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1. Summary 

Traditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified 

training sample without adequately considering its distance from the ground truth class distribution in the 

feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we 

propose a penalty called Distance-Weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with 

predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the 

training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS 

framework with a neural network to classify different stages of Alzheimer’s Disease. Our empirical results 

demonstrate that the DWS framework outperforms the traditional neural network loss functions and is 
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comparable or better to traditional machine learning methods, highlighting its potential in biomedical 

informatics and data science. 

2. Introduction 

Alzheimer’s disease (AD) is a progressive and degenerative condition that affects the brain’s neurons and 

causes memory loss, cognitive decline, and behavioral issues.1,2,3 The increasing prevalence of Alzheimer’s 

Disease (AD) and its devastating impact on individuals and societies has necessitated the development of 

strategies for early and accurate diagnosis. Since there are currently no viable therapies for AD, it is thought 

that the best way to slow its progression is to start with an early diagnosis. Traditionally, AD diagnosis has relied 

on clinical evaluations and cognitive tests. However, these approaches often fail to detect the disease until it has 

significantly progressed, making effective intervention more challenging. Therefore, there is a growing interest 

in exploring alternative diagnostic methods. 

To achieve this, researchers from a variety of fields have dedicated their work to comprehending the 

mechanisms underlying these diseases and identifying pathological biomarkers for the diagnosis or prognosis 

of AD and/or Mild Cognitive Impairment (MCI, a prodromal stage of AD), by examining various neuroimaging 

modalities, such as magnetic resonance imaging (MRI),4 positron emission tomography (PET),5 functional MRI 

(fMRI)6 etc. 

Neuroimaging techniques have made significant contributions to our understanding of the brain. Over the 

past few decades, there has been a growing concern regarding the need for breakthroughs in efficiently 

analyzing and interpreting observed data. Machine learning (ML), which can handle highly dimensional and 

complicated data, has recently become a potent tool for disease classification and prediction.7,8,9 

Feed-forward Deep Neural Network (DNN) has been employed in various research studies for the purpose 

of AD and MCI diagnosis. For example, Ning proposed a model that takes the image and genetic data to classify 

AD occurrence and identify the most crucial AD risk factors.10 Magni presented a support vector machine (SVM)-

based automated technique of whole-brain anatomical MRI image to distinguish between people with AD and 

older control participants.11 By introducing a group lasso penalty to induce structure sparsity, Sun improved 

the traditional SVM-based model, comparable to or better than the state-of-the-art methods.12 

Wasserstein distance is defined between two probability distributions on a given metric space. It has been 

applied to solve numerous problems, including generative network,13 barycenter estimation,14 and multi-class 

classification.15 Besides the field of deep learning, the optimal transport theory16 has also been applied to 

computational geometry,17 surface modeling18 and casual inference.19 

In multi-class classification models, traditional loss functions such as cross-entropy loss often quantify the 

penalty for a mis-classified training sample without adequately considering its distance from the target ground 

truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should 

be. With this observation, In this paper, for each class label A, the proposed DWS loss is explicitly designed to 

match the distributions between all the samples with predicted label A and all the samples with true label A; 
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see Figure 1 for a schematic design. The Wasserstein distance and Optimal Transport theory is used to capture 

the difference between distributions. 

This strategy could be considered as the data-wise Label Distribution Learning (LDL) problem. This loss 

function is fundamentally based on the Optimal Transport (OT) theory as it could capture the underlying data 

space’s geometric details. On the other hand, the label distribution learning20 aims to minimize the metric of the 

model output and the ground truth labels, trying to find the best label trending of each instance. We implement 

a neural network with the DWS loss and apply it to a diagnosis task on classifying Alzheimer’s disease (AD), 

Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) subjects using FDG-PET imaging data capturing 

glucose metabolism. The data used in this study are obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (https://adni.loni.usc.edu). The results are robust in binary and multi-class 

classification compared to other loss functions and comparable across methods besides deep neural networks. 

Our proposed DWS loss, to the best of our knowledge, is the first one that considers the data-wise distribution 

of the output model. 

The rest of this paper is structured as follows: In the Method Details section, we introduce our problem 

formulation and elaborate on the proposed model in detail. The Results section compares the DWS loss function 

with commonly used loss functions within the Deep Neural Network (DNN) framework and traditional machine 

learning methods (e.g., Support Vector Machine). We also generate the feature importance map from the DWS 

loss model, ranking the importance in terms of their attribution to model decision, thus highlighting key 

cognitive markers. The paper concludes with a discussion of the current scope of our work, its limitations, and 

potential direction for future works. 

3. Results 

In this section, we evaluate the effectiveness of our proposed DWS loss through conducting an empirical 

study on classifying CN, MCI and AD participants using the ADNI FDG-PET dataset. This dataset contains 789 

participants with 116 features, including 264 CN, 390 MCI, and 135 AD subjects. We examine the ability of DWS 

on three binary classification tasks and one multi-class classification task. The three binary classification tasks 

are CN vs AD, CN vs MCI, and AD vs MCI. The multi-class (three) task is CN vs AD vs MCI. 

Under a Deep Neural Network (DNN) framework, we compare the proposed DWS to four loss functions: 

Binary Cross Entropy Loss, Binary Cross Entropy loss with Logits loss, Hinge loss, and Focal loss. For a fair 

comparison, we choose the same neural network for these five losses. A feed-forward neural network with two 

fully connected hidden layers is used. The neurons of the layer start from 256 and decrease to 128 at the second 

hidden layer. All the networks are trained to use the L2 norm of 10−3, ADAM optimizer with a batch size 24. The 

initial learning rate is 0.001 and will be decreased by a tenth in the validation loss plateau. We used the Pytorch 

package SampleLoss from the Geomloss to compute the Wasserstein distance. 

In addition, we compare our model with several widely used classification models outside the deep neural 

network realm, including Support Vector Machine, Logistic Regression, Gradient Boosting, its variant, Random 
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Forest, etc. The results of these models are obtained from an automated machine learning (AutoML) pipeline, 

STREAMLINE,21 which provides the models’ best practice with the Bayesian optimization hyperparameter 

tuning. We follow the same data preprocessing and split settings for a fair comparison. The balance accuracy 

and accuracy are used as the evaluation metric. Twenty test runs were performed, and the average performance 

with standard deviation are reported. We run all of the experiments on a system with an x86 64 architecture, 

Intel(R) Xeon(R) CPU operating at 2.20GHz, and 12GB of RAM. 

3.1. Comparative Study with Other Loss Functions under the Same DNN Framework 

To evaluate the efficacy of the proposed loss function, we first compare the DWS loss with CE, BCELogit, 

Hinge, and Focal losses, and evaluate the performance using accuracy and balanced accuracy. In our study, we 

employ accuracy as a primary metric to evaluate the performance of our models. Accuracy measures the 

proportion of correct predictions, making it an intuitive and straightforward way to understand how well our 

models perform. In addition to accuracy, we also measure balanced accuracy, mainly due to the presence of 

imbalanced classes in our dataset. Balanced accuracy is the average of the proportion corrects of each class 

individually, which is especially important when the classes are imbalanced as it gives equal weight to the 

predictive performance of each class. This ensures that our models perform well in the majority class and across 

all classes. Table 5 reports the result across the DNN model for binary and multi-class classification tasks. The 

result shows that the DWS loss provides the best balance accuracy and has a smaller variance, making it robust 

across multiple experiments. Additionally, the standard deviation across 20 tested runs also suggested that DWS 

is more robust regarding randomness. 

3.2. Comparative Study with Other Classification Models 

In Table 6, we compare our DWS loss based DNN model with several other methods: Logistic Regression, 

Support Vector Machine, Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boost, K-nearest 

Neighbors, Multiplayer Perceptron. The DWS method has the best balanced accuracy in CN vs MCI, MCI vs AD, 

and CN vs MCI vs AD and ranks second in CN vs AD, indicating that the DWS performs well on this imbalanced 

dataset. However, its accuracy may not be the best. 

To summarize the two comparative studies, the CN vs AD task, while easier due to the distinct nature of the 

two groups, saw comparable results between DWS and SVM. The real challenge lies in distinguishing subtler 

changes, as in CN vs MCI, MCI vs AD, and multi-class distinction in CN vs MCI vs AD. These tasks are harder due 

to the gradual progression of the disease but mastering them is crucial for early diagnosis in clinical settings. 

Here, DWS has shown to be significantly more effective. 

3.3. Feature Importance 

Originating from the game theory, the SHAP22 explanation method is based on Shapley’s value and uses it as 

a unified measure of feature importance. In the SHAP method, each feature ϕi represents the effect of including 

that feature in model prediction, and it is computed as  
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𝜙𝑖 =
1

|𝑁|!
∑ |𝑆⊆𝑁∖{𝑖} 𝑆|! (|𝑁| − |𝑆| − 1)! [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]                                          (1) 

where f(S) is the output of the DNN model, S is the set of features to be used to explain the model, and N is the 

complete set of all features. In our calculation, the Shapley value of each feature is the average of its 

contributions across all the data, i.e., its permutation. 

For the binary class classification, the SHAP values for the two classes, given a feature and observation, are 

just opposites of each other. Therefore, we only have a single bar value. For the three-class classification, the 

impact of a feature on each class is stacked to create the feature importance plot. In other words, the value tells 

us how much the feature is capable of helping us differentiate between classes. 

Figure 2 is the feature importance map of the DWS loss associated with all four classification tasks. . Taking 

the CN vs MCI task in Figure 2 as an example, the left inferior parietal, left hippocampal, and different parts of 

temporal pole are the essential features, and previous studies23,24 have indicated that these regions are able to 

detect the abnormal metabolism reduction at early stage of AD.  

For the MCI vs AD task, left angular, left inferior temporal, and parietal inferior regions are shown to be the 

top relavent features. These regions are frequently used FDG ROIs in MCI and AD studies based on the meta-

analysis, and AD patients have a significant metabolism decline among these regions compared with MCI or CN 

subjects.25 In addition, posterior cingulate regions (Cingulum in the AAL atlas) are highly contributed to all the 

classifications. Studies26,27 have demonstrated that posterior cingulate cortex showed higher hypometabolism 

in AD patients, and regional atrophy mainly lead to this abnormality.28 On the clinical side, results have shown 

that angular gyrus has been shown to have an important role in understanding impairment in Alzheimer ’s 

disease.29 Left posterior cingulum has also been shown to be likely to play a remarkable role in the progressive 

development of cognitive impairment in AD.30 

For the CN vs AD task, the top three features are posterior cingulate, left angular, and left hippocampus to 

differentiate AD and CN patients. In clinical trials, the result shows that posterior cingulate and temporal pole 

are changed severely by the AD31 pathologic.32 The left hippocampus has also been shown to have high 

discriminative power in diagnosing Alzheimer’s disease.33 

For the feature importance of three class tasks, AD vs MCI vs CN, we plot the summation of the shapley value 

of each feature in order to show the global feature importance. The top three features are the left cingulate, left 

angular, and left inferior parietal. All numerical results are shown in Figure 2. A decrease order sorts the feature 

importance. The visualization of top five important feature is also plotted using Mango 

(https://mangoviewer.com) in Figure 3. 

Shown in Figure 4 is the feature importance map of the CN vs MCI task for all the tested methods listed in 

Table 6. Due to the page limitation, we only show the feature importance map for the CN vs MCI classification 

task, as it is a more valuable task for dementia detection at the early stage. The combined feature importance 

map provides an overall picture of which features are consistently important across models and how they affect 

predictions on average. In our result, the top five features in the combined map are left posterior cingulate, right 

angular, left Orbital part of inferior frontal, vermis subregion, and right temporal pole mid region. 
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4. Discussion 

Based on the Wasserstein distances and Sinkhorn algorithm, we have proposed the DWS loss as an 

alternative to the current loss function for Alzheimer’s disease classification. The DWS incorporates ground 

truth distribution into the loss function, providing more information when we calculate the loss function.  

In our empirical study, we have implemented a DNN with our DWS loss and applied it to a diagnosis task on 

classifying CN, MCI and AD subjects using FDG-PET imaging data from the landmark ADNI database. Since the 

dataset is imbalanced, the balanced accuracy is more important than the accuracy as the evaluation metric. Our 

empirical results have demonstrated that the proposed DWS framework outperforms the traditional neural 

networks and yields comparable or better performances under the balanced accuracy. These experiments 

suggests the potential usage of our proposed method. 

5. Limitations of the study 

The proposed DWS loss function has several limitations. Similar to many deep learning methods, it requires 

hyper-parameters tunning. In the scheme of Optimal transport, the ground metric of the cost function plays an 

important role. We plan to focus on ground metric learning later to automatically determine the best ground 

metric to make the loss function more effective. Currently, the loss function is tailored specifically for deep 

neural networks, utilizing their architecture to calculate gradients. Future work will aim to derive an explicit 

gradient descent formula applicable to the DWS method. This formula will enable the integration of the DWS 

loss function into a broader range of machine learning models beyond deep neural networks.  
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9. Figure Titles and Legends 

• Figure 1. Schematic design of the proposed algorithm using the Distance-Weighted Sinkhorn (DWS) loss 

function. In our proposed model, we first send the data into the fully connected deep neural network. After 

applying the softmax activation functions, the row logits turn into probability. The probability is used as the 

weight for the predicted distribution. To be specific, we have three probabilities for one instance and using 

the whole data will give as three weighted distributions. The Sinkhorn algorithm is then used to match the 

distribution between the predicted distribution and the ground truth distribution for each class label (i.e., 

CN, MCI, or AD). Finally, backpropagation is taken to adjust the neural network. In this flowchart, we assumed 

that the model had correctly predicted each instance. Therefore, the dominated distribution of each class is 

similar to its ground truth distribution. For simplicity, we assume the features live in a one dimensional 

continuous space. 

• Figure 2. Feature importance of binary and multi-class classification from DWS Loss. 

• Figure 3. Brain visualization for binary and multi-class classification. Top five features are shown. (a)-(d) are 

the four classification tasks: CN vs MCI; CN vs AD; MCI vs AD; CN vs MCI vs AD.The color spectrum from yellow 

to red in the figure indicates the degrees of feature importance, with red being the most important.  

• Figure 4. Feature importance of CN vs MCI for all the tested methods in Table 6. 

10. Tables with Titles and Legends 

Table 1: Table 1: ADNI Participant Detailed Information 
Panel A: ADNI Participant Age Distribution 

Age Range Less than 55 55-60 61-65 66-70 71-75 76-80 81-85 86-90 91-95 

Number of Participants 0 30 82 168 204 174 102 25 4 

 

 

Table 2Panel B: ADNI Participant Years of Education 

Year Range 0-

7 
8-

12 
13-

15 
16 and above 

Number of Participants 1 117 150 521 

 

 

Table 3Panel C: ADNI Participant Hispanic/Latino Ethnicity 

Ethnicity Hispanic Latino Unknown 

Number of Participants 771 15 3 

 

 

 

Table 4Panel D: ADNI Participant Race Categories 

Race White Asian Am Indian/Alaskan More than one 

Number of Participants 778 9 1 1 

Formatted: Space After:  0 pt
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Table 52: Accuracy and Balanced Accuracy results compared to BCE, BCELogit, Hinge and Focal loss. The best ones are bold. 

Metric Loss Function CN vs AD CN vs MCI MCI vs AD CN vs MCI vs AD 

 BCE 0.868 ± 0.0490 0.597 ± 0.0332 0.819 ± 0.0471 0.548 ± 0.0398 

 BCELogit 0.870 ± 0.0411 0.593 ± 0.0398 0.820 ± 0.0331 0.564 ± 0.0384 

Accuracy Hinge 0.860 ± 0.0381 0.607 ± 0.0317 0.815 ± 0.0423 0.539 ± 0.0612 

 Focal 0.871 ± 0.0360 0.605 ± 0.0374 0.819 ± 0.0304 0.550 ± 0.0544 

 DWS 0.871 ± 0.0360 𝟎. 𝟔𝟎𝟖 ± 𝟎. 𝟎𝟑𝟔𝟗 𝟎. 𝟖𝟐𝟏 ± 𝟎. 𝟎𝟑𝟎𝟓 𝟎. 𝟓𝟔𝟖 ± 𝟎. 𝟎𝟒𝟏𝟔 

 BCE 0.844 ± 0.0551 0.566 ± 0.0265 0.778 ± 0.0379 0.572 ± 0.0398 

 BCELogit 0.852 ± 0.0518 0.582 ± 0.0361 0.765 ± 0.0370 0.577 ± 0.0376 

Balanced Accuracy Hinge 0.840 ± 0.0529 0.594 ± 0.0320 0.777 ± 0.0383 0.571 ± 0.0462 

 Focal 0.846 ± 0.0453 0.588 ± 0.0364 0.770 ± 0.0349 0.578 ± 0.0414 

 DWS 𝟎. 𝟖𝟗𝟏 ± 𝟎𝟐𝟒𝟕 𝟎. 𝟓𝟗𝟗 ± 𝟎. 𝟎𝟑𝟑𝟖 𝟎. 𝟕𝟖𝟐 ± 𝟎. 𝟎𝟑𝟖𝟏 𝟎. 𝟔𝟏𝟕 ± 𝟎. 𝟎𝟐𝟗𝟒 

 

Table 63: Accuracy and Balanced Accuracy results compared to Logistic Regression, Support Vector Machine, Decision Tree, Random 

Forest, Gradiant Boost and its variant, K Nearest Neighborhood and Multi Layer Perceptron. The best ones are bold. 

 

 

 

Metric Method CN vs AD CN vs MCI MCI vs AD CN vs MCI vs AD 

 LR 0.918 ± 0.0317 0.596 ± 0.0297 0.845 ± 0.0277 0.554 ± 0.0384 

 SVM 𝟎. 𝟗𝟐𝟐 ± 𝟎. 𝟎𝟑𝟑𝟒 0.599 ± 0.0372 0.783 ± 0.0394 0.590 ± 0.0273 

 DT 0.809 ± 0.0276 0.527 ± 0.0559 0.783 ± 0.0394 0.519 ± 0.0426 

 RF 0.859 ± 0.0274 0.848 ± 0.0399 0.789 ± 0.0365 0.545 ± 0.0274 

Accuracy GB 0.891 ± 0.0271 0.607 ± 0.0404 0.781 ± 0.0340 0.542 ± 0.0323 

 LGB 0.866 ± 0.0283 0.597 ± 0.0367 0.695 ± 0.0443 𝟎. 𝟓𝟖𝟐 ± 𝟎. 𝟑𝟎𝟑 

 KNN 0.805 ± 0.0419 0.569 ± 0.0336 0.819 ± 0.0322 0.548 ± 0.0422 

 MLP 0.875 ± 0.0405 0.603 ± 0.0380 𝟎. 𝟖𝟐𝟐 ± 𝟎. 𝟎𝟑𝟖𝟔 0.560 ± 0.0405 

 DWS 0.920 ± 0.0394 𝟎. 𝟔𝟎𝟖 ± 𝟎. 𝟎𝟑𝟔𝟗 0.821 ± 0.0305 0.568 ± 0.0416 

 LR 0.889 ± 0.0450 0.598 ± 0.0335 0.767 ± 0.0430 0.608 ± 0.0336 

 SVM 𝟎. 𝟖𝟗𝟔 ± 𝟎. 𝟎𝟒𝟓𝟗 0.594 ± 0.0397 0.721 ± 0.0524 0.558 ± 0.0361 

 DT 0.786 ± 0.0381 0.517 ± 0.0548 0.705 ± 0.0460 0.517 ± 0.0534 

 RF 0.846 ± 0.0453 0.570 ± 0.0460 0.757 ± 0.0490 0.577 ± 0.0259 

Balanced Accuracy GB 0.865 ± 0.0384 0.577 ± 0.0411 0.702 ± 0.0494 0.4355 ± 0.0355 

 LGB 0.835 ± 0.0391 0.562 ± 0.0392 0.750 ± 0.0405 0.566 ± 0.0372 

 KNN 0.726 ± 0.0576 0.552 ± 0.0343 0.648 ± 0.0395 0.475 ± 0.0503 

 MLP 0.842 ± 0.0548 0.511 ± 0.0327 0.732 ± 0.0481 0.495 ± 0.0495 

 DWS 0.891 ± 0.0247 𝟎. 𝟓𝟗𝟗 ± 𝟎. 𝟎𝟑𝟑𝟖 𝟎. 𝟕𝟖𝟐 ± 𝟎. 𝟎𝟑𝟖𝟏 𝟎. 𝟔𝟏𝟕 ± 𝟎. 𝟎𝟐𝟗𝟒 
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11. STAR METHODS 

11.1. Resource Avaliability 

11.1.1. Lead contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the lead contact, Li Shen (Li.Shen@pennmedicine.upenn.edu).  

11.1.2. Materials availability 

This study did not generate new unique reagents. 

11.1.3. Data and code availability 

• This paper analyzes existing, publicly available data. These accession URLs for the datasets are listed in the 

Key Resources Table. 

• The Source code and tutorials for implementing the DWS Loss has been deposited at GitHub and is publicly 

available as of the date of publication. DOIs are listed in the key resources table. 

• Any additional information required to reanalyze the data reported in this paper is available from the  

Lead contact upon request. 

11.2. Experimental Model and Study Participant Details 

Data for this study were sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 

The experiment involved 789 participants, comprising 390 women and 399 men. Participant demographics 

such as age, total years of education, and ethnicity are detailed in the Table 1-4. All participants were diagnosed 

with one of the following conditions: Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), or were 

deemed Cognitively Normal (CN). 

11.3. Method Details 

11.3.1. Data 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database,34,35 which was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and AD. All participants 

provided written informed consent and study protocols were approved by each participating site’s Institutional 

Review Board (IRB). Up-to-date information about the ADNI is available at www.adni-info.org. 

In this study, we downloaded and analyzed FDG-PET imaging data (measuring glucose metabolism) from 

the ADNI database.36 The FDG-PET imaging data play a crucial role in the diagnosis and assessment of AD. The 

http://www.adni-info.org/
http://www.adni-info.org/
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Statistical Parametric Mapping software tool37 was used to register FDG-PET scans into the standard brain space 

defined by the Montreal Neurological Institute (i.e., MNI-space). After that, the FDGPET scans were segmented 

based on the Automated Anatomical Labeling (AAL) atlas.38 We calculated the average voxel signal intensity for 

each of 116 AAL regions and used these regional average measures as our features in the subsequent 

classification studies. 

11.3.2. Optimal Transport 

Below, we explain in brief the Optimal Transport theory and its special instrument, the Wasserstein metric 

and the sinkhorn divergence39. 

The Optimal Transport problem is the optimal cost of changing one probability vector to match the shape of 

another probability vector. This gives us a measure of how similar the two probability vectors are. Most of the 

time, the least expensive method of moving mass from one distribution to another is also called Wasserstein 

distances. 

       Mathematically, consider two multi-variate distributions, with position {𝐱𝑖}𝑖=1
𝑛  and {𝐲𝑖}𝑖=1

𝑛 , and then 

we have the discretized distributions: 

𝐏 = ∑ 𝑝𝑖
𝑛
𝑖=1 𝛅𝐱𝑖

  and  𝐐 = ∑ 𝑞𝑗
𝑚
𝑗=1 𝛅𝐲𝑗

                                                       (2) 

where 𝛿𝐱 denotes a Dirac delta function placed at a location 𝐱 ∈ ℝ𝑛. In this way, the 𝑝𝑖  is vector of weights and 

{𝐱𝑖}𝑖=1
𝑛  is the mass locations. The ground cost matrix represents the transportation costs between each pair of 

mass locations: 

 𝐂𝑖𝑗 = ∥∥𝐱𝑖 − 𝐱𝑗∥∥
2

 (3) 

The transportation plan 𝑇, which tells us how much mass needs to be moved from 𝐱𝑖 → 𝐲𝑗  is a matrix 𝐓 ∈

ℝ𝑛×𝑚. 

The total cost of a transport plan is then: 

minimize
𝑇

ℓ𝑂𝑇(𝑃, 𝑄) = ⟨𝑇, 𝐶⟩

 subject to 𝐓 ∈ ℝ+
𝑛×𝑚,

𝐓𝑇𝟙𝑛 = 𝐪,

𝐓𝟙𝑚 = 𝐩

                                                                          (4) 

where ⟨𝐓, 𝐂⟩is the Frobenius inner product between the transport plan 𝐓 and the cost matrix 𝐂.  

          Solving the above optimization problem can be computationally challenging and unstable, requiring 

𝒪(𝑛3log𝑛) calculations. Because of this, it is challenging to apply Wasserstein distances in two-sample tests 

consistently. The entropic regularized Wasserstein distance is created by adding a regularization term 𝛾𝐇(𝐓) 

to address these issues. This is called Sinkhorn algorithm, and its mathematical formulation is:  

minimize
𝑇

ℓ𝑅𝑂𝑇(𝑃, 𝑄) = ⟨𝑇, 𝐶⟩ − 𝛾𝐇(𝑇)

 subject to 𝐓 ∈ ℝ+
𝑛×𝑚,

𝐓𝑇𝟙𝑛 = 𝐪,

𝐓𝟙𝑚 = 𝐩

                                                      (5) 

where 𝑯(𝑻) is the entropy of the transport plan matrix 𝑻 and is given by 𝑯(𝑻) = ∑ ∑ 𝑻𝑖.𝑗
𝑚
𝑗=1

𝑛
𝑖=1 (log𝑻𝑖,𝑗 − 1). Note 

that the regularized Wasserstein distance is biased as ℓ𝑅𝑂𝑇(𝑷, 𝑷) ≠ 0 . Therefore, combining two regularized 

Wasserstein distances can build an unbiased divergence, and it is called the Sinkhorn divergence: 

ℓ𝑆𝐷(𝐏, 𝐐) = ℓ𝑅𝑂𝑇(𝐏, 𝐐) − ℓ𝑅𝑂𝑇(𝐏, 𝐏) − ℓ𝑅𝑂𝑇(𝐐, 𝐐)                                                (6) 
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11.3.3. Problem Formulation and Proposed Method 

Figure 1 shows the schematic design of the proposed algorithm using our Distance-Weighted Sinkhorn 

(DWS) loss function. In our proposed model, we first send the data into a fully connected deep neural network. 

After applying the softmax activation functions, the row logits turn into probability. The probability is used as 

the weight for the predicted distribution. To be specific, we have three probabilites for one instance and using 

the whole data will give as three weighted distributions. The Sinkhorn algorithm is then used to match the 

distribution between the predicted distribution and the ground truth distribution for each class label (i.e., CN, 

MCI, or AD). Finally, backpropagation is taken to adjust the neural network. In this flowchart, we assumed that 

the model had correctly predicted each instance. Therefore, the dominated distribution of each class is similar 

to its ground truth distribution. Below, we discuss our problem formulation.  

Let 𝒳 represent the feature space and 𝒴 denote the label space ℒ = {𝑙1, 𝑙2, … , 𝑙𝑘}, where 𝑙𝑘  is the 𝑘 th label. 

In this paper, the aim is to learn an optimal mapping function ℎ𝜃: 𝒳 → 𝒴, parameterized by 𝜃, over space of 

hypotheses ℋ. Given an input 𝐱, ℎ𝜃 maps it into a vector 𝐲 = [𝑦𝑙1
, 𝑦𝑙2

, … , 𝑦𝑙𝑘
]. Therefore, the vector 𝐲 represents 

the probability that the instances belong to each label. The ground truth probability is also defined by 𝐳 =

[𝑧𝑙1
, 𝑧𝑙2

, … , 𝑧𝑙𝐾
], where the component is equal to 1 for true label and 0 otherwise. 

Given an i.i.d. set of 𝑁 training samples 𝒟 = ((𝐱1, 𝐲1) … (𝐱𝑁, 𝐲𝑁)), the overarching goal of the algorithm is to 

find the mapping function ℎ𝜃 that minimizes the empirical risk 

                                                                         min
ℎ𝜃∈ℋ

1

𝑁
∑ ℓ𝑁

𝑖=1 (𝐳𝑖 = ℎ𝜃(𝐱𝑖), 𝐲𝑖)                                                                        (7) 

where ℓ(⋅,⋅) is a loss function. Instead of minimizing the empirical risk among each instance, we would like to 

minimize the empirical risk w.r.t each class 

min
ℎ𝜃∈ℋ

1

𝐾
∑ 𝑙𝑆𝐷

𝑘
𝑗=1 (𝐒𝑗 , 𝐒𝑝,𝑗)                                                                               (8) 

where 𝐾 is the number of class in our sample. 

11.3.4. Distance-Weighted Sinkhorn Loss 

In this section, the Distance-Weighted Sinkhorn Loss will be introduced. In the following sections, we use 

the shorthand DWS (Distance-Weighted Sinkhorn) for brevity. Instead of considering the difference between 

two probability vectors of the same instance, we consider the difference between the total distribution of data 

and its weight-predicted distribution. The formulation of DWS Loss is as follows: 

                         𝑙𝐷𝑊𝑆(𝒟, ℎ𝜃) = ∑ 𝑙𝑆𝐷
𝑘
𝑗=1 (𝐒𝑗 , 𝐒𝑝,𝑗)                                                                    (9) 

The 𝐒𝑗  is the empirical distribution of the data in class 𝑗 in the dataset and could be represented as 

𝐒𝑗 =
1

𝑁𝑗
∑ 𝐳𝑖,𝑗

𝑁
𝑖=1 𝛿𝐱𝑖

                                                                                  (10) 

where 𝑁𝑗  is the number of instances in class 𝑗, and the sum is over all instances in the dataset. Notice that 𝐳𝑖  is 

the one-hot encoded ground truth label of instance 𝑖, where 𝑧𝑖,𝑗 = 1 if instance 𝑖 belongs to class 𝑗 and 𝑧𝑖,𝑗 = 0 



1 3  

ot h e r wi s e. 𝛿 𝐱 𝑖
 i s a Di r a c d elt a f u n cti o n c e nt e r e d at t h e l o c ati o n of i n st a n c e 𝑖. Si mil a rl y, l et 𝐲 𝑖 = ℎ 𝜃 ( 𝐱 𝑖 )  b e t h e 

p r e di ct e d l a b el di st ri b uti o n f o r i n st a n c e 𝑖 . W e c a n t h e n d efi n e 𝑝 𝑗   a s a v e ct o r t h at c oll e ct s t h e p r e di ct e d 

p r o b a biliti e s f o r cl a s s 𝑗 a c r o s s all i n st a n c e s. It e sti m at e s t h e p r o b a bilit y of e a c h i n st a n c e b ei n g a s si g n e d t o cl a s s 
𝑗 a c c o r di n g t o t h e m o d el ℎ 𝜃 . 

      T h e p r e di ct e d di st ri b uti o n of t h e d at a f o r cl a s s 𝑗 i s t h e n r e p r e s e nt e d a s: 

𝐒 𝑝, 𝑗 =
1

𝐶 𝑗
∑ ℎ 𝜃

𝑁
𝑖 = 1 ( 𝐱 𝑖 )[𝑗] 𝛿 𝐱 𝑖

                                                                        ( 1 1 ) 

H e r e 𝐶 𝑗  i s a n o r m ali zi n g f a ct o r t o e n s u r e 𝑆 𝑝, 𝑗  i s i n d e e d a di st ri b uti o n. 

      W e t h e n ill u st r at e t h e e x a ct c o m p ut ati o n m et h o d f o r c al c ul ati n g t h e D W S l o s s; s e e al s o Al g o rit h m 1. N oti c e 

t h at o pti mi zi n g a n d diff e r e nti ati n g t h e D W S l o s s c o n si st s of 2 r e g ul a ri z e d W a s s e r st ei n di st a n c e s. T h e r ef o r e, w e 

fi r st f o c u s o n t h e c o m p ut ati o n of a si n gl e r e g ul a ri z e d W a s s e r st ei n. T h e d u al f o r m c o ul d b e w ritt e n a s  

𝐷 𝑢 𝑎𝑙 ( 𝛼, 𝛽 ) = 𝛼 ⊤ 𝐏 + 𝛽 ⊤ 𝐐 − 𝜖 ∑ e
( 𝐶 𝑖 𝑗 − 𝛼 𝑖 − 𝛽 𝑗 )

𝜖
𝑛, 𝑚
𝑖, 𝑗 = 1                                             ( 1 2) 

T h e n, b y t h e Si n k h o r n’ s s c ali n g t h e o r e m, o n e c o ul d s h o w t h at t h e o pti m al s ol uti o n f o r t h e p ri m al p r o bl e m i s 
r el at e d t o it s d u al f o r m s ol uti o n:  

𝑇 ∗ = di a g ( e 𝜖 𝛼 ∗ ) e −
𝐶

𝜖 di a g ( e 𝜖 𝛽 ∗ )                                                                      ( 1 3) 

w h e r e 𝛂 ∗  a n d 𝛃 ∗  a r e t h e mi ni mi z e r s of t h e d u al L a g r a n g e p r o bl e m. T h e a b o v e o pti m al s ol uti o n f o r d u al p r o bl e m 
𝛼 ⋆ , 𝛽⋆   c a n b e c o m p ut e d u si n g Si n k h o r n’ s al g o rit h m. F r o m t h e Si n k h o r n al g o rit h m, o n e c a n s h o w t h at 𝛼 ⋆ =
𝜀 l o g𝑢 ⋆ , 𝛽⋆ = 𝜀 l o g𝑣 ⋆ , w h e r e t h e 𝑢 ⋆ , 𝑣⋆  a r e t h e o ut p ut s of Si n k h o r n al g o rit h m. R ef e r ri n g t o t h e d u al f o r m ul ati o n, 
o n e c o ul d n oti c e t h at 𝛻 ℎ 𝜃 ( 𝐱 ) ℓ S D = 𝛂 ∗ . 

      Al s o, f o r e a c h i n st a n c e 𝑖 i n t h e d at a s et, t h e D W S l o s s al s o m ai nt ai n s t h e p oi nt wi s e c o n v e r g e n c e, t h at i s: 

𝐲 𝑖 → 𝐳 𝑖 ⇔ 𝑙 𝑆 𝐷 ( 𝐒 𝑖 , 𝐒𝑝,𝑖 ) → 0 ⇔ 𝑙 𝐷 𝑊 𝑆 ( 𝒟, ℎ 𝜃 ) → 0                                                ( 1 4 ) 

 

Al g o rit h m 1 U p d ati n g t h e W ei g ht θ of D e e p N e u r al N et w o r k  

 

1: I n p ut: M a p pi n g f u n cti o n z = h θ (x ), y ∈ R 1 × k . 

2: C al c ul at e: S T , p j, S p,j , C . 

3: I niti ali z e: u = 1 , K = e − λ C . 

4: f o r t = 1 ,2 ,... d o  

   5:  v ← y / K T u  

   6:       u ← z / K v  

7: e n d f o r  

8: ∇ h θ (x )ℓ S D  = ϵ l n(u )  

9: O ut p ut: G r a di e nt of t h e o bj e cti v e f u n cti o n wit h r e s p e ct t o t h e l e a r n e d m a p pi n g h θ . 
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11.3.5. Theoretical Result 

Here, we provide a theoretical bound using Rademacher Complexity.  

Definition 1. Let 𝐺 be a family of functions mapping a set 𝑍 into ℝ. A list 𝑆 = (𝑧1, … , 𝑧𝑚) of elements. Let 𝜎 =

(𝜎1, … , 𝜎𝑚)  be a list of independent random variables, where, for each 𝑖 ∈ {1, … , 𝑚}, 𝜎𝑖   takes value +1 with 

probability 1/2 and takes value -1 with probability 1/2. Then the empirical Rademacher complexity of 𝐺 with 

respect to S is defined to be  

𝑅𝑆(𝐺) = E𝛔 [sup
𝑔∈𝐺

1

𝑚
∑ 𝜎𝑖

𝑚
𝑖=1 𝑔(𝑧𝑖)]                                                                (15) 

The Rademacher complexity of 𝐺 with respect to samples of size 𝑚 drawn according to 𝐷 is 

𝑅𝑚(𝐺) = E
𝑆∼𝐷𝑚

[𝑅𝑆(𝐺)]                                                                               (16) 

      We also have the definition of Emprical Risk and Risk as followed: 

𝐸(ℎ) = 𝔼
(𝑥,𝑦)∼𝒟

[ℓ(ℎ(𝑥), 𝑦)]; 𝐸̂𝑆(ℎ) =
1

𝑚
∑ ℓ𝑚

𝑖=1 (ℎ(𝑥𝑖), 𝑦𝑖)                                    (17) 

Then, based on the general theorem of Rademacher complexity, we have that  

Theorem 1. Let 𝐺 be a family of functions mapping a set 𝑍 to the unit interval [0,1]. Suppose that a sample 𝑆 of 

size 𝑚  is drawn according to distribution 𝐷  on 𝑍 . Then for any 𝛿 > 0 , with probability at least 1 − 𝛿  the 

following holds for all functions 𝑔 ∈ 𝐺 : 

𝐸(𝑔) ≤ 𝐸̂𝑆(𝑔) + 2𝑅𝑚(𝐺) + 𝑂 (√log
1

𝛿

𝑚
)                                                       (18) 

      To connect the Sinkhorn divergence with the Rademacher complexity, we have the following approximation 
between the original OT formulation and the Sinkhorn divergence. We adopted Proposition 11 from Chizat.40 

Theorem 2. Assume that 𝜇𝑛 = ∑ 𝑝𝑖
𝑛
𝑖=1 𝛿𝑥𝑖

 and 𝜈𝑛 = ∑ 𝑞𝑗
𝑛
𝑗=1 𝛿𝑦𝑗

 are discrete measures with 𝑛 atoms such that 

𝑝𝑖 , 𝑞𝑗 ≥ 𝛼/𝑛 for some 𝛼 > 0. Then, we have that 

0 ≤ 𝑙𝑆𝐷(𝜇, 𝜈) − 𝑙𝑂𝑇(𝜇, 𝜈) ≤ 2𝜆𝐻(𝛾∗, 𝜇 ⊗ 𝜈) ≤ 4𝜆(log𝑛 + log(1/𝛼))                       (19) 

       Therefore, we could have that 

𝑅𝑚(𝑙𝑂𝑇) ≤ 𝑅𝑚(𝑙𝑆𝐷) ≤ 𝑅𝑚(𝑙𝑂𝑇) + 2𝜆(log𝑛 + log(1/𝛼))                                  (20) 

Finally, we can conclude that with at least 1 − 𝛿  probability, 𝐸(𝑙𝐷𝑊𝑆) ≤ infℎ∈ℋ𝐸(ℎ) + 2𝜆(log𝑛 + log(1/𝛼)) +

𝑂 (√log
1

𝛿

𝑚
). 
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3(a): CN vs MCI 3(b): CN vs AD

3(c): MCI vs AD 3(d): CN vs MCI vs AD
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