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Abstract: Human whole-brain functional connectivity networks have been shown to exhibit both 1

local/quasilocal (e.g., set of functional sub-circuits induced by node or edge attributes) and non-local 2

(e.g., higher-order functional coordination patterns) properties. Nonetheless, the non-local properties 3

of topological strata induced by local/quasilocal functional sub-circuits have yet to be addressed. 4

To that end, we proposed a homological formalism that enables the quantification of higher-order 5

characteristics of human brain functional sub-circuits. Our results indicated that each homological 6

order uniquely unravels diverse, complementary properties of human brain functional sub-circuits. 7

Noticeably, the H1 homological distance between rest and motor task was observed at both whole- 8

brain and sub-circuit consolidated levels which suggested the self-similarity property of human 9

brain functional connectivity unraveled by homological kernel. Furthermore, at the whole-brain 10

level, the rest-task differentiation was found to be most prominent between rest and different tasks 11

at different homological orders: i) Emotion task (H0), ii) Motor task (H1), and iii) Working memory 12

task (H2). At the functional sub-circuit level, the rest-task functional dichotomy of default mode 13

network is found to be mostly prominent at the first and second homological scaffolds. Also at 14

such scale, we found that the limbic network plays a significant role in homological reconfiguration 15

across both task- and subject- domain which sheds light to subsequent investigations on the complex 16

neuro-physiological role of such network. From a wider perspective, our formalism can be applied, 17

beyond brain connectomics, to study non-localized coordination patterns of localized structures 18

stretching across complex network fibers. 19

Keywords: Functional sub-circuit; Functional Networks, Homological kernel; Topological data 20

analysis 21
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1. Introduction 22

Network science sheds light on complex phenomena - from fake news spreading 23

mechanisms in a social network to natural equilibrium in large-scale ecosystems with 24

competing species interactions. Graphs (Networks), despite its convenience and power 25

to unravel many important phenomena from social, financial to biological networks, lack 26

comprehensive ability to describe higher-order dynamics of complex systems [1]. Indeed, 27

many real-world systems, although can be described using diatic relation (edges), have 28

indeed polyadic functionality [2,3]. Prior studies have strongly suggested the critical 29

role of higher-order interactions in terms of explaining complex intertwined dynamics 30

such as phase transitions of emergent phenomena in networked systems [1]. For instance, 31

higher-order effects emerged from neuronal population are shown to be significant in both 32

statistical, topological, and other domains [2,4–6]. Higher order interactions, as formalized 33

by hyperedges (in hypergraphs) or simplicial complexes (in homology), have shown to 34

unravel many complementary functions, compared to node-/edge-based investigations 35

[1]. 36

The human brain is a complex system exhibiting multi-scale property where inter- 37

actions among its finest elements (e.g., neurons) orchestrate emergent phenomena (e.g., 38

cognition, consciousness [7]). Besides exerting hierarchical cytoarchitecture, human brain 39

functional organizations also display "modular" characteristics - also known as hierarchical 40

modularity [8]. Bullmore and Sporns [9] were among the first investigators noting that 41

whole-brain functional connectivity can be effectively characterized into (functional) mod- 42

ules whose elements (e.g., nodes/vertices in a functional connectome (FC)) are contributed 43

by different distributed areas across the cortex. Specifically, the human brain can be decom- 44

posed into specialized, yet highly interactive functional modules [7,10] (or equivalently, 45

communities in complex networks, see [11–13] among others). The modular setting of 46

human brain into distinctive functional sub-circuits allows its function to adapt flexibly 47

with diverse cognitive requirements [14,15]. Moreover, functional modularity can also 48

explain human brain complexity [7], cognitive reconfiguration [14], rest-task divergence 49

[16], among other functionalities. 50

In 2011, the concept of intrinsic functional connectivity Magnetic Resonance Imaging 51

(fcMRI) network (also known as functional sub-circuits, functional network (FN) or resting- 52

state networks (RSNs)) was put forth by Yeo and colleagues [17]. FNs are essentially parallel 53

interdigitated sub-circuits in which each cortical lobe might contain multiple regions 54

belonging to one or more FNs. An a priori set of FNs (or equivalently, functional sub-circuits) 55

elucidates different executive functions of human brain in healthy, neurodegenerative 56

disease or developmental conditions [18]. Mathematically, an a priori identification of 57

FNs is a partition of the whole-brain functional connectivity which results in a functional 58

atlas (e.g., a guidance to which brain region(s) belong to which functional sub-circuit(s)). 59

Such partition can be used as a baseline reference to investigate physiological, functional, 60

individual differences of i) the same FN across different cognitive conditions [14] or ii) 61

different FNs across the same task (e.g., fMRI). Specifically, the mapping of an a priori set 62

of FNs (to different individuals’ functional connectivity) allows the investigation of i) the 63

functional differences among individuals under different cognitive demands [14,19,20]; ii) 64

aging [19,21,22]; or iii) neurological dysfunctions [23–25]. Besides Yeo’s functional FN atlas, 65

other highly putative establishments of a priori set of FNs also featured Power et al. [26], 66

Glasser et al. [27], Gordon et al. [28], and most recently Schaefer et al. [29]. The most recent 67

review on the identification and applications of a priori set of FN mappings can be found in 68

the work of Bryce and colleagues [18]. 69

In the case of human brain complex networks, higher-order interactions among neu- 70

ron populations, at the whole-brain level, have been shown to unravel complementary 71

insights that otherwise, would not be fully appreciated by conventional node-based (zeroth- 72

order) or edge-based (first-order) investigations [2,4–6,30,31]. Nonetheless, the non-local 73

properties of topological strata induced by local/quasilocal functional sub-circuits have 74

yet to be addressed. Specifically, higher-order characteristics induced from an a priori set 75
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of functional sub-circuits have yet been thoroughly investigated. In brain connectomics, 76

understanding complex behaviors arisen at a scale between the microscopic (brain regions) 77

and macroscopic (whole-brain) level would set the stage to a deeper, comprehensive picture 78

understanding of the human brain large-scale functional sub-circuitry, which, in turns, 79

provide foundational support to investigate individualized or task-based parcellations 80

[32,33]. 81

To that end, we formally explored and measured the topological invariant characteris- 82

tics of an a priori set of FNs (e.g., Yeo’s sub-circuitry [17]) through the first three homological 83

dimensions: H0 (connected components), H1 (first-order (graph-theoretical) cycles), and 84

H2 (second-order cycles). These explorations on homological properties of FNs are com- 85

puted on the 100 unrelated subjects from the Human Connectome Project (HCP) dataset 86

in which fMRI data were recorded, for each subject, in resting state and seven other fMRI 87

tasks. The fMRI data were processed and parcellated into 360 brain regions, according to 88

[34]. To investigate the higher-order mesoscopic properties of the constructed functional 89

connectomes (FCs), we used the seven a priori FNs, proposed by Yeo and colleagues [17], 90

the 14 sub-cortical regions are added for completeness. It is worthy to note that our pro- 91

posed framework can be applied to other combinations of parcellations and functional 92

sub-circuitry partitions. Our results indicated that each homological order uniquely un- 93

ravels complementary properties of human brain functional sub-circuits. Noticeably, the 94

H1 homological distance between rest and motor task was observed at both whole-brain 95

and sub-circuit consolidated levels which suggested the self-similarity property of hu- 96

man brain functional connectivity unraveled by homological kernel. Furthermore, at the 97

whole-brain level, the rest-task differentiation was found to be most prominent between 98

rest and different tasks at different homological orders: i) Emotion task (H0), ii) Motor task 99

(H1), and iii) Working memory task (H2). At the functional sub-circuit level, the rest-task 100

functional dichotomy of default mode network is found to be mostly prominent at the first 101

and second homological scaffolds. Also at such scale, we found that the limbic network 102

plays a significant role in homological reconfiguration across both task- and subject- domain 103

which sheds light to subsequent investigations on the complex neuro-physiological role 104

of such network. From a wider perspective, our framework can be applied, beyond brain 105

connectomics field, to study non-localized coordination patterns of localized structures 106

stretching across complex network fibers. 107

The rest of the papers are organized as follows. In Section 2, we provide the formalism 108

describing the theoretical foundation to quantify higher-order relationships of multi-scale 109

networks. In Section 3, we present the results of applying the formalism in Section 2 to the 110

human brain connectomics data. In Section 4, we discuss further insights of our findings. 111

In Section 5, we conclude the paper and propose avenues for future research. 112

2. Formalism 113

The progression to glean topological information for a set of data, which by itself is discrete 114

is first turn it into a graph modeling the first-order interactions and then to progress to 115

a topological space by realizing its simplicial clique complex ∆(Γ) which models simul- 116

taneous, and thereby higher order, interactions. The topological construction flow is as 117

follows: 118

X⇝ Γ⇝ |∆(Γ)| (1)

We stress that the first-order information yielding the graph is an additional datum, 119

while the clique complex completes this data to a space. The topological space, which 120

is simplicial in nature, has topological invariants associated to it, such as the homology 121

Hi(∆(Γ)) and Betti numbers bi. The 0th Betti number b0 counts the number of components 122

and the first Betti number b1 which counts the number of independent loops (i.e. graph- 123

theoretical cycles). If the graph is connected these satisfy b0 − b1 = # of vertices − # of 124

edges. The next higher interaction is b2 which counts the number of independent spheres, 125

or more precisely homology classes, in the realization. The realization is given by inserting 126

a simplex for each complete graph, see below. 127
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Graphs in this setting are best understood as given by symmetric matrices, the entries 128

of which are given by the first-order interaction as witnessed by Pearson correlation 129

functions. Defining a cut–off parameter r for the interactions then determines a graph Γ(r) 130

and the homology becomes a function of this r. Scanning r from 0 to 1 homology is born 131

and annihilated. The sequence of these events is mathematically captured by persistence 132

homology and can be encoded and visualized in terms of bar codes. 133

When comparing different bar codes, one usually uses the Wasserstein distance, which 134

is a natural norm on the space of such diagram. It is not the only norm though and in 135

special situations other measures are more appropriate. 136

2.1. Graph, induced subgraph, Clique complex 137

In the context of this study, the graph (network) quantifying whole-brain functional 138

connectivity profile is called the functional connectome (FC). Induced subgraphs are utilized 139

to model functional sub-circuits (e.g., Yeo’s Functional Networks or FNs) of the FC. By 140

construction, an FC is a complete weighted graph. The mathematical and computational 141

setup is as follows: 142

Mathematically, a graph/network Γ with vertex set V and edge set of edges E where 143

an edge in E is a two-element set {u, v} of vertices. Enumerating the vertex set by 1, . . . n, 144

a graph is equivalently encoded by its symmetric adjacency matrix M(Γ) whose entries 145

are muv = 1 if the vertices u and v are connected by an edge and 0 if not. We make the 146

choice that the diagonal entries are 1. A graph is complete if there is an edge between any 147

two distinct nodes. The matrix M(Γ) is the matrix all of whose entries 1. The number 148

of edges of a complete graph is |E| = (|V|
2 ) = 1

2 (|V||V − 1|) which is the same as the 149

number of non–diagonal independent entries in a symmetric |V| × |V| matrix. The two 150

main topological invariants of a graph are the number of connected components b0 and 151

the number of loops b1 = |E| − |V|+ b0, which are also called the first and second Betti 152

numbers the combination χ = b0 − b1 = |V| − |E| is called the Euler-characteristic of the 153

graph. 154

A subgraph is specified by a subset of nodes and a subset of edges connecting these 155

nodes. Each graph is a subgraph of the complete graph on its vertices. This can be 156

thought of as deleting the missing edges from a complete graph or equivalently setting the 157

corresponding matrix entries to 0. An induced subgraph is simply specified by a subset of 158

vertices. It contains all the edges connecting these vertices. If V′ is the vertex subset the 159

matrix of the induced subgraph is given by the submatrix M(Γ)V′V′ . An induced subgraph 160

is a clique if it is itself a complete graph, viz. all the entries of M(Γ)V′V′ are 1. 161

To use topological or simplicial methods such as homology, one promotes a graph 162

Γ to a simplicial space ∆(Γ). This is not simply the graph itself as glued together from 163

points and intervals, but is more involved. It is the realization of the clique complex. The 164

construction can be understood as an iteration of gluing in simplices. A n simplex is the 165

topological space of all vectors (t1, . . . tn+1) whose entries are non–negative ti ≥ 0 and 166

whose sum t1 + · · ·+ tn+1 = 1. The dimension, which is the number of free parameters, is 167

n. The gluing procedure starts with the 0 simplices. These are the vertices of Γ viewed as 168

points. In the next step one 1-simplex, which is an interval, is glued in for each edge by 169

identifying the endpoints of the interval with the vertices the edge connects. The higher 170

dimensional simplices are glued in according to complete induced subgraphs. For instance, 171

for any three vertices that are pairwise connected by edges, one glues in a 2–simplex, that 172

is a triangle whose sides are the edges. At the next level one glues in 3–simplices, that is 173

tetrahedra, for each complete graph on 4 verities, which has 6 edges identifying the 4 sides 174

of the tetrahedron with the triangles corresponding to the three edge subsets and so on. The 175

gluing procedure is tantamount to giving the (semi)–simplicial structure which specifies to 176

what the n dimension n − 1 boundary simplices of an n simplex are glued, in such a way 177

that the gluing is consistent with all sub–simplices, regardless of their dimension. 178

The complete graph on n vertices as space realizes to the full n simplex. Given an 179

arbitrary graph, the realization of the clique complex has such a simplex for each complete 180
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induced subgraph and these simplices are glued together by inclusion of subgraphs. This 181

identifies the simplex of a subgraph of a complete graph as a side of the simplex of the 182

graph and hence the space is glued together from maximal simplices corresponding to 183

maximal complete subgraphs along faces corresponding to common subgraphs. One 184

can iteratively construct this space by gluing in higher and higher simplices. This space 185

is higher dimensional and has more topological invariants, the higher Betti numbers bi 186

which are the dimensions or ranks of the respective homology groups Hi. The number of 187

connected components is the same for the graph and the associated space. The first Betti 188

number b1 may differ depending on whether one is looking at the graph or the space. The 189

first graph Betti number for the complete graph is 1
2 (|V|(|V| − 3) + 1 while the first Betti 190

number of the corresponding space, the simplex, is 0. 191

2.2. Filtration by weights and persistent homology 192

Preface. A non-negatively weighted graph is a graph together with a weight function w : E → 193

[0, 1] on its edges. Again, after enumerating the vertices this defines a symmetric matrix 194

W = W(Γ, w) with entries wuv = w({u, v}), i.e. the weight of the edge connecting u and v. 195

If there is no such edge the entry is 0, and the diagonal entries are fixed to be 1. Choosing 196

a cut–off r defines the symmetric matrix W(r) whose entry w(r)uv = 1 if wuv ≥ r and 0 197

if wuv < r. It has 1’s on the diagonal and defines the graph Γ(r). Note that Γ(0) is the 198

original graph and Γ(1) is the graph on the vertex set with no edges. Let W̄ be the order set 199

containing unique weight values, in decreasing order, in matrix W, varying the threshold 200

parameter r from 0 to 1, defines a sequence of subgraphs as follows: 201

Γ(1) ⊂ Γ1 = Γ(r1) ⊂ Γ2 = Γ(r2) ⊂ · · · ⊂ ΓW̄ = Γ(r|W̄|) ⊂ Γ = Γ(0). (2)

with 1 > r1 · · · > r|W̄| > 0 and the Γj are the finitely many different graphs that appear. 202

At each stage j some edges are added from the lower stage j − 1. The graph Γ(1) is the 203

subgraph with full vertex set, whose edges are given by the non–diagonal entries 1. In 204

practice, if the weights are Pearson correlations functions, the only entries of 1 will be along 205

the diagonal and the graph Γ(1) is simply the discrete set of data. 206

Note that since set W describes diatic functional couplings (e.g., similarity) between two 207

nodes of a network (or brain regions of interest (ROIs) in this formalism), it implies that the 208

“distance” (e.g., dissimilarity) between two nodes is defined as follows: 209

duv = 1 − wuv (3)

In other words, with this setup, we ensure that 210

• Γ1 is essential the 1-skeleton scaffold where all nodes are perfectly coupled (duv = 0), 211

which results in an empty graph. 212

• Γj1 is always an induced subgraph of Γj2 for all j1 < j2 ≤ |W̄|; 213

• The sequence {Γl | l ∈ [W̄]} starts with an empty graph (homeomorphic to Zn) and 214

ends with a complete graph (or a clique of n nodes) (homeomorphic to simplicial 215

complex of size n, i.e. Kn). 216

Given a filtered system, that is a sequence of inclusions of spaces as (2), one can utilize the 217

tool of persistence homology to track the changes of the fundamental topological invariants 218

of homology and Betti-numbers. This supplies a characteristic for the whole sequence. 219

We wish to stress that it is the sequence that is of importance here. The two endpoints 220

have rather trivial topological properties. If the start is just the data, then this is a discrete 221

set, and at the other end the space is just a full simplex corresponding to the complete 222

graph, which is contractible. The transition from one to the other and the appearance —and 223

disappearance— of higher homology is what is kept track of by persistent homology. 224

Bar codes and distances between them. The fingerprint is the variation which is quantified 225

by the bar codes. The variation parameter is the parameter r introduced above. A bar code 226

is a type of signature for the variation. For each persistent homology class, it records the 227
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value of the parameter rini when a representative appears (birth) and the value r f in when 228

it disappears (death). This is an interval (or bar) [b(c) = rint, d(c) = r f in]. At any given 229

r the homology is given by those classes c for which r ∈ [b(c), d(c)]. In the variation, all 230

higher homology classes are born and eventually die. The 0-th homology starts with as 231

many classes as data points and then eventually decreases (classes die) until there is only 232

one class left, which says that space is connected. The bar code is equivalently encoded by 233

the persistence diagram which the set with multiplicity (multiset) of all the endpoints of 234

the bars {(b(c), d(c))}. This is actually a multi–set, since some of the classes may appear 235

and die at the same parameter values and these multiplicities are recorded, e.g. (.2, .8) with 236

multiplicity 2 means that there are two bars of this type. Its p–th part Dgmp, is given by 237

bar corresponding to classes of homological dimension p. 238

Topological distance formulation. The Wasserstein distance is the natural norm on the 239

diagram space, e.g. the birth-death diagram of topological features. The Wasserstein 240

distance is the right measure for processes taking one diagram to another in a varying 241

family —now of persistence diagrams. This is well suited for analyzing a basic underlying 242

setup with variations. This is commonly viewed and addressed as the stability theorem. In 243

our case, we use Wasserstein distance to compute the distance between two diagrams for 244

the first and second-order homology (e.g., p = 1, 2) in various scenarios (e.g., comparing 245

topological behaviors between the same functional networks at resting conditions). 246

Specifically, for a fixed homological order p (in this paper, p = 1, 2), the q−Wasserstein 247

distance DW,q (∀q > 1) for two persistent diagrams Dgmp(X) and Dgmp(Y) for two data 248

sets X, Y can be defined as follows [35]. For a single interval I = [x, y] set d(I) = 1
2 (y − x) 249

which is the distance to the diagonal of the point (x, y) in R2. For two intervals I = 250

[x1, y1], J = [x2, y2] define their distance as d(I, J) = max(|x2 − x1|, |y2 − y1|). This is the 251

max norm distance for the two points (x1, y1), (x2, y2) in R2. A partial pairings between two 252

sets S and T is a choice of subsets S0 ⊂ S, T0 ⊂ T and a 1-1 correspondence between the two 253

subsets π : S0 ⇐⇒ T0. This extends to sets with multiplicity by choosing multiplicities of 254

elements and matching them with multiplicity. Given diagrams Dgmp(X), Dgmp(Y) let Π 255

be the set of all partial pairings then. The Wasserstein distance minimizes the sum of three 256

contributions: the distances between intervals that are paired and two contributions of the 257

distance to the diagonal for intervals that are not paired. It minimizes over two possible 258

scenarios, points moving and points moving in and out of the diagonal. The first means 259

that the classes shift in their rates and the second means that the classes vanish from the 260

diagram and new classes are introduced. Given π let Dgmp(X)1 = Dgmp(X) \ Dgmp(X)0 261

and Dgmp(Y)=Dgmp(Y) \ Dgmp(Y)0)
q be the complements. 262

DW,q(Dgmp(X), Dgmp(Y))) = min
π∈Π

[ ∑
I∈Dgmp(X)0

d(I, π(I))q+

∑
I∈Dgmp(X)1

d(I)q + ∑
J∈Dgmp(Y)1

d(J)]q]
1
q

(4)

In the zeroth order homology the Wasserstein distance becomes an unnatural choice. 263

This is due to the fact that the data points are the 0–classes and they are all born at r = 0. 264

Thus a contribution as disappearing or appearing from the diagonal which signifies being 265

born at different times is not a possible scenario. 266

It is better to consider Dgm0(X) just as the multiset of endpoints of the bars [0, d(x)] 267

where x ∈ X and use the classical Hausdorff distance to measure the (dis-)similarity 268

between two point clouds living in R. This specialized to: 269

DH(Dgm0(X), Dgm0(Y)) = maxmax
x∈X

min
y∈Y

|d(x)− d(y)|, max
y∈Y

min
x∈X

|d(x)− d(y)| (5)
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2.3. Functional connectomes and mesoscopic structures 270

Mesoscopic structures are typically referred to as structures whose elements are proper 271

subsets of system’s elements. In brain connectomics domain, there are two types of 272

mesoscopic structures: localized/quasilocalized and non-localized (topological strata). 273

In this section, we provide an overview and definition of each type in the context of brain 274

connectivity. 275

2.3.1. Localized mesoscopic structures 276

Localized mesoscopic structures are sub-systems that are learned from local network 277

properties such as nodes or edges, or correlations among neighboring nodes. In brain 278

connectomics, these sub-structures are induced from a wide array of techniques, including 279

but not limited to clustering [17,26], low dimensional approximation of high-dimensional 280

dynamics [36–40]. The most commonly known localized mesoscopic structures in brain 281

networks are often referred to as functional sub-circuits or functional networks [10]. 282

Definition 1. (Definition adapted from [41]) An a priori set of Functional networks (FNs) are 283

sub-circuits (or equivalently, sub-networks) that are highly reproducible across individuals at resting 284

condition (absence of task-induced cognitive demand). Hence, FNs are also known as Resting-State 285

networks (RSNs). 286

Special collections of induced subgraphs are used to group brain regions of interest (ROIs) 287

into localized/quasilocalized mesoscopic structures of brain functions denoted as func- 288

tional sub-circuits or equivalently, functional networks (FNs). A collection of k subgraphs 289

(of graph Γ) is denoted as {γi ⊂ Γ | i ∈ [k]}. A collection of induced subgraphs is a vertex 290

covering if the graphs each vertex of Γ is a vertex of one of the γi. Such a vertex covering is 291

disjoint if the γi have disjoint vertices. After enumerating all nodes by 1, . . . , n = |V| the 292

collection of induced subgraphs is fixed by the membership assignment. This is specified 293

by a partition vector denoted as σ ∈ [k]n where σ = [σu] = i ∈ [k] indicating that u belongs 294

to γi | i = {1, 2, ..., k}. Note that in network science, FNs are equivalent to the term "com- 295

munities" [11–13,42]. The problem of identifying the set of communities {γi ⊂ Γ | i ∈ [k]} 296

for a given complex network is called the community detection problem [11–13,42,43]. 297

2.3.2. Non-localized mesoscopic structures 298

While studies of network properties and dynamics using locally featured properties 299

(nodes, edges attributes) provided a well-grounded approach, these methods were proven 300

to be cumbersome in describing and quantifying heterogeneity existing across network 301

dynamical fabrics. These structures usually encompass many-body interactions or en- 302

capsulate topological sub-structures that can not be mathematically described using local 303

attributes. To that end, homology [44] offers a unique capability to capture the so-called 304

non-localized mesoscopic structures that otherwise, cannot be reduced to local or quasilocal 305

network properties. In the context of weighted complex networks, persistent homology is 306

used to identify how long (the persistence of) a hole (at any given dimension) lasts from its 307

birth (the weight scale w∗
B ∈ [0, 1] that the hole is observed) to its death (the weight scale 308

w∗
D ∈ [0, 1] that the hole is filled). 309

In the context of functional brain connectivity, non-localized mesoscopic structures 310

in a FC represent the encapsulated area where there is less functional connectivity collec- 311

tively formed among brain regions encapsulating these structures [45]. Such structure 312

characterizes the notion of hole; the boundary that wraps around these structures are the 313

non-localized mesoscopic fabrics characterized by the so-called cycles. These cycles exist in 314

different homological dimensions for a given networked system which can be described 315

in the language of a manifold. The hollow structures (holes) could be seen as overarching 316

wraps-around special hollow structures in a manifold with different characteristics and 317

properties, compared to functional networks [17,46–48] or communities [11,12,42,49] in 318

complex networks. 319
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Figure 1. Topological landscape of human brain functional networks: Panel A is the schematic rep-
resentation of a graph (e.g., functional connectome) modeling first-order interactions (e.g., functional
couplings) with weight values wuv = d1, d2, e, b2, b1. Panel B is a sequence of induced subgraph
scaffolds (also referred to as filtration) by scanning across wuv (Note that the filtration is built on
duv = 1 − wuv); hence, the starting point Γ(wmax = 1) = Γ1 is an empty graph. Panel C represents
the super-graph construction by merging all ROIs belong to the same FN to one super-node through
equivalence relation Γ̄ = Γ/γ which is defined as follows: γ1 = 1 (e.g., FN1); γ2 = 2, 3, 4, 5, 6 (e.g.,
FN2) and γ3 = 7, 8, 9, 10 (e.g., FN3). Notice that the super-graph itself is a graph; hence, homological
computations that were applied in the original graph can also be applied to the super-graph itself. In
this example, the super-/consolidated graph has 3 super-nodes. Additionally, the weight matrix is
re-scaled according to w̄i,j. Panel D is the corresponding persistent diagram for the first homology
which accounts for two first-order cycles in a network: (2,3,4,5,6) and (7,8,10,9); here, we see that
cycle (2,3,4,5,6) lasts longer (more persistent) compared to cycle (7,8,10,9). Finally, when scanning
across five distinct r parameters, we obtain the zeroth and first Betti numbers: b0 = 10, 6, 3, 3, 3, 1 and
b1 = 0, 1, 2, 1, 0, 0, respectively.

2.4. Consolidated/Super graph 320

The system under consideration is naturally regarded as a two–level system given 321

by the ROIs and their connections. The first level is made up of the individual ROIs 322

and the second level is given by the connections between the ROIs. In graph theoretical 323

language, the full graph Γ(r) containing all the nodes naturally has a subgraph γi(r) ⊂ Γ(r). 324

These subgraphs form a supergraph, which has the subgraph as new vertices and has the 325

edges between two vertices if there are edges between the subgraphs. There are two 326

versions, the first is the multi–edged graph that is described theoretically by contracting 327

all the edges of the subgraphs γi that is if γ = ∪iγi is the union of subgraphs, then 328

Γ̄ = Γ/γ. Reducing possible multiple edges to just one edge on has the reduced graph 329
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Γ̄red which is again an ordinary graph described by a matrix. For a weighted graph, 330

assuming the subgraphs are not connected, the graphs γi correspond to block matrices 331

along the diagonal and the edges of the quotient graph are the off-block entries. To 332

obtain a matrix one can consolidate the weights into one weight by choosing a function 333

Wi,j = f (wuk ,vl ), wu1,v2 , . . . , wu1,vk , wu2,v1 . . . , wul ,vk where u1, . . . ul are the vertices of γi and 334

v1, . . . , vl are the vertices of γj. One such choice is Wi,j = ∑u∈γi ,v∈γj
wu,v and then normalize 335

to 336

w̄i,j = Wi,j/max(Wi,j) (6)

In the case under consideration the graph Γ̄ has eight (super-)vertices corresponding to 337

each FNs. The basic topological invariant of the loop number is of great interest as it is a 338

measure of the inter-connectivity of these "super-regions". The persistent homology for 339

the normalized super graph, that is the consolidated graph, will then complement this 340

information to show clusters of correlations between FNs. 341

3. Results 342

3.1. Data 343

Human Connectome Project (HCP) Dataset. We used the master data release extracted 344

from the HCP Young Adult (HCP-YA) subject release [50]. Specifically, the fMRI dataset is 345

obtained from HCP repository (http://www.humanconnectome.org/), with Released Q3. 346

The full release of Q3 HCP dataset has 889 subjects with complete data for all the four 3T 347

MRI modalities following the HCP protocol. While many of them are from the same family, 348

we only collected 100 genetically independent subjects for this study. In general, all MRI 349

neuroimaging modalities were acquired in two different days, with two different scanning 350

patterns (e.g., phase acquisitions: left to right or LR and right-to-left or RL). The detailed 351

description is in the next section and Figure 2. 352
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Figure 2. fMRI whole-brain connectome multi-level analysis workflow. For each task, we started
with individual-level functional connectome. On the global (macroscopic) level, we have individual
analysis as well as group-averaged analysis, and the functional network (mesoscopic) level extracts
functional networks from either the individual or group-averaged macroscopic graph. The consol-
idated graph is constructed by aggregating the nodes from the group-averaged macroscopic level
connectome. The scales in each panel represent the strength scale of functional connectivity.

HCP Functional Data. The fMRI data from the 100 unrelated subjects in the HCP Q3 353

release were employed in this study [50,51]. Following the HCP protocol, all subjects had 354

provided written consent to the HCP consortium. The two resting-state functional MRI 355

http://www.humanconnectome.org/
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acquisitions with HCP filenames: r f MRI_REST1 and r f MRI_REST2 were collected in two 356

separate sessions (on two different days), with two distinct scanning acquisitions (LR and 357

RL) for each day, see [34], [50], and [51] for further details. Besides resting state, the dataset 358

also includes fMRI data from seven (07) fMRI tasks: gambling (t f MRI_GAMBLING), rela- 359

tional or reasoning (t f MRI_RELATIONAL), social (t f MRI_SOCIAL), working memory 360

(t f MRI_WM), motor (t f MRI_MOTOR), language (t f MRI_LANGUAGE), and emotion 361

(t f MRI_EMOTION). Per [34], [52], three following fMRI tasks were obtained on the first 362

day: working memory, motor, and gambling; the rest were obtained on the second day. The 363

local Institutional Review Board at Washington University in St. Louis (scan site) approves 364

all the scanning protocols used during the HCP dataset acquisition process used in this 365

paper. Please refer to [34,52,53] for a further detailed description of the HCP-YA dataset. 366

The data was preprocessed following the HCP functional preprocessing guidelines [34,53]. 367

In summary, the processing steps included the removal of artifacts, motion correction, and 368

registration to the standard Montreal Neurological Institute space. Additionally, weak 369

highpass temporal filtering (at least 2000s full width at half maximum) was applied to 370

both formats to remove slow drift. Furthermore, artifacts and motion-related time courses 371

(including the 6 rigid-body parameter time series, their backward-looking temporal deriva- 372

tives, plus all 12 resulting regressors squared) were regressed out from both volumetric 373

and grayordinate data [53]. Note that all tasks and resting functional MRIs are treated with 374

equal importance. In this work, we denote seven fMRI tasks as gambling (GAM), rela- 375

tional (REL), social (SOC), working memory (WM), language processing (LANG), emotion 376

(EMOT), and motor (MOT). The abbreviation for those tasks are used in the tables and 377

figures for the following macroscopic, consolidated, as well as mesoscopic analysis.

fMRI Conditions Run time (min:sec) # of time points
REST1 (& REST2) 14:33 1200

EMOTION (EMOT) 2:16 176
GAMBLING (GAM) 3:12 253

MOTOR (MOT) 3:34 284
LANGUAGE (LANG) 3:57 316
RELATIONAL (REL) 2:56 232

SOCIAL (SOC) 3:27 274
WORKING MEMORY (WM) 5:01 405

Table 1. fMRI task scanning length and number of frames description. All fMRI task run times
were reported in order of minutes and seconds. Except for the resting state (for which, each subject
was scanned twice per day for a total of 2 × 2 = 4 sessions), all other tasks have two scans (RL and
LR). TR is the time between two consecutive readings.

378

Table 1 depicts basic information about fMRI conditions’ run time and the number of 379

time points for each task. Subsequently, along with table 1, a brief description of each fMRI 380

condition is provided below. An extended description is provided in HCP manual1. 381

1. REST: Eye open with relaxed fixation on a bright cross-hair with dark background. 382

1200 time points were obtained with 720 ms TR. 383

2. EMOTION: Subject was instructed to match two faces (or shapes) are shown at the 384

bottom to the top of the screen. Faces are shown with angry/fearful expression. Each 385

scan involves 3 face blocks and 3 shape blocks with 8 seconds of fixation. 386

3. GAMBLING: card playing game where subject needed to guess a number of a card 387

in order to win or lose money. At each trial, subject was instructed to guess whether a 388

card has value larger or smaller than 5, given the numerical range of the cards was 389

between 1 and 9. Subjects had 1.5 seconds to respond and 1 second of feedback. 390

1 https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_
Reference_Manual.pdf.

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
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4. LANGUAGE: At each scan, four blocks of story tasks and four blocks of math tasks 391

were presented to the subject. Stories contained brief auditory information followed by 392

choice of questions about the story topics. Math tasks contained arithmetic questions 393

with a similar level of difficulty compared to the story task. 394

5. MOTOR: subjects were shown various cues and instructed to either tap (left and 395

right) fingers, squeeze (left or right) toes, or move tongue in response to different 396

areas of human brain motor cortex. The task contains a total of 10 movements (12 397

seconds per movement), preceded by a 3-second cue. 398

6. RELATIONAL: subject were presented with 6 shapes along with 6 different textures. 399

Given two pairs of objects (one on the top and the other one at the bottom of the 400

screen), the subject had to decide whether the shape (or texture) differed across the 401

pair on the top screen. In addition, they had to decide whether the same difference 402

got carried over the bottom pair. 403

7. SOCIAL: subjects are shown a 20-second video clip containing randomly moving 404

objects of various geometrical shapes (squares, circles, triangles, etc.). After that, the 405

subject was instructed to respond whether these objects had any mental interactions 406

(shapes took into account feelings and thoughts), Undecided, or No Interactions. 407

8. WORKING MEMORY: subject was presented with trials of tools, faces, and body 408

parts. Four different stimulus types were presented in each run. In addition, at each 409

run, two types of memory tasks were presented: two-back and zero-back memory 410

tasks. 411

Brain atlas. The brain atlas used in this work is based on the cortical parcellation of 360 412

brain regions proposed by Glasser and colleagues [27]. Similarly to the description in 413

[14,54,55], 14 sub-cortical regions were added for completeness, as provided by the HCP 414

release (filename Atlas_ROI2.nii.gz). We accomplish this by converting this file from NIFTI 415

to CIFTI format, using the HCP workbench software2 through the command -cifti- create- 416

label. We then obtained a brain atlas of 374 brain regions (360 cortical + 14 sub-cortical 417

nodes) registered to a common space which allowed us to parcellate fMRI voxel-level 418

BOLD time series into brain region of interest level time series (command: -cifti-parcellate). 419

Time series were z-scored by using command -cifti-math. 420

Estimation of functional connectomes. Parcellated time-series were then used to construct 421

the whole-brain functional connectivity by computing the Pearson’s correlation coefficients 422

for each pair of brain regions. This operation can be completed using Matlab command 423

-corr which results in a symmetric matrix. All entries in the whole-brain FCs were applied 424

the absolute values so that the threshold parameter r = [0, 1]. 425

The mapping of functional networks onto FCs. After each subject is registered to the 426

appropriate common space and properly parcellated according to Glasser’s parcellation, 427

we explore the topological features of human brain functional connectivity (FC) by fur- 428

ther subdividing whole-brain FC into Resting State Networks (equivalently referred to 429

as functional networks/communities), see [17]. The Yeo’s 7 functional networks create a 430

many-to-one mapping that clusters a subset of brain regions into a single region of interest, 431

which in total results in 7 ROIs in the brain cortical region. The parcellation was devel- 432

oped by clustering the functional coupling for each subject separately [56] and finds the 433

maximum agreement on the cluster label membership. This particular partition includes 434

seven functional networks (FNs): Visual (VIS), SomatoMotor (SM), Dorsal Attention (DA), 435

Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), Default Mode Network (DMN); 436

Sub-cortical (SUBC) region is, as mentioned above, added into this atlas for completeness. 437

Consequently, the parcellation comprised of eight (8) FNs for each subject/task (The abbre- 438

viation of those functional networks will be used in the following figures with mesoscopic 439

analysis). 440

2 http://www.humanconnectome.org/software/connectomeworkbench.html

http://www.humanconnectome.org/software/connectome workbench.html
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3.2. Group analysis: Macroscopic whole-brain Level 441

Topological differences between rest and fMRI tasks. We first explore the topological 442

distances at the group-average whole-brain connectivity level between resting state and 443

fMRI task activation states (see Figure 3, see Figure S1 for the persistent diagram at the 444

macroscopic level). Each homological group consists of three figures, the first one is the 445

bottom left heatmap, representing the pair-wise Wasserstein distance. The bottom right 446

bar plots show the average distance between one task to all other tasks, thus the task 447

with the highest average distance will indicate its high differentiation with other tasks. 448

Finally, the top right plot shows the variance of each task looking at their distance from 449

the other tasks. Specifically, the zeroth homology suggests that the relational task is the 450

most different from the emotion task. Indeed, other studies, such as [14] through network 451

morphospace mechanism, have also suggested that relational and emotion tasks activate 452

minimally-to-none overlapping functional circuits of the human brain. In terms of H0 (i.e. 453

connected components), relational task is also the most distinctive task, compared with 454

others (highest average); relational task is followed by resting state on the average difference 455

with other tasks. Moreover (see Figure 3B), the first homology exhibits the highest degree
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Figure 3. Group-Average Macroscopic Homological distances between fMRI tasks and rest.
Specifically, three panels (e.g., left, middle, and right) represent the zeroth (Panel A), first (Panel B),
and second (Panel C) homological distance respectively between fMRI tasks and resting condition.
Group-average FCs are computed by taking the average of all subjects in the 100 unrelated subjects
dataset sampled from the HCP project. The zeroth homological distance is computed using the
Hausdorff formula (measured between persistent diagrams of two FNs extracted from group average
FC) while the first and second homology distances are computed using the Wasserstein formula. Each
panel in the graph is consisted of three different components, the left triangular heatmap represents
the distance, with its color bar indicating the scale above the heatmap; the bar plots represent the
average distance to other tasks; and the circular plots represent the variance among all fMRI tasks.
Complete names of each task include resting (REST), emotion (EMOT), gambling (GAM), language
processing (LANG), motor (MOT), relational (REL), social (SOC), and working memory (WM).

456

of differentiation between resting state and task-positive state, as measured by average 457

first homological Wasserstein distance between rest and task bar codes. The first homology 458

also suggests that the motor task is the most topologically different task, compared to the 459

resting state. This finding was consistent with current literature (e.g., Amico and colleague 460

[16]) which stated that motor task exhibited the most distant “within-functional network” 461

edges, relative to other fMRI tasks in the HCP dataset. This result also suggests that at a 462

global scale, the motor cortex whose brain regions are largely employed by motor task, 463

modulates increasing functional activities through forming global transduction pathways 464

with “loop-like" feedbacks (e.g., first-order cycles). 465
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3.3. Group analysis: Consolidated graph Γ̄ = Γ/γ 466

With the construction of consolidated graphs, we generated a smaller-scale representa- 467

tion of the brain connectome to 8 super nodes, which includes 7 Yeo functional networks 468

and one node for subcortical regions. Here, the super-graph is constructed using the equiva- 469

lence relation at the node level. As such: Γ̄ = Γ/γ such that γ = u ∼ v | σu = σv, ∀u, v ∈ V. 470

In other words, all brain ROIs belong to the same functional network are contractible. 471

Since the graph is much smaller, no birth was detected for a 2D simplicial complex in 472

the filtration process, thus only zeroth and first homology were included in the analysis 473

(see Figure 4, see Figure S2 for the persistent diagram at the consolidated level). In the 474

consolidated setting, we found that the social-resting task pair has the highest distance with 475

the zeroth homology, indicating that in the Yeo functional network level, the connectivity 476

representation captured more differences in social task and resting states (see Figure 4A). 477

By the nature of zeroth homology, where we are looking at connected components, the 478

different most-distinct task pair between the global level and consolidated level indicates 479

the choice of representation could impact the topological configuration in brain connectivity. 480

However, the Wasserstein distance between different tasks in the first homology revealed 481

topological invariant among both the global scale as well as node-aggregation scale as 482

the resting state and motor task pair also have the highest distance measure (see Figure 483

4B). This consistency validated the robustness of the first persistent homology class in 484

disentangling the brain’s functional circuits. In addition to the consistency in the most 485

distinct task pair, the resting state task also consistently appears as the most differentiated 486

task compared to other tasks based on the average distance for each task [57,58]. This 487

indicates that there is a significant reorganization in brain connectivity when people engage 488

in activities from a resting state. Especially for motor tasks, it engages more different brain 489

regions than other tasks, and thus it is also the second distinct task as it is the task that 490

requires responses involving movement. 491
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Figure 4. Consolidated homological distances between fMRI tasks and rest. The left and right panel
represents the distance between tasks in zeroth (Panel A) and first (Panel B) homology, calculated by
Hausdorff distance and Wasserstein distance respectively. Each panel also contains three components,
including the task-wise distance, the average distance, and the variance plot. Due to the small size of
the consolidated graph, there was no second homology detected in the corresponding topological
space.
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3.4. Group analysis: Functional network (mesoscopic) Level 492

In previous sections, we calculated the Wasserstein distance between different tasks, 493

where all of the nodes in the brain connectome were included. In order to assess for a 494

given task, how the brain connectivity shifts from one functional network to another, we 495

also conducted mesoscopic level analysis by extracting the 8 functional networks from the 496

group-averaged global graph. Since previous discoveries showed that the resting state 497

task involves brain regions that are most distinct from other tasks, and the Yeo functional 498

network was also optimized on the resting state fMRI, we focused our analysis on the 499

distance between functional networks in the resting state task and the mesoscopic level 500

topological configuration (see Figure S3 - S9 for the analysis of remaining 7 tasks). 501

3.4.1. Resting state analysis 502

Fixing the task and extracting functional networks enabled the characterization of 503

within-brain connectivity and the identification of unique topological patterns in functional 504

networks. Particularly, the default mode is present in the pair with the largest Wasserstein 505

distance in H0, H1, and H2 homology, and it also has the largest average Wasserstein 506

distance in H1 and H2 analysis (see Figure 5), suggesting a significant level of functional 507

specialization within the default mode during resting state. Extensive studies and literature 508

have validated that the default mode is more active and involved in introspective processes 509

and is typically deactivated in the engagement of goal-oriented tasks, which is referred 510

to as the “resting state dichotomy” of default mode network [59–61]. This finding further 511

reassured the robustness of the capability of the topological system to detect unique features 512

in certain activities. 513
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Figure 5. Group-Average homological distances between brain circuits (FNs) at rest (e.g. Resting
State Networks). Three panels are positioned similarly to previous figures where they represent
the distance of zeroth homology (Panel A), first homology (Panel B), and second homology (Panel
C) between pairs of FNs. Group-average FNs are extracted based on Yeo’s parcellation. The zeroth
homological distance is computed using the Hausdorff formula while the first and second homology
distance are computed using the Wasserstein formula. Each panel contains the triangular distance
heatmap, the average distance bar plot, and the variance circular plots among functional networks.
Complete names for functional subcircuit include Visual (VIS), SomatoMotor (SM), Dorsal Attention
(DA), Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), Default Mode Network (DMN), and
Sub-cortical (SUBC).

In addition, we also discovered that the limbic system has the highest average Wasser- 514

stein distance in the zeroth homology, indicating that it is the most distinct functional 515

network when we compare the pattern of connected components between functional net- 516

works [16,62] (see Figure 5A). The limbic system is known for its role in memory- and 517

emotion-related activities [63–65], and the distinct connectivity pattern discovered reveals 518
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that there might still be some memory or emotional processing even during the resting state. 519

Furthermore, the results can also serve as an indication of the individual heterogeneity 520

in their resting state behavior which may involve slight mind activities. The high level of 521

differentiation in H0 task pair with the limbic system is also reconfirmed in the mesoscopic 522

level analysis in emotion task and working memory task (see Figure S3A and S9A) 523

3.5. Individual subject analysis 524

While the group-average level connectomes (global level, consolidated level, and 525

mesoscopic level) provide topological insights in a collective pattern, transitioning to the 526

individual level could further offer a more personalized perspective with after-persistent- 527

homology group insights. Moving beyond the aggregation of group data, individual-level 528

analysis would also allow the consideration of inter-individual variability and consistency 529

across different scales to bring even more robustness to the experimental design. Similar to 530

the previous setting, we investigated the individual global level with consensus voting as 531

well as the individual mesoscopic level with Kullback–Leibler divergence (KL divergence) 532

respectively [66]. 533

3.5.1. Macroscopic whole-brain level 534

With 100 unrelated subjects from the HCP database, the individual macroscopic level 535

analysis contains 100 independent persistent homology with pair-wise task distance. At 536

the individual macroscopic analysis, we still used the Hausdorff distance for the zeroth 537

homology and the Wasserstein distance for the first and second homology. We evaluated 538

the most distinct pair of tasks in each individual and Figure 6 shows the number of times 539

each pair of tasks appeared as the most differentiated task pair. 540
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Figure 6. Individual consensus heatmap between tasks at the macroscopic level. Distance matrices
between functional networks in 100 unrelated subjects were collected, and for each pair of functional
networks, the frequency of it appearing as the most distinct pair among 100 subjects was counted,
resulting in a majority voting heatmap for 3 homology groups (Panel A is the zeroth homology, Panel
B is the second homology, and Panel C is the third homology). The number in the voting matrix
represents the number of times the corresponding pair revealed the highest distance in one subject,
and all numbers in one heatmap triangle should sum up to 100 for 100 subjects.

Particularly, the zeroth homology displayed the largest variability with the max count 541

of the task pair being the smallest among the three homology groups, thus resulting in 542

a more diffused pattern in the consensus voting heatmap (see Figure 6A). This serves as 543

another explanation for the impact of the choice of graph representation on the zeroth 544

homology analysis that it is relatively more varied. However, we also see the resting-motor 545

task pair as one of the task pairs that have a high frequency at the individual level H0 546

results. Furthermore, the first homology still demonstrates the consistency with the group- 547

averaged macroscopic level as well as consolidated level analysis, where it not only has 548

the motor task-resting state as the most frequent task pair, but the max count is also the 549

highest, indicating the robustness of the first homology in identifying brain connectivity 550

pattern with different activities (see Figure 6B). The second homology also shows the motor 551

task-resting state pair as the most frequent task pair, which further validates our findings 552

shown above (see Figure 6C). The individual level analysis on the macroscopic level adds 553
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another layer to the group-averaged level analysis, where either the variability in the zeroth 554

homology or the consistency in the first and second homology both further agree with the 555

interpretation from previous sections. 556

3.5.2. All-to-REST, mesoscopic analysis 557

At the individual mesoscopic level, the amount of analysis increased dramatically, 558

with 100 individuals, 8 tasks, 8 functional networks, and 3 homological classes. In this 559

case, it is difficult to analyze the distance between homology groups as we did at the 560

group-averaged level. As validated in previous studies as well as our macroscopic level 561

analysis, the resting state analysis tends to be the most distinct task compared to other 562

tasks that include some activity engagement [16]. Therefore, we collected individual level 563

all-to-REST distance and compared them across the functional network dimension and task 564

dimension. 565
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Figure 7. KL divergence plot for top three functional networks pair in all-to-RESTING setting.
Rows represent homological groups (Panel A-C is the zeroth homology, Panel D-F is the first
homology, and Panel G-I is the second homology) and each has three panels consisting of the
top three most distinct pairs of functional networks inferred from the group-averaged mesoscopic
analysis. The bar plot demonstrates the KL divergence between the selected pair of functional
networks, in terms of the 100 individual-level distance between the resting state with other tasks.
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For the mesoscopic level in an all-to-REST setting, we picked three functional network 566

pairs that have the highest distance measure from the group-averaged results (section 567

3.4.1) for all three homology groups. For each pair of functional networks, we collected 14 568

vectors, with each FN having 7 vectors containing 100 individual level distance measures 569

between the 7 non-resting-state tasks and resting state task (see Figure S10), and then we 570

compared the KL divergence between the two functional networks with vectors from the 571

same non-resting-state task (Figure 7). In other words, the KL divergence measures the 572

difference between two distributions (two functional networks respectively for all subjects) 573

of the distance measure between the non-resting-state task and resting-state task. 574

For zeroth homology, we find that the social task is more differentiated from the resting 575

state compared to others when we consider functional network pairs of dorsal attention and 576

subcortical, as well as visual network with the limbic system (see Figure 7, panel B, C). These 577

results take the consideration of both task activities and interactions between functional 578

networks at the same time, indicating that the selected pair of functional networks have 579

very different brain connectivity configurations in social tasks compared to the resting state. 580

The default mode is still involved in the most selected pair of functional networks in the 581

resting state, and the relational task has a very high KL divergence compared with the 582

resting state in many functional pairs for the first and second homology, including default 583

mode with limbic, subcortical, visual, dorsal and ventral attention (see Figure 7, panel D-I). 584

3.5.3. All-to-REST, task analysis 585

The task analysis in an all-to-REST setting provided another perspective where the 586

observation of functional network reconfiguration from resting state to other tasks is 587

highlighted. In this case, we fixed the task that compared with the resting state and focused 588

on the KL divergence between all pairs of functional networks in the first phonological 589

order (see Figure 8, see Figure S11 and Figure S12 for the zeroth and second homology). To 590

demonstrate the reconfiguration from resting to other tasks, we selected the top five largest 591

KL divergences for each task and ranked them by the line strength in the circular plot. 592
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Figure 8. KL divergence circular plot for 7 fMRI tasks-to-RESTING with functional network
comparison in H1. Here we fixed the task which compared with the resting state and visualized the
top five KL divergence between functional networks. The KL divergence is normalized with regard
to the top five measures and demonstrated by the strength of circular connectivity.
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Some of the tasks displayed very unified patterns, such as the emotion task and 593

working memory task, where all the highest KL divergence included one functional network 594

(see Figure 8, emotion and working memory panel). The observation drawn from those two 595

tasks showed that the reconfiguration from resting state to emotion task actually involves 596

a lot of activities for somatomotor, and shifts to working memory task will require the 597

subcortical region to take the most response. The somatomotor network includes most of 598

the somatosensory area, which is closely related to emotional regulation, and the subcortical 599

region is known to be involved in complex activities such as memory-related activities. In 600

addition, we also observed that the somatomotor network also has the strongest link in the 601

motor task, and the subcortical region is present as the dense connectivity hub in many 602

task plots, which is an indication of the common underlying mechanism of brain circuit 603

shifts from resting states to any other activities (see Figure 8, gambling, motor, relational, 604

and social panel). 605

4. Discussion 606

At the heart of many complex systems resides a set of fine-tuned mesoscopic struc- 607

tures whose roles have been linked with complex orchestrations of emergent phenomena. 608

Understanding complex higher-order behaviors arisen at a scale between the mesoscopic 609

(brain regions) and macroscopic (whole-brain) level would set the stage to a more compre- 610

hensive understanding of the human brain large-scale functional circuitry. There are two 611

kinds of mesoscopic structures: i) local/quasilocal (e.g., ground-truth communities) and ii) 612

non-local such as topological strata of complex networks. In this work, we proposed a TDA 613

formalism to disentangle the higher-order properties of brain sub-circuits (FNs) among dif- 614

ferent fMRI tasks. The major contributions of our framework on higher-order brain systems 615

over other existing ones [6,40,67,68] are that i) this framework allows the study of non- 616

localized properties of an a priori set of localized/quasilocalized sub-networks, ii) through 617

this innovative mesoscopic kernel proposal, we observed various results that align well 618

with the current knowledge in network neuroscience and also highlighted the resting-state 619

dichotomy of default mode network as well as the role of the limbic system in the process of 620

functional (re)configuration, iii) we included not only within-task and within-FN scenarios, 621

but also investigated the bi-level analysis that considered both task and FN levels at the 622

same time. The construction of fMRI brain connectivity and Yeo’s ROI-to-FN mappings 623

enabled multi-level homological group calculation and corresponding graph-based analy- 624

sis. With 7 different tasks in addition to resting state, previous studies found that the brain 625

functional reconfiguration in macroscopic (global-level) is hard to observe, while different 626

tasks will rather trigger more shifts in mesoscopic structure (brain functional networks 627

level) [14,69,70]. Hence, we organized our framework in 5 settings: a) group-averaged 628

global level, b) group-averaged consolidated level, c) group-averaged mesoscopic level, 629

d) individual global level, and e) individual all-to-REST level with functional network 630

analysis and task analysis. At the first three levels, we conducted the topological data 631

analysis at the group-representative level, which gives a broader view of the homological 632

landscape between tasks and functional networks. When we look at the individual level 633

(each subject’s FCs), we took a different approach from other existing brain connectivity 634

fingerprint frameworks [14,71]. Specifically, in the first step, we used consensus analysis 635

to infer group-level behavior, as opposed to using simple averages. In the first step, we 636

computed the distance measures on an individual basis by using the KL divergence to 637

compare the distribution of individual-level distance. Through this setting, we found 638

that three homological groups provided complementary insights in both task and subject 639

domains. More specifically, the zeroth homology measures the connected components; 640

the first homology measures the 2-dimensional hole encapsulated by one-dimensional 641

functional edges; the second homology measures the 3-dimensional cavities encapsulated 642

by 2-dimensional triangles. These homological groups and their algebraic structures are 643

hypothesized in our paper to characterize topological spaces parameterized by the brain 644

connectivity network. 645
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Noticeably in work led by Fox and colleagues [72], the authors suggested that emotion 646

task might be regulated by reduced functional activity attenuated by self-referential aspects 647

of such task. In general, “harder” tasks (i.e., relational) require an increasing level of 648

global integration which should reflect through a relatively small number of connected 649

components (smaller Betti number 0). It is worthy to note that the motor cortex was 650

identified as the hub of broadcasting transduction [16] which contains brain regions that are 651

critical to broadcasting information to other regions of the brain. Compared to the resting 652

state - the absence of cognitive requirement from fMRI tasks, motor task, which employs 653

motor cortex brain regions, modulates global integrative cooperation among brain regions 654

by forming first-order cycles across FNs. Combining both zeroth (connected components) 655

and first homological (graph-theoretical cycles) distance results, we see that there exists 656

a cognitive “switch” taking place at a global level to form connectivities that result in i) 657

less number of connected components and ii) more globally integrated FNs as reflected by 658

first-order cycles. 659

By consolidating the global view of the group-averaged connectome, we found that 660

the H1 homology displayed stable topological invariants with its consistency in the most 661

distinct pair of tasks as well as pertaining to a clear block diagonal structure on the distance 662

heatmap. Both global and consolidated views displayed significant signals that the resting 663

state and motor task are the most different task pairs [57,58], while they are also the first and 664

second distinct tasks in terms of the average distance (see Figure 4B, C). In this case, a simple 665

observation we can draw from the analysis is that the brain takes some reconfiguration from 666

resting state to other non-motor tasks, and then it requires further shifts in connectivity 667

to get to the motor task. In addition, we further studied the individual-level homological 668

scaffolds and performed group-level consensus voting on the most differentiated pair of 669

tasks over 100 unrelated subjects (see Figure 6B, C). The H1 and H2 majority voting results 670

again showed that the motor task is the most apart task from the resting state, and H1 671

also has the highest frequency count on the largest count among all three homological 672

groups, indicating that it has the most consistent and robust capability to understand the 673

homological scaffold in brain connectivity topological space. 674

Noticeably, the strong topological invariant of the H1 homology between the macro- 675

scopic (whole-brain) level with consolidated (super-graph) level demonstrated the existence 676

of self-similarity property unraveled by the higher-order properties of brain functional sub- 677

circuit [73–75]. Regarding the macroscopic level of the brain connectome as the “zoomed-in” 678

representation of the consolidated graph, the overall pattern of the Wasserstein distance 679

between tasks still holds. While both the macroscopic level and consolidated level have 680

the resting-state task and motor task pair as the most differentiated task pair, further ob- 681

servation was found by looking at the row in the distance heatmap that involves resting 682

state task and motor task all have high Wasserstein distance, together forming a block 683

pattern that separates resting state task as well as motor task from the other tasks. This 684

phenomenon guarantees the “parcellation-invariant” property of the first homological 685

group on the complex brain system and provides a consistent potential for this topological 686

framework for other higher-order complex network systems [73,75]. In addition, we can 687

also view the Glasser parcellation of 360 nodes and Yeo functional network of 7 regions 688

of interests as two different representations with a many-to-one relationship, and thus the 689

robustness between the macroscopic level and consolidated level in the first homology 690

showed great potential for this framework in its consistency across different brain parcella- 691

tions. Therefore, this homological setup can help learn the brain’s functional behavior in a 692

robust and trustworthy manner for clinical exploratory and discovery. 693

We partitioned the brain connectome with the 7 Yeo functional network as well as a 694

subcortical structure, resulting in 8 separate sub-networks. Since the resting state brain 695

connectivity structure is the closest to Yeo’s partition, the first assessment that we did at the 696

mesoscopic level was to fix the resting state task and compare the distance between two 697

functional networks. The mesoscopic level analysis captured the “functional dichotomy” 698

of the default mode network in the resting state by both the most differentiated task 699
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pairs as well as the highest average distance (see Figure 5B,C), where default mode is 700

the most dominant network [14,72,76]. Thus, with such versatility, the same framework 701

setup can be used to learn both (re)configuration across tasks, functional networks, and 702

neurological conditions. The brain network studies typically focus on either the within- 703

task configuration or within-network configuration [15,16,67,77,78], the individual-level 704

functional network partition further revealed patterns in the brain that are shifted between 705

resting state to other tasks as well as between two functional networks. The individual 706

all-to-rest mesoscopic analysis considered both task and functional network “switches”. 707

Such bi-level perspective allows the investigation of the most distinct functional network 708

pairs in resting state on their reconfiguration from resting state to other tasks (see Figure 709

7). While maintaining the bi-level design of the experiments, we flipped the two-level 710

in the all-to-rest task analysis to investigate, from resting state to each task, how pairs 711

of functional network are shifted (see Figure 8). The unique patterns in the top 5 pairs 712

of functional networks also enabled hub identification in the process of the task switch, 713

and closer tasks also displayed similar patterns, indicating that they underwent similar 714

reconfiguration from the resting state. The KL-divergence of two individual-level distance 715

distributions brought additional insights into how shifts between tasks and reconfiguration 716

among two functional networks can be related together in their functional behaviors. 717

This study has certain limitations. In the consolidation process from the global- 718

level graph, we specifically opted for max normalization to construct the super graph. 719

Since altering the normalization method may potentially modify the inter-connectivity of 720

functional networks, future research could investigate different normalization techniques. 721

For instance, using average connectivity to define the consolidated graph might impact 722

not only the topological structure of the super graph but also its self-similarity properties 723

from the homological kernels. Moreover, not only does the choice of the homological 724

group influence the distance measure between tasks or functional networks, but the graph 725

itself also plays a crucial role. Our experiments were solely conducted on the Glasser 726

parcellation with 374 nodes (360 cortical regions + 14 sub-cortical regions). Exploring 727

alternative parcellations in both brain cortical and subcortical regions ([29,79,80]) and 728

incorporating multiple parcellation scales could offer additional insights into mesoscopic 729

cognitive reconfiguration and its scaling-related properties. Another limitation of this 730

study is that the study is conducted purely on healthy subjects, so our findings are limited 731

to healthy conditions, future studies will address the homological landscape of different 732

neurological or psychiatric disorders as well as neurodegeneration diseases. In this case, 733

we can not only compare across functional networks and different tasks, but also we can 734

investigate how the macroscopic level brain and mesoscopic level functional network 735

configures across different disease statuses (eg. cognitive normal (CN), mild cognitive 736

impairment (MCI), and Alzheimer’s Disease (AD). 737

5. Conclusion and Future Work 738

In summary, we presented a novel framework that uses persistent homology to 739

characterize brain connectivity in the topological space. Based on the nature of each 740

homological group, we selected different distance measures correspondingly. The zeroth 741

persistent homology is all born at 0 so the Wasserstein distance is not a good fit, but 742

the Haursdorff distance is more appropriate for measuring the 1D distribution of the 743

point cloud. However, the first and second homology are closer to the diagonal in the 744

persistent homology diagram, and thus the Wasserstein distance with partial mapping 745

which serves as a simulation of moving one distribution to another in a geodesic setting 746

would become better in this case. We validated that the first homology gives very consistent 747

and topological invariant findings in different levels of analysis, which offers a scaling 748

invariant perspective. In addition, we find that the framework is capable of capturing 749

signals that are well-studied in the literature, which is reassuring of the validity of the 750

discoveries, but also discovered additional unique patterns in the brain circuit triggering 751

diverse processes among different fMRI tasks and resting conditions. Future applications 752
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could design more brain tasks to study the brain’s behavior and (re)configuration for 753

a more complex task sequence or even in continuous time [40,81,82], such that we can 754

explore how different subjects behave differently and how their brain (re)configuration 755

is triggered with same series of tasks. This could also be extended to study the brain 756

functional trajectory in a cascade sequence of tasks and investigate the dynamic of how 757

those functional subcircuits are coupled during the process. From a wider perspective, our 758

formalism can be applied, beyond brain connectomics, to study non-localized coordination 759

patterns induced by localized, pre-defined structures stretching across different complex 760

network fibers. 761

Author Contributions: Duy Duong-Tran: Conceptualization; Formal analysis; Investigation; Method- 762

ology; Writing original draft. Ralph Kaufmann: Methodology; Investigation; Writing original draft. 763

Jiong Chen: Investigation; Formal Analysis; Visualization; Writing original draft. Xuan Wang, Sumita 764

Garai, Frederick Xu, Alan D. Kaplan, Yize Zhao: Writing - review & editing. Jingxuan Bao: Visualiza- 765

tion. Giovanni Petri: Methodology; Writing - review & editing. Enrico Amico, Joaquin Goñi: Data 766

curation; Writing - review & editing. Li Shen: Conceptualization; Formal analysis; Writing original 767

draft; Project Supervision; Funding acquisition. 768

Funding: This work was supported in part by the National Institutes of Health grants RF1 AG068191, 769

R01 AG071470, U01 AG068057 and T32 AG076411, the National Science Foundation grant IIS 1837964, 770

and Office of Naval Research N0001423WX00749. 771

Data Availability Statement: The data used in this study is freely available on the HCP website 772

(www.humanconnectome.org). The release Q3 from the HCP data with resting state and 7 fMRI tasks 773

and Glasser parcellation was used, and users must apply for permission to access the data. The code 774

for the homological landscape framework is public at the GitHub repository https://github.com/ 775

PennShenLab/Homological_Landscape, example code offers analysis at the macroscopic level. 776

Acknowledgments: Data were provided (in part) by the Human Connectome Project, WU-Minn 777

Consortium (principal investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded 778

by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and 779

by the McDonnell Center for Systems Neuroscience at Washington University. 780

Conflicts of Interest: Authors declare no conflict of interest. 781

Abbreviations 782

The following abbreviations are used in this manuscript: 783

784

TDA Topological data analysis
FC Functional Connectomes
FN Functional Network
VIS Visual
SM SomatoMotor
DA Dorsal Atention
VA Ventral attention
LIM Limbic
FP Frontopatietal
DMN Default Mode Network
SUBC Sub-cortical regions
KL divergence Kullback–Leibler divergence

785

www.humanconnectome.org
https://github.com/PennShenLab/Homological_Landscape
https://github.com/PennShenLab/Homological_Landscape
https://github.com/PennShenLab/Homological_Landscape


Version January 20, 2024 submitted to Journal Not Specified 22 of 24

References 786

1. Battiston, F.; Amico, E.; Barrat, A.; Bianconi, G.; Ferraz de Arruda, G.; Franceschiello, B.; Iacopini, I.; Kéfi, S.; Latora, V.; Moreno, 787

Y.; et al. The physics of higher-order interactions in complex systems. Nature Physics 2021, 17, 1093–1098. 788

2. Giusti, C.; Pastalkova, E.; Curto, C.; Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. 789

Proceedings of the National Academy of Sciences 2015, 112, 13455–13460. 790

3. Giusti, C.; Ghrist, R.; Bassett, D.S. Two’s company, three (or more) is a simplex. Journal of computational neuroscience 2016, 41, 1–14. 791
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