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Abstract

Tensor Canonical Correlation Analysis (TCCA) is a com-
monly employed statistical method utilized to examine linear
associations between two sets of tensor datasets. However,
the existing TCCA models fail to adequately address the het-
erogeneity present in real-world tensor data, such as brain
imaging data collected from diverse groups characterized
by factors like sex and race. Consequently, these models
may yield biased outcomes. In order to surmount this con-
straint, we propose a novel approach called Multi-Group
TCCA (MG-TCCA), which enables the joint analysis of mul-
tiple subgroups. By incorporating a dual sparsity structure
and a block coordinate ascent algorithm, our MG-TCCA
method effectively addresses heterogeneity and leverages
information across different groups to identify consistent
signals. This novel approach facilitates the quantification of
shared and individual structures, reduces data dimensional-
ity, and enables visual exploration. To empirically validate
our approach, we conduct a study focused on investigating
correlations between two brain positron emission tomogra-
phy (PET) modalities (AV-45 and FDG) within an Alzheimer’s
disease (AD) cohort. Our results demonstrate that MG-TCCA
surpasses traditional TCCA in identifying sex-specific cross-
modality imaging correlations. This heightened performance
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of MG-TCCA provides valuable insights for the characteri-
zation of multimodal imaging biomarkers in AD.
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1 Introduction

Canonical Correlation Analysis (CCA) is a powerful sta-
tistical technique widely used to examine the relationship
between two sets of variables [10]. It finds applications in
diverse fields such as psychology [6, 9], biology [26, 29],
neuroscience [1, 27], and medicine [35], for unsupervised or
semi-supervised learning. Despite its usefulness, CCA has
a few limitations. One limitation of CCA is related to its
application on tensor data, which often has a high number
of dimensions. This can lead to computational challenges
when applying CCA to such data. Additionally, tensor data
often exhibit unique structures and interdependencies, such
as spatial or temporal associations, that may not be fully
captured by traditional CCA. Consequently, interpreting the
correlations identified by CCA in the context of the original
data structure can be a challenging task.

To overcome these limitations, Tensor Canonical Correla-
tion Analysis (TCCA) has emerged as a valuable alternative
to traditional CCA methods [17, 18, 20, 22]. TCCA demon-
strates efficacy in handling high-dimensional tensor data by
extracting a low-dimensional representation that captures
essential information across modalities, which facilitates ef-
ficient data representation and visualization. Through the
identification of modality-wise weights or coefficients, Ten-
sor CCA yields interpretable results that quantify the sig-
nificance of each modality in the canonical weights. These
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weights enhance the understanding of individual modali-
ties’ contributions to the overall correlation structure and
offer insights into the relationships between different data
modalities.

The motivation for this article lies in the application of
TCCA to neuroimaging data in the context of Alzheimer’s dis-
ease (AD). TCCA has become a valuable tool in AD research
for integrating data from various neuroimaging modalities,
enabling a comprehensive understanding of brain structure
and function changes associated with the disease [5, 23].
However, it is important to acknowledge that TCCA assumes
identical brain imaging patterns across all subjects, which
may not always hold true due to inter-group differences in
brain structure and function. Neuroimaging datasets often
include diverse groups, such as individuals of different sexes,
education levels, or clinical subgroups [7, 33], posing a chal-
lenge for traditional TCCA. This heterogeneity can result
in the underrepresentation of minority group conditions in
neuroimaging studies, limiting the exploration of important
brain imaging biomarkers specific to certain groups. There-
fore, a more tailored and group-specific approach is needed
to effectively leverage information from different groups
while accounting for their unique characteristics.

Methodological Contribution. To bridge this gap, we
introduce Multi-Group Tensor TCCA (MG-TCCA), a novel
method that enhances traditional TCCA by incorporating
dependency information from groups sharing similar charac-
teristics. MG-TCCA enables the identification of consistent
signals across diverse groups, preserving individual differ-
ences within each group while detecting shared brain imag-
ing patterns; see Figure 1. By quantifying joint variation
between data groups, MG-TCCA effectively reduces data
dimensionality, facilitating the exploration of common and
individual structures. To demonstrate its efficacy, we con-
ducted an empirical study focusing on mapping correlations
between two brain PET modalities, AV-45 and FDG, in an AD
cohort. Comparing MG-TCCA with traditional TCCA, we
showcase MG-TCCA’s superior performance in identifying
sex-specific cross-modality imaging correlations. This ad-
vanced capability of MG-TCCA provides valuable insights for
characterizing multimodal imaging biomarkers in AD and
holds promise for advancements in personalized medicine.

Innovation from the application perspective. While
CCA has been widely applied in brain imaging and genomics
studies [27], our MG-TCCA analysis offers several innovative
perspectives that differentiate it from existing approaches:
e Existing CCA studies (e.g., [5, 8, 19, 34]) were not specifi-
cally designed to analyze 3D image scans as tensor data; this
included Du et al [5], where their tensors were formed by
regional measures across multiple imaging modalities. In con-
trast, our MG-TCCA analysis directly handles 3D imaging
data, allowing for the natural capture of detailed voxel-level
information and spatial relationships using the tensor repre-
sentation.
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o Existing CCA studies (e.g., [5, 8, 19, 34]) did not adequately
account for heterogeneity due to pooling from multiple
groups, which might lead to biased results. Our MG-TCCA
analysis across two sex subgroups is able to identify consis-
tent signals across two groups while adequately accounting
for their heterogeneity.

e The MG-TCCA presents a direct and accurate approach
for handling the tensor structure and preserving voxel-level
information, resulting in estimation bounds that can scale
linearly with the sum of factor matrix dimensions, unlike
previous studies that use matrix-based variations [28].

2 Preliminary

Notations. Mode i fibres are p;-dimensional vectors ex-
tracted from A by fixing all the indices (Iy, ..., i1, li+1, .. ., ID)
except ;. The process of transforming a tensor into a ma-
trix through the reordering of its dimensions is commonly
referred to as matricization. The mode i matricization of
A is denoted as A(;) € RPP*P~i where p_; = Hle,k#ipk.
It rearranges the mode i fibres of \A as the columns of the
matrix A(;). Additionally, the vectorization of mode i ma-
tricization of \A is denoted as a(;). In addition to standard
matrix operations, this work utilizes four operations, namely
the inner product, the outer product, the Kronecker prod-
uct, and the Khatri-Rao product, respectively, represented
by < -, - >,0,®, and ©.

The CANDECOMP/PARAFAC (CP) tensor decomposition
is a method used to break down a higher-order data array
into a sum of rank-one component arrays. Given a rank-R
tensor X' € RP1* " *PD it can be represented as follows:

R
X =[A,Ay...,Ap] = Zr:l aﬁl) o aﬁz) 0---0 agD),
where

A= (aii) agi) ag)) € RP*R
denotes the mode i factor matrix.

The following representations of variances Var({X,U)),
Var(< Y,V >) and covariance Cov({X,U), (Y, V)) play a
crucial role in the design of our algorithm.

Proposition 1 ([22]). Given datasets X € RP1*P2XxpPm
and Yy € RPX@X XN et Yf = [Uy,U,,...,Uy] and V =
[V1,Va, ..., VN] be two constant tensors of the same size as
X and Y respectively. Define

Uy =[Uy0--0Us 001 0---0U ] @1, (la)
Vi) =[VNO 0V 0V 00 Vi] @Iy, (1b)

Let 3y, denote the covariance of x;y = vec(X(;)), where

X(i) is the mode i matricization of X. Define Xy ., Zx, y(;
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Figure 1. Illustration of TCCA and MG-TCCA. Panels (a) and (b) illustrate the true canonical weights for different groups within
the dataset, while Panels (c)-(e) compare the canonical weights generated by TCCA and MG-TCCA. TCCA has limitations in
capturing group-specific structures, whereas MG-TCCA is designed to address this drawback by capturing both shared and

group-specific structures.

analogously. Then,
Var(< X, U >) = u;rUz—_i)Z
Var(< Y,V >) =viV(_ 3y
Cov(< X, U >, <Y,V >) = uiTU(T_l.)

foranyi € [M], j € [N], whereu; = vec(U;),v; = vec(V;).

(2a)
(2b)
Zx(f)’Y(j)V(—j)Vj, (2¢)

Uciu;,

X(i)

Vv

2.1 Tensor Canonical Correlation Analysis

Let X; € RP1*P2X " %PM and Y; € R91*%2X"*X4N be tensorial
datasets of order M and N for subject i = 1,...,n, respec-
tively. Assume X; and Y); are centered to zero mean. Let
U € RP¥P2XXPM and Y € RUX%2X XN denote a rank-R
tensor weight for X and a rank-S tensor weight for Y re-
spectively. TCCA seeks to find tensor weights to maximize
the sample Pearson correlation coefficient between two sets
of tensorial datasets in the projected space, namely:

Y (U D V)
i=1

max
uy
1 n
subj. to —— (X, U <1,
n—1 ; (3)
<1,

1 < )
— ; Vi V)
rank(U) = R, rank(V) = S.

Note that when N = M = 2, (3) reduces to matrix CCA.

3 Model Framework

The primary objective of MG-TCCA is to facilitate the explo-
ration of association patterns within tensor data consisting
of K groups. This method excels at identifying both shared
and distinct characteristics among these groups. MG-TCCA
employs a dual sparsity structure, incorporating group-wise
and individual-wise sparsity. This is accomplished through
the use of Ly ;-norm and L;-norm.

Let K represent the number of groups under considera-
tion, with each group consisting of n; samples. Given two
tensors Xy ; € RPPX*PM and Yy ; € RI* XN for group
k=1,...,K and subjecti =1,...,ng, let

U = [Uk1, U, ...
Vi = Vi1, Viezs - -

S Ukl
- Vin]

(4a)
(4b)

denote rank-R and rank-S tensor weight for associated with
kth diagnostic group respectively. Then, the optimization
problem for MG-TCCA is formulated as follows:

K -
1
X Uy - VeV
{“:%le ;nkﬂ;( i Ui) - (Vi Vi)
1 & )
subj. to <Xk,i,uk> <1 k=1,...,K,
ne =14
1 ¢ 2 (5)
T 2P V) L k=1 K

—-

i=

(1= a)f (U ) + s (U, ) <
(=S (V) + 85 (V) < e

In (5), different types of norms and regularizations can be
used to encourage sparsity and group sparsity. In this paper,
we consider the following types of convex regularizations:

£ (G4 ) = 2 M4l
£ (1A ) = I [vec( A

(6a)

vec(Ag)| llz1.  (6b)

The parameters «, § € [0, 1] are responsible for regulating
the equilibrium between the element-wise and row-wise
sparsity levels and ¢y, c; > 0 control the sparsity of tensor
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weights. From Prop. 1, Problem (5) is equivalent to:

max ZK Cov (X, Uiy, (Vi Vi)
(U, Vi ke | k=1 & Uk ) s Yk Vi

subj. to Var ({(X,Ux)) <1, k=1,...,K,
Var (Y, Vi) <1, k=1,...,K, (7)

(=) (UI) +afs (UI) <
(= Pfi (V) + B8 (V) < o

Here, { X} and { Yk } k represent two sets of random tensors
aimed at reducing dimensionality.

3.1 A Block Coordinate Ascent Algorithm for
MG-TCCA

Next, we propose a block coordinate ascent algorithm for
solving (5) (or its equivalent form (7)).

Proposition 1 outlines the block coordinate ascent algo-
rithm, which forms the basis for the development of Algo-
rithm 1. In this algorithm, the factor matrices (Uy;, Vi ;)
are updated in pairs, considering various combinations of
k € [K],i € [M] and j € [N]. By iteratively updating these
factor tensors, the Algorithm 1 solves the following series
of optimization problems for different k € [K], i € [M] and
Jj € [N], ultimately reaching the desired solution:

Ty1T 3
max u, .U . .>, . Ve (Vi
UoaVe, i k(=) ZX0 Y Ve (=) Tk

subj.to ul Uy ¥ Uk (py Ui = 1,
Vlljvlz,(—j)ﬁw,mVk,(ﬁ)"k,j =1 (8)
(1-a)fi ({Uk,i}lk(:l) +af ({uk,i}le) <,
(L= Bfs (v, ) + B (1) < o

Here, uy; = vec(Ug;), Vi j = vec(Vi ), and>

)

>

Xk (i)Y k() ? S X (i) 2
vk are sample estimations of covariance.
Note that u;; and vy ; can be obtained by solving the
following classical CCA problem:
u]: iCstYk Vik.j
max p(ug;, Vi) = : NG

Uk iV, j u;—,ikauk’i\/VZ’jCy,(Vk,j
where
Cx. = Uk (=) "Zx Uk (1) (10a)
Cyie = Vie-h) Zyeiy Vi) (10b)
Cxeyie = UZ,(—i)ﬁ:Xk(f»Yk(j)Vk,(—j)- (10c)

By incorporating the numerical method used for computing
the generalized eigenvalue problem in classical CCA, we can
estimate uy; and vy ; via

0 ka,Yk Uk i ka 0 Uk
= Wi i, Vi j .
(CYk,Xk 0 Vi p( k,i k,j) 0 CYk Vk,j( )
11
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Algorithm 1: A Block Coordinate Ascent Algorithm
for MG-TCCA

initialize U,if’g,v,(f]? for (i, j,k) € [M] x [N] x [K];

t «— 0;
repeat
Select (i, j) € [M] X [N], Set s; = 0,s5 = 0;
fork=1,...,Kdo
()

k,(=1)

Compute V,(Ct()

Compute U using Equation (1a);

-i) using Equation (1b);
Solve Problem (9) using Equation (11);

S1 < 81 + (u,(cf;rl) ,(C,t;l))z;
(t+1)

P (Ui Vi)
end
fork=1,...,Kdo

U 0u((1 - apuY

Vi 0:((1- PV, pysa);
end
t—t+1;

a5y — sy + (v

u , \/S81);

until mean{pf”l), pz(tﬂ), R pI<<t+1)} converges;

return {L?k, Vi }I,le

Furthermore, to incorporate the L, ;-norm and L;-norm, we
utilize the iterative thresholding strategy introduced by [21]
for sparse principal component analysis and the hard thresh-
olding strategy introduced by [22] for sparse tensor canonical
correlation analysis. Given A > 0, the thresholding strategies
operate as follows:

02 (w1 +ay)
0,(w,a) = , (12)
0y (w, + ap)

where
w |w|l+a=A

(13)

0 |wl+a<A’

Or(w+a) = {

where the parameter A controls the degree of sparsity and
is computed based on ¢; (or ¢z) in Equation 5 as follows:
the vector w is sorted in descending order, and the value
corresponding to index i is designated as A, such that the
cumulative sum of the elements w; +a, wo +a,...,w; +ais
below the threshold c; (or c). Ultimately, the algorithm can
be succinctly summarized as Algorithm 1.

After we obtain the first pair of canonical tensor weights

{U, V}, we can employ residuals { X;— <<Ziftl>> Uuy- gj\‘;}; Vi

to fit Model (5) to calculate subsequent pair of canonical ten-
sor weights.

Remark 1. Algorithm 1 exhibits several advantages in terms
of computational and storage costs. In fact, its computational
cost is comparable to that of TCCA and Sparse TCCA [21].
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However, the main advantage of MG-TCCA is that its loops
can be implemented in parallel, further enhancing its efficiency.

The theorem presented demonstrates the convergence of
Algorithm (5) towards a stationary point, which represents
a local minimum along each block direction.

Theorem 2. The estimate {Uy, Vi }le obtained from Algo-
rithm 1 corresponds to a stationary point of (5).

The proof of this theorem is not provided here, as it closely
follows the proof of block coordinate maximization for non-
differentiable objectives as presented in [3].

4 Experiments
4.1 Synthetic Data

We adopt the probabilistic interpretation of classical CCA
proposed by Bach and Jordan [2]. To align the methodology
of generating synthetic data for TCCA with classical CCA,
we consider vectorized canonical tensors as canonical vec-
tors. This correspondence allows us to employ the following
comprehensive procedures. Let p = (p1, p2, ..., pd) repre-
sent a set of d canonical correlations, and let U € R?1*4 and
V € R7*9 denote two canonical matrices whose columns
correspond to the canonical vectors. Based on these given
quantities, we formulate the subsequent expression:

Tx = OxRx "Rx 'Ox " +Tx(Ip, — OxQx ) Tx ", (14a)

Ty = QyRy 'Ry 'QyT + Ty (I, —QyQy )Ty,  (14b)
Txy = ZxVdiag(p)W ' Zy, (14c)

where U = QxRx and V = QyRy are the QR decomposition
of U and V. In addition, U and V satisfy UT2xU = I,, and
VTZyV =1, respectively for random Tx € R? 1Xd and Ty €
R%*9 in normal distribution. Subsequently, synthetic data
is generated through sampling data from the underlying

distribution:
X u
~N X] ,
(Y) ( Hy

Within the conducted experimental analysis, it is postu-
lated that the synthetic dataset contains two discrete groups.
Each group is associated with closely related yet distin-
guishable ground truth canonical correlations, denoted as
p; =0.95and p, = 0.97, along with corresponding canonical
tensor weights, namely {U;, V;} and {U, V,}. The true U,
and U, are two 100-dimensional vectors, wherein 96 entries
exhibit identical values, while the remaining 4 entries pos-
sess distinct values, as illustrated in Figure 2. Furthermore,
the true V,; and V, are two 64 X 64 matrices representing
images, as illustrated in Figure 3. In these visual representa-
tions, white pixels represent 1, while black pixels represent 0.
Drawing upon the aforementioned ground truth information
and generative model 15, a synthetic dataset is generated,
including a total of 2000 samples. Of these, 1000 samples

(15)

Xx ZXY)
Yyx Xy |
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belong to Group 1, while the remaining 1000 samples belong
to Group 2.

(@ (b) U,

Figure 2. True canonical tensor weights U; for Group 1, and
U, for Group 2 in numerical experiments

|+

(@ W (b) V,

Figure 3. True canonical tensor weights V; for Group 1, and
V), for Group 2 in numerical experiments

4.2 Real Data

Data used in the preparation of this article is obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu) [31, 32]. The ADNI was
launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. All partici-
pants provided written informed consent and study protocols
were approved by each participating site’s Institutional Re-
view Board (IRB). Up-to-date information about the ADNI is
available at www.adni-info.org.

We analyze two ADNI imaging modalities: AV-45-PET
[12] (measuring amyloid burden) and FDG-PET [12] (mea-
suring glucose metabolism). Both AV-45 and FDG imaging
data play a crucial role in the diagnosis and assessment of
AD. These imaging techniques facilitate the detection and
quantification of beta-amyloid accumulation and glucose
metabolism changes, which represent crucial biomarkers of
the disease. Furthermore, these biomarkers can be employed
to monitor disease progression and evaluate the efficacy of
treatments, including pharmaceutical interventions aimed at
reducing beta-amyloid accumulation or enhancing glucose
metabolism in the brain [4]. In addition, the utilization of
AV-45 and FDG datasets in research is also driven by the
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aim of examining the association between these two modal-
ities. Previous investigations have furnished proof of such
a connection, as illustrated by the findings of Hsiao et al.
[11, 30].

(a) Without brain mask

(b) With brain mask

Figure 4. The efficacy of the brain mask is illustrated by
comparing cross-sectional images: the original PET images
on the left and the images post-application of the brain mask
on the right.

The data processing procedure consists of the following
steps. First, the Statistical Parametric Mapping software tool
[25] is used to register AV-45-PET scans and FDG-PET scans
into the standard brain space defined by the Montreal Neu-
rological Institute (i.e., MNI-space). Second, a brain mask
is applied to the original images to minimize the interfer-
ence of extraneous structures, such as the skull and other
sources of noise, as illustrated in Figure 4. Third, to optimize
computational efficiency, each image is transformed from
dimensions of (91, 109, 91) to (22, 27, 22). In addition, sex is
utilized to differentiate groups, and subsequently, the dataset
is divided into training and testing sets randomly. The for-
mer comprises 242 samples from the female group and 299
samples from the male group, whereas the latter contains
162 samples from the female group and 200 samples from
the male group.

4.3 Evaluation Criteria

The outputs of TCCA and MG-TCCA algorithms contain
canonical correlation coefficients and canonical tensor weights.
Canonical correlation coefficients serve as indicators of the
degree of linear association between two sets of variables,
while canonical tensor weights denote the respective weight-
ing of each variable in the original variables.

Evaluation Criteria of Synthetic Data. For synthetic data,
the assessment of estimation accuracy is conducted through
the computation of cosine similarity between the canonical
tensor weights {U, V} present in the ground truth and those
estimated canonical tensor weights {Z;l \A)} This evaluation
method is defined as follows:

v, V)

IvllzlI¥1l2"

(u, )

/ (uu) = e ™4 (v, \>) - (16)
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where u is the vectorization of U, 1 is the vectorization of
u , v is the vectorization of V, and v is the vectorization of
V. Additionally, the visualization of the estimated canonical
tensor weights is exhibited as a means of facilitating the
evaluation and comparison of the recovery performance.

Evaluation Criteria of Real Data. To evaluate the effec-
tiveness of MG-TCCA on ADNI, canonical tensor weights
obtained from the training set are utilized on the testing set
to derive a testing canonical correlation, which serves as an
unbiased estimation of the effectiveness of canonical tensor
weights on new data. The evaluation of the testing canoni-
cal correlation is carried out using the Pearson correlation
coefficient, computed as follows:

2 (XU - (V)

p= . (17)
VS (XU S, (Vv

Additionally, to demonstrate the benefits of identifying both
shared and unique signals across multiple groups, we utilize
the automated anatomical labeling (AAL) atlas to partition
brain imaging into 116 regions of interest (ROI) and deter-
mine the average intensity of canonical tensor weights of
each brain region. This approach facilitates a more intuitive
differentiation among the canonical tensor weights via visu-
alization.

4.4 Experimental Setup

Selection of Tuning Parameter. The hyperparameter A in
13 controls the sparsity level, similar to the hyperparameters
¢1 and ¢; in Problem 5. In numerical experiments, the propor-
tion of zero entries (p%) in the input vectors serves a similar
role as A. For synthetic data, p% is arbitrarily chosen, while «
and S are set to 0.4. With real data, a grid search determines
suitable values for p%, a, and f in MG-TCCA. Since both
modalities are voxel images, the same p% is used for both,
selected from 0.2, 0.4, 0.6, 0.8. @ and f are searched in 0.1, 0.2,
0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Various parameter combinations
are evaluated on the training set and tested on the testing
set, selecting parameters with the lowest overfitting within
each group.

Selection of Baseline. The utilization of Classical CCA as
the baseline model in this investigation is omitted, given
that Min [22] has empirically presented the superior effi-
cacy of TCCA to classical CCA, particularly when applied
to tensor data. Consequently, in order to enable subsequent
comparisons, a sequence of experiments is conducted in the
following manner: initially, the TCCA method is individ-
ually employed on each dataset specific to the respective
sexes; subsequently, the MG-TCCA method is applied to the
entire dataset to derive canonical tensor weights for each
distinct group. For synthetic data, in order to conduct further
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comparisons, supplementary numerical experiments are con-
ducted using Sparse Tensor Canonical Correlation Analysis
(STCCA), as proposed by Min [22].

4.5 Results and Discussions of Synthetic Data

Prior to conducting the comparative experiment, we initially
applied TCCA to the entire dataset and visualized its perfor-
mance. As depicted in Figure 5, the global canonical tensor
weights are only able to identify the features shared by both
groups, referred to as “cross”. However, they are adversely
affected by the differences between the two groups in the
corners, resulting in an inability to discern the characteristics
of individual groups and the presence of significant noise.
Therefore, in order to address this issue, it is necessary to
propose and validate novel algorithms.

(U (b) VY

Figure 5. Estimated canonical tensor weights U and V of
TCCA on the entire synthetic dataset.

Figure 6 displays the visualization of the estimated canoni-
cal tensor weights pertaining to Group 1 and Group 2. These
estimates are obtained by employing the techniques of TCCA
and STCCA on separate groups, as well as MG-TCCA on
the complete dataset. Comparisons made with these figures
reveal that, despite applying TCCA independently to each
group, the TCCA method fails to capture the group-specific
features in canonical weights, whereas the STCCA and MG-
TCCA methods overcome such limitations, especially for ten-
sor data. The MG-TCCA method demonstrates a high level
of effectiveness in discerning distinct signals pertaining to
specific groups while concurrently preserving shared signals
across all groups. This method exhibits enhanced resilience
in the identification of the aforementioned features when
compared to STCCA. These observations are consistent with
the intended goal of the MG-TCCA approach.

Table 1a and Table 1b compare the estimation accuracy
of TCCA, STCCA, and MG-TCCA of 100 replicates. Based
on the presented results, the following observations can be
made. Firstly, it is evident that the MG-TCCA consistently
outperforms the TCCA and STCCA methods in effectively
restoring the canonical tensor weights of the ground truth.
Secondly, it is worth noting that across different selections
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Table 1. Numerical results of synthetic data regarding Cosine
Similarity ¢ (u,z]) and / (V, \A)) The best ones in each

row are bold and the second best one is underlined. The
analysis is carried out by varying the rank of the canonical
tensor weights, specifically exploring ranks 1, 2, and 3. In this
context, a higher numerical value is indicative of superior
model performance.

(a) (uu)
Group | Rank | TCCA STCCA MG-TCCA
1 0.9965 0.9965 0.9967
Group 1 2 0.9969  0.9969 0.9973
3 0.9970  0.9974 0.9982
1 0.9922  0.9924 0.9926
Group 2 2 0.9965 0.9967 0.9969
3 0.9983  0.9982 0.9984
®) £ (V. V)
Group | Rank | TCCA STCCA MG-TCCA
1 0.7958  0.7992 0.8039
Group 1 2 0.8525 0.8559 0.8613
3 0.8573  0.8829 0.8986
1 0.7512  0.7539 0.7545
Group 2 2 0.8620 0.8657 0.8685
3 0.9057  0.9125 0.9138

Table 2. Computation time (mean=+std) of 100 repeated ex-
periments for different ranks. The computational time of
TCCA (STCCA) corresponds to the cumulative sum of the
computational time required for applying TCCA (STCCA)
to individual group experiments. In contrast, MG-TCCA is
applied to the entire dataset. The time is reported in seconds.
All experiments are run on Intel(R) Xeon(R) CPU E5-2660.

Rank TCCA
1 | 7.11(x0.52)
2 13.64 (10.13)
3 | 25.44 (x0.24)

STCCA
12.43 (+0.83)
13.66 (£0.19)
20.10 (£0.25)

MG-TCCA

35.13 (£0.79)
30.07 (£0.32)
16.40 (+0.47)

of the rank for canonical tensor weights, MG-TCCA exhibits
superior recovery performance compared to the TCCA and
STCCA approaches, further accentuating the superiority of
the MG-TCCA method. Additionally, a higher rank selection
leads to a better performance in estimation accuracy. The
computation times for TCCA, STCCA, and MG-TCCA on
the dataset are presented in Table 2. The results demonstrate
that TCCA exhibits a shorter processing time than STCCA
and MG-TCCA when the rank of canonical tensor weights
is low. Moreover, it is observed that a greater rank selection
for the canonical tensor weights enhances the convergence
speed of STCCA and MG-TCCA.
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(a) TCCA: U, (b) TCCA: U, (c) STCCA: U, (d) STCCA: U, () MG-TCCA: U,  (f) MG-TCCA: U,
’ PR

(g) TCCA: V, (h) TCCA:V, (i) STCCA: V; (j) STCCA: V, (k) MG-TCCA:V;  (I) MG-TCCA:V;,

Figure 6. The sequence visualizes estimated canonical tensor weights V1, V; for synthetic data generated by TCCA, STCCA
on distinct groups of the dataset, and MG-TCCA on the entire dataset, arranged from left to right as follows: TCCA on Group
1, TCCA on Group 2, STCCA on Group 1, STCCA on Group 2, MG-TCCA on Group 1, and MG-TCCA on Group 2.

1.0 1 e —————9 1.0 4 —— — 0 — 0 1.0 4 1.0

A —-- TCCA —-- TCCA
r\o—o—o\. "./0\./‘\. | —— MG-TCCA | —— MG-TCCA

: 0.9-:‘—_._.\'/. 0'9_/\’\./'

S 08X, ..

0.91 0.91

0.8 0.8 0.8 ~g

Canonical Correlation
Canonical Correlation
Canonical Correlation
Ve
®
Canonical Correlation

| —-- TCcca 4 —-- TCCA
—— MG-TCCA —— MG-TCCA

0.7 — T T 0.7 T 0.7 — T T T T 0.7 — T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Rank Rank Rank Rank

(a) Training Set for Female (b) Training Set for Male (c) Testing Set for Female (d) Testing Set for Male

Figure 7. This sequence displays the canonical correlations produced by TCCA on discrete subsets of the data and MG-TCCA
on the entire dataset. The subsets are arranged from left to right, consisting of canonical correlations for the female training
set, male training set, female testing set, and male testing set.

4.6 Results and Discussions of Real Data observed in the thalamus and cerebellum across the two
Figure 7 shows the consistent superior performance of the groups. These findings align with previous studies on abnor-
MG-TCCA method over the TCCA method in maximizing mal metabolism reduction, accumulation of -amyloid, and
canonical correlations between two modalities. This is ob- the association between AY'45 and F]?G .in ca.mdate regior.ls
served across different choices of the rank of canonical tensor .[1 1,13, 16], as Well as the incr eas'efi distribution of amyloid
weights, specifically on the testing set within each sex group. in thalamus regions [13, 15]. Additionally, these results sup-
Moreover, considering the combined analysis of the train- port conclusions about sex differences in brain metabolism
ing and testing sets, the MG-TCCA method exhibits greater in the. thalamgs and cer ebel.lum regi.ons [24]. o
advantages in addressing overfitting than the TCCA method. This experiment prlmanly contn.butes to verifying .the
Figure 8 displays the absolute value of the average in- benefits of MG-TCCA, specifically in terms of enhancing
tensity of canonical tensor weights assigned to each brain canonical correlations between two sets of variables and
region, indicating the importance of features between the detecting sex disparities while preserving shared character-
modalities. The conflicting outcomes between TCCA and istics in canonical tensor weights. The findings of this study
MG-TCCA can be attributed to the small sample size in the regarding sex-related differences in characteristics associ-
Male or Female group, leading to overfitting in TCCA, as ated with AD align with previous research, suggesting the
shown in Figure 7. Further analysis of these figures reveals potential for targeted and effective treatments and interven-
that TCCA captures numerous superfluous features and ex- tions for these disorders. However, several limitations exist
hibits a limited ability to distinguish crucial shared features in this study. Firstly, .the se.lect.ion of hyperpar ameters in the
in the dataset when comparing outcomes between the fe- proposed approach is subjective and may not consistently
male and male groups. In contrast, MG-TCCA demonstrates yield optimal outcomes. To address this, employing a bilevel
a concentrated signal in the caudate nucleus, with variations structure ?? or Bayesian optimization [14] is necessary for au-

tomatically optimizing these hyperparameters. Secondly, the
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(b) Heatmap of feature importance for male

Figure 8. Comparison of feature importance derived from canonical tensor weights. Each row corresponds to a particular
method, either TCCA or MG-TCCA, and contains two modalities, namely AV-45 and FDG. TCCA is utilized to derive tensor
weights by separately applying it to distinct Male and Female groups. Conversely, MG-TCCA directly operates on the entire
dataset, yielding tensor weights for both Male and Female groups collectively.

efficiency of MG-TCCA is compromised when additional con-
straints are introduced, particularly when the rank of tensor
weights is excessively low. Thirdly, the current experiments
only involve mapping two modalities to a one-dimensional
subspace, resulting in significant information loss. Future
investigations will focus on utilizing higher-rank canonical
tensor weights to identify more brain regions associated
with the correlation between AV-45 and FDG. Furthermore,
this algorithm will allow the exploration of other potentially
influential factors, including race, age, educational level, and
sex, that may impact Alzheimer’s disease.

5 Conclusion

In this study, a novel approach called MG-TCCA is proposed
to analyze group-specific correlations and features among
two datasets. This method considers the heterogeneity ade-
quately of datasets due to pooling from multiple groups while
preserving the advantages of TCCA in identifying consistent
signals across groups. The results obtained from synthetic
data and real brain imaging data demonstrate the effective-
ness of MG-TCCA in identifying group-specific patterns as
well as group-shared patterns. This proposed method has the

potential to enhance our understanding of group disparities
in the brain and their correlations. Additionally, it can be
applied to a diverse range of multi-modal brain imaging data,
including functional magnetic resonance imaging (fMRI), dif-
fusion tensor imaging (DTI), and PET, to aid in the diagnosis
of neurological and psychiatric disorders. It can also be ap-
plied to identify correlations between multidimensional data
sets at multiple levels, such as genetics, multi-omics, imaging,
fluid biomarker, and phenotypic outcome. Further research
will focus on validating the method on larger datasets with
more imbalanced groups and exploring its potential applica-
tion in clinical settings.
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