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1. Summary

Traditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified
training sample without adequately considering its distance from the ground truth class distribution in the
feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we
propose a penalty called Distance-Weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with
predicted label 4 and true label B), its contribution to the DWS loss positively correlates to the distance the
training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS
framework with a neural network to classify different stages of Alzheimer’s Disease. Our empirical results

demonstrate that the DWS framework outperforms the traditional neural network loss functions and is
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comparable or better to traditional machine learning methods, highlighting its potential in biomedical

informatics and data science.

2. Introduction

Alzheimer’s disease (AD) is a progressive and degenerative condition that affects the brain’s neurons and
causes memory loss, cognitive decline, and behavioral issues.!23 The increasing prevalence of Alzheimer’s
Disease (AD) and its devastating impact on individuals and societies has necessitated the development of
strategies for early and accurate diagnosis. Since there are currently no viable therapies for AD, it is thought
that the best way to slow its progression is to start with an early diagnosis. Traditionally, AD diagnosis has relied
on clinical evaluations and cognitive tests. However, these approaches often fail to detect the disease until it has
significantly progressed, making effective intervention more challenging. Therefore, there is a growing interest
in exploring alternative diagnostic methods.

To achieve this, researchers from a variety of fields have dedicated their work to comprehending the
mechanisms underlying these diseases and identifying pathological biomarkers for the diagnosis or prognosis
of AD and/or Mild Cognitive Impairment (MCI, a prodromal stage of AD), by examining various neuroimaging
modalities, such as magnetic resonance imaging (MRI),* positron emission tomography (PET),5 functional MRI
(fMRI)¢ etc.

Neuroimaging techniques have made significant contributions to our understanding of the brain. Over the
past few decades, there has been a growing concern regarding the need for breakthroughs in efficiently
analyzing and interpreting observed data. Machine learning (ML), which can handle highly dimensional and

complicated data, has recently become a potent tool for disease classification and prediction.?89

Feed-forward Deep Neural Network (DNN) has been employed in various research studies for the purpose
of AD and MCI diagnosis. For example, Ning proposed a model that takes the image and genetic data to classify
AD occurrence and identify the most crucial AD risk factors.1? Magni presented a support vector machine (SVM)-
based automated technique of whole-brain anatomical MRI image to distinguish between people with AD and
older control participants.!! By introducing a group lasso penalty to induce structure sparsity, Sun improved
the traditional SVM-based model, comparable to or better than the state-of-the-art methods.!2

Wasserstein distance is defined between two probability distributions on a given metric space. It has been
applied to solve numerous problems, including generative network,3 barycenter estimation,* and multi-class
classification.’> Besides the field of deep learning, the optimal transport theory!¢ has also been applied to
computational geometry,!” surface modeling!8 and casual inference.!?

In multi-class classification models, traditional loss functions such as cross-entropy loss often quantify the
penalty for a mis-classified training sample without adequately considering its distance from the target ground
truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should
be. With this observation, In this paper, for each class label 4, the proposed DWS loss is explicitly designed to

match the distributions between all the samples with predicted label 4 and all the samples with true label 4;
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see Figure 1 for a schematic design. The Wasserstein distance and Optimal Transport theory is used to capture
the difference between distributions.

This strategy could be considered as the data-wise Label Distribution Learning (LDL) problem. This loss
function is fundamentally based on the Optimal Transport (OT) theory as it could capture the underlying data
space’s geometric details. On the other hand, the label distribution learning?2® aims to minimize the metric of the
model output and the ground truth labels, trying to find the best label trending of each instance. We implement
a neural network with the DWS loss and apply it to a diagnosis task on classifying Alzheimer’s disease (AD),
Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) subjects using FDG-PET imaging data capturing
glucose metabolism. The data used in this study are obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (https://adni.loni.usc.edu). The results are robust in binary and multi-class
classification compared to other loss functions and comparable across methods besides deep neural networks.
Our proposed DWS loss, to the best of our knowledge, is the first one that considers the data-wise distribution
of the output model.

The rest of this paper is structured as follows: In the Method Details section, we introduce our problem
formulation and elaborate on the proposed model in detail. The Results section compares the DWS loss function
with commonly used loss functions within the Deep Neural Network (DNN) framework and traditional machine
learning methods (e.g., Support Vector Machine). We also generate the feature importance map from the DWS
loss model, ranking the importance in terms of their attribution to model decision, thus highlighting key
cognitive markers. The paper concludes with a discussion of the current scope of our work, its limitations, and

potential direction for future works.

3. Results

In this section, we evaluate the effectiveness of our proposed DWS loss through conducting an empirical
study on classifying CN, MCI and AD participants using the ADNI FDG-PET dataset. This dataset contains 789
participants with 116 features, including 264 CN, 390 MCI, and 135 AD subjects. We examine the ability of DWS
on three binary classification tasks and one multi-class classification task. The three binary classification tasks
are CN vs AD, CN vs MCI, and AD vs MCI. The multi-class (three) task is CN vs AD vs MCI.

Under a Deep Neural Network (DNN) framework, we compare the proposed DWS to four loss functions:
Binary Cross Entropy Loss, Binary Cross Entropy loss with Logits loss, Hinge loss, and Focal loss. For a fair
comparison, we choose the same neural network for these five losses. A feed-forward neural network with two
fully connected hidden layers is used. The neurons of the layer start from 256 and decrease to 128 at the second
hidden layer. All the networks are trained to use the LZnorm of 10-3, ADAM optimizer with a batch size 24. The
initial learning rate is 0.001 and will be decreased by a tenth in the validation loss plateau. We used the Pytorch
package SampleLoss from the Geomloss to compute the Wasserstein distance.

In addition, we compare our model with several widely used classification models outside the deep neural

network realm, including Support Vector Machine, Logistic Regression, Gradient Boosting, its variant, Random
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Forest, etc. The results of these models are obtained from an automated machine learning (AutoML) pipeline,
STREAMLINE,2! which provides the models’ best practice with the Bayesian optimization hyperparameter
tuning. We follow the same data preprocessing and split settings for a fair comparison. The balance accuracy
and accuracy are used as the evaluation metric. Twenty test runs were performed, and the average performance
with standard deviation are reported. We run all of the experiments on a system with an x86 64 architecture,

Intel(R) Xeon(R) CPU operating at 2.20GHz, and 12GB of RAM.

3.1. Comparative Study with Other Loss Functions under the Same DNN Framework

To evaluate the efficacy of the proposed loss function, we first compare the DWS loss with CE, BCELogit,
Hinge, and Focal losses, and evaluate the performance using accuracy and balanced accuracy. In our study, we
employ accuracy as a primary metric to evaluate the performance of our models. Accuracy measures the
proportion of correct predictions, making it an intuitive and straightforward way to understand how well our
models perform. In addition to accuracy, we also measure balanced accuracy, mainly due to the presence of
imbalanced classes in our dataset. Balanced accuracy is the average of the proportion corrects of each class
individually, which is especially important when the classes are imbalanced as it gives equal weight to the
predictive performance of each class. This ensures that our models perform well in the majority class and across
all classes. Table 5 reports the result across the DNN model for binary and multi-class classification tasks. The
result shows that the DWS loss provides the best balance accuracy and has a smaller variance, making it robust
across multiple experiments. Additionally, the standard deviation across 20 tested runs also suggested that DWS

is more robust regarding randomness.

3.2. Comparative Study with Other Classification Models

In Table 6, we compare our DWS loss based DNN model with several other methods: Logistic Regression,
Support Vector Machine, Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boost, K-nearest
Neighbors, Multiplayer Perceptron. The DWS method has the best balanced accuracy in CN vs MCI, MCI vs AD,
and CN vs MCI vs AD and ranks second in CN vs AD, indicating that the DWS performs well on this imbalanced
dataset. However, its accuracy may not be the best.

To summarize the two comparative studies, the CN vs AD task, while easier due to the distinct nature of the
two groups, saw comparable results between DWS and SVM. The real challenge lies in distinguishing subtler
changes, as in CN vs MCI, MCI vs AD, and multi-class distinction in CN vs MCI vs AD. These tasks are harder due
to the gradual progression of the disease but mastering them is crucial for early diagnosis in clinical settings.

Here, DWS has shown to be significantly more effective.

3.3. Feature Importance
Originating from the game theory, the SHAP?2 explanation method is based on Shapley’s value and uses it as
a unified measure of feature importance. In the SHAP method, each feature ¢;represents the effect of including

that feature in model prediction, and it is computed as
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where f{S) is the output of the DNN model, S is the set of features to be used to explain the model, and N is the
complete set of all features. In our calculation, the Shapley value of each feature is the average of its
contributions across all the data, i.e., its permutation.

For the binary class classification, the SHAP values for the two classes, given a feature and observation, are
just opposites of each other. Therefore, we only have a single bar value. For the three-class classification, the
impact of a feature on each class is stacked to create the feature importance plot. In other words, the value tells
us how much the feature is capable of helping us differentiate between classes.

Figure 2 is the feature importance map of the DWS loss associated with all four classification tasks. . Taking
the CN vs MCI task in Figure 2 as an example, the left inferior parietal, left hippocampal, and different parts of
temporal pole are the essential features, and previous studies?324have indicated that these regions are able to
detect the abnormal metabolism reduction at early stage of AD.

For the MCI vs AD task, left angular, left inferior temporal, and parietal inferior regions are shown to be the
top relavent features. These regions are frequently used FDG ROIs in MCI and AD studies based on the meta-
analysis, and AD patients have a significant metabolism decline among these regions compared with MCI or CN
subjects.?> In addition, posterior cingulate regions (Cingulum in the AAL atlas) are highly contributed to all the
classifications. Studies262” have demonstrated that posterior cingulate cortex showed higher hypometabolism
in AD patients, and regional atrophy mainly lead to this abnormality.28 On the clinical side, results have shown
that angular gyrus has been shown to have an important role in understanding impairment in Alzheimer’s
disease.?? Left posterior cingulum has also been shown to be likely to play a remarkable role in the progressive
development of cognitive impairment in AD.30

For the CN vs AD task, the top three features are posterior cingulate, left angular, and left hippocampus to
differentiate AD and CN patients. In clinical trials, the result shows that posterior cingulate and temporal pole
are changed severely by the AD3! pathologic.32 The left hippocampus has also been shown to have high
discriminative power in diagnosing Alzheimer’s disease.33

For the feature importance of three class tasks, AD vs MCI vs CN, we plot the summation of the shapley value
of each feature in order to show the global feature importance. The top three features are the left cingulate, left
angular, and left inferior parietal. All numerical results are shown in Figure 2. A decrease order sorts the feature
importance. The visualization of top five important feature is also plotted using Mango
(https://mangoviewer.com) in Figure 3.

Shown in Figure 4 is the feature importance map of the CN vs MCI task for all the tested methods listed in
Table 6. Due to the page limitation, we only show the feature importance map for the CN vs MCI classification
task, as it is a more valuable task for dementia detection at the early stage. The combined feature importance
map provides an overall picture of which features are consistently important across models and how they affect
predictions on average. In our result, the top five features in the combined map are left posterior cingulate, right

angular, left Orbital part of inferior frontal, vermis subregion, and right temporal pole mid region.
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4. Discussion

Based on the Wasserstein distances and Sinkhorn algorithm, we have proposed the DWS loss as an
alternative to the current loss function for Alzheimer’s disease classification. The DWS incorporates ground

truth distribution into the loss function, providing more information when we calculate the loss function.

In our empirical study, we have implemented a DNN with our DWS loss and applied it to a diagnosis task on
classifying CN, MCI and AD subjects using FDG-PET imaging data from the landmark ADNI database. Since the
dataset is imbalanced, the balanced accuracy is more important than the accuracy as the evaluation metric. Our
empirical results have demonstrated that the proposed DWS framework outperforms the traditional neural
networks and yields comparable or better performances under the balanced accuracy. These experiments
suggests the potential usage of our proposed method.

5. Limitations of the study

The proposed DWS loss function has several limitations. Similar to many deep learning methods, it requires
hyper-parameters tunning. In the scheme of Optimal transport, the ground metric of the cost function plays an
important role. We plan to focus on ground metric learning later to automatically determine the best ground
metric to make the loss function more effective. Currently, the loss function is tailored specifically for deep
neural networks, utilizing their architecture to calculate gradients. Future work will aim to derive an explicit
gradient descent formula applicable to the DWS method. This formula will enable the integration of the DWS

loss function into a broader range of machine learning models beyond deep neural networks.
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9. Figure Titles and Legends

¢ Figure 1. Schematic design of the proposed algorithm using the Distance-Weighted Sinkhorn (DWS) loss
function. In our proposed model, we first send the data into the fully connected deep neural network. After
applying the softmax activation functions, the row logits turn into probability. The probability is used as the
weight for the predicted distribution. To be specific, we have three probabilities for one instance and using
the whole data will give as three weighted distributions. The Sinkhorn algorithm is then used to match the
distribution between the predicted distribution and the ground truth distribution for each class label (i.e.,
CN, MCI, or AD). Finally, backpropagation is taken to adjust the neural network. In this flowchart, we assumed
that the model had correctly predicted each instance. Therefore, the dominated distribution of each class is
similar to its ground truth distribution. For simplicity, we assume the features live in a one dimensional

continuous space.
¢ Figure 2. Feature importance of binary and multi-class classification from DWS Loss.

» Figure 3. Brain visualization for binary and multi-class classification. Top five features are shown. (a)-(d) are
the four classification tasks: CN vs MCI; CN vs AD; MCI vs AD; CN vs MCI vs AD.The color spectrum from yellow

to red in the figure indicates the degrees of feature importance, with red being the most important.

¢ Figure 4. Feature importance of CN vs MCI for all the tested methods in Table 6.

10. Tables with Titles and Legends

Table 1: Table-1:- ADNI-Participant Detailed-Informati
Panel-A-ADNI Participant Age Distribution
Age Range Less than 55 55-60 61-65 66-70 71-75 76-80 81-85 86-90 91-95
Number of Participants 0 30 82 168 204 174 102 25 4
Table 2PanelB: ADNI Participant Years of Education
Year Range 0- | 8 13- 16 and above
12 15
Number of Participants 1 | 117 | 150 521

Table 3Panel-C: ADNI Participant Hispanic/Latino Ethnicity

Ethnicity Hispanic Latino Unknown

Number of Participants 771 15 3

Table 4PanelD: ADNI Participant Race Categories

Race White Asian | Am Indian/Alaskan More than one

Number of Participants 778 9 1 1

{ Formatted: Space After: 0 pt




Table 52: Accuracy and Balanced Accuracy results compared to BCE, BCELogit, Hinge and Focal loss. The best ones are bold.

Metric Loss Function CNvs AD CN vs MCI MClvs AD CN vs MClvs AD
BCE 0.868 £ 0.0490 0.597 £ 0.0332 0.819 +0.0471 0.548 +0.0398

BCELogit 0.870 + 0.0411 0.593 +0.0398 0.820 + 0.0331 0.564 £ 0.0384

Accuracy Hinge 0.860 + 0.0381 0.607 +0.0317 0.815 + 0.0423 0.539 + 0.0612
Focal 0.871 4 0.0360 0.605 + 0.0374 0.819 + 0.0304 0.550 + 0.0544
DWS 0.871 % 0.0360 0.608 + 0.0369 0.821 + 0.0305 0.568 + 0.0416

BCE 0.844 £ 0.0551 0.566 + 0.0265 0.778 £ 0.0379 0.572 £ 0.0398

BCELogit 0.852 £ 0.0518 0.582 1 0.0361 0.765 + 0.0370 0.577 £ 0.0376

Balanced Accuracy Hinge 0.840 £ 0.0529 0.594 + 0.0320 0.777 £ 0.0383 0.571 1 0.0462
Focal 0.846 £ 0.0453 0.588 + 0.0364 0.770 + 0.0349 0.578 £ 0.0414
DWS 0.891 + 0247 0.599 + 0.0338 0.782 + 0.0381 0.617 +0.0294

Table 63: Accuracy and Balanced Accuracy results compared to Logistic Regression, Support Vector Machine, Decision Tree, Random
Forest, Gradiant Boost and its variant, K Nearest Neighborhood and Multi Layer Perceptron. The best ones are bold.

Metric Method CNvs AD CN vs MCI MCIvs AD CN vs MCIvs AD
LR 0.918 £ 0.0317 0.596 £ 0.0297 0.845 +0.0277 0.554 £ 0.0384

SVM 0.922 +0.0334 0.599 £ 0.0372 0.783 + 0.0394 0.590 £ 0.0273

DT 0.809 £ 0.0276 0.527 £ 0.0559 0.783 + 0.0394 0.519 £ 0.0426

RF 0.859 +0.0274 0.848 £ 0.0399 0.789 £ 0.0365 0.545 £ 0.0274

Accuracy GB 0.891 £ 0.0271 0.607 £ 0.0404 0.781 + 0.0340 0.542 £ 0.0323
LGB 0.866 + 0.0283 0.597 £ 0.0367 0.695 + 0.0443 0.582 +0.303

KNN 0.805 +0.0419 0.569 £ 0.0336 0.819 +0.0322 0.548 £+ 0.0422

MLP 0.875 £ 0.0405 0.603 + 0.0380 0.822 + 0.0386 0.560 + 0.0405

DWS 0.920 £ 0.0394 0.608 + 0.0369 0.821 +0.0305 0.568 + 0.0416

LR 0.889 £ 0.0450 0.598 £ 0.0335 0.767 + 0.0430 0.608 £ 0.0336

SVM 0.896 + 0.0459 0.594 £ 0.0397 0.721 £ 0.0524 0.558 + 0.0361

DT 0.786 + 0.0381 0.517 £ 0.0548 0.705 £ 0.0460 0.517 £ 0.0534

RF 0.846 + 0.0453 0.570 £ 0.0460 0.757 + 0.0490 0.577 £ 0.0259

Balanced Accuracy GB 0.865 + 0.0384 0.577 £0.0411 0.702 + 0.0494 0.4355 £ 0.0355
LGB 0.835 £ 0.0391 0.562 + 0.0392 0.750 + 0.0405 0.566 + 0.0372

KNN 0.726 £ 0.0576 0.552 £ 0.0343 0.648 + 0.0395 0.475 £ 0.0503

MLP 0.842 £ 0.0548 0.511 £ 0.0327 0.732 + 0.0481 0.495 £ 0.0495
DWS 0.891 £ 0.0247 0.599 + 0.0338 0.782 £+ 0.0381 0.617 +0.0294




11-STAR METHODS

11.1-Resource Avaliability
11.1.1-Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Li Shen (Li.Shen@pennmedicine.upenn.edu).

11.1.2-Materials availability

This study did not generate new unique reagents.

11.1.3-Data and code availability
» This paper analyzes existing, publicly available data. These accession URLs for the datasets are listed in the

Key Resources Table.

¢ The Source code and tutorials for implementing the DWS Loss has been deposited at GitHub and is publicly

available as of the date of publication. DOIs are listed in the key resources table.

* Any additional information required to reanalyze the data reported in this paper is available from the

Lead contact upon request.

11.2-Experimental Model and Study Participant Details

Data for this study were sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
The experiment involved 789 participants, comprising 390 women and 399 men. Participant demographics
such as age, total years of education, and ethnicity are detailed in the Table 1-4. All participants were diagnosed
with one of the following conditions: Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), or were

deemed Cognitively Normal (CN).

+1.3-Method Details
11.3-1-Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database,3435 which was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and AD. All participants
provided written informed consent and study protocols were approved by each participating site’s Institutional

Review Board (IRB). Up-to-date information about the ADNI is available at www.adni-info.org.

In this study, we downloaded and analyzed FDG-PET imaging data (measuring glucose metabolism) from

the ADNI database.36 The FDG-PET imaging data play a crucial role in the diagnosis and assessment of AD. The
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Statistical Parametric Mapping software tool3” was used to register FDG-PET scans into the standard brain space
defined by the Montreal Neurological Institute (i.e.,, MNI-space). After that, the FDGPET scans were segmented
based on the Automated Anatomical Labeling (AAL) atlas.38 We calculated the average voxel signal intensity for
each of 116 AAL regions and used these regional average measures as our features in the subsequent

classification studies.

11.3.2-Optimal Transport

Below, we explain in brief the Optimal Transport theory and its special instrument, the Wasserstein metric
and the sinkhorn divergence3°.

The Optimal Transport problem is the optimal cost of changing one probability vector to match the shape of
another probability vector. This gives us a measure of how similar the two probability vectors are. Most of the

time, the least expensive method of moving mass from one distribution to another is also called Wasserstein

distances.
Mathematically, consider two multi-variate distributions, with position {x;}j-, and {y;}|~,, and then
we have the discretized distributions:
P= Z?:l pi sxi and Q= Z;n=1 q; Syj 2

where &, denotes a Dirac delta function placed at a location x € R™. In this way, the p; is vector of weights and
{x;}1-, is the mass locations. The ground cost matrix represents the transportation costs between each pair of

mass locations:
2
C;; = IIx; — x| (3)

The transportation plan T, which tells us how much mass needs to be moved from x; - y; is a matrix T €
Rnxm.
The total cost of a transport plan is then:
miniTmize Lor(P,Q) =(T,C)
subjectto T € R}*™,
TT]ln =q,
T1, =p

4

where (T, C)is the Frobenius inner product between the transport plan T and the cost matrix C.

Solving the above optimization problem can be computationally challenging and unstable, requiring
0(n®logn) calculations. Because of this, it is challenging to apply Wasserstein distances in two-sample tests
consistently. The entropic regularized Wasserstein distance is created by adding a regularization term yH(T)
to address these issues. This is called Sinkhorn algorithm, and its mathematical formulation is:

miniTmize Lror(P,Q) =(T,C) — yH(T)
subjectto T € R}P*™,
T'1, = q,
Tl, =p
where H(T) is the entropy of the transport plan matrix T and is given by H(T) = ¥1_, Y72, T; (IogTL-J- - 1). Note

(5

that the regularized Wasserstein distance is biased as €gor (P, P) # 0. Therefore, combining two regularized
Wasserstein distances can build an unbiased divergence, and it is called the Sinkhorn divergence:

Zsp(P, Q) = £ror (P, Q) = £ror (P, P) = £or(Q Q) (6)
11



11.3-3-Problem Formulation and Proposed Method

Figure 1 shows the schematic design of the proposed algorithm using our Distance-Weighted Sinkhorn
(DWS) loss function. In our proposed model, we first send the data into a fully connected deep neural network.
After applying the softmax activation functions, the row logits turn into probability. The probability is used as
the weight for the predicted distribution. To be specific, we have three probabilites for one instance and using
the whole data will give as three weighted distributions. The Sinkhorn algorithm is then used to match the
distribution between the predicted distribution and the ground truth distribution for each class label (i.e., CN,
MC], or AD). Finally, backpropagation is taken to adjust the neural network. In this flowchart, we assumed that
the model had correctly predicted each instance. Therefore, the dominated distribution of each class is similar
to its ground truth distribution. Below, we discuss our problem formulation.

Let X represent the feature space and Y denote the label space £ = {ly, l,, ..., [}, where [, is the k th label.
In this paper, the aim is to learn an optimal mapping function hg: X = Y, parameterized by 6, over space of
hypotheses #. Given an input X, hy maps itinto a vector y = [y,l, Vigs }’zk]- Therefore, the vector y represents
the probability that the instances belong to each label. The ground truth probability is also defined by z =

[zll, 7, ...,le], where the component is equal to 1 for true label and 0 otherwise.
Given an i.i.d. set of N training samples D = ((xl, Vi) - Xy, yN)), the overarching goal of the algorithm is to
find the mapping function hy that minimizes the empirical risk
L1
min SR £ (2 = he(x0),y) 7
where £(-,-) is a loss function. Instead of minimizing the empirical risk among each instance, we would like to

minimize the empirical risk w.r.t each class

L1
;fgé?[;z?:l lsp (Sjr sp,j) (8)

where K is the number of class in our sample.
+1.34-Distance-Weighted Sinkhorn Loss

In this section, the Distance-Weighted Sinkhorn Loss will be introduced. In the following sections, we use
the shorthand DWS (Distance-Weighted Sinkhorn) for brevity. Instead of considering the difference between
two probability vectors of the same instance, we consider the difference between the total distribution of data

and its weight-predicted distribution. The formulation of DWS Loss is as follows:
Lows(D, hg) = Th_1 Lsp (8;,S,) 9)
The S; is the empirical distribution of the data in class j in the dataset and could be represented as
S = Zilaziy Oy, (10)

where N; is the number of instances in class j, and the sum is over all instances in the dataset. Notice that z; is
the one-hot encoded ground truth label of instance i, where z; ; = 1 if instance i belongs to class jand z;; = 0

12



otherwise. §,, is a Dirac delta function centered at the location of instance i. Similarly, lety; = hy(x;) be the
predicted label distribution for instance i. We can then define p; as a vector that collects the predicted
probabilities for class j across all instances. It estimates the probability of each instance being assigned to class
j according to the model hg.

The predicted distribution of the data for class j is then represented as:

Sps =7, Zika he ()15, ()

Here C; is a normalizing factor to ensure S, ; is indeed a distribution.
We then illustrate the exact computation method for calculating the DWS loss; see also Algorithm 1. Notice
that optimizing and differentiating the DWS loss consists of 2 regularized Wasserstein distances. Therefore, we

first focus on the computation of a single regularized Wasserstein. The dual form could be written as

!"—'q‘-ﬂi—ﬂi[

Dual(a,f)=a P+87Q— ef,:-'f}':l CEG (12)

Then, by the Sinkhorn's scaling theorem, one could show that the optimal solution for the primal problem is
related to its dual form solution:

C
T, = diag(e*™)e =diag(e**) (13)

where a* and B* are the minimizers of the dual Lagrange problem. The above optimal solution for dual problem
a*, f* can be computed using Sinkhorn’s algorithm. From the Sinkhorn algorithm, one can show that a* =
elogu*, f* = elogr*, where the u*, v* are the outputs of Sinkhorn algorithm. Referring to the dual formulation,
one could notice that Py, fsp = .

Also, for each instance i in the dataset, the DWS loss also maintains the point wise convergence, that is:

¥i 22 © Ip(8,Sp:) 2 02 pws(D,hg) = 0 (14)

Algorithm 1 Updating the Weight & of Deep Neural Network

1: Input: Mapping function z = hg(x), y € R1*E.
2: Calculate: Sr, pj, Sp,, C.
3:Initialize: u =1, K= ¢,

4:fort=1,2..do

5: vey/Ku
6: u —z/Kv
7: end for

8: Blps(x)¥sp = eln(u)

9: Output: Gradient of the objective function with respect to the learned mapping hs.

13



11:3-5-Theoretical Result
Here, we provide a theoretical bound using Rademacher Complexity.

Definition 1. Let G be a family of functions mapping a set Z into R. Alist S = (zy, ..., z,,) of elements. Let 0 =
(a4, ..., 0,,) be a list of independent random variables, where, for each i € {1, ..., m}, o; takes value +1 with

probability 1/2 and takes value -1 with probability 1/2. Then the empirical Rademacher complexity of G with

respect to S is defined to be
Rs(G) = Eq |sup_ 31 019 (2) (15)
g

The Rademacher complexity of G with respect to samples of size m drawn according to D is

Rn(6) = _E_[Rs(6)] (16)

We also have the definition of Emprical Risk and Risk as followed:

E(h) = E_[6(h), )] Es(h) = =51, € (h(x)), ;) 17
(xy)~D m
Then, based on the general theorem of Rademacher complexity, we have that

Theorem 1. Let G be a family of functions mapping a set Z to the unit interval [0,1]. Suppose that a sample S of
size m is drawn according to distribution D on Z. Then for any § > 0, with probability at least 1 — § the

following holds for all functions g € G :
~ log%
E(g) < Es(9) + 2Rn(G) + 0| {5 (18)

To connect the Sinkhorn divergence with the Rademacher complexity, we have the following approximation
between the original OT formulation and the Sinkhorn divergence. We adopted Proposition 11 from Chizat.

Theorem 2. Assume that u, = Y-, p; by, and v, = Zj}:l q; Syj are discrete measures with n atoms such that

pi,q; = a/n for some a > 0. Then, we have that
0 < lgp(v) — lor(u,v) < 2AH(y", 1 @ v) < 44(logn + log(1/a)) (19)

Therefore, we could have that
Ri(lor) < Ripn(lsp) < Rp(lor) + 22(logn + log(1/a)) (20)

Finally, we can conclude that with at least 1 — § probability, E (Ipys) < infyes E(R) + 24(logn + log(1/a)) +

o [2)
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Figure 03
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