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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease, yet its current treatments 1

are limited to stopping disease progression. Moreover, the effectiveness of these treatments remains uncertain 2

due to the heterogeneity of the disease. Therefore, it is essential to identify disease subtypes at a very early 3

stage. Current data-driven approaches can classify subtypes during later stages of AD, but face challenges when 4

predicting in the asymptomatic or prodromal stage. Furthermore, most existing models lack explainability in 5

their classification and rely solely on a single modality for assessment, limiting the scope of their analysis. Thus, 6

we propose a multimodal framework that utilizes early-stage indicators, including imaging, genetics, and clinical 7

assessments, to classify AD patients into subtypes at an early stage. In our framework, we introduce a tri-modal 8

co-attention mechanism (Tri-COAT) to explicitly capture cross-modal feature associations. [DM: Data from 9

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Slow progressing = 177, Intermediate = 302, 10

Fast = 15) was used to train and evaluate Tri-COAT using a 10-fold stratified cross-testing approach.] 11

Our proposed model outperforms baseline models and sheds light on essential associations across multimodal 12

features supported by the known biological mechanisms. [DM: The multimodal design behind Tri-COAT 13

allowed it to achieve the highest performance, while simultaneously provide interpretability to the model 14

predictions through the co-attention mechanism.] 15

Keywords: Disease subtyping; artificial intelligence; multimodal biomarker; transformer network; Alzheimer’s 16

disease 17

1. Introduction 18

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, which affects over 19

6.5 million people in the US alone and its rate is expected to keep increasing [1]. Current therapies 20

for AD are mainly focused on the management of symptoms and promising drugs that can slow 21

the progression of the disease [2–4]. Therefore, early diagnosis of neurodegenerative diseases is 22

crucial. However, early diagnosis of AD presents a significant challenge since [DM: memory loss only 23

develops in the MCI stage of the AD continuum and cognitive decline] can vary among patients due to 24

the disease’s heterogeneity [5]. Therefore, it is crucial to develop methods capable of characterizing 25

the factors that influence disease progression and identifying specific subtypes for individual patients 26

at an early stage. 27

AD is traditionally diagnosed based on characteristic cognitive decline and behavioral deficits 28

that do not become apparent until intermediate to late stages of the disease. Early stage indicators 29

such as imaging-based and fluid biomarkers have shown great potential for early detection of AD [6]. 30

Similarly, recent approaches have continued to show the promising results from connectomes for 31

early-diagnosis [7]. [DM: Blood and CSF biomarkers are now standard methods to diagnose early AD 32

patients [8–10] showing great potential for subtyping AD patients [11]. AD subtypes have been previously 33

identified based on hallmark AD biomarkers obtained from brain imaging such as beta-amyloid [12] and 34

tau accumulation [13,14].] Data driven approaches have focused on classifying patients into subtypes 35

based on the disease progression and mild cognitive impairment (MCI, a prodromal stage of AD) to 36
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AD conversion [15–19]. Current methods for subtyping of AD and related disorders have focused 37

mainly on using longitudinal data from clinical assessments for unsupervised learning [20–22]. 38

For clustering approaches such as in [15,17,20,22], the authors subtype AD patients using single 39

modalities at baseline, such as blood markers [17], genomic data [20], or traits derived from imaging 40

from longitudinal measurements [22]. These single modality approaches at baseline data have shown 41

the potential of early stage indicators for AD subtyping. However, most of them fail to show how 42

they relate biologically to AD development or use multiple time points, which hinders the ability to 43

diagnose patients at early stages after AD onset. 44

Deep learning models have effectively identified diagnostic groups [23] and subtypes [18] 45

using multimodal imaging data and correlation-based approaches that allow a greater explainability 46

of of the relationships between the features learned by the model. Nevertheless, these are limited 47

by two key factors, using only imaging data, and for correlation-based approaches, these treat the 48

clustering goal indirectly. Works on related disorders have shown the relevance of multimodal 49

approaches [24] using non-negative matrix factorization and Gaussian mixture models, or employing 50

autoencoders and long short term memory (LSTM) networks to learn deep embeddings of disease 51

progression [25]. However, this requires longitudinal data that involve several time points. While 52

several clustering and deep learning-based approaches have high accuracy when having multiple 53

time points, the performance decreases significantly given only baseline data. This is driven by 54

the subtle expression of the symptoms tracked in the clinical assessments limiting the scope of the 55

models. Early stage indicators such as imaging traits or genomic risk factors are rarely used, and are 56

simply aggregated to clinical assessments as additional indicators. Therefore, it is essential to target 57

early stage indicators such as genetics, imaging and cognitive assessments. 58

Multimodal deep learning approaches can combine different modalities and provide a much 59

more informed picture of disease drivers and aid in the disease subtyping [26]. However, it is not a 60

trivial task to identify the relevant features across modalities and how to fuse them. The rest of this 61

section first reviews the related works on multimodal fusion and then provides an overview of our 62

proposed method. 63

1.1. Multimodal Fusion 64

Multimodal fusion, while very promising, poses new challenges. There are multiple ways to 65

fuse the data and stages of encoding where to fuse. The effectiveness of the strategy varies depending 66

on data modalities and tasks. One of the key factors is the similarity between the modalities. Highly 67

heterogeneous data, such as imaging, genetics, and clinical data, might not be immediately fused. 68

Their difference in type, signal-to-noise ratio, and dimensionality makes it very challenging to 69

combine them without first projecting them into a similar space. The relationship between input 70

and output is equally important to consider when fusing data. For example, clinical assessments 71

reflect the direct impacts of the disease, while genetic data describes the building blocks of cells. The 72

phenotype-related information available in clinical assessments requires considerably less processing 73

than what genomic data might require to find the connection with the disease. 74

As illustrated in Fig. 1, the existing multimodal fusion strategies can be grouped into three 75

main categories [27], including early, intermediate (also called joint), and late fusion. It is essential 76

to choose the right approach based on the task at hand and the data used. Early stage fusion has 77

shown very promising results in recent vision-language models [28,29], while late-fusion strategies 78

have traditionally been very effective in aggregating machine learning models decisions. Early and 79

late stage fusion strategies, while effective for certain tasks, are not ideal for AD subtyping using 80

multimodal data. Early stage fusion struggles with dealing with highly heterogeneous and differently 81

biologically-related data such as genetics, imaging and clinical. These require further encoding to 82

first learn highly informative representations for every modality and condense them into a similar 83

latent space. While late fusion strategies can be very effective at aggregating the decisions based 84

on each modality, they cannot learn the feature relationships across modalities severely limiting the 85

usefulness of the model. The intermediate fusion approach tackles both challenges by first learning 86

the crucial patterns associated with each modality. In the next stage, it uses the condensed patterns 87

from each modality to learn the cross-modal relationships. This enables a more harmonious fusion 88

of the heterogeneous modalities. 89
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Figure 1. The three main multimodal fusion strategies, early, intermediate and late fusion, for deep learning
methods.

1.2. Overview and Contributions 90

Despite the potential advantages of multimodal approaches, several technical challenges exist 91

to effectively leverage the key data of each modality. The high heterogeneity of the data modalities 92

for AD subtyping, and the explicit learning of the cross-modal interactions need to be addressed. 93

Previous approaches in related fields have proposed dual co-attention mechanisms to explicitly learn 94

the cross-modal feature interaction and joint data representations [30]. While they have shown very 95

promising results, these have yet to be explored for the subtyping of neurodegenerative disease and 96

its corresponding modalities. Moreover, in AD and related disorders subtyping, [DM: three critical 97

but highly heterogeneous modalities are needed to be fused] , i.e., imaging, genetics and clinical data. 98

Therefore, in this paper, a Tri-modal co-attention (Tri-COAT) framework [DM: is proposed], that 99

can explicitly learn the interactions between the multimodal features towards the task of classifying 100

subtypes. While deep learning models for disease assessment promise improved accuracy, they 101

remain limited in the interpretability of their results. This is a major entry barrier for the inclusion of 102

deep learning models in the medical field. 103

Our contributions in this paper are two fold in both the application and technique. [DM: First, 104

] our framework incorporates features of three early stage biomarker modalities and provides a 105

cutting-edge approach to the subtyping of early neurodegenerative diseases. [DM: Second, regarding 106

the technical innovation,] our new Tri-modal co-attention can efficiently and explicitly learn the 107

interactions between highly heterogeneous modalities, encode the information into a joint represen- 108

tation, and provide explainability to the cross-modal interactions. The proposed Tri-COAT achieved 109

state-of-the-art performance on the landmark dataset Alzheimer’s Disease Neuroimaging Initiative 110

(ADNI)[31], and provided key insights into the biological pathways leading to neurodegenerative 111

disease development. 112

[DM: The rest of the paper is organized as follows. In section 2, the methods are described breaking 113

down each component of Tri-COAT. Next, in section 3, the dataset and experimental design are delineated. 114

In section 4, the results are presented and discussed. Finally, in section 5, conclusions are drawn and 115

future directions are presented.] 116

2. Method 117

Our proposed framework can be divided into two main parts. As seen in Fig. 2, single modality 118

encoders are first built using transformer modules to learn feature representations for each modality. 119

Second, the Tri-COAT mechanism explicitly learns the critical cross-modal feature relationships 120

and uses that to weigh the feature representation. The jointly learned representation goes through a 121

multilayer perceptron (MLP) for disease subtype classification. 122

2.1. Single-modality encoding 123

Three branches encode each modality individually. Each branch is comprised of a transformer 124

encoder with several transformer layers. [DM: This is inspired by previous works in which transformer 125
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Figure 2. Illustration of the proposed framework for AD subtyping, consisting of two main sections: (a) single
modality encoding and (b) tri-modal attention and joint encoding.

models have been proposed for imaging derived connectomes [32] and genotype data [33]]. Each branch 126

learns representations of a modality to later combine them into a joint representation through the 127

Tri-COAT mechanism. 128

Imaging modality. The imaging feature encoder branch uses MRI derived quantitative traits as input. 129

These quantitative traits are derived from T1 weighted MRI scans. The scans are first segmented 130

based on the FreeSurfer atlas for cross-sectional processing. Next, for each reconstructed regions of 131

interest (ROI) the cortical region, cortical volume, thickness average, thickness standard deviation, 132

and surface area are calculated. Further details are described in section 3.1. The imaging traits are 133

then used to build tokens, where each token represents an ROI in the brain and is comprised of 134

four imaging derived traits (Cortical Thickness Average, Cortical Thickness Standard Deviation, 135

Surface Area, Volume from Cortical Parcellation). Let XI ∈ RM×4 represent the imaging input 136

to the proposed model, where M = 72 and is the number of ROIs. After, the token dimensions 137

are expanded through a fully-connected layer to match the model dimensions k. The imaging 138

tokenization allows to build an initial representation for each ROI rather than each trait, leading to a 139

smaller number of input features, and a more biologically informative and interpretable input. 140

Genetic modality. The genotype branch has as input single nucleotide polymorphism (SNP) data. 141

After quality control and preprocessing of the genotype data as described in section 3.1, tokens for 142

each SNP are built. Each token is comprised by the allele dosage from the patient, the corresponding 143

odds ratio and rare allele frequency obtained from the most recent AD GWAS study, and whether the 144

SNP is within an intergenic region (regulatory region) as a binary label. Then, the token dimensions 145

are expanded through a fully-connected layer to k/2. Let XSNP ∈ RN×k/2 represent the genotype 146

input to the model, where N = 70 and is the number of SNPs filtered out (see section 3.1 for details). 147

Moreover, based on the chromosome for which each SNP is located in an additional embedding 148

for each SNP can be built. By including the chromosome embedding, location knowledge for each 149

SNP can be incorporated. Using an embedding layer, an embedding for each chromosome can be 150

obtained XChr ∈ RN×k/2. Finally, XSNP and XChr are concatenated to obtain the final genotype 151

embedding XG ∈ RN×k. Similarly to the imaging data encoding, the genetic tokenization allows to 152

build more informative input structures to the genetic encoder. By providing additional attributes for 153

each SNP beyond the patient mutation status, the model can learn richer patterns of characteristics 154

that relate each SNP. 155

Clinical modality. The clinical data is already very closely related to the outcome of interest and 156

contains only few features; therefore, no further extensive tokenization is performed. As there is just 157

one value per clinical assessment, the tokens are directly built with one dimension. Let XC ∈ RB×1
158

represent the clinical input to our model, where B = 7 and is the number of clinical features. Next, 159

the token dimensions are expanded through a fully-connected layer to match the model dimensions 160

k. 161
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Figure 3. AD subtype clusters based on the decrease of MMSE at each visit. (a) each line represents the
average score across patients for each cluster and the shadow represents one standard deviation. (b) individual
lines per patient are plotted.

Single modality encoders. After the tokenization of each modality, they are fed into independent 162

transformer encoders with L layers. The full process of the L-th layer in our transformer encoder is 163

formulated as: 164

F′
l = MHA(LN(Fl−1)) + Fl−1, (1)

and 165

Fl = FF(LN(F′
l )) + F′

l , (2)

where LN(·) is the normalization layer [34], and MHA(·) is multihead self-attention [35]. 166

2.2. Tri-modal co-attention 167

After each transformer encoder has learned a new representation for each modality, these are 168

then used to learn the cross-modal feature relationships to guide the co-attention process on the 169

clinical branch. In other words, the imaging and genomic features are employed to modulate the 170

clinical learning process by highlighting the key hidden features that share relationships across 171

modalities. The intuition behind the proposed approach is that as the clinical data is most closely 172

related to the disease phenotype, this branch will carry most of the necessary information to classify 173

the patients. Nevertheless, the imaging and genomic data provide also valuable information. The 174

idea is analogous to the clinical data being the subject and verb in a sentence while the imaging and 175

genomic data are the adjectives and adverbs. These two elements enrich the representation of the 176

patient health status, analogous to enriching a sentence for a fuller meaning. 177

Let XEmb ∈ R{M,N,B}×k represent the learned representation of a given single-modality 178

encoder. These become then query matrices for the genetics QG and imaging QI data, and key KC , 179

value VC matrices for the clinical data. Following an attention mechanism structure, the co-attention 180

between two modalities is computed as: 181

CoAttn({G, I}, C) = softmax

(
Q{G,I}KT

C√
dk

)
VT

C . (3)

Next, the resulting co-attention filtered value matrices are then concatenated to obtain a final joint 182

representation. This joint representation is then flattened and used to classify the patients into the 183

clusters through an MLP. 184

3. Materials and Experiments 185

3.1. Dataset 186

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)[31] database is a landmark dataset 187

for the advancement of our understanding of Alzheimer’s disease. ADNI[31] is comprised by a wide 188
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Table 1. Subject data distribution reported as mean ± standard deviation for MMSE and age, and counts per
category for number of participants and gender.

Slow Intermediate Fast

Participants 177 302 15
MMSE (Baseline) 27.35 ± 2.51 27.66 ± 1.86 24.93 ± 3.55
MMSE (24 months) 28.15± 2.15 23.86 ± 3.68 15.9 ± 4.84
Age 73.26 ± 7.82 72.44 ± 7.55 71.22 ± 3.922
Gender M: 102 F: 75 M: 185 F: 117 M: 9 F: 6

range of data modalities including MRI and PET images, genetics, cognitive tests, CSF and blood 189

biomarkers (for up-to-date information, see www.adni-info.org). Longitudinal data for all subjects 190

was selected as up to two years of progression after disease onset due to very high missingness rate 191

(percentage of data points missing across patients for a given time point) present for time points 192

posterior to the two years. Subjects were clustered using k-means in 3 main groups based on their 193

Mini-Mental State Examination (MMSE) scores as can be seen in Fig. 3. These clusters match the 194

cognitive decline rate of patients over time. The MMSE score at each visit (baseline, 6 months, 195

12 months, and 24 months) was used to determine the cognitive decline for each patient. As each 196

patient may have a different starting level at baseline, the baseline measurement is subtracted from 197

each of the following time points; thus all patients start at 0. Then, using k-means clustering, using 198

k = 3, slow, intermediate and fast cognitive decline groups are defined. As seen in Table 1 the 199

raw average MMSE score at baseline is comparable across all groups with a steep decrease for the 200

fast and intermediate groups at 24 months. The slow or otherwise stable group MMSE score at 201

24 months is comparable to the one at the initial stage. On the other hand, all 3 groups are age 202

matched. Similarly, gender distributions across groups is maintained with male subjects representing 203

approximately 60% of the subjects for each group. 204

Data preprocessing: The data for the imaging and genotype modalities was processed previ- 205

ously to the tokenization process following best practices for the corresponding modality as described 206

below. 207

• Imaging: The FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) is used 208

to conduct cortical reconstruction and volumetric segmentation. T1 weighted MRI scans 209

are segmented based on the FreeSurfer atlas for cross-sectional processing, enabling group 210

comparison at a specific time point [36]. For each reconstructed cortical region, cortical volume, 211

thickness average, thickness standard deviation, and surface area measurements are labeled by 212

the 2010 Desikan-Killany atlas. The UCSF ADNI team conducted this process [37], and more 213

information can be found at http://adni.loni.usc.edu. 214

• Genotype: The genotype variants were filtered using the intersection between the List of AD 215

Loci and Genes with Genetic Evidence Compiled by ADSP Gene Verification Committee and 216

the most recent genome wide association study (GWAS) on AD [38]. The odds Ratios, rare 217

allele frequency and intergenic region binary trait were obtained from the most recent GWAS 218

study with accession number (GCST90027158), accessed through the GWAS catalog [39]. 219

Furthermore, the genotype variants were processed for sample and variant quality controls using 220

PLINK1.9 [40]. 221

• Clinical: The clinical assessment features correspond to seven different cognitive metrics 222

available through ADNI [31]. These are Logical Memory - Delayed Recall (LDELTOTAL), 223

Digit Symbol Substitution (DIGITSCOR), Trail Making Test B (TRABSCOR) and Rey Auditory 224

Verbal Learning Test (RAVLT) scores: immediate, learning, forgetting and percent forgetting. 225

Values for imaging and clinical modalities were normalized in each train set before they were 226

used as inputs to the network. 227

3.2. Experimental design 228

All models underwent training and evaluation using a 10-fold stratified cross-testing approach. 229

Initially, the entire dataset was divided into 10 folds, with one fold reserved for testing and the 230

http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.usc.edu
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Table 2. Mean AUROC ± SD of 10-fold cross-testing results. The proposed model significantly outperformed
all the baseline models. The statistical significance was evaluated by paired t-test with α = 0.005, except for
the entry where α = 0.05.

Method Full Imaging Genetics Clinical

SVM 0.705 ± 0.036 0.669 ± 0.060 0.525 ± 0.034 0.639 ± 0.078
RF 0.684 ± 0.048 0.677 ± 0.052 0.505 ± 0.031 0.659 ± 0.087
Stage-wise fusion 0.641 ± 0.017 0.557 ± 0.096 0.562 ± 0.078 0.655 ± 0.057
Tri-COAT 0.734 ± 0.076 0.648 ± 0.056 0.539 ± 0.084 0.697 ± 0.063

remaining nine for training. Subsequently, this training set was further divided into 5 folds for a 231

5-fold stratified cross-validation process for hyperparameter tuning. This robust framework was 232

designed to prevent any data leakage. The optimal hyperparameters were determined during each 233

experimental run by selecting the best-performing model based on the validation set. Each of the 10 234

test sets was evaluated 5 times, using hyperparameters determined by the validation sets, resulting 235

in a total of 50 evaluations for each method. Predictions were evaluated using the area under the 236

receiver operating curve (AUROC). A one-vs-one strategy is employed where the average AUROC of 237

all possible pairwise combinations of classes is computed for a balanced metric. This is implemented 238

using Sci-Kit Learn API [41], which implements the method described in [42]. The mean AUROC 239

and standard deviation across all 50 runs are reported for each method in Table 2. The model was 240

compared against the stage-wise deep learning intermediate fusion model introduced in [43] and 241

several well-established traditional ML models - random forest (RF), support vector machine (SVM) 242

with radial-basis function (RBF) kernel. Similarly, each of the branches of the model was used as 243

comparison using a series of transformer encoder layers and MLP head for classification. 244

Tri-COAT consist of four transformer layers for each of the single modality encoders, with 245

four attention heads per transformer layer. The tri-model co-attention process is done in a single- 246

head attention mechanism. The classifying MLP has one hidden layer with 256 units. Embedding 247

dimension of k = 256 was used for all modalities. The model dimensions for the single-modality 248

encoders were kept at 256 and all throughout as this combination achieved the best results on 249

the validation set. The final MLP had the concatenated class tokens resulting from the tri-modal 250

co-attention module and computed the output logits for each one of the three possible classes. Adam 251

was used to optimize both Tri-COAT and the stage-wise MLP model using learning rates of 0.0001 252

for Tri-COAT and 0.0001 for the stage-wise fusion benchmarking model. All deep learning models 253

were trained using cross-entropy loss. All deep learning models were implemented using PyTorch, 254

while the RF and SVM models were implemented using scikit-learn. All deep learning models 255

were trained for 100 epochs and the best checkpoint, meaning epoch with the highest AUROC on 256

the validation set, was selected for model evaluation. The stage-wise deep learning fusion model 257

had dimensions of 64 units for the single-modality layers, 32 for the second-stage and 16 for the 258

final stage. The model dimensions were selected following the described hyperparameters in [43]. 259

The SVM used an RBF kernel, regularization parameter C of 1. The random forest used gini as its 260

criterion for leaf splitting, 100 trees and no maximum depth. 261

4. Results and Discussion 262

4.1. Clustering, label definition 263

Following the literature, the number of clusters was set to three main groups [44–46]. The 264

MMSE score was used as an indicator of mental decline. Based on the speed of the progression of 265

the mental decline over a period of two years, three groups were defined, i.e., fast, intermediate and 266

slow progressing subtypes. K-means clustering was used to assign each subject to one of the groups. 267

Through this process labels were defined for all subjects. Only baseline data was used as input to 268

Tri-COAT and all competing models. Based on the baseline data Tri-COAT was able to effectively 269

classify the subjects into their corresponding subtypes. 270
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Figure 4. Cross modal associations of AD key biomarkers visualized from the learned co-attention.

4.2. AD subtype classification 271

As seen in Table 2, Tri-COAT outperformed the single modality ablations and baseline models, 272

achieving an average AUROC of 0.733 ± 0.070 across all test sets in the 10-fold cross-testing 273

framework. For the single-modality ablation studies, each modality was used independently to 274

classify the AD subtype. For Tri-COAT, a single-modality transformer encoder backbone and 275

MLP head were used. For the stage-wise fusion model, it was adapted to MLPs using the same 276

number of hidden layers as the first plus last stage of the multimodal version. For SVM and RF, 277

no variations were required. Each modality was evaluated using the same 10-fold cross testing - 278

5 fold-cross validation hyperparameter tuning framework. Moreover, the single modality ablation 279

models outperformed their baseline counterparts for the clinical and genetics modalities. In contrast 280

to this the baselines achieved better performances for the imaging derived traits. For the three 281

modalities, clinical achieves the best classification AUROC, followed by imaging and genetics. This 282

is expected as biologically, the same order follows for the closest relation between the observed 283

phenotype and the mechanisms behind it. Clinical (cognitive) assessments are the closest to the 284

MMSE metric, followed by imaging (changes in the brain morphology) which is directly related to 285

the observed phenotype and genetics being the farthest apart from the expressed symptoms. Both 286

comparative models and Tri-COAT achieve higher performances in their multimodal configuration 287

compared to single modalities, agreeing with previous literature regarding multimodal approaches 288

for classification of AD and related disorders. 289

Furthermore, as seen in Table 3, Tri-COAT outperformed variations of itself using alternative 290

fusion strategies. The early fusion model considerably underperforms achieving an AUROC of 0.571 291

± 0.053 because of its limited capabilities to simultaneous encode highly heterogeneous data with 292

distinct biological level relationships to the outcome. Similarly, the late fusion model underperforms 293

as it is limited to joining the predictions from each branch and cannot learn the relationships between 294

the different modalities in the latent space. 295

4.3. Biomarker Associations Learned by Co-attention 296

One of the key advantages of Tri-COAT compared to the baseline models and traditional deep 297

learning approaches is the ability to learn insights into the cross-modal feature associations. In 298

order to explore the learned relationships, the model with highest test AUROC from the evaluation 299

framework was selected for attention visualization in which the learned attention scores were 300

averaged across all test subjects. Chord plots were drawn using the circlize R library [47] to 301

visualize the cross-modal attention. As seen in Fig. 4, Tri-COAT identified key associations between 302

the Trails making test B score (TRABSCORE) in clinical-imaging and clinical-genetics. This 303

score tests for cognitive ability of the patient for working memory and secondarily task-switching 304

ability [48]. Clinical literature shows strong correlation between gyri structures - temporal gyrus 305

and Parahippocampal gyrus (LTransTemp, LPH) and TRABSCORE [49]. Similarly, for the clinical- 306

genotype association, TRABSCORE was found to be associated with the CD2AP gene which has 307
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Table 3. Mean AUROC ± SD of 10-fold cross-testing results. The proposed model significantly outperformed
all the baseline models. The statistical significance was evaluated by paired t-test with α = 0.005, except for
the entry where α = 0.05.

Method AUROC

Early 0.571 ± 0.053
Late 0.604 ± 0.048
Tri-COAT 0.734 ± 0.076

been clinically identified as a driver for the AD hallmark - neurofibrillary tangles (NFT) in the 308

temporal gyrus region [50]. This is a very exciting finding for our network as it establishes a putative 309

relationship between genetics (CD2AP gene), brain ROIs (temporal gyrus) and clinical symptoms 310

(TRABSCORE). 311

5. Conclusions 312

AD is the most prevalent neurodegenerative disease, and all current treatments are limited to 313

slowing disease progression. Therefore, early diagnosis is essential. Furthermore, there are multiple 314

subtypes with different rates of cognitive decline. In order to move closer to personalized medicine, it 315

is essential to have a better understanding of the heterogeneity surrounding the disease development. 316

However, early subtyping is a very challenging task. Our proposed model was able to effectively 317

classify AD patients into three main subtypes using prodromal factors measured at baseline. 318

Moreover, the model was able to identify multiple putative cross-modal biomarker networks. 319

[DM: The putative biomarkers provide enhanced interpretability to Tri-COAT and shed light into possible 320

exciting therapeutic targets.] Nevertheless, the generalizability of applying the learned features to 321

other datasets remains to be tested. 322

[DM: The future directions are very exciting as Tri-COAT could be extended ] to other hetero- 323

geneous neurodegenerative diseases such as Parkinson’s disease. [DM: Moreover, as shown in this 324

work, multimodal approaches achieved the best results. A promising future direction is to incorporate 325

further modalities such as PET imaging and transcriptomic data. PET imaging could provide further 326

clarity towards the accumulation of fluid biomarkers and their impact towards neurodegeneration. 327

Similarly, transcriptomic data could provide an intermediate biological step between the genotype and 328

brain endophenotypes. These could lead to enhanced understanding of the underlying mechanisms and 329

provide further therapeutic targets.] 330
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