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Abstract—Graph theoretical measures have frequently been
used to study disrupted connectivity in Alzheimer’s disease
human brain connectomes. However, prior studies have noted
that differences in graph creation methods are confounding
factors that may alter the topological observations found in
these measures. In this study, we conduct a novel investigation
regarding the effect of parcellation scale on graph theoretical
measures computed for fiber density networks derived from
diffusion tensor imaging. We computed 4 network-wide graph
theoretical measures of average clustering coefficient, transitiv-
ity, characteristic path length, and global efficiency, and we
tested whether these measures are able to consistently identify
group differences among healthy control (HC), mild cognitive
impairment (MCI), and AD groups in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort across 5 scales of the
Lausanne parcellation. We found that the segregative measure
of transtivity offered the greatest consistency across scales in
distinguishing between healthy and diseased groups, while the
other measures were impacted by the selection of scale to varying
degrees. Global efficiency was the second most consistent measure
that we tested, where the measure could distinguish between HC
and MCI in all 5 scales and between HC and AD in 3 out of
5 scales. Characteristic path length was highly sensitive to the
variation in scale, corroborating previous findings, and could
not identify group differences in many of the scales. Average
clustering coefficient was also greatly impacted by scale, as it
consistently failed to identify group differences in the higher
resolution parcellations. From these results, we conclude that
many graph theoretical measures are sensitive to the selection
of parcellation scale, and further development in methodology
is needed to offer a more robust characterization of AD’s
relationship with disrupted connectivity.
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I. INTRODUCTION

Alzheimer’s disease, the most common form of demen-
tia characterized by an irreversible progressive memory loss
followed by deterioration of cognitive function and memory
recall, is currently afflicting over 6 million people in the United
States with the number estimated to increase to 15 million
by the year 2050 [1]. The disease’s pathology has a complex
relationship with anatomical deterioration and has long been
considered as a disconnection syndrome where pathology may
arise from disrupted efferent and afferent connections [2],
leading it to receive much attention in network neuroscience
where methods of quantifying complex connectivity disrup-
tions are readily available [3]. Graph theoretical measurements
that enable efficient characterization of brain network topology
have been broadly applied to study Alzheimer’s disease across
many structural and functional imaging modalities, noting sta-
tistical differences in graph theoretical measurements among
healthy control (HC), mild cognitive impairment (MCI), and
AD subjects [4], [5].

However, there are inconsistencies across studies in the
direction of change of the measurements and their discrim-
inating power, resulting in a critical barrier of diverging
interpretations of the relationship between disease state and
network connectivity [6], [7]. The discrepancies may arise
from differences in network construction methods, including
but not limited to the selections of parcellation scheme, spatial
resolution, and connection density [8]-[11]. These realizations
have raised questions regarding how variations in the multitude
of choices in network construction methods may influence the
observed topological properties of diseased brain networks.
Previous studies have noted sensitivity of characteristic path
length, small-world index, and clustering coefficient to the



number of nodes and density of brain networks [12]. In AD-
specific research, it is noted that graph theoretical measures’
capabilities of identifying population differences among AD
diagnostic groups will vary based on parcellation scheme
[13]-[16]. However, although different parcellation schemes
offer varying resolutions and scales of a brain network, the
comparisons between atlases are not strictly hierarchical as
the regional boundaries in each parcellation scheme may
not be identified in a consistent manner [17]. As such, a
more controlled investigation across resolutions of the same
parcellation scheme is needed.

To that end, our present study investigates the effect of
parcellation scale, which governs the number of nodes in
the brain network in a hierarchical manner, on the observed
topological properties of AD-related white matter connec-
tomes. We use fiber density networks derived from diffusion
tensor imaging (DTI) tractography and observe the stability
of graph theoretical measures across 5 scales of the Lausanne
parcellation. To the best of our knowledge, fiber density has
not been previously explored in this context. Our hypothe-
sis is that graph theoretical measures will vary in observed
significance between diagnostic groups when the parcellation
scale is changed, corroborating previous findings regarding the
sensitivity of these measures to graph creation methods.

II. MATERIALS AND METHODS
A. Data acquisition, preprocessing, and network construction.

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) [18], [19]. The ADNI
was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. For up-to-
date information, see www.adni-info.org.

DTI scans and demographic data were obtained from the
Alzheimer’s disease neuroimaging initiative (ADNI-GO/2)
database [18]-[21]. The population consisted of 99 male and
74 female subjects. The population was age-controlled with the
AD population averaging at 72.5 years, the MCI population av-
eraging at 72.0 years, and the HC population averaging at 73.3
years. No significant difference in ages was detected across
population groups (ANOVA: P = 0.805, F' = 0.217). The DTI
data were entered into an image processing pipeline, including
denoising, motion-correction, and distortion-correction using
an overcomplete local principal components analysis (PCA)
[22]. Probabilistic white matter fiber tractography was then
performed using a streamline tractography algorithm called
fiber assignment by continuous tracking (FACT) [23].

Structural MRI (sMRI) scans were then registered to lower
resolution b0 volume of the DTI data using the FLIRT toolbox
in the FMRIB Software Library (FSL) [24] and cortical and
subcortical brain regions of interest (ROIs) were defined based
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on the Lausanne parcellation [25]. The process was repeated
for 5 scales of the Lausanne parcellation: 33, 60, 125, 250,
and 500. The parcellation scales contain 83, 129, 234, 463,
and 1015 ROIs respectively. The number of the fibres (NOF)
connecting each pair of ROIs (¢,7) and each ROI’s surface
area (SA) were obtained, and the fiber density (FD) in the
connection was obtained by dividing NOF between ROIs (3, j)
by the average SA of regions ¢ and j [26]. Finally, the brain
networks were constructed using the fiber density of tracts
connecting between pairs of ROIs. An example of a subject’s
structural network at different scales depicted using heatmaps
generated from adjacency matrices can be found in Figure 1.

To study the changes in graph theoretical across diagnostic
populations, the 173 subjects were organized into three groups.
The Healthy Control (HC) group consisted of 76 subjects,
including healthy control without symptoms and significant
memory concern subjects who were self-perceived to have
cognitive decline without objective cognitive impairment [27].
The Mild Cognitive Impairment (MCI) group consisted of
68 subjects, either with early MCI or late MCI. The final
AD group consisted of 29 subjects clinically diagnosed with
Alzheimer’s disease.

B. Network analysis across scales.

We computed 4 network-level graph theoretical measures
for comparison, with two global integrative measures and
two local segregative measures. The computations were done
using the Python implementation of the Brain Connectivity
Toolbox (BCT) [28]. For integrative measures, we computed
characteristic path length and global efficiency. Characteristic
path length is defined as:
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which is equivalent to the average of the shortest path lengths
in the network [29]. d;”j denotes the distance between nodes
(i,7), derived by inverting the edge weight between the two
nodes d;; = 1/w;;. However, it is noted that in the event that a
network is disconnected, path lengths will yield infinities. An
alternative approach to measuring integration is thus global
efficiency, defined as:
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yielding an inverse relationship with the shortest path length
[30]. In the event that a path has infinite length, the global
efficiency approaches 0.

For measures of segregation, we computed average cluster-
ing coefficient and transitivity. Both of the measures investi-
gate the presence of cliques, or triplets, in the network [29].
Clustering coefficient at the nodal level for the i node (C;)
is defined as:
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Fig. 1. An example of the structural connectome derived using fiber density is shown at 5 different scales for a healthy control subject (scales 33, 60, 125,
250, and 500). The heatmaps are generated from the adjacency matrices of each structural network, with the axes being the ROIs ordered by their index
number in the parcellation scheme. It can be seen that as the scale is increased, the connections become significantly more sparse.

where nodes j and k are neighboring nodes and k; is the
degree of node ¢. To calculate a network average clustering
coefficient, the individual nodal clustering coefficients are
averaged:

1
C=- Z Ci. (4)
1EN
An alternative approach to calculate a network-level clus-
tering coefficient is the transitivity, which observes the ratio of
the number of closed triplets to the number of total possible

triplets [31], [32]. The transitivity is calculated as:
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The 4 network-level graph theoretical measures are com-
puted for each subject at each of the 5 scales of the Lausanne
parcellation, yielding a total of 20 measures for each subject.
To compare group differences, Kruskal-Wallis was conducted
followed by Dunn posthoc. A false discovery rate (FDR)
correction was applied to correct for multiple comparisons.
Significance was tested at a 5% level (P > 0.05) and the me-
dians of the populations were then compared for directionality
analysis.
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III. RESULTS

The medians of the computed graph theoretical measures
and their relationship with scale are shown in Figure 2. It
was observed that the characteristic path length generally
increased alongside with parcellation scale, exhibiting the
longest median path lengths at Scale 500 (Figure 2C). As
global efficiency is related to the inverse characteristic path
length, it exhibited the expected trend of decreasing as the
parcellation scale was increased (Figure 2D). The average
clustering coefficient exhibited a slight increase with parcella-
tion scale (Figure 2A), while transitivity was largely unaffected
by the selection of scale (Figure 2B).

Significant group differences were found primarily when
comparing the healthy control to the two disease groups (HC
vs. MCI, HC vs. AD), with varying degrees of consistency.
When observing segregative measures of average clustering
coefficient and transitivity, transitivity was the most robust
measure, capable of consistently identifying group differences
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across all scales in the HC vs. MCI and HC vs. AD compar-
isons. Average clustering coefficient only exhibited significant
differences at the lower scale parcellations, showing significant
differences in Scales 33 and 60 for the HC vs. MCI comparison
(P = 0.0358) and in Scales 33, 60, 125, and 250 for the HC
vs. AD comparison (P = 0.0289) (Table I). The directionality
of change in both segregative measures was consistent across
scales, where they exhibited a decrease from HC to MCI
and an increase from HC to AD (Figure 3A,B). Lastly,
no significant differences could be found in the segregative
measures when comparing the two disease groups of MCI and
AD.

For the two integrative measures of characteristic path
length and global efficiency, we found that global efficiency
was able to consistently identify group differences between HC
and MCI, while characteristic path length was less robust and
could only identify group differences between HC and MCI in
Scale 33 (P =0.0132), Scale 125 (P = 0.0289), and Scale 250
(P = 0.0203). Characteristic path length showed a consistent
decrease when comparing HC vs. MCI and global efficiency
showed a consistent increase in the comparison (Figure 3C,D).
In the HC vs. AD comparison, neither of the measures were
robust to the change in scale. Characteristic path length only
exhibited HC to AD group differences at Scale 250 (P =
0.0083), while global efficiency exhibited group differences
at Scales 33 (P = 0.0494), 250 (P = 0.0494), and 500 (P
= 0.0312) (Table I). Similar to the segregative measures,
no significant differences were observed in the integrative
measures when comparing between the two diseased groups.

IV. DISCUSSION

The consistency of graph theoretical measures across dif-
ferent methods of graph creation has been a long-standing
problem in network neuroscience, whereby changes to par-
cellation scheme and the number of nodes have an impact
on the magnitude of the measures observed. In prior studies
in the field, it was noted that characteristic path length and
global efficiency are highly sensitive to the number of nodes
[8], [12], while average clustering coefficient and transitivity
are less affected by the choice of parcellation [8], [13].
We observe similar relationships between scale and graph
theoretical measures in our study, with the integrative measures
of characteristic path length and global efficiency being more
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Fig. 2. The median values of the 4 graph theoretical measures are plotted with respect to parcellation scale. We can observe that the two segregative measures
of average clustering coefficient (A) and transitivity (B) are less sensitive to scale than the integrative measures of characteristic path length (C) and global

efficiency (D).

TABLE I
POSTHOC DUNN P-VALUES
Avg. Clus. Coef. Transitivity
Scale | HC vs. MCI | MCI vs. AD | HC vs. AD HC vs. MCI | MCI vs. AD | HC vs. AD
33 0.0203 0.7962 0.0358 0.0289 0.6296 0.0358
60 0.0494 0.4579 0.0289 0.0289 0.4140 0.0184
125 0.1230 0.2201 0.0210 0.0494 0.2689 0.0151
250 0.0710 0.2969 0.0210 0.0290 0.2128 0.0083
500 0.3107 0.6677 0.2378 0.0229 0.2689 0.0083
Char. Path Length Glob. Efficiency
Scale | HC vs. MCI | MCI vs. AD | HC vs. AD HC vs. MCI | MCI vs. AD | HC vs. AD
33 0.0132 0.5440 0.1970 0.0083 0.8217 0.0494
60 0.0752 0.7438 0.0958 0.0105 0.4569 0.2006
125 0.0289 0.8259 0.0563 0.0132 0.6677 0.1230
250 0.0203 0.2712 0.0083 0.0083 0.7962 0.0494
500 0.3107 0.5835 0.1970 0.0083 0.9889 0.0312

Significant P-values are highlighted in bold, tested at a 5% level, FDR-corrected.

sensitive to parcellation scale compared transitivity, which
exhibited more stability across scales (Figure 2).

A. Significance when comparing disease groups

The effects of scale on graph theoretical measures become
more apparent when observing between-groups differences in
the measures. It has been posited that differences in graph
creation methods are a source of inconsistency in the sig-
nificance and direction of change in relation to disease state
[6]. A previous finding in white matter networks note that
both segregative and integrative measures to be inconsistent in
identifying group differences when compared across parcella-
tion schemes [15]. Corroborating prior studies, we observed
that the integrative measures of characteristic path length

and global efficiency were highly sensitive to the choice of
parcellation scale, with characteristic path length only finding
significance for the HC vs. AD comparison in Scale 250 and
global efficiency only finding significance for the HC vs. AD
comparison in Scales 33, 250, and 500. In the previous study
using fractional anisotropy networks, it is noted that average
clustering coefficient in particular struggled to identify group
differences at a network level [15]. The weaknesses of average
clustering coefficient identified in previous studies thus align
with our present findings where average clustering coefficient
was unable to distinguish between MCI and AD group net-
works in any parcellation scale and was unable to distinguish
between HC and MCI groups in the higher scales of 125, 250,
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Fig. 3. Heatmaps were constructed to depict the directionality of change in the network measurements with respect to increasing disease severity. The first
column in each subplot is the difference when progressing from HC to MCI, the second is from MCI to AD, and the third is from HC to AD. Red coloration
indicates that the measure increases as disease severity increases, while blue coloration indicates that the measure decreases as disease severity increases.
Results are shown for average clustering coefficient (A), transitivity (B), characteristic path length (C), and global efficiency (D). Numerical labels indicate
the difference in medians between the two groups with respect to increasing disease severity.

and 500. Average clustering coefficient’s sensitivity to scale
and previously identified sensitivty to parcellation scheme may
offer an explanation regarding previous studies’ struggles to
find significance in the measure [6].

The second segregative measure that we investigated, tran-
sitivity, showed the greatest robustness against scale, as group
differences were identified for HC vs. MCI and HC vs. AD
across all parcellation scales. The robustness of transitivity to
the selection of scale corroborates previous findings in AD
cortical thickness networks, where transitivity was noted to
have the greatest stability when altering the number of nodes
and parcellation schemes used to create structural networks
[13], [14]. As such, we conclude that the segregative measure
of transitivity offers the greatest robustness to parcellation-
related choices and may offer a more consistent depiction of
topological disruption when comparing between healthy and
disease-state brain networks.

B. Direction of change with respect to increasing disease
severity

In terms of directionality, we found that segregative mea-
sures generally increased with disease severity when compar-
ing between HC and AD. These findings align with that of
prior studies indicating that the structural connectome even-
tually becomes more segregated as AD progresses, leading
to disrupted connectivity and supporting the hypothesis that
AD is a disconnection syndrome [2], [13]-[15], [33], [34].
However, the comparison between HC and MCI depicts the
opposite trend in segregative measures, indicating that early
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stages of the disease may exhibit an initial decrease in segre-
gation before increasing as the disease worsens. These findings
in relation to MCI in clustering coefficient corroborate those of
certain studies in MCI structural networks that weighted net-
works with streamline counts [35], [36], while running against
trends found in structural networks using fractional anisotropy
[15]. We also found that integrative measures pointed towards
increased integration in MCI while being largely insignificant
when comparing to AD groups, with decreased characteristic
path length and increased global efficiency, again running
counter to findings using other weighting methods [15], [35]-
[37]. As such, we conclude that there are additional factors
that influence the observed directionality of graph theoretical
measures that may warrant further study.

V. CONCLUSION

From this study, we conclude that the selection of parcella-
tion scale has an impact on the observed graph theoretical mea-
sures of fiber density networks and their ability to distinguish
between diagnostic groups in the ADNI cohort. Most notably,
average clustering coefficent, characteristic path length, and
global efficiency largely do not maintain significance when the
parcellation scale is varied, while transitivity is more robust
to the change in scale. The study has thus provided further
evidence that these measurements are highly sensitive to brain
network creation methods and future study must be conducted
to determine more robust measures for quantifying topological
disruptions in the context of disease.
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