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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease, yet its current treatments
are limited to stopping disease progression. Moreover, the effectiveness of these treatments remains uncertain
due to the heterogeneity of the disease. Therefore, it is essential to identify disease subtypes at a very early
stage. Current data-driven approaches can classify subtypes during later stages of AD, but face challenges when
predicting in the asymptomatic or prodromal stage. Furthermore, most existing models lack explainability in
their classification and rely solely on a single modality for assessment, limiting the scope of their analysis. Thus,
we propose a multimodal framework that utilizes early-stage indicators, including imaging, genetics, and clinical
assessments, to classify AD patients into subtypes at an early stage. In our framework, we introduce a tri-modal
co-attention mechanism (Tri-COAT) to explicitly capture cross-modal feature associations. [DM: Data from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Slow progressing = 177, Intermediate = 302,
Fast = 15) was used to train and evaluate Tri-COAT using a 10-fold stratified cross-testing approach.]
Our proposed model outperforms baseline models and sheds light on essential associations across multimodal
features supported by the known biological mechanisms. [DM: The multimodal design behind Tri-COAT
allowed it to achieve the highest performance, while simultaneously provide interpretability to the model
predictions through the co-attention mechanism.]

Keywords: Disease subtyping; artificial intelligence; multimodal biomarker; transformer network; Alzheimer’s
disease

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, which affects over
6.5 million people in the US alone and its rate is expected to keep increasing [1]. Current therapies
for AD are mainly focused on the management of symptoms and promising drugs that can slow
the progression of the disease [2—4]. Therefore, early diagnosis of neurodegenerative diseases is
crucial. However, early diagnosis of AD presents a significant challenge since [DM: memory loss only
develops in the MCI stage of the AD continuum and cognitive decline] can vary among patients due to
the disease’s heterogeneity [5]. Therefore, it is crucial to develop methods capable of characterizing
the factors that influence disease progression and identifying specific subtypes for individual patients
at an early stage.

AD is traditionally diagnosed based on characteristic cognitive decline and behavioral deficits
that do not become apparent until intermediate to late stages of the disease. Early stage indicators
such as imaging-based and fluid biomarkers have shown great potential for early detection of AD [6].
Similarly, recent approaches have continued to show the promising results from connectomes for
early-diagnosis [7]. [DM: Blood and CSF biomarkers are now standard methods to diagnose early AD
patients [8-10] showing great potential for subtyping AD patients [11]. AD subtypes have been previously
identified based on hallmark AD biomarkers obtained from brain imaging such as beta-amyloid [12] and
tau accumulation [13,14].] Data driven approaches have focused on classifying patients into subtypes
based on the disease progression and mild cognitive impairment (MCI, a prodromal stage of AD) to
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AD conversion [15-19]. Current methods for subtyping of AD and related disorders have focused

mainly on using longitudinal data from clinical assessments for unsupervised learning [20-22].

For clustering approaches such as in [15,17,20,22], the authors subtype AD patients using single
modalities at baseline, such as blood markers [17], genomic data [20], or traits derived from imaging
from longitudinal measurements [22]. These single modality approaches at baseline data have shown
the potential of early stage indicators for AD subtyping. However, most of them fail to show how
they relate biologically to AD development or use multiple time points, which hinders the ability to
diagnose patients at early stages after AD onset.

Deep learning models have effectively identified diagnostic groups [23] and subtypes [18]
using multimodal imaging data and correlation-based approaches that allow a greater explainability
of of the relationships between the features learned by the model. Nevertheless, these are limited
by two key factors, using only imaging data, and for correlation-based approaches, these treat the
clustering goal indirectly. Works on related disorders have shown the relevance of multimodal
approaches [24] using non-negative matrix factorization and Gaussian mixture models, or employing
autoencoders and long short term memory (LSTM) networks to learn deep embeddings of disease
progression [25]. However, this requires longitudinal data that involve several time points. While
several clustering and deep learning-based approaches have high accuracy when having multiple
time points, the performance decreases significantly given only baseline data. This is driven by
the subtle expression of the symptoms tracked in the clinical assessments limiting the scope of the
models. Early stage indicators such as imaging traits or genomic risk factors are rarely used, and are
simply aggregated to clinical assessments as additional indicators. Therefore, it is essential to target
early stage indicators such as genetics, imaging and cognitive assessments.

Multimodal deep learning approaches can combine different modalities and provide a much
more informed picture of disease drivers and aid in the disease subtyping [26]. However, it is not a
trivial task to identify the relevant features across modalities and how to fuse them. The rest of this
section first reviews the related works on multimodal fusion and then provides an overview of our
proposed method.

1.1. Multimodal Fusion

Multimodal fusion, while very promising, poses new challenges. There are multiple ways to
fuse the data and stages of encoding where to fuse. The effectiveness of the strategy varies depending
on data modalities and tasks. One of the key factors is the similarity between the modalities. Highly

heterogeneous data, such as imaging, genetics, and clinical data, might not be immediately fused.

Their difference in type, signal-to-noise ratio, and dimensionality makes it very challenging to
combine them without first projecting them into a similar space. The relationship between input
and output is equally important to consider when fusing data. For example, clinical assessments
reflect the direct impacts of the disease, while genetic data describes the building blocks of cells. The
phenotype-related information available in clinical assessments requires considerably less processing
than what genomic data might require to find the connection with the disease.

As illustrated in Fig. 1, the existing multimodal fusion strategies can be grouped into three
main categories [27], including early, intermediate (also called joint), and late fusion. It is essential
to choose the right approach based on the task at hand and the data used. Early stage fusion has
shown very promising results in recent vision-language models [28,29], while late-fusion strategies
have traditionally been very effective in aggregating machine learning models decisions. Early and
late stage fusion strategies, while effective for certain tasks, are not ideal for AD subtyping using
multimodal data. Early stage fusion struggles with dealing with highly heterogeneous and differently
biologically-related data such as genetics, imaging and clinical. These require further encoding to
first learn highly informative representations for every modality and condense them into a similar
latent space. While late fusion strategies can be very effective at aggregating the decisions based
on each modality, they cannot learn the feature relationships across modalities severely limiting the
usefulness of the model. The intermediate fusion approach tackles both challenges by first learning
the crucial patterns associated with each modality. In the next stage, it uses the condensed patterns
from each modality to learn the cross-modal relationships. This enables a more harmonious fusion
of the heterogeneous modalities.
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Figure 1. The three main multimodal fusion strategies, early, intermediate and late fusion, for deep learning
methods.

1.2. Overview and Contributions

Despite the potential advantages of multimodal approaches, several technical challenges exist
to effectively leverage the key data of each modality. The high heterogeneity of the data modalities
for AD subtyping, and the explicit learning of the cross-modal interactions need to be addressed.
Previous approaches in related fields have proposed dual co-attention mechanisms to explicitly learn
the cross-modal feature interaction and joint data representations [30]. While they have shown very
promising results, these have yet to be explored for the subtyping of neurodegenerative disease and
its corresponding modalities. Moreover, in AD and related disorders subtyping, [DM: three critical
but highly heterogeneous modalities are needed to be fused] , i.e., imaging, genetics and clinical data.
Therefore, in this paper, a Tri-modal co-attention (Tri-COAT) framework [DM: is proposed], that
can explicitly learn the interactions between the multimodal features towards the task of classifying
subtypes. While deep learning models for disease assessment promise improved accuracy, they
remain limited in the interpretability of their results. This is a major entry barrier for the inclusion of
deep learning models in the medical field.

Our contributions in this paper are two fold in both the application and technique. [DM: First,
] our framework incorporates features of three early stage biomarker modalities and provides a
cutting-edge approach to the subtyping of early neurodegenerative diseases. [DM: Second, regarding
the technical innovation,] our new Tri-modal co-attention can efficiently and explicitly learn the
interactions between highly heterogeneous modalities, encode the information into a joint represen-
tation, and provide explainability to the cross-modal interactions. The proposed Tri-COAT achieved
state-of-the-art performance on the landmark dataset Alzheimer’s Disease Neuroimaging Initiative
(ADNI)[31], and provided key insights into the biological pathways leading to neurodegenerative
disease development.

[DM: The rest of the paper is organized as follows. In section 2, the methods are described breaking
down each component of Tri-COAT. Next, in section 3, the dataset and experimental design are delineated.
In section 4, the results are presented and discussed. Finally, in section 5, conclusions are drawn and
future directions are presented.]

2. Method

Our proposed framework can be divided into two main parts. As seen in Fig. 2, single modality
encoders are first built using transformer modules to learn feature representations for each modality.
Second, the Tri-COAT mechanism explicitly learns the critical cross-modal feature relationships
and uses that to weigh the feature representation. The jointly learned representation goes through a
multilayer perceptron (MLP) for disease subtype classification.

2.1. Single-modality encoding

Three branches encode each modality individually. Each branch is comprised of a transformer
encoder with several transformer layers. [DM: This is inspired by previous works in which transformer
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Figure 2. Illustration of the proposed framework for AD subtyping, consisting of two main sections: (a) single

modality encoding and (b) tri-modal attention and joint encoding.

models have been proposed for imaging derived connectomes [32] and genotype data [33]]. Each branch 12
learns representations of a modality to later combine them into a joint representation through the 127
Tri-COAT mechanism. 128
Imaging modality. The imaging feature encoder branch uses MRI derived quantitative traits as input. 12
These quantitative traits are derived from T1 weighted MRI scans. The scans are first segmented 130
based on the FreeSurfer atlas for cross-sectional processing. Next, for each reconstructed regions of 131
interest (ROI) the cortical region, cortical volume, thickness average, thickness standard deviation, 132
and surface area are calculated. Further details are described in section 3.1. The imaging traits are 133
then used to build tokens, where each token represents an ROI in the brain and is comprised of 12
four imaging derived traits (Cortical Thickness Average, Cortical Thickness Standard Deviation, 135
Surface Area, Volume from Cortical Parcellation). Let X; € RM*4 represent the imaging input s
to the proposed model, where M = 72 and is the number of ROIs. After, the token dimensions 137
are expanded through a fully-connected layer to match the model dimensions k. The imaging 1
tokenization allows to build an initial representation for each ROI rather than each trait, leadingtoa 13
smaller number of input features, and a more biologically informative and interpretable input. 140
Genetic modality. The genotype branch has as input single nucleotide polymorphism (SNP) data. a1
After quality control and preprocessing of the genotype data as described in section 3.1, tokens for 142
each SNP are built. Each token is comprised by the allele dosage from the patient, the corresponding 143
odds ratio and rare allele frequency obtained from the most recent AD GWAS study, and whether the 144
SNP is within an intergenic region (regulatory region) as a binary label. Then, the token dimensions 14
are expanded through a fully-connected layer to k /2. Let Xsyp € RV xk/2 represent the genotype s
input to the model, where N = 70 and is the number of SNPs filtered out (see section 3.1 for details). 1s7
Moreover, based on the chromosome for which each SNP is located in an additional embedding 14
for each SNP can be built. By including the chromosome embedding, location knowledge for each 149
SNP can be incorporated. Using an embedding layer, an embedding for each chromosome can be 150
obtained X¢p,, € RN xk/2, Finally, Xsnp and Xy, are concatenated to obtain the final genotype 151
embedding Xg € RN xk, Similarly to the imaging data encoding, the genetic tokenization allows to 152
build more informative input structures to the genetic encoder. By providing additional attributes for  1ss
each SNP beyond the patient mutation status, the model can learn richer patterns of characteristics 154
that relate each SNP. 155
Clinical modality. The clinical data is already very closely related to the outcome of interest and 156
contains only few features; therefore, no further extensive tokenization is performed. As there is just  1s7
one value per clinical assessment, the tokens are directly built with one dimension. Let X¢ € REX1
represent the clinical input to our model, where B = 7 and is the number of clinical features. Next, 1so
the token dimensions are expanded through a fully-connected layer to match the model dimensions 1

k. 161

158
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Figure 3. AD subtype clusters based on the decrease of MMSE at each visit. (a) each line represents the
average score across patients for each cluster and the shadow represents one standard deviation. (b) individual

lines per patient are plotted.

Single modality encoders. After the tokenization of each modality, they are fed into independent
transformer encoders with L layers. The full process of the L-th layer in our transformer encoder is

formulated as:
F/ = MHA(LN(F_1)) + F_, (1)

and
F, = FF(LN(F))) + F/, 2

where LN(-) is the normalization layer [34], and MHA () is multihead self-attention [35].

2.2. Tri-modal co-attention

After each transformer encoder has learned a new representation for each modality, these are
then used to learn the cross-modal feature relationships to guide the co-attention process on the
clinical branch. In other words, the imaging and genomic features are employed to modulate the
clinical learning process by highlighting the key hidden features that share relationships across
modalities. The intuition behind the proposed approach is that as the clinical data is most closely
related to the disease phenotype, this branch will carry most of the necessary information to classify
the patients. Nevertheless, the imaging and genomic data provide also valuable information. The
idea is analogous to the clinical data being the subject and verb in a sentence while the imaging and
genomic data are the adjectives and adverbs. These two elements enrich the representation of the
patient health status, analogous to enriching a sentence for a fuller meaning.

Let Xgup € RIMN,B}xk represent the learned representation of a given single-modality
encoder. These become then query matrices for the genetics Q¢ and imaging Q7 data, and key K,
value Vi matrices for the clinical data. Following an attention mechanism structure, the co-attention
between two modalities is computed as:

Quen ke

Vi

Next, the resulting co-attention filtered value matrices are then concatenated to obtain a final joint
representation. This joint representation is then flattened and used to classify the patients into the
clusters through an MLP.

CoAttn({G, I}, C) = softmax Ve (3)

3. Materials and Experiments
3.1. Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)[31] database is a landmark dataset
for the advancement of our understanding of Alzheimer’s disease. ADNI[31] is comprised by a wide
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Table 1. Subject data distribution reported as mean =+ standard deviation for MMSE and age, and counts per

category for number of participants and gender.

| Slow Intermediate Fast

Participants 177 302 15
MMSE (Baseline) 2735+ 251 | 27.66 +£1.86 | 24.93 + 3.55
MMSE (24 months) | 28.154+2.15 | 23.86 4 3.68 159 +4.84
Age 7326 +7.82 | 7244 +£7.55 | 71.22 £3.922
Gender M:102F:75 | M: 185 F: 117 M:9F: 6

range of data modalities including MRI and PET images, genetics, cognitive tests, CSF and blood
biomarkers (for up-to-date information, see www.adni-info.org). Longitudinal data for all subjects
was selected as up to two years of progression after disease onset due to very high missingness rate
(percentage of data points missing across patients for a given time point) present for time points
posterior to the two years. Subjects were clustered using k-means in 3 main groups based on their
Mini-Mental State Examination (MMSE) scores as can be seen in Fig. 3. These clusters match the
cognitive decline rate of patients over time. The MMSE score at each visit (baseline, 6 months,
12 months, and 24 months) was used to determine the cognitive decline for each patient. As each
patient may have a different starting level at baseline, the baseline measurement is subtracted from
each of the following time points; thus all patients start at 0. Then, using k-means clustering, using
k = 3, slow, intermediate and fast cognitive decline groups are defined. As seen in Table 1 the
raw average MMSE score at baseline is comparable across all groups with a steep decrease for the
fast and intermediate groups at 24 months. The slow or otherwise stable group MMSE score at
24 months is comparable to the one at the initial stage. On the other hand, all 3 groups are age
matched. Similarly, gender distributions across groups is maintained with male subjects representing
approximately 60% of the subjects for each group.

Data preprocessing: The data for the imaging and genotype modalities was processed previ-
ously to the tokenization process following best practices for the corresponding modality as described
below.

* Imaging: The FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) is used
to conduct cortical reconstruction and volumetric segmentation. T1 weighted MRI scans
are segmented based on the FreeSurfer atlas for cross-sectional processing, enabling group
comparison at a specific time point [36]. For each reconstructed cortical region, cortical volume,
thickness average, thickness standard deviation, and surface area measurements are labeled by
the 2010 Desikan-Killany atlas. The UCSF ADNI team conducted this process [37], and more
information can be found at http://adni.loni.usc.edu.

e Genotype: The genotype variants were filtered using the intersection between the List of AD
Loci and Genes with Genetic Evidence Compiled by ADSP Gene Verification Committee and
the most recent genome wide association study (GWAS) on AD [38]. The odds Ratios, rare
allele frequency and intergenic region binary trait were obtained from the most recent GWAS
study with accession number (GCST90027158), accessed through the GWAS catalog [39].
Furthermore, the genotype variants were processed for sample and variant quality controls using
PLINK1.9 [40].

e Clinical: The clinical assessment features correspond to seven different cognitive metrics
available through ADNI [31]. These are Logical Memory - Delayed Recall (LDELTOTAL),
Digit Symbol Substitution (DIGITSCOR), Trail Making Test B (TRABSCOR) and Rey Auditory
Verbal Learning Test (RAVLT) scores: immediate, learning, forgetting and percent forgetting.
Values for imaging and clinical modalities were normalized in each train set before they were
used as inputs to the network.

3.2. Experimental design

All models underwent training and evaluation using a 10-fold stratified cross-testing approach.
Initially, the entire dataset was divided into 10 folds, with one fold reserved for testing and the
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Table 2. Mean AUROC =+ SD of 10-fold cross-testing results. The proposed model significantly outperformed
all the baseline models. The statistical significance was evaluated by paired t-test with « = 0.005, except for
the entry where & = 0.05.

Method ‘ Full ‘ Imaging ‘ Genetics ‘ Clinical

SVM 0.705 £ 0.036 | 0.669 £+ 0.060 | 0.525 4+ 0.034 | 0.639 £+ 0.078
RF 0.684 £ 0.048 | 0.677 £ 0.052 | 0.505 &+ 0.031 | 0.659 £ 0.087
Stage-wise fusion | 0.641 £ 0.017 | 0.557 =0.096 | 0.562 = 0.078 | 0.655 £ 0.057
Tri-COAT 0.734 + 0.076 | 0.648 = 0.056 | 0.539 + 0.084 | 0.697 £ 0.063

remaining nine for training. Subsequently, this training set was further divided into 5 folds for a
5-fold stratified cross-validation process for hyperparameter tuning. This robust framework was
designed to prevent any data leakage. The optimal hyperparameters were determined during each
experimental run by selecting the best-performing model based on the validation set. Each of the 10
test sets was evaluated 5 times, using hyperparameters determined by the validation sets, resulting
in a total of 50 evaluations for each method. Predictions were evaluated using the area under the
receiver operating curve (AUROC). A one-vs-one strategy is employed where the average AUROC of
all possible pairwise combinations of classes is computed for a balanced metric. This is implemented
using Sci-Kit Learn API [41], which implements the method described in [42]. The mean AUROC
and standard deviation across all 50 runs are reported for each method in Table 2. The model was
compared against the stage-wise deep learning intermediate fusion model introduced in [43] and
several well-established traditional ML models - random forest (RF), support vector machine (SVM)
with radial-basis function (RBF) kernel. Similarly, each of the branches of the model was used as
comparison using a series of transformer encoder layers and MLP head for classification.

Tri-COAT consist of four transformer layers for each of the single modality encoders, with
four attention heads per transformer layer. The tri-model co-attention process is done in a single-
head attention mechanism. The classifying MLP has one hidden layer with 256 units. Embedding
dimension of k = 256 was used for all modalities. The model dimensions for the single-modality
encoders were kept at 256 and all throughout as this combination achieved the best results on
the validation set. The final MLP had the concatenated class tokens resulting from the tri-modal
co-attention module and computed the output logits for each one of the three possible classes. Adam
was used to optimize both Tri-COAT and the stage-wise MLP model using learning rates of 0.0001
for Tri-COAT and 0.0001 for the stage-wise fusion benchmarking model. All deep learning models
were trained using cross-entropy loss. All deep learning models were implemented using PyTorch,
while the RF and SVM models were implemented using scikit-learn. All deep learning models
were trained for 100 epochs and the best checkpoint, meaning epoch with the highest AUROC on
the validation set, was selected for model evaluation. The stage-wise deep learning fusion model
had dimensions of 64 units for the single-modality layers, 32 for the second-stage and 16 for the
final stage. The model dimensions were selected following the described hyperparameters in [43].
The SVM used an RBF kernel, regularization parameter C of 1. The random forest used gini as its
criterion for leaf splitting, 100 trees and no maximum depth.

4. Results and Discussion
4.1. Clustering, label definition

Following the literature, the number of clusters was set to three main groups [44—46]. The
MMSE score was used as an indicator of mental decline. Based on the speed of the progression of
the mental decline over a period of two years, three groups were defined, i.e., fast, intermediate and
slow progressing subtypes. K-means clustering was used to assign each subject to one of the groups.
Through this process labels were defined for all subjects. Only baseline data was used as input to
Tri-COAT and all competing models. Based on the baseline data Tri-COAT was able to effectively
classify the subjects into their corresponding subtypes.
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Figure 4. Cross modal associations of AD key biomarkers visualized from the learned co-attention.

4.2. AD subtype classification 271

As seen in Table 2, Tri-COAT outperformed the single modality ablations and baseline models, 272
achieving an average AUROC of 0.733 &£ 0.070 across all test sets in the 10-fold cross-testing 273
framework. For the single-modality ablation studies, each modality was used independently to 274
classify the AD subtype. For Tri-COAT, a single-modality transformer encoder backbone and 275
MLP head were used. For the stage-wise fusion model, it was adapted to MLPs using the same 27
number of hidden layers as the first plus last stage of the multimodal version. For SVM and RF, 277
no variations were required. Each modality was evaluated using the same 10-fold cross testing - 278
5 fold-cross validation hyperparameter tuning framework. Moreover, the single modality ablation 27
models outperformed their baseline counterparts for the clinical and genetics modalities. In contrast 20
to this the baselines achieved better performances for the imaging derived traits. For the three 2s
modalities, clinical achieves the best classification AUROC, followed by imaging and genetics. This  2s2
is expected as biologically, the same order follows for the closest relation between the observed — 2s:
phenotype and the mechanisms behind it. Clinical (cognitive) assessments are the closest to the — 2s
MMSE metric, followed by imaging (changes in the brain morphology) which is directly related to  2ss
the observed phenotype and genetics being the farthest apart from the expressed symptoms. Both  2ss
comparative models and Tri-COAT achieve higher performances in their multimodal configuration — 2s7
compared to single modalities, agreeing with previous literature regarding multimodal approaches  2ss
for classification of AD and related disorders. 289

Furthermore, as seen in Table 3, Tri-COAT outperformed variations of itself using alternative  2s0
fusion strategies. The early fusion model considerably underperforms achieving an AUROC of 0.571 o1
=4 0.053 because of its limited capabilities to simultaneous encode highly heterogeneous data with  2e2
distinct biological level relationships to the outcome. Similarly, the late fusion model underperforms 2
as it is limited to joining the predictions from each branch and cannot learn the relationships between 294
the different modalities in the latent space. 295

4.3. Biomarker Associations Learned by Co-attention 296

One of the key advantages of Tri-COAT compared to the baseline models and traditional deep  2s7
learning approaches is the ability to learn insights into the cross-modal feature associations. In 28
order to explore the learned relationships, the model with highest test AUROC from the evaluation 2
framework was selected for attention visualization in which the learned attention scores were a0
averaged across all test subjects. Chord plots were drawn using the circlize R library [47] to o1
visualize the cross-modal attention. As seen in Fig. 4, Tri-COAT identified key associations between 30
the Trails making test B score (TRABSCORE) in clinical-imaging and clinical-genetics. This s0s
score tests for cognitive ability of the patient for working memory and secondarily task-switching  sos
ability [48]. Clinical literature shows strong correlation between gyri structures - temporal gyrus  sos
and Parahippocampal gyrus (LTransTemp, LPH) and TRABSCORE [49]. Similarly, for the clinical- s0s
genotype association, TRABSCORE was found to be associated with the CD2AP gene which has 307
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Table 3. Mean AUROC =+ SD of 10-fold cross-testing results. The proposed model significantly outperformed
all the baseline models. The statistical significance was evaluated by paired t-test with « = 0.005, except for
the entry where & = 0.05.

Method ‘ AUROC
Early 0.571 + 0.053
Late 0.604 £+ 0.048

Tri-COAT | 0.734 £ 0.076

been clinically identified as a driver for the AD hallmark - neurofibrillary tangles (NFT) in the
temporal gyrus region [50]. This is a very exciting finding for our network as it establishes a putative
relationship between genetics (CD2AP gene), brain ROIs (temporal gyrus) and clinical symptoms
(TRABSCORE).

5. Conclusions

AD is the most prevalent neurodegenerative disease, and all current treatments are limited to
slowing disease progression. Therefore, early diagnosis is essential. Furthermore, there are multiple
subtypes with different rates of cognitive decline. In order to move closer to personalized medicine, it
is essential to have a better understanding of the heterogeneity surrounding the disease development.
However, early subtyping is a very challenging task. Our proposed model was able to effectively
classify AD patients into three main subtypes using prodromal factors measured at baseline.

Moreover, the model was able to identify multiple putative cross-modal biomarker networks.
[DM: The putative biomarkers provide enhanced interpretability to Tri-COAT and shed light into possible
exciting therapeutic targets.] Nevertheless, the generalizability of applying the learned features to
other datasets remains to be tested.

[DM: The future directions are very exciting as Tri-COAT could be extended ] to other hetero-
geneous neurodegenerative diseases such as Parkinson’s disease. [DM: Moreover, as shown in this
work, multimodal approaches achieved the best results. A promising future direction is to incorporate
further modalities such as PET imaging and transcriptomic data. PET imaging could provide further
clarity towards the accumulation of fluid biomarkers and their impact towards neurodegeneration.
Similarly, transcriptomic data could provide an intermediate biological step between the genotype and
brain endophenotypes. These could lead to enhanced understanding of the underlying mechanisms and
provide further therapeutic targets.]
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