
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-6654-6819-0/22/$31.00 ©2022 IEEE 639

Tensor-Based Multi-Modal Multi-Target Regression
for Alzheimer’s Disease Prediction

Jun Yu1, Benjamin Zalatan1, Yong Chen2, Li Shen2, and Lifang He1,*

1Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, U.S.A.
{juy220, bjz222, lih319}@lehigh.edu

2Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, U.S.A.
{ychen123, li.shen}@pennmedicine.upenn.edu

Abstract—The assessment of Alzheimer’s Disease (AD) pro-
gression via the analysis of physical changes within the brain has
attracted great interest from the fields of healthcare, computa-
tional medicine, and machine learning alike. Recent studies have
demonstrated that using both multi-modal data and multiple
AD assessment scores in a predictive model can better reflect
pathological characteristics and enhance prediction performance.
However, using such high-dimensional structure information
to model inter-correlation between multiple targets remains a
challenging task. In this paper, we propose a Tensor-based
Multi-modal Multi-Target Regression (TMMTR) method for AD
detection and prediction, which enables simultaneously modeling
multilinear structure information as well as intrinsic inter-target
correlations in a general learning framework. We also investigate
the tensor-structured sparsity that supports the interpretability
of our prediction. Experiments conducted on the ADNI dataset
validate the superior performance of our method when compared
to other state-of-the-art methods.

Index Terms—Alzheimer’s disease, multi-modal, multi-target
regression, tensor, interpretability

I. INTRODUCTION

Alzheimer’s Disease (AD) is a neurodegenerative disorder
that is the most common cause of dementia [1]. Those inflicted
by AD often experience memory deterioration and cognitive
decline that increases in severity over time [2]. In order to
effectively slow disease progression and prevent the onset
of more severe symptoms, the investigation of computer-
aided prediction and diagnosis of the prodromal stage of
AD, also known as Mild Cognitive Impairment (MCI), has
gained popularity in recent years due to its effectiveness
and potential for refinement. Over the last decade, several
studies [3]–[5] have shown great promise in AD prediction by
analyzing Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET) scans. Previous research has
also shown that the prediction of AD-related clinical scores,
e.g. Mini-Mental State Examination (MMSE), can be used to
determine the state of cognitive decline in patients. Regression
models [6]–[8] are extensively explored to estimate these con-
tinuous clinical scores from brain-imaging scans of identifiable
biomarkers. In contrast to categorical predictive models that
focus on classification, regression models can produce granular
and specific predictions on continuous variables rather than
values in terms of quantized classes. In most cases, we can
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solve a classification problem by constructing multiple binary
classifiers using logistic regressions [9].

It has been found that using biomarkers across multiple
modalities achieves better predictive performance for MCI/AD
assessment than conventional single-modal learning as it can
contain complementary information of clinical relevance [10]–
[15]. In some cases, the large amount of data that comes with
using multiple modalities may introduce undesirable noise,
which could hinder the learning process. Along with this,
conventional multi-modal fusing techniques, such as principal
component analysis (PCA) [16] or kernel-based methods [17],
can ignore data structure and waste informative features, thus
leading to mediocre performance with little interpretability.
Accordingly, feature reduction [18], feature selection [19] and
feature clustering [20] are generally used to mitigate these
issues. However, all existing methods above rely on a single
target to generate inter-correlations between biomarkers from
different modalities, which could easily lead to overfitting on
high-dimensional training data.

Recent AD prediction methods [21]–[25] have begun to use
Multi-Target Regression (MTR) methods to find inter-target
relations and cross-modal connections simultaneously. The
Sparse Multi-Task Regression and Feature selection (SMART)
method [21] has been shown to be effective at recognizing the
interconnected structures in neuroimaging data. To overcome
the limitation of using ℓ2,1 norm in SMART that could cause
the model to learn identical regions across different modalities,
the Multi-Task Sparse Group Lasso (MT-SGL) method [23]
encourages individual feature selection coupled with group
lasso. Furthermore, the Robust Multi-Label Transfer Feature
Learning (rMLTFL) method [24] applies the ℓ2,1 norm on
both the feature selection and modality transfer to model inter-
target relationships on unrelated source modalities. However,
these sparse MTR models seek interpretability from vector-
level space, which can achieve acceptable performance when
selecting effective factors, but ignore the intrinsic structure
within high-dimensional tensor data. Deep models such as neu-
ral networks [22], [25] and graph convolutional networks [26]
generally outperform conventional sparse models by using
more complicated feature mappings, but can become non-
interpretable as they are prone to make decisions in a latent
feature space.

In this paper, we propose the Tensor-based Multi-modal
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Multi-Target Regression (TMMTR) algorithm to bridge the
gap of learning interpretable features from tensor-structured
multi-modal data. In particular, we jointly regress three
clinical scores—AD Severity (ADS) score, AD Assessment
Scale–Cognitive 13-item (ADAS-Cog 13), and MMSE—from
three different imaging modalities: voxel-based morphometry
on MRI (VBM-MRI), 18F-fluorodeoxyglucose PET (FDG-
PET) and 18-F florbetapir PET (AV45-PET). The main con-
tributions are threefold:

• TMMTR leverages the tensor-structured information in-
herent in high-dimensional multi-modal data and inter-
target correlation among related responses to improve
learning performance.

• We present an efficient divide-and-conquer algorithm
to solve this tensor-based sparse model and investigate
tensor-level sparsity in the pursuit of finding multilinear
relationships.

• To verify the consistent performance of TMMTR on
tensor-structured data, we conduct extensive experiments
on tensors of different dimensionalities. The results show
that our method can compete with state-of-the-art meth-
ods in both performance and interpretability.

II. MATERIALS AND METHODS

A. Data Acquisition and Preprocessing

The data used in this study was acquired from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.adni-info.org). We collected data from a total of 692
non-Hispanic Caucasian participants including 182 Cogni-
tively Normal (CN) controls, 75 patients with Significant
Memory Concern (SMC), 217 patients with Early Mild Cogni-
tive Impairment (EMCI), 184 patients with Late Mild Cogni-
tive Impairment (LMCI), and 97 AD patients. For each patient,
we gathered neuroimage data in the VBM-MRI, FDG-PET and
AV45-PET modalities, as well as three clinical scores of ADS,
ADAS-Cog 13 and MMSE.

The multi-modal image data was aligned to a single visit
for each patient. The structural MRI scans were preprocessed
with voxel-based morphometry (VBM) using the SPM soft-
ware [27]. All scans were aligned to a T1-weighted template
image. They were then segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) maps,
normalized to the standard Montreal Neurological Institute
(MNI) space as 2×2×2 mm3 voxels, and smoothed with an 8
mm full-width at half-maximum (FWHM) kernel. The FDG-
PET and AV45-PET scans were also registered to the same
MNI space using SPM. The MarsBaR toolbox [28] was used
to group voxels into 116 regions of interest (ROIs) defined
in [28]. ROI-level measures were calculated by averaging the
measures of all voxels within each ROI.

B. Tensor Construction

Tensors are defined as the higher-order generalizations of
vectors and matrices, which can be regarded as 1-mode and
2-mode tensors respectively. Tensors are commonly used in

medical research to represent multi-dimensional and multi-
relational data. In this study, we represent tensor data with
three different sizes: (1) 116× 3. We concatenate 116 ROI
feature values from all three imaging modalities along an
additional modality dimension in the order of VBM-MRI,
FDG-PET and AV45-PET, which results in a two-dimensional
tensor of size 116 × 3 for each patient. (2) 116× 116. We
construct a ROI-to-ROI connectivity matrix based on the pair-
wise similarity of ROIs, obtaining a two-dimensional tensor of
size 116×116 for each patient. For each ROI, we concatenate
the features from each of the three modalities into a three-
dimensional vector, denoted as ri ∈ R3, i = 1, 2, · · · , 116. We
then use a K-Nearest Neighbor (KNN) graph [29] to construct
a connectivity matrix via the Gaussian similarity function, i.e.,
Xij = exp(−∥ri−rj∥2

σ2 ), where σ is a user defined parameter
specifying width. In our study, we simply set σ = 1 and
consider K = 1, 2, · · · , 116 as a hyper-parameter. When
K = 116, the tensor is fully connected. (3) 116× 116× 3.
We construct three ROI-to-ROI connectivity matrices using the
same method specified for the 116× 116 tensor, one for each
modality, and concatenate them along an additional modality
dimension. This results in a three-dimensional tensor of size
116× 116× 3 for each patient.

C. Tensor-Based Multi-Modal Multi-Target Regression

In this section, we will formalize the TMMTR method and
present an efficient algorithm to perform it. Fig. 1 shows
the learning pipeline of our TMMTR method, where we use
tensors as input data to regress multiple targets simultaneously.

1) Notation and Tensor Algebra: We begin with the nota-
tions and definitions of tensor operations. For more details, the
readers can refer to [30]. We denote tensors by calligraphic
letters (e.g., X ,W), matrices by bold uppercase letters (e.g.,
X,W), vectors by bold lowercase letters (e.g., x,w), and
scalars by lowercase letters (e.g., x,w). Any M -order tensor
X ∈ RI1×···×IM , we denote xi1,··· ,iM as the (i1, · · · , iM )-th
entry, where i1 ∈ {1, · · · , I1}, · · · , iM ∈ {1, · · · , IM}.

Definition 1 (Inner product): The inner product of two
tensors A ∈ RI1×···×IM ,B ∈ RI1×···×IM is defined as
⟨A,B⟩ =

∑I1
i1=1 · · ·

∑IM
iM=1 ai1,··· ,iM bi1,··· ,iM .

Definition 2 (Outer/Tensor product): The outer product of
two tensors A ∈ RI1×···×IM ,B ∈ RIM+1×···×IN is defined
as A ⊗ B ∈ RI1×···×IN , of which the (i1, · · · , iN )-th entry
is given by ai1,··· ,iM biM+1,··· ,iN , i1 ∈ {1, · · · , I1}, · · · , iN ∈
{1, · · · , IN}.

Definition 3 (n-mode product): The n-mode product of
a tensor A ∈ RI1×···×IM with a vector b ∈ RIm

is defined as A ×m b ∈ RI1×···Im−1×Im+1···×IM , of
which the (i1, · · · im−1, im+1, · · · , iM )-th entry is given by∑Im

im=1 ai1,··· ,iM bim .
Definition 4 (CP-decomposition): A tensor X ∈ RI1×···×IM

can be decomposed as a weighted sum of rank-1 tensors as
X =

∑R
r=1 σrx

(1)
r ⊗ · · · ⊗ x

(M)
r , where σr ∈ R, x

(m)
r ∈

RIm , and ∥x(m)
r ∥2 = 1 hold for every r ∈ {1, · · · , R},m ∈

{1, · · · ,M}.
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Fig. 1. The learning pipeline of our proposed method. The left part shows the data preprocessing stage, and the right gives a detailed illustration of TMMTR.

Definition 5 (CP-rank): The tensor rank1 of A, denoted
by CP-rank(A), is the smallest number R such that the CP-
decomposition is exact.

2) Problem Formalization: Suppose that the dataset in-
cludes N sample pairs {(X (i),y(i))}, i = 1, 2, · · · , N , where
X (i) ∈ RD1×···×DM is the multi-modal data tensor, and its
response vector y(i) contains K different response targets, i.e.,
y(i) = [y

(i)
1 , y

(i)
2 , · · · , y(i)K ]⊤.

In general, each target indicates a specific task and is
associated with a linear regression function fk as

fk(Xi) = ⟨Wk,Xi⟩+ εi,k, i = 1, · · · , N, k = 1, · · · ,K, (1)

where εi,k is the error term associated with i-th sample and
its corresponding k-th target, and Wk is the coefficient tensor
for the prediction of k-th target. To measure the distance
between predicted values and their corresponding ground-truth
responses, we introduce K different loss functions for each
target. Accordingly, the preliminary learning framework can
be formulated as follows:

min
1

N

K∑
k=1

N∑
i=1

Lk

(
⟨Wk,X (i)⟩, y(i)k

)
+ λΩ(W), (2)

where Lk is the specific loss function for the correspond-
ing k-th response target, and W = [W1, · · · ,WK] ∈
RD1×···×DM×DM+1 is the stacking of K coefficient tensors,
where DM+1 = K. We denote Ω and λ as the regularized
term and balancing hyper-parameter, respectively.

3) Objective Function: In our method, we hope to model
these K linear relationships collectively. It is essential to learn
the multilinear map for both the inter-target correlations and
input-target relationships. We appropriately introduce one-hot
encodings ek = [0, · · · , 0︸ ︷︷ ︸

k−1

, 1, 0, · · · , 0]⊤ ∈ RK as the indicator

1This is different from matrix rank, though there are multiple ways to define
the rank of a tensor. In this paper, we define it based on CP-decomposition
and call it CP-rank.

vector for the k-th target, k = 1, · · · ,K. At the same time,
we employ Mean Squared Error (MSE) to compute the loss
of all response targets. Problem (2) is reformulated as:

min
1

N

K∑
k=1

N∑
i=1

(
⟨W ,X (i) ⊗ ek⟩ − yk

)2

+ λΩ(W), (3)

where X (i) ⊗ ek increases the dimensionality of the input
tensor via zero padding (See Definition 2), and the higher
order coefficient tensor W ∈ RD1×···×DM×K has a more
compact tensor structure more suitable for decomposition.

To utilize the high-dimensional structure and correlations
within the tensor coefficients W , we propose a sparse, low-
rank tensor regression model that decomposes the tensor
coefficients as follows:

min
{Wr}R

r=1

1

N

K∑
k=1

N∑
i=1

(
⟨

R∑
r=1

Wr,X (i) ⊗ ek⟩ − y
(i)
k

)2
+

R∑
r=1

λr∥Wr∥1, s.t. CP-rank(Wr) ≤ 1, r = {1, · · · , R}, (4)

where r ∈ {1, · · · , R} is the sequential number of the rank-1
terms Wr = σrw

(1)
r ⊗ · · · ⊗ w

(M+1)
r , i.e., CP-rank(Wr) =

1. Thus we have ∥Wr∥1 = ∥σrw
(1)
r ⊗ · · · ⊗ w

(M+1)
r ∥1 =

σr

∏M+1
m=1 ∥w(m)

r ∥1. λr is the corresponding hyper-parameter
for each rank-1 component to balance the loss term and penalty
term.

Due to the ℓ1-norm regularizers acting on the decomposed
rank-1 tensors, the solution of problem (4) prefers a sparse
model where few parameters are non-zero, thus resulting in a
better interpretability. The zero-elements in W indicate that
the corresponding features are negligible in the prediction
responses.

4) Solution: A common way to solve problem (4) is to
utilize the alternating least squares (ALS) algorithm [30] to
compute CP-decomposition with a fixed R. However, this has
an undesirable computational cost as R must be readjusted
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many times, meaning that problem (4) must be repeated
over many iterations. Here we adopt a divide-and-conquer
strategy [31] to sequentially solve the following sparse rank-1
estimation problems, which can automatically estimate λr and
easily tune R.

min
Wr

1

N

K∑
k=1

N∑
i=1

(
⟨Wr,X (i) ⊗ ek⟩ − y

(i)
r,k

)2
+ λr∥Wr∥1,

s.t. CP-rank(Wr) ≤ 1, r = {1, · · · , R}, (5)

where r is the sequential number of the rank-1 terms and
y
(i)
r = [y

(i)
r,1, · · · , y

(i)
r,k]

⊤ is the current residue of the target
value with

y(i)
r :=

{
y(i), if r = 1

y
(i)
r−1 −

∑K
k=1⟨X (i) ⊗ ek,Wr−1⟩, otherwise,

where Wr−1 is the estimated rank-1 tensor in the (r − 1)-th
step. The final estimator can be recovered as W =

∑R
r=1 Wr.

In this manner, we only seek a single rank-1 tensor at a time
and then deflate to find further rank-1 tensors from the target
residuals. Furthermore, we decompose the tensor component
Wr (See Definition 4) and reformulate problem (5) as:

min
{w(m)

r }M+1
m=1

1

N

K∑
k=1

N∑
i=1

(
σrX (i) ⊗ ek ×1 w

(1)
r ×2 · · · ×M+1

w(M+1)
r − y

(i)
r,k

)2
+ σrλr

M+1∏
m=1

∥w(m)
r ∥1,

s.t. σr ≥ 0, ∥w(m)
r ∥1 = 1,m ∈ {1, · · · ,M + 1}. (6)

To solve this problem, we resort to an alternating convex
search (ACS) approach [32]. Specifically, a group of variables
(σr,w

(m)
r ) is alternately optimized with others fixed. Let

ŵ
(m)
r = σrw

(m)
r and c

(i)
r,m = X (i) ⊗ ek ×1 w

(1)
r ×2 · · · ×m−1

w
(m−1)
r ×m+1 · · ·×M+1w

(M+1)
r to simplify this sub-problem

formulation as

min
ŵ

(m)
r

1

N

K∑
k=1

N∑
i=1

(
ŵ(m)⊤

r c(i)r,m − y
(i)
r,k

)2
+ λr∥ŵ(m)

r ∥1,

s.t. σr ≥ 0, ∥w(m)
r ∥1 = 1,m ∈ {1, · · · ,M + 1}. (7)

The sub-problem above is a standard LASSO [33], which we
solve using a boosting strategy proposed in [34]. Algorithm 1
summarizes the structure of our stagewise procedures.

5) Complexity Analysis: Based on the forward and back-
ward steps in the SURF algorithm [34], both are merged into
the convex optimization problem as follows:

(m̂, îm̂) = argmax
(m,im)

± 2
N∑
i=1

1⊤
imc(i)r,m(

K∑
k=1

y
(i)
k − ŵ(m)⊤

r c(i)r,m)

− ϵ

Im∑
m=1

N∑
i=1

c(i)⊤r,m c(i)r,m,

s.t. im ∈ {1, · · · , Im},m ∈ {1, · · · ,M + 1} (8)

Algorithm 1 Solution of TMMTR problem in Eq. (4)

Input: Multi-modal tensor pairs {(X (i),y(i))}Ni=1, and a
small step size ϵ.

Output: Coefficient tensor W .
1: Initialize R with a constant, y(i)

1 = y(i), i ∈ {1, · · · , N}.
2: for r = 1, · · · , R do
3: for m = 1, · · · ,M + 1 do
4: Initialize w

(1)
r , · · · ,w(m−1)

r ,w
(m+1)
r , · · · ,w(M+1)

r .
5: Compute c

(i)
r,m = X (i) ⊗ ek ×1 w

(1)
r ×2 · · · ×m−1

w
(m−1)
r ×m+1 · · · ×M+1 w

(M+1)
r , i = 1, · · · , N .

6: Run SURF(ϵ) in [34] to solve problem (7).
7: end for
8: Wr = ŵ

(1)
r ⊗ · · · ⊗ ŵ

(m)
r ⊗ · · · ⊗ ŵ

(M+1)
r .

9: y
(i)
r+1 = y

(i)
r −

∑K
k=1⟨Wr,X (i) ⊗ ek⟩.

10: end for
11: W =

∑R
r=1 Wr.

where 1im = [0, · · · , 0︸ ︷︷ ︸
im−1

, 1, 0, · · · , 0]⊤ ∈ RIm , which is

designed to select the corresponding entry of c
(i)
r,m, i ∈

{1, · · · , N}. Problem (8) can be efficiently solved, and the
computational complexity is dominated by the second term
ϵ
∑Im

m=1

∑N
i=1 c

(i)⊤
r,m c

(i)
r,m under O-notation. In the context of

tensors, we want a more elaborate computational analysis
that considers all tensor modes. According to the direct
conclusion in [34] and the adaptive problem (8), the com-
putational complexity of the 6-th line in Algorithm 1 is
O
(
N(

∑M+1
m̸=m̂(

∏M+1
s̸=m,m̂ Is+5Im)+2Im̂+2K)

)
, and the 5-th

is O
(
N

∑M+1
m̸=m̂(

∏M+1
s̸=m,m̂ Is + 5Im)

)
. If we further consider

the presence of two for loops, the total computational complex-
ity of Algorithm 1 is O

(
NR(M +1)(

∑M+1
m̸=m̂(

∏M+1
s̸=m,m̂ Is +

5Im)+Im̂+K)
)
. Compared with ACS algorithm that requires

O
(
NR(M + 1)

∏M+1
m=1 Im

)
[35] computational cost to solve

same problem, our proposed learning algorithm is faster.
For space complexity, the indicator vector ek increases the

dimensionality of the data tensor X (i) through the tensor
product operation (⊗). The large quantity of zeros caused
by padding results in heavy space consumption, but we
reduce this consumption by utilizing properties of a rank-1
tensor’s inner product. In particular, for the two rank-1 tensors
X = x(1) ⊗ · · · ⊗ x(M) and Y = y(1) ⊗ · · · ⊗ y(M), it holds
that:

⟨X ,Y⟩ =
M∏

m=1

⟨x(m),y(m)⟩. (9)

We can then simplify the computation process of
⟨Wr,X (i) ⊗ ek⟩ by eliminating the last mode:

⟨Wr,X (i) ⊗ ek⟩
=⟨w(1)

r ×2 · · · ×M+1 w
(M+1)
r ,X (i) ⊗ ek⟩

=(e⊤k w
(M+1)
r )⟨X (i),w(1)

r ⊗ · · · ⊗w(M)
r ⟩

=w
(M+1)
r,k ⟨X (i),w(1)

r ⊗ · · · ⊗w(M)
r ⟩, (10)
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TABLE I
PERFORMANCE COMPARISON OVER DIFFERENT FEATURE TENSORS ON THE ADNI DATASET. RESULTS ARE SHOWN AS THE MEAN VALUES AND

STANDARD DEVIATION (MEAN ± STD) ACROSS FIVE TRIALS. ‘N/A’ MEANS THAT RESULTS ARE NOT AVAILABLE DUE TO METHOD CONSTRAINTS.
↓ MEANS THE LOWER THE BETTER, AND ↑ MEANS THE HIGHER THE BETTER.

Feature Tensor Assessment Metrics SMART [21] MT-SGL [23] rMLTFL [24] DBN-based MTL [25] GCN [26] TMMTR

ADS RMSE ↓ 0.331 ± 0.018 0.338 ± 0.023 0.335 ± 0.016 0.324 ± 0.014 N/A 0.307 ± 0.009

116 × 3

Sparsity↑ 0.799 ± 0.013 0.759 ± 0.016 0.678 ± 0.009 N/A N/A 0.966 ± 0.005

ADAS-Cog 13 RMSE↓ 0.168 ± 0.023 0.144 ± 0.033 0.141 ± 0.029 0.146 ± 0.025 N/A 0.145 ± 0.019
Sparsity↑ 0.835 ± 0.012 0.773 ± 0.023 0.713 ± 0.005 N/A N/A 0.986 ± 0.004

MMSE RMSE↓ 0.151 ± 0.017 0.152 ± 0.018 0.151 ± 0.020 0.149 ± 0.016 N/A 0.142 ± 0.011
Sparsity↑ 0.735 ± 0.016 0.698 ± 0.049 0.641 ± 0.013 N/A N/A 0.969 ± 0.002

Total RMSE↓ 0.403 ± 0.020 0.398 ± 0.023 0.394 ± 0.020 0.386 ± 0.021 N/A 0.368 ± 0.010
Sparsity↑ 0.790 ± 0.015 0.743 ± 0.030 0.677 ± 0.010 N/A N/A 0.976 ± 0.004

ADS RMSE↓ 0.337 ± 0.015 0.334 ± 0.016 0.329 ± 0.014 0.332 ± 0.019 0.302 ± 0.012 0.328 ± 0.010

116 × 116

Sparsity↑ 0.963 ± 0.012 0.941 ± 0.013 0.862 ± 0.011 N/A N/A 0.998 ± 0.000

ADAS-Cog 13 RMSE↓ 0.156 ± 0.029 0.152 ± 0.032 0.152 ± 0.029 0.155 ± 0.029 0.154 ± 0.013 0.148 ± 0.031
Sparsity↑ 0.981 ± 0.014 0.969 ± 0.010 0.893 ± 0.021 N/A N/A 0.999 ± 0.000

MMSE RMSE ↓ 0.174 ± 0.030 0.164 ± 0.031 0.161 ± 0.030 0.160 ± 0.024 0.194 ± 0.012 0.153 ± 0.016
Sparsity↑ 0.931 ± 0.013 0.920 ± 0.012 0.839 ± 0.009 N/A N/A 0.997 ± 0.000

Total RMSE↓ 0.411 ± 0.019 0.402 ± 0.024 0.397 ± 0.022 0.400 ± 0.021 0.391 ± 0.019 0.391 ± 0.021
Sparsity↑ 0.958 ± 0.013 0.943 ± 0.012 0.865 ± 0.013 N/A N/A 0.998 ± 0.000

ADS RMSE↓ 0.338 ± 0.025 0.328 ± 0.026 0.326 ± 0.021 0.334 ± 0.028 0.306 ± 0.011 0.273 ± 0.010

116 × 116 × 3

Sparsity↑ 0.994 ± 0.003 0.986 ± 0.004 0.966 ± 0.009 N/A N/A 1.000 ± 0.000

ADAS-Cog 13 RMSE ↓ 0.157 ± 0.031 0.153 ± 0.032 0.158 ± 0.031 0.172 ± 0.035 0.149 ± 0.012 0.141 ± 0.013
Sparsity↑ 0.997 ± 0.002 0.991 ± 0.003 0.979 ± 0.005 N/A N/A 1.000 ± 0.000

MMSE RMSE↓ 0.172 ± 0.021 0.169 ± 0.026 0.154 ± 0.021 0.185 ± 0.028 0.193 ± 0.010 0.146 ± 0.013
Sparsity↑ 0.989 ± 0.005 0.965 ± 0.011 0.945 ± 0.012 N/A N/A 1.000 ± 0.000

Total RMSE↓ 0.411 ± 0.031 0.399 ± 0.032 0.394 ± 0.030 0.419 ± 0.034 0.391 ± 0.018 0.378 ± 0.010
Sparsity↑ 0.993 ± 0.003 0.981 ± 0.006 0.963 ± 0.009 N/A N/A 1.000 ± 0.000

where w
(M+1)
r,k is the k-th entry element of the last decom-

posed mode vector w(M+1)
r , which can be directly indexed by

the arrangement of targets without extra space consumption.
By this trick, we cut down the space complexity of the training
stage from O

(
K

∏M
m=1 Im

)
to O

(
K +

∏M
m=1 Im

)
.

III. RESULTS

A. Experimental Settings

Baselines. To show the validity of our proposed method,
we compared our method with: (1) three sparse learning
methods, namely the Sparse Multi-Task Regression and Fea-
ture selection (SMART) [21], Multi-Task Sparse Group Lasso
(MT-SGL) [23], and Robust Multi-Label Transfer Feature
Learning (rMLTFL) [24] methods, and (2) two deep mod-
els, namely Deep Belief Network-based Multi-Task Learning
(DBN-based MTL) [25] and a Graph Convolutional Neural
Network (GCN) [26].

Implementation Details. For model validation, subjects
were split into training and test sets with a ratio of 5:1. The
hyperparameters of all methods were optimized using 5-fold
cross validation on the training set. For the SMART, MT-SGL,
and rMLTFL methods, the regularisation parameters before
different norms were selected from a grid search in a much
wider range of {10−6, 10−5, · · · , 101} in the slow-start phase,
and then switched to a narrower and more granular grid search
range of {0.1, 0.2, · · · , 0.9} to obtain the best performance. In
DBN-based MTL, after the feature extraction stage by PCA
method, there are two hidden layers in the DBM module with

18 and 9 neurons respectively, where the dropout rate in the
final layer is traversed in the range of {0.1, 0.2, · · · , 0.9}. For
the GCN, there were two convolutional layers followed by
three fully-connected layers. The first two fully-connected lay-
ers were each followed by batch normalization and a dropout
of 0.8. In our proposed method, the rank R is incremented
from 1 to 70 with a step size of 1. All methods used traverse
the hyper-parameter K in the KNN graph from 1 to 116 with
step size of 1.

B. Experimental Results

To assess the level of disease progression from different
perspectives, we take three common clinical scores (ADS,
ADAS-Cog 13, and MMSE) into account. In order to fairly
measure each of these targets, we first transform ADS into
quantitative values (CN-1, SMC-2, EMCI-3, LMCI-4, and
AD-5), and then normalize all of assessment scores to the
range of [0, 1], with higher scores indicating greater severity
of cognitive impairments.

In order to avoid randomness and receive reliable results,
we repeat the experiments over five trials with different,
consistent training/testing splits for each method and report the
mean and standard deviation. For the quantitative performance
evaluation, we employed two metrics: (1) Root Mean Squared
Prediction Error (RMSE), measuring the deviation between the
ground truth response and the predicted values, and (2) sparsity
of coefficients, defined as the ratio of zero elements relative
to the total number of elements in the model coefficients.
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Fig. 2. Comparison of coefficient weights in terms of each imaging modality across five trials. Each row corresponds to a feature selection method: SMART,
MT-SGL, rMLTFL, and our proposed TMMTR (from top to bottom). Within each panel, there are three rows corresponding to each of the three imaging
modalities (i.e., VBM-MRI, FDG-PET, and AV45-PET) and the 116 brain regions defined in [28].

(a) SMART (b) MT-SGL

(c) rMLTFL (d) TMMTR

Fig. 3. The colormaps of 116 ROIs on the physical brains to the corresponding
sparse solutions of each feature selection method. Each method shows the full
eight-brain views, in which the first row from left to right are lateral view
of left hemisphere, topside, lateral view of right hemisphere, the second row
from left to right are medial view of left hemisphere, bottom side, medial
view of right hemisphere, and the third row are frontal side and backside.

TABLE I shows the performance comparison of six meth-
ods. It is clear that the proposed method outperforms almost
all of the competing methods in terms of both RMSE and
sparsity. In addition:

• Our method’s prediction performance improves as the
dimensionality of input data grows, while the baseline
methods tend to remain stagnant. This confirms that
TMMTR can learn tensor-structure information, such as
ROI-to-ROI connectivity and cross-modality interaction.

In contrast, all of the baseline methods struggle to handle
higher dimensional data since vectorization in the model
design leads to the loss of structural information.

• The GCN model consistently outperformed the other
baselines and approached the results of TMMTR in
terms of total loss, as it is better at capturing connec-
tivity information than the other baselines. However, our
proposed method shows elevated performance for each
target, which means the inter-target correlation is learned
even more strongly.

• TMMTR produces both the best predictive performance
and highest sparsity, which validates that our method
provides a performance improvement along with a higher
interpretability.

C. Interpretability

To further analyse the effectiveness of feature selection in
TMMTR compared with other baseline methods, we explore
the most discriminative regions of the 116 × 3 (ROIs×
Modalities) tensor using learned coefficients corresponding
to each feature. Fig. 2 visualizes the average coefficient
weights of four feature selection methods across five trials. Our
method achieves a more sparse solution and pays relatively
balanced attention to all three modalities, which demonstrates
the learning of tensor structure on the modality-level. The top
10 brain regions selected by our method are: Hippocampus-
R, Temporal-Pole-Sup-L, Hippocampus-L, Frontal-Med-Orb-
L, Cingulum-Mid-R, Rectus-L, Parietal-Sup-R, Angular-L,
Pallidum-R, Thalamus-L. Most of these selected regions are
known to be highly related to AD and MCI in previous
studies [36]–[40]. From this visualization, it is apparent that
the ℓ2,1 regularizer in SMART prefers the model to select
similar features across all of the different modalities. MT-SGL



645

TABLE II
ABLATION STUDY OF MTR USED IN TMMTR METHOD. RESULTS ARE

SHOWN AS THE MEAN VALUES AND STANDARD DEVIATION (MEAN ± STD)
ACROSS FIVE TRIALS.

Feature Tensor Assesment Metrics TMSTR TMMTR

ADS RMSE↓ 0.316 ± 0.016 0.307 ± 0.009

116 × 3

Sparsity↑ 0.963 ± 0.007 0.966 ± 0.005

ADAS-Cog 13 RMSE↓ 0.165 ± 0.032 0.145 ± 0.019
Sparsity↑ 0.983 ± 0.005 0.986 ± 0.004

MMSE RMSE↓ 0.216 ± 0.019 0.142 ± 0.011
Sparsity↑ 0.964 ± 0.003 0.969 ± 0.002

ADS RMSE↓ 0.314 ± 0.020 0.328 ± 0.010

116 × 116

Sparsity↑ 0.997 ± 0.001 0.998 ± 0.000

ADAS-Cog 13 RMSE↓ 0.160 ± 0.012 0.148 ± 0.031
Sparsity↑ 0.999 ± 0.000 0.999 ± 0.000

MMSE RMSE↓ 0.194 ± 0.021 0.153 ± 0.016
Sparsity↑ 0.997 ± 0.001 0.997 ± 0.000

ADS RMSE↓ 0.281 ± 0.011 0.273 ± 0.010

116 × 116 × 3

Sparsity↑ 0.999 ± 0.001 1.000 ± 0.000

ADAS-Cog 13 RMSE↓ 0.143 ± 0.013 0.141 ± 0.013
Sparsity↑ 0.999 ± 0.001 1.000 ± 0.000

MMSE RMSE↓ 0.184 ± 0.015 0.146 ± 0.011
Sparsity↑ 0.999 ± 0.000 1.000 ± 0.000

and rMLTFL overcome this disadvantage but lose sparsity in
the process.

As shown in Fig. 3, we further use BrainNet Viewer [41]
to visualize the brain structure and highlight the regions that
the four sparse methods (SMART, MT-SGL, rMLTFL, and
TMMTR) rely on to make their predictions. It can be seen
that our TMMTR is more sparse and uses more relevant ROIs
(as marked in Fig. 3(d)).

D. Ablation Study

We conducted an ablation study to validate the effectiveness
of the MTR used in our method. TABLE II reports the
comparison of performance between TMMTR and its variation
version—Tensor-based Multi-modal Single-Target Regression
(TMSTR). It was found that the joint modeling process of
multiple targets can effectively learn inter-correlation between
them and thus enhance the performance for each target. We
also observed that sparsity is consistently improved without
decreasing learning performance, which means that a more
sparse structure is worthy of exploration as feature redundancy
is common in different neuroimaging modalities.

E. Hyperparameter Analysis

We also investigated the influence of two important hyper-
parameters in our TMMTR method: the number of neighbors
K in the connectivity tensor construction stage and the rank
R to constrain the low-rank property of our model. From
Fig. 4, we found that the higher rank R consistently achieved
better performance with a gradual decrease in sparsity, which
is intuitive as a more sparse structure is of lower rank. Using
R = 60 can uphold a high sparsity and performance, though
learning performance tends to stay stable as R increases. For
the selection of K value, the best results are consistently
achieved with the fully-connected graph (i.e., K = 116),
which indicates that our method can make full use of high-
order relations among ROIs and different modalities.

(a) RMSE of 116× 3 dataset (b) Sparsity of 116×3 dataset

(c) RMSE of 116× 116 dataset
w

(d) Sparsity of 116×116 dataset

(e) RMSE of 116×116×3 dataset (f) Sparsity of 116×116×3 dataset

Fig. 4. Influence of two hyperparameters (i.e., R, K) on the performance of
TMMTR over tensors with different dimensionalities. (a) and (b) The influence
of CP-rank R over tensor data X ∈ R116×3; (c) and (d) the influence of the K
value in KNN graph and tensor CP-rank R over tensor data X ∈ R116×116;
(e) and (f) the influence of the K value in the KNN graph and tensor CP-rank
R over tensor data X ∈ R116×116×3.

IV. CONCLUSION

In our proposed algorithm, TMMTR, the cross-modal con-
nections, inter-target correlation, and input-target relationship
are utilized simultaneously to successfully identify biomarkers
related to AD with a high tensor-structured sparsity and
interpretability. We investigated three different clinical scores
using three different tensor representations for each. Extensive
experiments validated a higher predictive performance than
other state-of-the-art methods. Our approach is of wide general
interest as it can be generalized to other diseases when high-
dimensional data is available. In the future work, we hope to
extend it to jointly model multiple tasks into a general tensor-
based framework.
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