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Crops expanding from their centres of domestication towards a
wide range of agroclimatic regions has led to significant
phenotypic and genetic divergence between cultivated forms.
Since its domestication in the Fertile Crescent about 10 000 years
ago, barley accompanied the spread of agriculture into Europe
during the 5th and 6th millennia BC. It was subsequently
introduced to North America and Australia by European settlers
in the 17th and 18th centuries. The Australian growing season is
effectively determined by the soil moisture availability, which
is different from that in many European and North American
countries where barley is grown over the summer half of the year
with frequent rainfall events. Breeding activities are expected to
have shaped the barley genomes and selected genes for
adaptation to the relevant agroclimatic conditions. Elucidating

the genetic basis for adaptation to contrasting agroclimatic
conditions will advance our understanding of crop adaptation and
guide breeders in selecting varieties for future changing
environments.

In this study, we sequenced and de novo assembled the
genomes of two early barley varieties bred out in Australia,
namely “Clipper”, and “Stirling” (Figure STA, Methods S1). The
assembly length of the Clipper and Stirling genomes are 4.28 Gb
and 4.26 Gb with a contig N50 of 39.4 Mb and 36.9 Mb,
respectively, (Table S1). In-situ Hi-C sequencing anchored 97 % of
sequences to seven chromosomes in both assemblies (Figure S1B,
C). The whole-genome shotgun sequence of 56 barley cultivars
from Australia, Europe, and North America was first mapped to
the Clipper reference genome to investigate the modern barley
cultivars’ phylogenetic relationships and population structures
(Methods S2). Australian and North American barley show diverse
genetic differentiation patterns (Figure S2, Table S2-S6). The
various genetic differentiation patterns across chromosomes may
reflect the breeding selection targeting different genomic regions
in Australia and North America.

Barley breeding in Australia centred on selecting varieties with
fast development, that is, early flowering, to escape terminal heat
during the maturation stage (He et al., 2022). We examined gene
Presence/Absence variants (PAVs) between European, Australian,
and North American barley. We found that selecting early
flowering and photoperiod-sensitivity in Australia has enriched
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phenology gene alleles with specific PAVs (Methods S3). Seventy
genes in Australian barley show a significant change in the
presence frequency compared with European barley (Table S7),
with 17 genes in the flowering pathways, including genes
involved in photoperiod and circadian clock (HvCK2a and
HvCO16), vernalisation (HvCBF10A), and meristem response
and development (HVSOC1, HvBMS5, HvBM?) (Figure S2E).

We further compared the genomes of seven barley cultivars
(i.e., Clipper and Stirling from Australia, Igri, Barke and RGT
Planet from Europe, and Morex and Hockett from North America)
for the haplotypes of ten potential genes that may be associated
with flowering time and responsiveness to photoperiod and light
intensity (Methods S4). Among the ten genes, we identified five
genes with a dominant haplotype in Australian varieties (Fig-
ure 1a). We revealed two distinctive haplotypes for HvPhyC.
Clipper, Stirling, Morex, Hockett and RGT Planet share a
haplotype (H1) characterized by an SNP mutation (G) in exon 1
and a 24 bp deletion in exon 4 (Figure 1a), and this haplotype is
dominant in Australian varieties. For HvCry1b, Australian domi-
nant haplotype H1 is characterized by a 7-bp insertion in exon 1

and an SNP (T) in exon 2. All European or North American
cultivars carry haplotype (H2) with a 7-bp deletion and an SNP (G)
(Figure 1a). A discriminant analysis revealed a proportion of
Australian barley accessions having an overlapping genetic
composition of HvCrylb not with European but with African
barley (Methods S5, Figure S3), suggesting a possible non-
European origin of Australia’s dominant haplotype in HvCry1b.

Australian barley production regions are exposed to stronger
solar radiation than European and North American main barley-
growing regions (Figure 1b; Figure S4), which may have driven the
significant differentiation in cryptochromes and phytochromes
genes, such as HvCry1b and HvPhyC. For the HvPPD-H1 gene,
Clipper, Stirling and European winter barley Igri share a haplotype
with a 9-bp insertion in the 5’UTR region and 14 SNPs. Apart from
the distinctive variants identified in the coding region of HvPPD-
H1, we have identified haplotype-specific variants in its promoter
region. Changes in gene promoter regions and 5’UTR region could
lead to differentiated phenotypes (Chen et al., 2022).

The gene HvCEN is a crucial regulator of flowering time in
barley and has played an essential role in the agricultural
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Figure 1 (a) Haplotypes of five critical genes associated with heading date and photoperiod sensitivity in barley from Australia, Europe, and North
America. The light-regulated flowering pathway followed Cao et al. (2021). The proportion of haplotypes was estimated by analysing 56 varieties
(Table S12). Cis-regulatory elements were determined using the webtool PlantCare (Lescot et al., 2002). (b) Yearly total solar irradiance in Australian,
European and Australian major barley-growing regions. (c) Phenotypic effect of genotype in Australian barley and European barley in recombination
inbreeding line from crossing Australian barley variety Hindmarsh with European variety RGT Planet. Trail locations are given in Table S8. Lowercase letters

indicate significant differences between genotypes (P < 0.05).
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expansion of barley cultivation. Clipper, Stirling and Igri share a
haplotype (H1) with the previously reported SNP (G/C) in exon 4
encoding the amino acid Pro135 (HII-Pro135, Comadran
et al., 2012) that is most common among Australian cultivars
(Figure 1a). The 135Ala type was found in the other four
genomes. Haplotype-specific variants are also present in the
promoter region of HvCEN with possible functional implications
on cis-regulatory elements involved in light responsiveness and
hormone response. Research suggests that the haplotype con-
taining the Pro135 mutation in HvCEN is favoured in the
European Mediterranean conditions because it confers early
flowering to escape terminal drought (Fernandez-Calleja
et al., 2021). Like the Mediterranean region, climate conditions
in temperate Australia are also characterized by hot and dry
summers. The 135Ala-encoding haplotype is dominant in North
American barley and those from a high latitude in Europe. Our
results thus demonstrate the convergent selection of HVCEN in
similar environments during the expansion from Europe to
Australia and North America.

We verified the phenotypic effect of Australian genotypes of key
phenology genes with a recombinant inbred lines population
developed from crossing the Australian barley variety Hindmarsh®
with the European variety RGT Planet® (Methods S6). We gener-
ated a genetic map with the 270 recombinant inbred lines and
evaluated their phenology and yield traits in six trials (Table S8). QTL
mapping suggested that, for eight genetic markers, the Australian
genotype (Hindmarsh) was associated with faster development or
earlier flowering in at least one trial (P < 0.05, t-test; Figure 1c).
Four phenology genes, including HvCEN, were revealed to be
within 0.5 cM of the eight genetic markers (Table S9). Australian
genotype of the gene HVCEN was also associated with higher grain
yield (P < 0.05, t-test; Figure 1¢).

Australian barley is photoperiod-sensitive, which is beneficial in
growth conditions that require barley to flower at a time with
reliable rainfall, irrespective of the sowing date. In trials with
different sowing times (30 days apart; Methods S7). Australian
barley flowered at a relatively stable calendar date, irrespective of
the sowing date, compared to the European varieties (Figure S5;
Table S10). For Australian barley, the photoperiod sensitivity
seemed to confer an advantage in environments with low and
unpredictable rainfall in the sowing time (Figure S5d) and
probable hot weather during maturation in the maturation stage
(Figure S5e). We finally examined the influence on the earliness of
heading date and photoperiod sensitivity of the haplotype of the
five genes and observed differentiated phenotypes of haplotypes
in two genes. Haplotype H1 (HII-Pro135, Comadran et al., 2012)
of HvCEN, the dominant haplotype in Australia, was associated
with early flowering in five (out of seven) environments in the
field trials (Figure S5; Table S11). Haplotype H1 of HvPhyC, the
dominant haplotype in Australia, promoted early flowering time
in late sowing by 5 days on average (Figure S5).

In summary, barley adaptation in the Australian environment
involves selecting and subsequently enriching pre-existing genetic
variants within the European gene pool. Breeding activities have
also introduced non-European haplotypes. Selection for suitably
adapted barley varieties in Australia has led to the fixation of several
genes in flowering regulatory pathways. Australian varieties are
dominated by one haplotype in each gene. Identifying these genes
and haplotypes deepens our understanding of how breeding
selections have shaped the genome architecture in Australian
barley during its transition from Old World to New World.

Genomic signatures for environmental adaptation
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