studies, networks have been trained on reducing the differences 
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Table 1

Input features in Mixture Density Network.
Features Description

𝑁 Neutron number

𝑍 Proton number

𝐴 Mass number

𝑃𝑎𝑠𝑦𝑚 Asymmetry correction

𝑉𝑛 Valence neutron

𝑉𝑝 Valence proton

𝑁𝑒𝑜 Evenness and oddness of neutron number

𝑍𝑒𝑜 Evenness and oddness of proton number

𝐴𝑒𝑜 Evenness and oddness of mass number

𝑉𝑛 + 𝑉𝑝 Sum of valence neutron and proton

𝑉𝑛 ∗ 𝑉𝑝 Multiplication of valence neutron and proton
𝑉𝑛+𝑉𝑝

𝑉𝑛∗𝑉𝑝

Proton neutron interactions

tween the Atomic Mass Evaluation and various mass models [33]. 
f. [44] used a Bayesian Neural Network (BNN) approach to refine 
e predictions of existing mass models. Ref. [35] explored the BNN 
ethod in predicting the masses when nuclear pairing and shell effects 
e included. Ref. [10] investigated a Light Gradient Boosting Machine 
gorithm in predicting the nuclear mass with a large training set (80% 
 AME data). A Mixture Density Network (MDN) has been used [20,32]
 predict the masses of nuclei with well-quantified uncertainties.
In this work, we explore for the first time the impacts of a ML-based 
ass model on the astrophysical r-process abundances. We propagate 
e mass predictions to the astrophysical r-process by computing one 
utron separation energies. We assess the quality of the extrapolations 
 comparing the simulated r-process abundance pattern to solar data. 
e ML model estimates uncertainties and it naturally encodes correla-
ns among input. We use these properties to self-consistently estimate 
undance uncertainties with this method.

 Methods

We used a probabilistic Machine Learning technique, the MDN [4], 
 train a mass model. Our probabilistic network is written in PyTorch 
6] and can be implemented on either CPU or GPU architectures. 
f. [21] showed that this algorithm is able to describe nuclear proper-
s with well-quantified uncertainties. The model encodes the physical 
formation in the feature space to increase the accuracy of atomic mass 
edictions [20,35]. When the feature space combines macroscopic and 
icroscopic terms, it is suitable for describing masses across the chart 
 nuclides [32]. The use of hybrid training data, consisting of high pre-
sion evaluation data and low precision theoretical data, can improve 
e extrapolation quality [31].
Based on these previous studies, we developed a new mass model 
ding proton-neutron interaction terms related to nuclear promiscuity 
to the feature space [6]. The input features are listed in Table 1.
The training set in our model is a random selection of 600 nuclei 

om Atomic Mass Evaluation (AME2020) reported in Ref. [48] with 
≥ 10. To give our model more physical information to enhance the 
edictive power, similar to our previous work [31], we randomly chose 
 theoretical mass data that are not available in AME2020, from a 
ell-accepted mass model HFB-32, as extra training samples. This extra 
t of theoretical information helps the model to anchor the predictions, 
 they do not stray too far from expected physics. Fig. 1 shows the 
aining data in this work. It consists of 650 nuclei (23% of AME2020) 
own in blue, and the extra data shown in red.
Training of the ML model follows the steps in Refs. [31,32]. Our 
ural network architecture comprises six hidden layers, with ten hid-
n nodes in each layer. The hyperbolic tangent function is used as 
e activation function for neurons in the linear network, while a soft-
ax function is employed in the final layer. A learning rate scheduler 
 employed that takes the initial learning rate times 0.65 for every 
,000 epochs up to 100,000 epochs which stabilizes the neural net-
2

ork performance. The total loss 𝑡𝑜𝑡𝑎𝑙 = 1 + 𝜆𝑝ℎ𝑦𝑠2 is minimized fr
Physics Letters B 848 (2024) 138385

g. 1. The training data set is shown. Blue squares are the 600 nuclei selected 
m the AME2020, while the red ones are theoretical data samples from the 
B-32 mass model. The dashed gray lines show the proton and neutron closed 
ells for reference.

 the training process, where 1 is the match to the AME data, and 
2 is a physics constraint with 𝜆𝑝ℎ𝑦𝑠 = 0.3. The training process is ter-
inated when the total loss function achieves its minimum value and 
mains stable thereafter. The output of this model is a set of predicted 
omic masses 𝑀(𝑍, 𝑁) with their corresponding standard deviations 
(𝑍, 𝑁).
To explore the impacts of masses on r-process simulations, we cal-
late the neutron separation energy as:

n(𝑍,𝑁) =𝑀(𝑍,𝑁 − 1) +𝑚𝑛 −𝑀(𝑍,𝑁) , (1)

here 𝑚𝑛 is the mass of the neutron. The standard deviation of 𝑆n
ming from the uncertain masses is calculated by:

n
=
√

𝜎2
𝑀
(𝑍,𝑁 − 1) + 𝜎2

𝑀
(𝑍,𝑁) , (2)

here it has been explicitly assumed that the uncertainties between 
ass predictions are uncorrelated.

 Results

1. Atomic masses

We compared our mass model predictions to the entire AME2020 
taset. The root-mean-square (RMS) error was approximately 138 keV 
r the training set, which covered 23 percent of AME2020, and ap-
oximately 246 keV when calculated against the AME2020 dataset 
ith Z ≥ 10. Our results are competitive with contemporary theoretical 
odels currently available. We tested our model without including any 
ditional theoretical data samples and found it difficult to reduce the 
sting RMS below 300 keV. We conclude that incorporating a small set 
 theoretical data samples from a mass model (HFB-32) in the training 
ocess can improve the overall fit of the observed atomic mass data.

2. Extrapolation in 𝑆n

The one neutron separation energy (𝑆n) is the energy required to 
move one neutron from a nucleus. It holds significant importance in 
th nuclear physics and astrophysics [14,24]. In terms of nuclear struc-
re, 𝑆n is relevant to closed-shell, pairing effects, and the boundaries of 
e nuclear landscape. In astrophysics, 𝑆n sets the equilibrium r-process 
th through the calculation of the photo-dissociation rate via detailed 
lance. Many studies have shown that 𝑆n is of great significance in 
derstanding the simulated abundance pattern in different evolution 
ases [17].
Fig. 2 displays the 𝑆n for Lead (Z=82) isotopes. The predictions 
om the ML model, which are shown in blue, are in good agreement 
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g. 2. The upper panel of the figure compares the 𝑆n values in the Pb isotopic 
ain obtained from experimental data (represented by black triangles), the 
ass model discussed in this work (represented by blue circles), the HFB model 
epresented by red dashed line), and the machine learning model without ad-
tional theoretical data samples (represented by dashed orange line). The error 
rs associated with the blue circles show the standard deviation of each cal-
lated 𝑆n as calculated using Equation (2). The blue line connecting the blue 
rcles emphasizes the odd-even staggering in the data. The lower panel illus-
tes the 1-3 𝜎 uncertainties of each calculated 𝑆n using gradually lighter blue 
nds.

ith experimental data where available. The model’s extrapolation re-
ains physically valid as evident by the general declining trend of 𝑆n
ith increasing neutron number and the odd-even staggering observed 
roughout the isotopic chain. This phenomenon can be observed in 
ery isotopic chain and provides the first indication that the extrapo-
tion of mass and neutron separation energy from our ML-based mass 
odel remains reliable in neutron-rich regions.
To provide a comparative analysis, we include predictions from two 

ternative models. The first is the HFB-32 mass model shown in red, 
hich exhibits similar trends to our model with minor deviations. The 
cond model, trained with the same parameters but without the HFB-
 data samples in the training data set, which is labeled “No-extra” 
 Fig. 2, displays a nonphysical increasing trend in neutron separation 
ergy as the neutron number increases. The disparity between the blue 
d orange curves highlights the benefits of incorporating suggestive 
ta samples from theory, as it enhances the performance of our model 
 extrapolations.
To quantify the uncertainties of the extrapolated 𝑆n, the lower panel 

 Fig. 2 illustrates the 1-3 𝜎 of each calculated 𝑆n using gradually 
hter blue bands respectively. The uncertainties grow as a function 
 neutron richness, and begin to rapidly increase around the neutron 
ipline.

In Fig. 3, we compare the mass predictions of the ML model against 
ose of the HFB-32 model, highlighting their deviations. While both 
odels align closely in the experimentally available region (enclosed 
 the black contour line), discrepancies emerge in the neutron-rich 
eas, providing a testable difference between these two predictions.

3. Application to r-process nucleosynthesis

Observed features in r-process abundance pattern arise from the 
terplay of nuclear masses, 𝛽-decay, and neutron capture rates with 
propriate astrophysical conditions. To study the impacts of our mass 
odel in the astrophysical r-process, we incorporate the atomic mass 
edictions into r-process nucleosynthesis simulations and then com-
re the resulting abundance patterns with the observed solar system 
undance data. We simulate nucleosynthesis using the nuclear reac-
3

n network code PRISM [30]. In our simulations, we calculate photo- ea
Physics Letters B 848 (2024) 138385

g. 3. Predicted mass deviations between the ML model and the HFB-32, il-
strated using a color-map to depict the absolute differences. Within each 
topic chain, only isotopes preceding the neutron drip-line are shown. The 
ack contour line delineates the region with available experimental data, while 
e dashed gray lines indicate the proton and neutron closed shells for reference.

g. 4. Abundance patterns Y (A) versus A for three r-process simulations with 
trophysical condition corresponding to dynamical ejecta. The blue curve uses 
e mass model developed in this work. For comparison, the red dashed pattern 
rresponds to the HFB-32 mass model, while the orange dashed one is using a 
ilar machine learning model trained without extra theoretical data samples. 
l patterns are scaled to solar abundances reported in Ref. [2] with black cross 
ns.

ssociation rates via detailed balance using separation energies from 
r mass model. The neutron capture and beta-decay rates remain un-
anged as in the above citations. We probe two distinct astrophysical 
ajectories, the wind ejecta of Ref. [52] and the dynamical ejecta of 
f. [26]; the latter exhibits robust fission recycling. To focus the anal-
is on the behavior of our mass model, we use a 50–50 split when 
clei undergo fission so that this interaction does not mask interesting 
atures that may arise from the use of our masses [46].
The simulated r-process abundance patterns at 1 Gyr are shown in 
g. 4 for dynamical ejecta conditions. The blue curve uses the ML mass 
odel described in this work. Overall, the final abundances using the 
L model match well with the solar isotopic residuals.
Under these conditions, the two prominent r-process peaks at-

ibuted to closed neutron shells at 𝐴 = 130 (𝑁 = 82) and 𝐴 = 195
= 126) are well reproduced. It is interesting to note that the ML 

odel predicts a relatively weaker closed shell at 𝑁 = 126. This can be 
easured by the 𝑁 = 126 shell gap tending towards zero faster than 
her models in the literature. As a consequence, more material passes 
rough to the actinide region and produces a relatively higher lead 
gion peak around 𝐴 ∼ 208.
In contrast to the main peaks, when it comes to matching the rare 

rth peak around 𝐴 ∼ 165, which is believed to form via a different 
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clear structure mechanism Ref. [42], our ML model does not perform 
 well. While our simulation shows a close agreement with the left edge 
 the peak, there is a noticeable deviation at the top of the peak and 
ong the right edge. This discrepancy could potentially be attributed to 
e predicted atomic masses in highly deformed nuclei that are thought 
 be responsible for peak formation [45]. The rare earth peak remains a 
allenging feature to reproduce in the solar pattern [13] and matching 
will likely only be resolved by the inclusion of future precision mass 
easurements in the region.
To contrast our ML model’s extrapolation quality, we conduct a sec-
d r-process simulation with the only change being separation energies 
w calculated from the HFB-32 mass model, depicted by the dashed 
d curve. Comparing the results of both simulations, we find that the 
 = 130 peak is better reproduced with the ML masses than HFB-32, 
hereas the right edge of the rare earth peak is more inline with HFB-
 than the ML model.
Finally, we also compare to an r-process simulation using the ML 
asses without the additional theoretical data in training (indicated 
 orange and labeled as “No-extra”). Notably, the model fails to ac-
rately match the second peak abundance, similar to the behavior of 
FB-32. Generally, we find that the resulting abundance pattern is com-
rable to the blue curve for 𝐴 > 165 and approaches the red curve for 
 < 165. This situation arises due in part to the unphysical behavior 
und along some mass chains as shown in Fig. 2. The variability across 
ass ranges of different features suggests that it may be difficult to 
tract the behavior of masses of neutron-rich isotopes from a global 
atch to solar data alone.

4. Uncertainty propagation of ML masses to r-process abundances

To explore the error in our simulated abundances arising from un-
rtainties in our method, we propagate the changes in predicted sep-
ation energies for a 1000 samples of our ML mass model. For each 
dividual mass set, we sample the atomic masses with a probability 
stribution,

(𝑚) = 1
𝜎𝑖

√
2𝜋

𝑒
− 1

2 (
𝑚−𝜇𝑖
𝜎𝑖

)2
, (3)

here 𝜇𝑖 and 𝜎𝑖 are the predicted mass and corresponding uncertainty 
 each nucleus from our mass model, while 𝑚 is the sampled mass data. 
e mass changes are used to construct separation energies, and the r
ocess is simulated as above. The error bands for the two astrophysical 
enarios are shown in Fig. 5. The top panel shows the behavior of 
ese samples for dynamical ejecta while the bottom panel shows the 
havior of the samples for the wind ejecta. The former is well behaved 
d generally follows the solar pattern while deviations are seen in 
e case of the wind ejecta. From the lower panel, we observe a much 
ronger rare earth peak structure than in the case of dynamical ejecta. 
e poor performance in this scenario could indicate that the features 
 this ML mass model are too strongly weighting the local fluctuations 
 deformed nuclei in training.
In both conditions, the abundance error band spans roughly one 
der in magnitude. The size of this band is consistent with the use 
 other theoretical models, as reported in Refs. [23] and [41]. This 
servation differs from the findings of Ref. [29]. The latter study 
plemented a Monte Carlo mass variation approach, where a fixed 
gnificant uncertainty range was applied to all nuclei, resulting in the 
neration of relatively larger uncertainty bands. In contrast, the un-
rtainties in this work steadily grow as a function of neutron excess 
ecall Fig. 2), providing a more reliable picture of the associated un-
rtainties.

5. 𝛽-decay heating rates

Our ML-driven mass models facilitate the computation of mass dif-
4

rences and their associated Q values. These quantities are pivotal for as
Physics Letters B 848 (2024) 138385

g. 5. Abundance patterns Y (A) versus A for 1000 r-process simulations with 
trophysical conditions corresponding to dynamical ejecta (a), wind ejecta (b), 
m binary neutron star mergers. Each light blue line is a simulation with 
e mass set sampled by Monte Carlo method. All patterns are scaled to solar 
undances with black cross signs.

g. 6. 𝛽-decay heating rate vs. time for the 1000 mass sets. The green band 
dicates the spread in the heating rate arising from the uncertainty in short-
ed masses.

e accurate determination of nuclear heating rates which are a criti-
l component in the analysis of kilonovae events [19]. To assess the 
certainties stemming from our predictions, we compute the 𝛽-decay 
ergy release associated with each mass model’s r-process simulation. 
e resultant heating rates are shown in Fig. 6, where the breadth of the 
een band encapsulates the extent of the uncertainties. It is important 
 note that this green band arises from unmeasured, short-lived masses 
r from stability, even though the masses of nuclei that are populated 
 a specific time are well measured in this figure. Another way to say 
is is that uncertainties in short-lived properties accumulate to cause a 
read in quantities that may be observed on longer timescales. We find 
at the band is smaller than the relatively large deviations found be-
een various nuclear models explored in the past work of Refs. [3,53]
cause the masses probed by our ML model are inherently correlated.

 Conclusions and discussions

We have developed a Machine Learning mass model based on the 
ixture Density Network. This ML model predicts atomic masses and 

sociated uncertainties across the chart of nuclides. Physical behavior 
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 important quantities such as the neutron separation energy is found 
 be retained as a function of neutron excess.
To more concretely gauge the extrapolation quality of this model, 
is employed in r-process simulations, which are extremely sensitive 
 the mass of short-lived nuclei. It is found that the ML-based model 
rforms on par with other established theoretical models in the lit-
ature. The predicted masses are tested in two distinct astrophysical 
nditions: dynamical ejecta and wind ejecta. The second and third r-
ocess peaks are well positioned for these astrophysical conditions and 
e overall fit is found to be better in dynamical ejecta as compared to 
ind ejecta when comparing the simulated abundances to solar data. 
e self-consistently calculate the errors associated with our predicted 
undances and find them in line with other estimates in the literature: 
 average one order of magnitude or less.
Our study is the first to show that ML-based models can be used 

 extrapolating masses that are key inputs for r-process simulations. 
e success of our procedure in the prediction of ground state masses 
r neutron-rich nuclei far from current measurements gives credence 
 this methodology’s applicability to other low-energy nuclear phe-
menon, such as beta decay half-lives, reaction cross sections, and 
omeric states. Furthermore, our work extends the functionality of ML 
ass models to the determination of mass differences and associated Q 
lues, which are critical in the prediction of heating rates used in the 
lculation of kilonova light curves. This advancement lays the ground-
ork for future ML studies of more complex phenomena in astrophysics.
Our technique for generating ML-based models is driven primarily 

 precision data coupled with pertinent physical constraints. There-
re, future measurements will further enable the power of this method 
 more nuclear data is produced by experimental facilities worldwide.
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