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Abstract—We propose a novel, angle-based path
metric for the multi-manifold clustering problem. This
metric, which we call the largest-angle path distance
(LAPD), is computed as a bottleneck path distance in a
graph constructed on d-simplices of data points. When
data is sampled from a collection of d-dimensional
manifolds which may intersect, the method can cluster
the manifolds with high accuracy and automatically
detect how many manifolds are present. By leveraging
fast approximation schemes for bottleneck distance,
this method exhibits quasi-linear computational com-
plexity in the number of data points. In addition to
being highly scalable, the method outperforms existing
algorithms in numerous numerical experiments on
intersecting manifolds, and exhibits robustness with
respect to noise and curvature in the data.

I. INTRODUCTION

The analysis of high-dimensional data poses
significant challenges; for example the dimen-
sion frequently exceeds the sample size, making
traditional statistical frameworks untenable, and
standard algorithms become computationally in-
tractable. However in many applications, real data
concentrates around low-dimensional structures,
and leveraging this low dimensional structure is
critical for overcoming the curse of dimensionality.
In the simplest case, data concentrates on a single
low-dimensional subspace or manifold. A more
flexible, realistic model considers data lying on a
collection of low-dimensional structures. Modeling
each low-dimensional structure separately allows
for a data representation which is sparse and effi-
cient, and the first step in such a process is to par-
tition the data into the underlying low dimensional
structures. In this article we thus consider the multi-

manifold clustering (MMC) problem, in which data
points X = {xi}n

i=1 are drawn from a collection of
manifoldsM1 ∪ . . .∪Mk, and one seeks to recover
the manifold labels ℓi ∈ [k] up to permutation.

Multi-manifold clustering is a generalization of
(linear) subspace clustering, which is useful in
many applications such as imaging [10, 4] and
video segmentation [17]. The most popular and suc-
cessful subspace clustering methods utilize spectral
clustering with an affinity matrix which leverages
self-expressive representations, for example SSC [8]
and LLR [14]; other methods include [20, 5, 19, 11,
16, 6, 23, 25]. However, frequently the assumption
that data lies on a collection of linear subspaces
is too strong, and thus algorithms have been de-
veloped to handle nonlinear data structures, of-
ten modeled as multiple manifolds. Such a multi-
manifold modeling assumption can be useful for
motion segmentation and unsupervised image clas-
sification [15, 22, 24], for dynamic pattern identifi-
cation and optical flow [9, 21], and for classification
of text on webpages and in news stories [26]. The
recent survey [1] taxonomizes MMC methods into
three categories: (1) locality preserving, (2) ker-
nel based, and (3) neural network based. Locality
preserving methods leverage the local geometric
structure of the manifolds; kernel based methods
attempt to map the data into a high-dimensional
space where linear subspace methods can be ap-
plied; neural network approaches seek to learn a
useful embedding for MMC.

Our approach is a locality preserving method
which leverages local angle information to de-
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fine an appropriate distance/affinity. However our
method avoids explicit approximation of local tan-
gent planes as in [2], as well as explicit curvature
or angle constraints as in [3, 18]. Instead we first
estimate the intrinsic dimension d of the manifolds
using an existing algorithm, and then propose the
following novel pipeline:

1) (Simplex graph) Given nodes X, construct a
weighted graph GS on d-simplices formed from
local nodes in X, where weights are assigned as
angles between d-simplices.

2) (LAPD on simplices) Define distances between
d-simplices as the bottleneck shortest path dis-
tance in GS.

3) (nLAPD on landmarks) Choose landmark nodes
from X and use simplex LAPD to define a node-
level nLAPD between landmarks.

4) (SC on landmarks) Construct a graph Laplacian
on the landmarks using LAPD, and apply spec-
tral clustering to partition the landmarks.

5) (Lift to all nodes) Extend the classification to all
nodes via a LAPD nearest neighbor classifier.

Two primary advantages of the above approach are
(i) it can reliably learn the number of manifolds,
which is an assumed input parameter to most
MMC algorithms, and (ii) it can be implemented
in computational complexity that is quasi-linear
with respect to the size of X, while most other
methods are at least quadratic. The rest of the
paper is organized as follows. Section II discusses
the construction of LAPD on the simplices, i.e.
steps (1) and (2); Section III then discusses how
to use LAPD for MMC, i.e. steps (3)-(5); Section
IV reports on numerical experiments investigating
the performance of the proposed method; Section
V discusses future research directions.

II. CONSTRUCTION OF LAPD

We assume we have data points X = {x1, . . . , xn}
sampled from a collection of k manifoldsM1∪ . . .∪
Mk, possibly polluted with noise. We first estimate
the intrinsic dimension d of the data using the
MSVD algorithm [13], requiring only quasi-linear
cost. With this dimension d in hand, we must next
identify local collections of points that can form
simplices. We accomplish this with an unweighted
annulus kNN graph on X. Fixing integers K1, K2
with K1 < K2, we let GX be the graph which
connects xi, xj if xi is the Ith nearest neighbor of

xj or xj is the Ith nearest neighbor of xi, for any
I satisfying K1 ≤ I ≤ K2; K = K2 − K1 denotes
the kNN bandwidth which we assume is O(1). The
value of K1 is chosen large enough so that simplices
are formed on scales above the level of noise in X,
and K2 is chosen small enough so that simplices
are formed on scales low enough to emulate the
intrinsic curvature of the manifolds. Such Annulus
graphs were also essential in [18]. The connections
in GX are then used to construct local d-simplices,
specifically we define the set of valid simplices as:

S = {∆ ⊆ X : |∆| = d + 1, (x, y) ∈ EX ∀x, y ∈ ∆},
(1)

where EX are the edges in GX . If d = 2, then
simplices are triangles; and if d = 3, simplices are
tetrahedra. We now form a weighted graph GS =

(S, ES, WS) on the simplices as follows: we connect
∆i, ∆j if |∆i ∩∆j| = d, i.e. they share a common face.
The angle θ(∆i, ∆j) between connected simplices is
computed as the angle formed by vectors normal
to the common face and passing through the non-
common vertices. More specifically, letting xi, xj
denote the points in ∆i, ∆j which are not in ∆i ∩ ∆j
and picking some center x0 ∈ ∆i ∩ ∆j, we define

vi = (xi − x0)− P∆i∩∆j(xi − x0)

vj = (xj − x0)− P∆i∩∆j(xj − x0)

θ(∆i, ∆j) = arccos

(
⟨vi, vj⟩
∥vi∥ · ∥vj∥

)
,

where P∆i∩∆j denotes projection onto the span of
{xs − x0 : xs ∈ ∆i ∩ ∆j}, which is d − 1 dimen-
sional. We weight the resulting edge (∆i, ∆j) ∈
ES by WS(∆i, ∆j) = max

{
π − θ(∆i, ∆j), δ

}
, where

θ(∆i, ∆j) is the angle between the simplices and
δ = 10−8 is a tolerance parameter selected to ensure
that adjacent simplices are connected with non-
zero weights. When two simplices form a “flat”
connection, θ ≈ π and WS(∆i, ∆j) ≈ 0; but if the
simplices “bend”, WS(∆i, ∆j) becomes large.

We now define the LAPD between any two sim-
plices S1, S2 ∈ S as follows.

Definition II.1 (LAPD). Let P = P(S1, S2) be the
set of all simplex paths connecting S1, S2 in GS, i.e. any
{∆1, . . . , ∆L} ∈ P satisfies ∆1 = S1, ∆L = S2, and
WS(∆s, ∆s+1) > 0 for 1 ≤ s ≤ L− 1. Then

LAPD(S1, S2) := min
{∆1,...,∆L}∈P

max
1≤s≤L−1

WS(∆s, ∆s+1) . (2)
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Algorithm 1: Simplex LAPD

Input: X = {x1, . . . , xn}, intrinsic dim. d, NN
range K1, K2, tolerance δ

Output: LAPD on simplex set S

1 % Form annulus kNN graph GX

2 GX ← (X, EX), where (xi, xj) ∈ EX if xi, xj

are Ith NN’s for K1 ≤ I ≤ K2

3 % Create set of valid simplices S
4 S← define by (1)

5 % Create angle-based weighted simplex graph GS

6 GS ← (S, ES, WS), where (∆,□) ∈ ES if share
face and WS(∆,□) = max {π − θ(∆,□), δ}

7 % Compute bottleneck distances in GS

8 LAPD(∆,□)← compute according to (2)

The entire LAPD construction is summarized in
Algorithm 1. The computational cost is as follows:
(1) annulus kNN construction is O(K2DCdn log n)
using cover trees; (2) constructing adjacency on
simplices is O(DKd+1n); (3) running LLPD on GS
is O(Kdn log n) assuming d, K = O(1).

III. LAPD FOR MULTI-MANIFOLD CLUSTERING

We now utilize the previously constructed sim-
plex LAPD to obtain a landmark-based, node-level
classification into manifold components. We first
identify simplices that are “far enough” away from
a manifold intersection so that they have a clear
classification. We accomplish this by noting that
such a simplex ∆ will also have close-by neighbors
on the same manifold, and so the LAPD between
∆ and its close neighbors will be small. Thus, for a
fixed K3, we compute the maximum LAPD between
∆ and its K3 closest neighbors:

K3NN(∆) = min
N⊆S,|N|=K3

max
□∈N

LAPD(∆,□) .

Then we call simplices whose K3NN(∆) is small
enough, say smaller than τ > 0, as “denoised”:

SD = {∆ ∈ S : K3NN(∆) ≤ τ} .

From these denoised simplices, we select land-
marks and proceed to assign node classifications.
We randomly choose m < n landmark nodes from
XD = ∪∆∈SD ∪x∈∆ {x}; for notational convenience,

we will denote the landmarks as x1, . . . , xm and
the non-landmarks as xm+1, . . . , xn. The node-level
nLAPD between all landmarks is then defined as
follows:

nLAPD(xi, xj) = min
∆,□∈S : xi∈∆, xj∈□

LAPD(∆,□) .

Note since each node can be contained in multi-
ple simplices, the nLAPD between two nodes is the
minimum LAPD between any pair of simplices con-
taining them. Let DLM denote the resulting m×m
nLAPD distance matrix with entries nLAPD(xi, xj).

In the case that the number of manifolds k is
given, we simply perform hierarchical clustering
(HC) on DLM to partition the landmarks; we refer to
this method as k-LAPD in Section IV. We used aver-
age linkage HC in our experiments, but results were
robust with respect to choice of linkage function.
However, a significant advantage of our approach
is highlighted when k is unknown: in this case we
apply spectral clustering on (the graph Laplacian
corresponding to) DLM to simultaneously learn k and
cluster the landmarks. Theoretical guarantees for
a similar procedure using the Euclidean distance-
based LLPD metric on nodes is given in [12], and
our future work will extend these results to LAPD.

We now extend the partition on the landmarks
via nearest neighbor classifier. For i ∈ [m], let ℓ(i) ∈
[k] denote the landmark manifold labels for xi. Then
for each j > m, we compute ℓ(j) by finding the
smallest nLAPD distance to xj from the landmarks:

ℓ(j) = ℓ(arg min
i≤m

nLAPD(xj, xi)) .

Spectral clustering on the landmarks is a fast
O(m2) operation, and the classification extension
costs O(mnK2d). Thus the total cost of LAPD is
O
(
(K2DCd + Kd)n log n + (DKd+1 + mK2d)n

)
, i.e.

quasi-linear dependence on the sample size n and
linear dependence on the ambient dimension D.

IV. NUMERICAL EXPERIMENTS

In this section, we investigate the performance
of our proposed algorithm, by comparing it to
competing state-of-the-art methods: LocPCA [2],
PBC [3], and SMCE [7]. LocPCA uses spectral clus-
tering with affinities which depend on discrepan-
cies between local tangent planes; PBC employs
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(a) CS(α): Curved Sur-
faces α = π

2 , n = 5000
(b) CS(α): Curved Sur-
faces α = π

12 , n = 5000

(c) OR: Olympic Rings
n = 5000, σ = 0.003

(d) RC: Rose & Circles
n = 5000, σ = 0.003

(e) DS: Dollar Sign
n = 16, 000, σ = 0.003

(f) TS: Two Spheres
n = 16, 000, σ = 0.003

(g) TP: Three Planes
n = 7500, σ = 0.003

(h) SR: Swiss Roll
n = 12, 000, σ = 0.003

Figure 1: Synthetic data sets of size n, embedded in
ambient space R10, polluted by ambient isotropic
Gaussian noise with covariance σ2I. For Curved
Surfaces (CS) we perform experiments both with
noiseless data σ = 0 and noisy data σ = 0.003.

curvature-constrained shortest paths; SMCE uti-
lizes sparsity and locality to estimates tangent plane
structure. In particular, LocPCA is the only method
among these with theoretical guarantees. All these
competing methods require the number of clusters
k as an input, but LAPD learns k automatically. For
methods such as LocPCA with randomness in the
classification, we report the mean accuracy over 50
runs, realizing a standard deviation less than 0.1.

Our first experiment examines clustering accu-
racy and timing as a function of the intersection
angle between two manifolds. We take two quad-

LAPD (ours) LocPCA [2] PBC [3] SMCE [7]

α = π
2 .998 40.0 .577 1.1 .981 6.7 .738 168.1

α = π
4 .999 30.1 .576 1.5 .980 5.8 .736 150.5

α = π
8 .997 30.8 .526 4.1 .964 8.6 .500 126.8

α = π
12 .992 37.1 .539 9.0 .963 4.3 .500 126.5

Table I: Impact of Intersection Angle for Noiseless
(σ = 0) Data in CS(α). First columns (white back-
ground) report mean clustering accuracy; second
columns (gray background) report runtime (s).

rants of a cylinder’s lateral surface to form two 2d
curved surfaces, and then intersect the surfaces at
various angles α: π

2 , π
4 , π

8 and π
12 ; see Figures 1a and

1b. We first test performance in the absence of noise;
see Table I for accuracy and runtimes. We then
embed the data in R10 and add isotropic Gaussian
noise with standard deviation σ = 0.003 in each
coordinate; see Table II for performance on the
noisy data. Both LAPD and PBC show robustness
with respect to α, but LocPCA and SMCE produce
poor results; on the noiseless data, k in LAPD is
estimated correctly for all angles, while on the noisy
data the estimated k is inaccurate for small α.

In the second experiment, we conduct tests on
some complex and irregular objects visualized in
Figures 1c - 1h. These low-dimensional objects are
once again embedded in R10 and Gaussian noise
with σ = 0.003 is added to each coordinate. See
Table III for cluster accuracy and runtimes. For
LAPD, we estimate both d and σ using the MSVD
algorithm [13], we automatically select K1 as a
function of the estimated noise level and choose
K2 = K1 + 10, and we estimate k from the maxi-
mal eigengap of the landmark Laplacian (runtime
includes all parameter estimates). Thus the only
required input for the LAPD results in Table III is
the data X and a denoising threshold which the
user inputs from visual inspection of an elbow plot.
For PBC, we set the angle constraint to 20 degrees;
for SMCE, we set λ = 10 following [3]. For all
competing methods we manually tune the locality
parameter, although long runtimes for SMCE inhib-
ited rigorous tuning. LAPD once again exhibits the
highest accuracy, with PBC also performing very
well; the other methods produced relatively poor
results. Although LAPD and PBC were comparable
in terms of performance, primary contributions of
LAPD are automatic k detection and parameter
selection.
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LAPD k-LAPD LocPCA PBC SMCE

α = π
2 0.989 0.989 .563 .978 .737

α = π
4 0.968 0.968 .579 .962 .501

α = π
8 0.680 0.932 .502 .922 .500

α = π
12 0.644 0.689 .507 .856 .500

Table II: Impact of Intersection Angle for Noisy
Data (σ = 0.003 in R10) on CS(α). “LAPD” auto-
matically estimates the number of manifolds, “k-
LAPD” receives the number of clusters as an input.

LAPD (ours) LocPCA PBC SMCE

OR .992 13.1 .656 3.7 .968 3.1 .990 89.3
RC .962 14.5 .744 3.8 .958 3.5 .625 136.3
DS .995 115.7 .979 2.2 .985 47.4 .503 5314.0
TS .992 219.7 .698 7.6 .976 61.4 .847 3225.0
TP .974 68.2 .505 1.7 .930 4.5 .549 338.0
SR .970 194.4 .597 2.2 .927 30.6 .574 1321.0

Table III: MMC on noisy datasets in Figure 1 First
column (white background) is clustering accuracy;
second column (gray background) is runtime (s).

V. CONCLUSION

We propose and investigate a new algorithm for
MMC, using angles between d-simplices as an in-
gredient for computing with the LAPD metric, and
employ spectral clustering to automatically detect
the number of manifolds. Our results demonstrate
that LAPD is competitive with or superior to al-
ternative MMC methods on nontrivial synthetic
datasets. Future work will develop theoretical un-
derpinnings for MMC with LAPD, develop more
detailed complexity analysis, and explore applica-
bility of LAPD to real-world datasets.
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