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Chromatin alternates between A and B
compartments at kilobase scale for subgenic
organization
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Olga Dudchenko 2, Arina Omer2, Kiana Mohajeri10, Sungjae Kim11,
Michael H. Nichols12, Eric S. Davis 13, Dimos Gkountaroulis2, Devika Udupa1,
Aviva Presser Aiden2, Victor G. Corces 12, Douglas H. Phanstiel 13,14,15,
William Stafford Noble 7,8, Guy Nir16, Michele Di Pierro4,17, Jeong-Sun Seo11,18,
Michael E. Talkowski10,19,20, Erez Lieberman Aiden2,21 &M. Jordan Rowley 1

Nuclear compartments are prominent features of 3D chromatin organization,
but sequencing depth limitations have impeded investigation at ultra fine-
scale. CTCF loops are generally studied at a finer scale, but the impact of
looping on proximal interactions remains enigmatic. Here, we critically
examine nuclear compartments and CTCF loop-proximal interactions using a
combination of in situHi-C at unparalleled depth, algorithmdevelopment, and
biophysical modeling. Producing a large Hi-C map with 33 billion contacts in
conjunction with an algorithm for performing principal component analysis
on sparse, super massive matrices (POSSUMM), we resolve compartments to
500bp.Our results demonstrate that essentially all activepromoters anddistal
enhancers localize in the A compartment, even when flanking sequences do
not. Furthermore, we find that the TSS and TTS of paused genes are often
segregated into separate compartments. We then identify diffuse interactions
that radiate from CTCF loop anchors, which correlate with strong enhancer-
promoter interactions and proximal transcription. We also find that these
diffuse interactions depend on CTCF’s RNA binding domains. In this work, we
demonstrate features of fine-scale chromatin organization consistent with a
revised model in which compartments are more precise than commonly
thought while CTCF loops are more protracted.

The nucleus of the human genome is partitioned into distinct spatial
compartments, such that stretches of active chromatin tend to lie in
one compartment, called theA compartment, and stretches of inactive
chromatin tend to lie in the other, called the B compartment1. Com-
partmentalization was identified using Hi-C, a method that relies on
DNA-DNA proximity ligation to create maps reflecting the spatial

arrangement of the genome1. Loci in the same spatial compartment
exhibit relatively frequent contacts in a Hi-C map, even when they lie
far apart along a chromosome or on entirely different chromosomes1,2.
Accurate classification of the resulting genome-wide contact patterns
requires a large number of contacts to be characterized at each locus3.
As such, genome-wide compartment profiles in human cells are
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typically generated at resolutions ranging from 40kb to 1Mb1,2,4. Even
recently published fine-scale maps using Micro-C did not investigate
compartment eigenvector at <100 kb resolution5,6. This may be
becauseextant compartmentdetection algorithms requireoperations,
such as calculating principal eigenvectors1, which are computationally
intractable when the underlying matrices have millions of rows and
columns—high-resolution Hi-C matrices3. Indeed, fine-scale compart-
ment analysis has been more feasible in organisms with smaller gen-
omes, such as Drosophila melanogaster7,8.

Here, we construct an in situ Hi-C map in human lymphoblastoid
cells spanning 42 billion read-pairs and 33 billion contacts. We com-
bine this map with the creation of an algorithm dubbed POSSUMM,
which greatly accelerates the calculation of the principal eigenvector
and the largest eigenvalues of massive, sparse matrices containing
millions of rows and billions of nonzero entries. Combining our ultra-
deep map with POSSUMM, we find that it is possible to map the con-
tents of the A and B compartments with 500bp resolution, a 100-fold
improvement in resolution. This resolution demonstrates fine-scale
compartment organization, such that nearly all active promoters and
enhancers locate in tiny A compartments, evenwhen proximal regions
are in B. We also detect discordant compartments on gene bodies,
such that the 5′ and 3′ ends of genes often locate to distinct com-
partments. These sub-genic discordant compartments occur most
frequently at large and at paused genes.

Finally, we show that when we classify loops based on their
appearance, at fine resolution, it becomes possible to distinguish
between loops that form by extrusion and those that form via non-
extrusion mechanisms. This analysis reveals interactions proximal to
CTCF loops that depend on CTCF’s RNA binding domains. Overall, this

work reveals several fundamental principles of fine-scale 3D genome
organization.

Results
Generation of an ultra-deep in situ Hi-C map in lymphoblastoid
cells spanning 33 billion contacts
We produced an ultra-deep Hi-C map of lymphoblastoid cells by
sequencingover 42billion PE150 read-pairswith over 150 individualHi-
C experiments. Experiments included a selection of three restriction
enzymes, providing a digestion site every 75 bp on average (Supple-
mentary Fig. 1a), and we obtained signal for 99.8% of non-repetitive
500 bp bins (Supplementary Fig. 1b). The resulting dataset is far dee-
per than any prior published Hi-C map and yielded 33 billion contacts
after alignment, deduplication, and quality filtering (Supplementary
Table 1). By comparison, the average published Hi-C map contains
roughly 300 million contacts; 93% of Hi-C maps in the 4DNucleome
database9 have less than 1 billion contacts (Supplementary Fig. 1c,
Supplementary Table 2); and the widely used lymphoblastoid Hi-C
map generated in Rao et al. contains 4.9 billion contacts (Fig. 1a).

We generated contact matrices at a series of resolutions, includ-
ing as fine as 500 bp. These matrices greatly improved the visibility of
features (Fig. 1b, browsable link: https://tinyurl.com/2ew48yof). Nota-
bly, this high coverage also enhanced the long-range plaid pattern
indicative of compartments (Fig. 1c, Supplementary Fig. 1d, browsable
link: https://tinyurl.com/2mthqtjk), as well as the corresponding
compartment domains observed along the diagonal of the map
(Fig. 1d, Supplementary Fig. 1e). Critically, because the number of
contacts at every locus was greatly increased (Supplementary Fig. 1f-
m),with anaverageof 22,000contacts incident on each kilobase of the
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Fig. 1 | By combiningultra-deepHi-C andPOSSUMM,wegeneratedafinemapof
nuclear compartmentalization achieving 500bp resolution. a Schematic
representing the total mapped read-pairs in the current study compared to earlier
published Hi-C studies. b Example locus showing Hi-C signal in 500bp bins in our
full map with 20.3 billion intrachromosomal read-pairs (left) and when read-pairs
are subsampled to 1 billion (right). Scales are set to be proportional to sequencing
depth. c Example of compartment interactions in a Hi-C map identified by the
eigenvector (Eigen.) in 500bp bins (bottom track). The black track displays

transcriptionmeasured byGRO-seq. The black square represents the region shown
in Fig. 1d. Scales represent distance normalized Hi-C. d Zoomed in view of a com-
partment domain. e Long-range Hi-C signal displaying how sequencing depth
impacts the visibility of the long-range compartmental checkerboard pattern.
f Correlation of the eigenvector in the full map compared to various sequencing
depths. The black line indicates the number of intra-chromosomal read pairs in the
published GM12878 dataset2. Source data are provided as a Source Data file.
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human genome, we were able to distinguish between loci in the A
compartment and loci in the B compartment with much finer resolu-
tion (Fig. 1c).

Development of PCA of Sparse, SUper Massive Matrices (POS-
SUMM), and its use to create a genome-wide compartment
profile with 500bp resolution
Extant methods for classifying loci into one compartment or the other
typically rely on numerical linear algebra to calculate the principal
eigenvector (called, in this context, the A/B compartment eigenvector)
and the largest eigenvalues of correlationmatrices associated with the
Hi-C contactmatrix. At 100 kb resolution, thesematrices typically have
thousands of rows and columns and millions of entries, making them
tractable using extant numerical algorithms, such as those imple-
mented by Homer10, Juicer11, and Cooler12. However, at kilobase reso-
lution or beyond, these matrices have hundreds of thousands of rows
and hundreds of billions to trillions of entries,making them intractable
using the aforementioned tools. For example, computing an eigen-
vector for chr1 at 500bp resolution entails generating a matrix with
250 billion entries and performing a calculation that is projected to
require >4.6 TB of RAM (Supplementary Fig. 2a).

As such, we developed a method, POSSUMM, for calculating the
principal eigenvector and the largest eigenvalues of a matrix. POS-
SUMM repeatedly multiplies a matrix with itself in order to calculate
theprincipal eigenvector (Box 1).However, POSSUMdoes not explicitly
calculate all of the intermediate matrices. Instead, it explicitly calcu-
lates only the tiny subset of intermediate values required to obtain the
principal eigenvector using a Lanczos-like method making it vastly
more efficient at calculating eigenvectors than current software (Box 1).
In addition to our Hi-C matrices, we benchmarked POSSUMM’s calcu-
lation of eigenvectors on several other types ofmatrices available from
https://sparse.tamu.edu, with sizes ranging from 2.2e4–2.3e8 rows/
columns and from 2e6–3e9 non-zero entries. POSSUMMcalculated the
first four eigenvectors much faster and more efficiently than other
methods (Box 1, Supplementary Fig. 2b, c, Supplementary Tables 3, 4).
Importantly, due to memory efficiency, only POSSUMM was able to
calculate eigenvectors for the largest matrices (Supplementary Fig. 2d,
Supplementary Tables 3, 4). This demonstrates that POSSUMMenables
the efficient calculation of eigenvectors in diverse types of massive
matrices, including web-connectivity, protein databank, census data,
gene regulatory network, internet traffic, and social network topology
matrices, in addition to Hi-C data (Supplementary Table 3).

Using POSSUMM, we assigned loci to the A and B compartments
at resolutions up to and including 500bp (Fig. 1c). The calculation of
the A/B compartment eigenvector at 500bp resolution took only
2.5min, and 23GB of RAM (Supplementary Fig. 2a, d). In comparison,
CscoreTool13, a non-PCA-based compartment caller, took 2.8 days and
62 GB of RAM to achieve similar compartment calls at 1 kb on chro-
mosome 1 (Supplementary Fig. 2a, c). Because POSSUMM enables
eigenvector calculation of massive matrices, we further tested it by
calculating the compartment eigenvector at 500bp resolution on the
genome-wide (GW) matrix composed of inter-chromosomal interac-
tions and has >38 trillion possible bin-pairs. Evenwith the extreme size
of this matrix, POSSUMM took only 39min and 77.65 GB of RAM to
calculate the first four principal components (Supplementary Fig. 2a,
Supplementary Table 3). The resultant compartment values from the
principal eigenvector mostly matched those derived from individual
chromosomes, but with some additional noise likely due to the overall
lower inter-chromosomal signal characteristic of Hi-C maps (Supple-
mentary Fig. 2e–g). For this reason, we use A and B compartments
identified by POSSUMM on intra-chromosomal interactions, which
accurately detects the segregation of active from inactive chromatin
(Supplementary Fig. 2h–k). Importantly, the extreme sequencing
depthwas essential to identify compartments at 500bp resolutiondue
to signal sparsity at long distances for lower sequencing depths
(Fig. 1e, f, Supplementary Fig. 2l-m). However, coarser resolution
compartment analysis is also feasible by POSSUMM, and only 500
million intra-chromosomal contacts were necessary to identify com-
partments in 5 kb bins (Fig. 1f).

The median compartment interval is 12.5 kb long
We next used our fine map of nuclear compartments to examine the
frequency with which loci alternate from one compartment to the
other.Nearly 99%of compartment intervals were less than 1Mb in size,
and 95% were smaller than 100 kb (Fig. 2a). The median compartment
intervalwas only 12.5 kb (Supplementary Fig. 3a), with some as small as
2 kb (Fig. 2b), and thousands of compartment intervals were no longer
than 10 kb (Supplementary Fig. 3a, b). In comparison, the median size
of CTCF loops in our map was 360 kb in length, demonstrating that
compartment intervals can be smaller than individual loops (Fig. 2c).

We note that the size of the A/B compartments in this ultra-
resolution map is smaller than that of previously annotated sub-
compartments. Originally annotated in GM12878 LCLs at 100 kb
resolution2, subcompartments represent subclassifications of A/B

BOX 1

PCA of Sparse, SUper Massive Matrices (POSSUMM)
Overview of the POSSUMM algorithm for PCA analysis of massive
matrices. POSSUMM calculates matrix-vector products using a sparse
representation of the matrix, without explicitly computing the corre-
lation matrix. By maintaining the sparsity of the matrix, POSSUMM
makes eigenvector calculation more widely feasible, especially for
data types in large sparse matrices such as those used for tracking

social networks, web-connectivity, internet traffic, census data, and
gene expression networks in addition to Hi-C maps. For genome-wide
A/B compartment identification, POSSUMM’s matrix-vector product
implementation enables eigenvector calculation at higher resolutions
(smaller bins) that are prohibitive to other methods due to themassive
size of the dense correlation matrix.
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compartments. We called subcompartments and were able to reach
10 kb resolution using Calder14, such that the subcompartments
reflected different chromatin states (Supplementary Fig. 3c); bin sizes
smaller than 10 kb met with memory limits likely stemming from the
need to cluster the resultant massive matrix. We compared the high-
resolution A/B compartments to subcompartments and found that
subcompartments can indeed categorize A and B compartments fur-
ther (Supplementary Fig. 3d). We also see that the different sub-
compartments correspond exceptionally well with the intensity of the
eigenvector at fine-scale (Supplementary Fig. 3e). Thus, our data sug-
gest that subcompartment calling represents a sub-classification of
compartments as opposed to sub-scale features.

Kilobase-scale compartment intervals frequently give rise to
contact domains
It is well known that long compartment intervals often give rise to
contact domains, i.e., genomic intervals inwhich all pairs of loci exhibit
an enhanced frequency of contact among themselves7,8,15–17 (Fig. 1d).
Such contact domains are referred to as compartment domains. We

found that even short compartment intervals less than 5 kb frequently
give rise to contact domains (Supplementary Fig. 4a), demonstrating
that contiguous intervals of chromatin in the same compartment can
form contact domains regardless of scale. We previously demon-
strated that a proportion of TAD borders correspond to the edges of
compartment domains which persist or strengthen upon loss of CTCF
loops8,17. Using onTAD18 to define 14,400 unique TAD borders, we
found that 19% of borders correspond to compartment domain bor-
ders, over half of which did not overlap CTCF loop anchors (Supple-
mentary Fig. 4b). We then found that TADs corresponding to loops
were slightly stronger than those corresponding to compartment
domains (Supplementary Fig. 4c). Despite this strength difference,
compartment domain borders are clearly visible by Hi-C, and we even
see evidence of Hi-C domains where one border corresponds to a
compartment border while the other is a CTCF loop border (Supple-
mentary Fig. 4d). This further supports a model where domain and
compartmental organization are not separate parts of a hierarchy, but
rather, TADs consist of multiple distinct features at similar scales,
including that of compartment domains and CTCF loop domains15.
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Essentially all activepromoter andenhancer elements localize in
the A compartment
Next, we compared our fine map of nuclear compartments to
ENCODE’s catalog of regulatory elements in GM12878 cells. We
examined active promoters (defined as 500bp near the TSS, absence
of repressive marks H3K27me3 or H3K9me3, and with >= 1 Reads Per
Kilobase per Million [RPKM] gene expression in RNA-seq) and found
that nearly all lie in the A compartment, with only 5% assigned to the B
compartment (Fig. 2d — left). When examining active promoters
assigned to the B compartment, we noticed that even these had higher
values in the principal eigenvector compared to the surrounding
regions (Supplementary Fig. 5a). Indeed, if we use a slightly more
stringent threshold (assigning promoters to the B compartment only if
the corresponding entry of the principal eigenvector is <−0.001), we
find that only 233 (2.5%) of active promoters are assigned to the B
compartment. Notably, the eigenvector from coarser bins placedmost
of the active promoters in the A compartment, however 10 kb, 100 kb,
and 1Mb resolutions resulted in an extra 62, 360, and 1270 active
promoters to be assigned to the B compartment (Supplementary
Fig. 5b). This is at least in part because the use of coarse resolutions
leads to the averaging of interaction profiles from neighboring loci,
such that a DNA element in the A compartment might be assigned to
the B compartment if most of the flanking sequence was inactive
(Fig. 2e, Supplementary Fig. 5c–h).

Similarly, we found that essentially all active proximal enhancers
(defined by annotation in DenDB19, ≤10 kb from a TSS, and overlapping
H3K27ac but not H3K27me3 andH3K9me320) lie in the A compartment
(Fig. 2d – middle). Moreover, essentially all active distal enhancers
(DenDB19, >10 kb from a TSS, with H3K27ac, but not H3K27me3 or
H3K9me320) lie in the A compartment (Fig. 2d – right): only 5% were
assigned to the B compartment. Many of these distal enhancer ele-
ments represent small islands of A compartment chromatin in a sea of
inactive, B compartment chromatin (Fig. 2b,c,f). This demonstrates
that individual DNA elements can escape a neighborhood that is
overwhelmingly associated with one compartment to localize with a
different compartment (Fig. 2b-g, Supplementary Fig. 5g, h). When
coarser resolution compartment profiles are used, the number of
active distal enhancers assigned to the B compartment increases up to
4.6-fold at 1Mb resolution (Supplementary Fig. 5i). Again, this is at least
in part because the use of coarse resolutions leads to the averaging of
interaction profiles from neighboring loci (Supplementary Fig. 5g–j).

Taken together, we find that essentially all active regulatory
elements, including both promoters and enhancers, lie in the A
compartment, even when immediately neighboring sequences do
not. We, therefore, asked whether enhancer-promoter connections
have a similar Hi-C signal to compartmental interactions. We called
FitHiC interactions on chr1, finding that promoters have significantly
called interactions that connect them to three enhancers on average
(Supplementary Fig. 5k).We then examined distance normalizedHi-C
signal and found a spike at the enhancer-promoter connection
(Fig. 2h). This corresponds to a spike in A compartmental eigenvector
(Fig. 2h), which may be indicative of a relationship between the A
compartment and enhancer-promoter signal. These interactions can
also be seen in available H3K27ac HiChIP data in GM12878 cells21

(Fig. 2i). We found a similar signal for promoter-promoter and
enhancer-enhancer connections, with the strongest H3K27ac HiChIP
signal at enhancer-enhancer connections (Supplementary Fig. 5lm).
To determine if these enrichments can be explained by the fact that
both the enhancers and promoters locate to the A compartment, we
took the same list of enhancers and randomly shuffled them among
the promoters, thereby creating a randomized list of pseudo-
connections using the same anchors. Plotting the Hi-C and
H3K27ac HiChIP signal, we find no evidence of these enhancers and
promoters forming specific interactions despite both anchors lying
in the A compartment (Fig. 2j,k). Therefore, enhancer-promoter

interactions are more specific than general A compartment
association.

The B compartment is largely characterized by an absence of
commonly examined chromatin marks
Recently, it was proposed that chromatin features (i.e., TF binding
sites) in the A compartment are drivers of compartmentalization18. The
ability of small, isolated distal enhancers to interact within the A
compartment supports this model; therefore, we next characterized
genomic intervals in the B compartment defined at 500 bp resolution.
Similar to the A compartment, we found that small B compartmental
intervals exist and are often oppositely annotated as A at coarser
resolutions (Supplementary Fig. 6a). However, compared to the A
compartment, we saw fewer B compartmental bins with opposite calls
at coarser resolution (Supplementary Fig. 6b). Intriguingly, we found
that small B compartment intervals frequently do not correspond to
repressive chromatin marks such as H3K27me3 or H3K9me3 (Sup-
plementary Fig. 6a, c). Indeed, we noticed that many B compartment
intervals and B-type subcompartments do not correspond to any
commonly examined chromatin mark, being mostly composed of
quiescent chromatin22 (Supplementary Fig. 2h,3c). To extend this
analysis, we compiled a list of loci that had evidence of any commonly
studied active and repressive marks (peak in any of the following
ENCODE datasets: H2AZ, H3K4me1, H3K4me3, H3K27ac, H3K36me3,
H3K28me2, H3K9ac, H4K20me1, RNAPII, ATAC-seq, EZH2, H3K27me3,
or H3K9me3). This revealed that 51% of B compartmental bins do not
have any of these commonly studied marks (Supplementary Fig. 6d).
Although far from comprehensive, this absence of common marks
in the B compartment lends some support to the proposal that
sequences in A compartmental intervals may be the drivers of
compartmentalization23. We note, however, that the B compartment
highly overlaps with Lamin Associated Domains, even those called in a
different cell line24 (Supplementary Fig. 6e), and therefore might
contribute to their organization25,26.

Many genes exhibit discordant compartmentalization, with the
TSS in the A compartment and the TTS in the B compartment
When exploring the fine map of nuclear compartmentalization, we
noticed many genes where the TSS and TTS localize to opposite
compartments (Fig. 3a., Supplementary Fig. 7a,b, see also Figs. 1d,
2e,g), which we term as discordant. Approximately 8% of genes with
the TSS in the A compartment are discordant (Supplementary Fig. 7c).
Discordant compartments aremore easily seen at large genes (Fig. 3b,
c). Indeed, very few small genes (<20 kb) are discordant, while the
majority of large genes (>750kb) are discordant (Fig. 3d). Using the
average profile at discordant genes, we find that the eigenvector
decreases sharply after the TSS followed by ~2% decrease every 1 kb
downstream, with an average crossing threshold into the B compart-
ment at ~42 kb (Fig. 3e).

We next asked if genes with discordant compartments (i.e., the
TSS was in compartment A, but the TTS was in compartment B) could
be explained by different chromatin marks at the TSS vs. TTS. We
examined chromatin marks at the TTS in active genes larger than
20 kb, comparing genes with concordant vs. discordant compart-
ments. Notably, genes with discordant compartments cannot be
explained by heterochromatin overlapping the TTS as they generally
lack repressive marks (Supplementary Fig. 7c, d). Looking at the TSS,
concordant and discordant compartment genes have similar marks
and likely cannot be explained by differences at the TSS (Supple-
mentary Fig. 7d, e). Instead, we found that diminished levels of active
marks at the TTS, specifically RNAPII, H3K4me1, and H3K36me3, were
correlated with the presence of discordant compartments (Supple-
mentary Fig. 7d, e).

We noticed that discordant genes have lower expression levels
(Supplementary Fig. 7f); therefore, we sought to determine if
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discordant compartmentalization was associated with transcriptional
pausing as measured by GRO-Seq. By examining genes longer than
20 kb, we found that long elongating genes are more likely to exhibit
concordant compartmentalization, whereas long paused genes were
more likely to exhibit discordant compartmentalization (Fig. 3f, g).
Indeed, average profiles across discordant genes revealed that elon-
gating genes have a larger portion of the gene body in the A com-
partment (30% more on average) (Fig. 3h). Analysis of
subcompartments showed similar results in regards to gene size and
correlation with transcriptional pausing (Supplementary Fig. 7g).

Taken together, these data support a model where an active TSS
localizes to the A compartment but brings with it only a small portion
of the gene body, depending on the elongation status.

3D modeling helps delineate compartment domains
Because ultra-deep Hi-C reveals compartmental patterns at the kilo-
base scale, we next modeled the ensemble of 3D genomic structures
associated with those patterns. Using the MiChroM energy landscape
model, we performed molecular dynamics physical simulations for
several segmentsof chromatin ranging from1Mbto3Mb(Fig. 4); thus,

minimizing the risk of spurious boundary effects. To characterize the
structural organization of fine-scale compartmentalization, these
molecular dynamics simulations used nucleosome-resolution model-
ing of the chromatin fiber, thus significantly finer than the smallest
feature under investigation (see Methods).

First, we trained the energy-function parameters to recapitu-
late the compartmental pattern seen at 1 kb resolution in a 3Mb
region of chromosome 7 (Fig. 4a). Once trained, we used these
parameters to predict the 3D structural ensembles of a 1.1 Mb, 3Mb,
and 2.5 Mb region on chromosomes 7, 9, and 4, respectively
(Fig. 4a–cmiddle, Supplementary Fig. 8a–e). To determine howwell
the ensembles of 3D structures reflect Hi-C contacts, we then gen-
erate 2D distance matrices for the nucleosomes within the ensem-
ble structure (Fig. 4a–c, right, Supplementary Fig. 8e). Comparing
experimental Hi-C maps to the MiChroM modeled distance maps
(Fig. 4a–c, Supplementary Fig. 8d) reveals that the learned physical
model accurately reflects the fine compartmentalization patterns
near the diagonal (Supplementary Fig. 8a), which are often masked
by CTCF loops (Fig. 4a), a feature outside our prediction. We then
examined how this physical model depicts sub-genic discordant
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compartments for the ensemble structures of TMEM38B and SEM1
(Fig. 4d, e). Physical simulations of discordant genes display
extended structures due to the intra-genic transition between A and
B compartments (Fig. 4d, Supplementary Fig. 8f, g). This is also
supported by the slightly larger distributions of the radius of
gyration (Rg) for these genes in comparison with the same-sized
regions completely in compartment A or B (Supplementary Fig. 8h).
Our model suggests that discordant genes likely have extended
structures compared to their non-discordant counterparts (Sup-
plementary Fig. 8i). Altogether, these results reveal that compart-
mental simulations can distinguish near-diagonal compartment
domains from loop domains.

Loci with ambiguous Hi-C compartment definitions have high
cellular heterogeneity
Next, we examined compartments in 5 other publishedHi-Cmapswith
sufficient sequencing depth for POSSUMM to call compartments at
5 kb resolution2,27. We chose a 2Mb region on chr19 that showed large
differences in compartments (Supplementary Fig. 9a, b) and per-
formed MiChroM modeling of this region in each cell type. In each,
MichroM captured the organization attributed to compartments
(Supplementary Fig. 9c, d). However, in some maps, we noticed that
MichroMcouldnot capturemore ambiguous compartmental patterns,
represented by the eigenvector near 0, for example, in PGP1f
cells (Fig. 5a).
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Unlike LCL, PGP1f cells are adherent, which enables super-
resolution imaging27. This region of chr19 was previously imaged at
super-resolution using the single-molecule localization microscopy
method of OligoSTORM in PGP1f cells27. Nine chromosomal segments
(CS1-9) ranging in size between 0.36 and 1.8Mb (Fig. 5a) were imaged
through sequential OligoSTORM in PGP1f cells, revealing correlations
between three-dimensional structure and active and inactive chro-
matin (Fig. 5c, Supplementary Fig. 9e)27. Probed region CS9 corre-
sponds to the region with ambiguous Hi-C eigenvector that MichroM
was unable to model (Fig. 5b). We find the CS9 segment has the most
heterogeneity in imaging, notably asmuchheterogeneity asCS1,which
overlaps both A and B segments (Fig. 5d). These data indicate that
ambiguous eigenvector segments, which are therefore difficult to
model (e.g., Supplementary Fig. 9f), correspond to regions of high
cellular heterogeneity. We also note that despite the heterogeneity in
compartment status, small A and B genomic intervals can nevertheless
be segregated into distinct physical locations in images of individual
chromosomes (Fig. 5e)27–30.

Loop extrusion forms diffuse loops
Wenext examined intense loops in ourHi-Cdataset, identifying 32,970
loops. Ninety-one percent of these loops contained a CTCF-bound
motif at both anchors, with a strong preference for the convergent
orientation (Supplementary Fig. 10a). As previously noted, sequencing
depth impacts the ability to identify total CTCF loops (Supplementary
Fig. 10b–g) while the convergent orientation preference remains
(Supplementary Fig. 10h). Interestingly, higher sequencing depth
allowed detection of longer loops, plateauing at approximately 5 bil-
lion intra-chromosomal contacts (Supplementary Fig. 10i). Because of
this plateau, we estimate that our ultra-resolution Hi-C data is able to
capture the majority of CTCF loops, which also suggests an approx-
imate upper limit for CTCF loop formation at ~3.4Mb (Supplementary
Fig. 10j).

Interestingly, when we examined loops at 1 kb resolution, we
noticed that the signal is diffuse (Fig. 6a, Supplementary Fig. 11a,

browsable link: https://tinyurl.com/2f2sfp3a), indicative of frequent
contacts proximal to the CTCF binding sites, which we will refer to
as diffuse loop anchors (Fig. 6b). The elevated contact frequency
decreases with distance from the corresponding anchors (Fig. 6c,
rainbow) (a loss of signal of c.a. −6% from one bin to the next; i.e.,
6%/kb compounding). Curiously, the rate of signal loss is much slower
than the decay rate of the Hi-C diagonal (Fig. 6c, Supplementary
Fig. 11b – expected) (c.a. −28%/kb), which is thought to reflect the
properties of the chromatin polymer. We found that these dif-
fuse structures are seen at a range of loop sizes (Supplementary
Fig. 11c). While high sequencing depth is important to visualize diffuse
structures at individual loops, these diffuse structures can be mea-
sured by metaplot analysis in maps with less sequencing depth (Sup-
plementary Fig. 11d). However, even by metaplot analysis, maps with
approximately 100 million intrachromosomal contacts or less impact
the ability to measure the diffuse signal (Supplementary Fig. 11d).
Turning to published data, we see evidence of diffuse CTCF loops in
HFF cells byboth in situHi-C andMicroC (Supplementary Fig. 11ef).We
did see a sharper signal loss in Micro-C data, but this corresponds to a
sharper diagonal decay (Supplementary Fig. 11g). Importantly, even by
Micro-C, the rate of signal loss for loops was slower than the diagonal
decay (Supplementary Fig. 11f), indicating that CTCF loops enrich the
interactions of proximal loci.

We wondered whether this proximal signal (i.e., diffuse loops)
was seen for loops in other species. We examined hundreds of loops
observed in a published high-resolution Hi-C map from Drosophila
melanogaster Kc167 cells at 1 kb resolution7,31 (Fig. 6d&e). Interest-
ingly, the loops in Drosophila lose signal at a rate (c.a. −20%/kb) that
matched the diagonal of theDrosophilaHi-Cmap (c.a. −23%/kb) and
was more dramatic than the rate seen for human CTCF-mediated
loops (Fig. 6f, Supplementary Fig. 11h&i). This suggests that CTCF
loops create interactions between sequences bound by CTCF and
adjacent sequences. However, in Drosophila, Polycomb complex
(Pc) associated loops only create direct interactions between Pc-
bound sequences.
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Finally, we examined loops previously identified in C. elegans32–34.
While the maps appeared noisier (Supplementary Fig. 11j), the loss of
signal with distance was slower (c.a. −11%/kb) than at the diagonal (c.a.
−24%/kb) (Fig. 6f, green vs. gray), and was more similar to the rate of
loss seen for human CTCF-mediated loops than the one observed for
D. melanogaster loops (Fig. 6f, Supplementary Fig. 11k).

Notably, the type of signal loss observed (diffuse vs. punctate)
matched the putativemechanism by which the loops formed. CTCF-
mediated loops in humans are bound by, and dependent on, the
SMC complex and form by cohesin-mediated extrusion35–38. Indeed,
after cohesin depletion, we detect a loss of both the central
and proximal interactions (Supplementary Fig. 11l). The loops in

C. elegans are bound by the SMC complex condensin, and we pre-
viously suggested that they are formed by condensin-mediated
loop extrusion32–34. Indeed, the interactions between loop-adjacent
sequences further support loop formation by extrusion in
C. elegans. By contrast, Drosophila loops are much less likely to be
bound by CTCF, cohesin, condensin, or other extrusion-associated
proteins7. Instead, they are bound by the Polycomb complex, Pc,
and may form by means other than extrusion39–41.

These findings suggest that the mechanism of loop formation
influences whether loops will be punctate or diffuse, with extrusion-
mediated loops forming diffuse peaks and compartmentalization-
mediated loops forming more punctate features.
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Deletion of CTCF’s RNA binding domains leads to more punc-
tate loops
We next examined promoter-enhancer FitHiC interactions where both
the promoter and enhancer lie within 100 kb of a loop anchor. In some
cases, these interactions lie entirely inside the loop, but in others, they
cross the loop anchor. Both cases exhibited strongly enriched contact
frequency as compared to enhancer-promoter interactions that are
unrelated to CTCF loops, i.e., near permutated random sites (Fig. 6g).
By contrast, in Drosophila, Fit-Hi-C interactions between promoters
and enhancers do not extend as far away from the loop (Supplemen-
tary Fig. 12a). To further test the potential functional implication of
diffuse CTCF loops, we categorized loops into more diffuse vs. more
punctate (Supplementary Fig. 12b). We then examined H3K27ac ChIP-
seq signal, a mark of active enhancers, and found that diffuse loops
have more proximal H3K27ac within 100 kb compared to punctate
loops (Fig. 6h). Using GM12878 H3K27ac HiChIP data21, we also found
higher signal and more FitHiChIP42 significant interactions proximal
to diffuse CTCF loops (Fig. 6i,j). We found that H3K27ac HiChIP
interactions neardiffuse loops are stronger both inside andoutside the
loop (Supplementary Fig. 12c). Thus, the diffuse CTCF loop signal
corresponds to the enrichment of enhancer-promoter interactions
nearby, even outside the loop (Fig. 6k).

The proximal signal did not correlate strongly with CTCF motif
strength, CTCF ChIP-seq peak strength, or RAD21 ChIP-seq peak
strength (Supplementary Fig. 12d–g). Instead, we found that more
diffuse CTCF-mediated loops are associated with higher levels of
transcription (Fig. 6l) and chromatin accessibility (Supplementary
Fig. 12h) near the loop anchors. This suggests that nearby transcrip-
tional activity could impact CTCF’s interaction with the nearby
sequences and/or the loop extrusion process.

Recently it was shown that RNAs, including those found at active
enhancers, are important for some of CTCF’s impact on chromatin
organization43. The CTCF protein contains 11 zinc finger domains, and
it was shown that ZF1 and ZF10 bind to RNA and that deletion of these
two domains causes weakening of loops throughout the genome44.We
performed aggregate peak analysis on the published Hi-C in ZF1 and
ZF10 mutants44 using bullseye plots in order to explore the effect of

these deletions on loop-proximal interactions. Interestingly, we found
that loops appeared more punctate in both CTCF RNA binding
mutants (Fig. 6m). This effect was especially pronounced in the ZF1
mutant. Another recent study performed Hi-C after the deletion of
ZF8, which is not predicted to bind RNA45. While the sequencing depth
was lower than what we found necessary to make conclusive claims at
1 kb resolution (see Supplementary Fig. 11d),metaplots failed to showa
change in diffuse signal in the ZF8 mutant (Supplementary Fig. 12i).

Taken together, these findings are consistent with a model where
CTCF’s RNA-binding domains and the presence of bound RNAs result
in a more protracted diffuse loop and may enrich contacts among
regulatory elements near the loop anchors.

Discussion
By generating a Hi-C map with extraordinary sequencing depth (33
billion PE, or 9.9 terabases of uniquely mapped sequence), we create a
fine-scale map of nuclear compartmentalization.

Our findings demonstrate that compartment intervals and
domains can be far smaller thanpreviously appreciated. This contrasts
with the common hierarchical model of chromatin organization in
which compartments are multi-megabase features partitioned into
TADs and loops15,46–48. Our results indicate that compartment intervals
can be so small that active DNA elements will localize with the A
compartment even when surrounded by inactive chromatin localizing
in the B compartment (Fig. 7).

This study required approximately 150 Hi-C experiments, which
were completed in 2018 as an ENCODE phase 4 pilot project exploring
the generation of contact maps with much higher sequencing depths.
Using Hi-C, we demonstrate that discordant sub-genic compartments
and diffuse CTCF loop structures are present using the same basic
methodology that led to the original identification and definition of
the coarser features. POSSUMMachieved compartment calls at 5 kb in
publishedMicro-Cmaps, much higher than the 100 kb resolution calls
reported in the referenced publications5,6 (Supplementary Fig. 13, see
Supplementary Discussion). Interestingly, we could denote compart-
ments at 5 kb in their similarly deep Hi-C maps, suggesting that both
Hi-C and Micro-C are suited for higher-resolution compartment iden-
tification. However, 5 kb is still an order of magnitude coarser than the
500 bp achieved in our current Hi-C study. Therefore, it will be valu-
able to characterize kilobase-sized compartments by Micro-C experi-
ments sequenced to a similar depth used here. Indeed, during the
review of this manuscript, a preprint reported the development of
Region Capture Micro-C to achieve high sequencing depth at specific
loci and identified micro-compartments within these specific
regions49. While we cannot determine if these represent the same
features, these findings are consistent in that small discrete loci can
segregate into compartments at fine scale.

Strikingly, we find that essentially all distal enhancer elements lie
in the A compartment. This contrasts with earlier work, using coarse-
resolution maps of compartmentalization, which only report general
enrichment of active distal enhancers in the A compartment rather
than as a fundamental characteristic of active enhancers50,51. Similarly,
many previous studies have reported a coarse enrichment of active
genes in the A compartment15, yet we find that essentially all active
promoters lie in the A compartment.

We also observe that the likelihood that a locus lies inside the A
compartment declines as one moves away from the promoter along
the gene body. Interestingly, we observe numerous genes with dis-
cordant compartmentalization, where the TSS and TTS tend to be in
different compartments. Considering chromatin as a polymer, neigh-
boring kilobase-sized A and B compartments likely cannot be located
too far apart, which raises the question of whether compartments
represent distinct physical locations. Such separation has been
demonstrated via imaging27–30, albeit at genomic scales considerably
larger than those achievable via POSSUMM and our ultra-deep Hi-C

Fig. 7 | Sub-genic compartmentalization organizes the human genome. Dia-
gram depicting localization of active enhancers and TSSs to the A compartment,
while TTSs are oriented to the B compartment dependent on size and transcription
elongation status.
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dataset. While speculative, this segregation could indicate phase-
separateddroplets52–54, which is supportedbyour physicalmodelingof
chromatin phase separation. This suggests that the TSS and TTS of a
gene with discordant compartmentalization might be physically
proximal within the nucleus, in neighboring A and B droplets (Fig. 7).
This may also explain the high levels of variability in genome organi-
zation detected by imaging approaches27,55–57, as transitions between A
and B would not necessarily indicate large spatial movements. We
should note, however, that recent evidence indicates that it is also
possible that large spatial changes do occur after transcriptional
activation58.

The finding that active promoters—specifically, active TSSs—are
overwhelmingly localized in the A compartment, that TTS compart-
ment status correlates with RNAPII levels at the TTS, and that genes
with discordant compartmentalization tend to be transcriptionally
paused is consistent with a model in which RNAPII drives localization
to the A compartment. In support, recent results from DNA and RNA
FISH showed dramatic changes in the conformation of large, activated
genes58. In contrast, a recent RNAPII degradation study showed little
effect on genome organization; however, these experiments did not
achieve the sequencing depth required to perform the finemapping of
nuclear compartmentalization to resolve phenomena such as genes
with discordant compartmentalization59. Alternatively, other compo-
nents of the transcription complex that travel along the gene body
during transcription elongation may mediate interactions that assign
sequences to the A compartment. In future studies, it will be of great
interest to examine how RNAPII and other components of the tran-
scription complex impact genome organization at the TSS and TTS
separately.

We note that our data represent averages within the cellular
population, and as such, we cannot resolve where each finely resolved
component lies during the transcriptional process itself. In the future,
finemapping of nuclear compartments in single cells will be needed to
decipher these relationships. Moreover, our study did not attempt to
study subcompartments or models with ≥3 distinct compartment
states2,50,60, which will be an important topic for future work.

Our ultra-deep Hi-C map also helped identify interesting proper-
ties of chromatin loops. In particular, we observe that CTCF-mediated
loops are highly diffuse or diffuse, more so than would be predicted
based on polymer behavior alone. Interestingly, the enhanced loop-
proximal signal is observed for loops that form by extrusion, such as
loops in human2,35–38 and C. elegans32–34, but not for Pc-associated loops
observed in Drosophila7,31,40,41.

In vitro studies have found that large chromatin complexes can
impede looping factors61,62, and cohesin was shown to build up near
transcriptionally active regions63. However, studies have also reported
the independence of CTCF loops and transcription59,64,65, bringing the
relationship between transcription and CTCF looping into question.
Recently, it was shown that CTCF RNA-binding domains, ZF1 and ZF10,
are important for looping44. Additionally, CTCF ZF1 mutations have
been implicated in oncogenic transcription66. Our finding that diffuse
loops are altered in CTCF RNA-binding mutants supports the argu-
ment that transcription can impact fine-scale chromatin organization
in mammals67, as does the correlation between TTS compartmental
domains and elongation status. Additionally, while nearly all active
enhancers and promoters are in the A compartment, our findings
indicate that other features likely drive enhancer-promoter specificity.
Indeed, a class of regulatory tethering elementswas recently proposed
by high-resolution Micro-C data in D. melanogaster68. While we find
that diffuse CTCF loops have more marks of active enhancers in their
proximity, there could be a tradeoff between tethering elements and
insulator function, as found in D. melanogaster68. Future work on how
CTCF diffuse loops impact these two features will be important.

Our POSSUMMmethod, a numerical linear algebra algorithm for
calculating principal eigenvectors, is nowpart of the Juicer pipeline for

Hi-C analysis. Our power analyses suggest fine mapping of nuclear
compartments at sub-kilobase resolution becomes possible for maps
containing 7 billion contacts or more (See Supplemental Discussion).
As sequencing costs continue to decline, we expect fine mapping of
nuclear compartments will become increasingly common.

Methods
Inclusion and ethics
This research was approved by the Institutional Review Board of Mass
General Brigham #2013P000323 as secondary analysis. The approval
number C-0806-023-246 for the AK1 individual was assigned based on
the Institutional Review Board of Seoul National University guidelines.

Library preparation, initial processing, and quality metrics
Hi-C libraries were prepared according to the in-situ method2. In this
method, cells were crosslinked in 1% v/v formaldehyde for tenminutes
and quenched by adding 2.5Mglycine to a final concentration of 0.2M
for 5min. Cells were pelleted by centrifugation at 300G for 5min at
4 °C and then washed with cold PBS. Cells were lysed with lysis buffer
containing 10mMTri-HCl pH 8.0, 10mMNaCl, 0.2% Igepal CA630 and
protease inhibitors for 15min on ice. Cells were centrifuged at 300G
and washed in that same buffer, and then resuspended in 50 µl 0.5%
SDS for 5min at 62 °C. Afterward, 145 µl of water and 25 µL of Trition
X-100 were added and incubated at 37 °C for 15min. Chromatin was
digested overnight inMboI,MseI, orNlaIII in the corresponding buffer.
Fragment overhangs were repaired and biotinylated using equal
amounts of biotin-14-dATP, dCTP, dGTP, and dTTP in the presence of
40units of DNAPolymerase I, Large (Klenow) Fragment at 37 °C for 1 h.
Chromatin was ligated in 1x T4 DNA ligase buffer, Triton X-100,
0.12mg BSA, and 2000 units T4 DNA ligase at room temperature for
four hours. Proteins were digested, and chromatin decrosslinked in
0.72mg/ml proteinase k, 1% SDS, and 0.5M NaCl for 30min at 55 °C,
followed by 68 °C overnight. Libraries were sequenced and then pro-
cessed using Illumina HiSeq 4000 software and JuicerTools v1.14.0811,
in which we aligned to the hg19 genomeThe full map represents
libraries prepared by digestion of various 4-cutter restriction enzymes,
MboI, MseI, and NlaIII. To create a Hi-C megamap representing the
average of lymphoblastoid cells, we pooled Hi-C from both male and
female cell lines, GM12891 (RRID: CVCL_9630), GM12892 (RRID:
CVCL_99631), GM18951 (RRID: CVCL_N804), GM18526 (RRID:
CVCL_E124), GM13976 (RRID: CVCL_L266), GM13977 (RRID:
CVCL_L267), GM11168 (RRID: CVCL_W113), GM19239 (RRID:
CVCL_9634), AK169, and GM12878 (RRID: CVCL_7526), and from six
individuals. We found nearly as high reproducibility scores between
these cell lines as we did between technical replicates (Tables S5, S6)
and therefore combined them to form a mega-map of LCLs. Repro-
ducibility scores were calculated by HiCRep v1.12.2 stratum adjusted
correlation coefficient70. Subsampled Hi-C maps were created by uni-
form random selection of read-pairs from the 33.3 billion Hi-C dataset.
We provide a script for subsampling Hi-C data at https://github.com/
JRowleyLab/HiCSampler. Fragment size was performed by virtual
digestion of the hg19 genome using MboI, MseI, and NlaIII. Estimation
of the percent alignable rows was done by summing reads in each row
and removing rows that were unmappable according to ENCODE’s
publicly available hg19 mappability track: Index of /goldenPath/hg19/
encodeDCC/wgEncodeMapability (ucsc.edu).

We used several metrics to evaluate the quality of the full 20.3
billionHi-Cmap compared to subsampledHi-Cmaps. First, as a simple
Boolean metric, the number of bin pairs with at least one read was
plotted as a fraction of the total number of possible bin pairs. This was
done for binpairswithin a 1Mbdistance and all intra-chromosomal bin
pairs. Non-mappable regions were excluded from analysis and identi-
fied by searching for rows and columns within the Hi-C matrix with no
mappable read-pairs. Second, the noise estimates were calculated by
taking the autocorrelation function (ACF) average, using a lag of 1, for
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each row within the matrix of distance-normalized Hi-C read-pairs.
Noise values were then estimated by (ACF −1)*−1. To compare the 33.3
billion Hi-C map and subsampled maps, we calculated the ACF on a
representative regionof thematrix extending between chromosome 1:
1–10Mb. We provide a script for noise estimation at https://github.
com/JRowleyLab/HiCNoiseMeasurer.

UMAP clustering was performed using DNase, H2AZ, H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac, and H3K9me3
obtained by Avocado v0.1.071. AA/AB clustering scores were obtained
by taking each point in the A compartment, summing the UMAP
cluster distances to the nearest 10 other points labeled as A, and
dividing by the sumof distances to the nearest ten other points labeled
B. As an alternative, we calculated the 5, 10, 50, 100, 500, and 1000
nearest neighbors using the ball tree algorithm in the python package
scikit-learn v1.0.272 and calculated the average number of neighbors
that had opposite compartmental statuses. Logistic regression was
performed using the python package statsmodels v0.13.2.

Compartment analysis
Compartments were identified using the A/B eigenvector of the Hi-C
matrix using POSSUMM and by CScoreTool v1.113. POSSUMM can be
downloaded from: https://github.com/aidenlab/EigenVector and is also
now implemented in the ENCODE version of the Juicer pipeline:
https://github.com/ENCODE-DCC/hic-pipeline. Subcompartmentswere
identified by Calder v1.014 at 10 kb; we tried higher resolution and
alternative subcompartment callers but met with errors due to the
extensive memory requirements necessary for the task.

Introduction to PCA of Sparse, SUper Massive Matrices
(POSSUMM)
Let X be a matrix with column vectors X ð1Þ, . . . ,X nð Þ. Let Y ðiÞ =
ðX ið Þ � ciÞ=σi 1≤ i≤n, where ci is the mean of Xi and σi is its standard
deviation. Let Y = ðY ið Þ, . . . ,Y ðnÞÞ be an n x nmatrix with column vectors.
The correlation matrix of X is defined as A= YTY where YT is trans-
posed Y . Since A is symmetric and positive semi-definite it has n
real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥0 and n eigenvectors. v1, . . . ,vn
where Avi = λivi.

Wenote that the so-calledA/B compartment eigenvector is simply
the eigenvector ofA corresponding to its largest eigenvalue, whereX is
given by theHi-C contactmatrix. This is equivalent to thefirst principal
component in Principal Component Analysis. In our case, X is a large,
sparse matrix containing millions of rows, millions of columns, and
tens of billions of nonzero entries (dubbed a Sparse, SUper Massive
Matrix).

Suppose we seek to calculate the largest eigenpairs, λi,vi of A in
this case. Although X is sparse, we note that both Y and A are dense
matrices. Unfortunately, storing dense matrices with millions of rows
and columns in memory is impossible. Hence we cannot use any
method for calculating the eigenvectors of A that would require us to
explicitly calculate either Y or A. Similarly, traditional sparse matrix
methods for eigendecomposition are not usable here, again because A
- the correlation matrix we hope to analyze - is a dense matrix.

Therefore, to calculate eigenvectors for A, we began by imple-
menting amethod thatmakes it possible to calculate thematrix-vector
product Av (where v is an arbitrary vector) using a sparse repre-
sentation of X , i.e., without explicitly computing either A or Y . See
POSSUMM details below for a complete description.

Next, we note that there are many methods for calculating
eigenvectors inwhich the inputmatrixonly appears via amatrix-vector
product. These include the Power and Lanczos methods and their
many variants73. Thus, in principle, any of these methods - for which
there aremany implementations in Fortran, C, C++,Matlab, and R - can
be combined with the sparse Av product calculation described above
in order to calculate eigenpairs of A. In practice, methods combining
these two approaches are not available.

To the best of our knowledge, the sole exception is a method in
the R package irlba, which was released while this study was being
performed. The details of this method are unpublished, but the
method itself is available at https://cran.r-project.org/web/packages/
irlba/index.html. However, irlba is implemented in R and cannot han-
dle cases where X has more than roughly two billion nonzero entries,
which is exceeded in the present case. It also does not enable paral-
lelization, which limits performance in highly demanding settings. We
compare the Lanczos-like POSSUMM implementation to that of irlba
v2.3.5 (Supplementary Table 3).

POSSUMM uses sparse Av product calculation, is memory-effi-
cient, and enables parallelization via multi-threading.

POSSUMM details
To identify compartments from sparse Hi-C matrices, we began by
excluding all rows and columns with 0 variance. Let X be a matrix with

columnvectorsX 1ð Þ,. . .,X nð Þ. Let (1)YðiÞ = ðX ið Þ � ciÞ=σi 1≤ i≤n, where ci is

the mean of Xi and σi is its standard deviation. Let Y = Y ið Þ,. . .,Y nð Þ
� �

be

an n ×n matrix with column vectors. The correlation matrix of X is (2)

A= YTY where YT is transposed Y . Since A is symmetric and positive
semi-definite it has n real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥0 and n eigen-
vectors. v1,. . .,vn where (3) Avi = λivi. These eigenvectors are a basis of
Rn (i.e., a set of vectors that are independent and span the space) and if
λi≠λj then vi ? vj (i.e., vTi vj =0). To compute v1 using the power

method (a.k.a power iterations), suppose that λ1>λ2 and let x0 be any
nonzero vector in Rn, we define the recursive relation: (4) xk+ 1 =

Axk =A
k + 1x0. We can represent x0 as (5) x0 =a1v1 + . . . +anvn and

therefore (6) Akx0 =a1λ
k
1 v1 + . . . +anλ

k
nvn = λ

k
1 ða1v1 +a2

λ2
λ1
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v2 + . . . +
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λn
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vnÞ. Once we have estimates of the eigenvector and the two

largest eigenvalues, we can estimate the error given that (7)

∣∣v� v1∣∣≤
∣∣Av�λ1v∣∣
∣∣λ1�λ2 ∣∣

. To find an estimate of λ2 we know that v2 ? v1 and

∣∣v1∣∣= 1. Let x0 be any vector and let (8) xk+ 1 =Aðxk � ckv1Þ where

ck =v
T
1 xk (and then ðxk � ckv1Þ ? v1). If (9) λ2

ðkÞ = ∣∣Axk∣∣=∣∣xk∣∣ using the

same argument as before λ2
ðkÞ ! λ2 as k !1. This is true even if λ2≈λ3

(xk may not converge to v2, but λ2
ðkÞ wil converge to λ2). In this way, we

have an estimate of λ1 and λ2 andmay estimate the error in v. Since (10)

A= YTY ,Ax = YT Yxð Þ= ð Yxð ÞTY ÞT , we do not need to compute A (which
has the complexity of Oðn3Þ). We used two matrix-vector products at
every iteration Y . Moreover, if X is large a naïve multiplication of a
vector by amatrix can still take a long time and storing Y may require a
large amount of memory. For example, to store human chr1 at 1 kb
resolution (where n≈250000) 500GBof RAMwould be required just to

store Y . With sparse implementation we recall that Y = ðY ið Þ, . . . ,Y nð ÞÞ
where (11) Y ið Þ = X ið Þ�ci

σi
= X ið Þ

σi
� ci

σi
. While X ið Þ

σi
is sparse, X

ið Þ
σi

� ci
σi
is not. In lieu

of explicit computation, let 1 = ð1,1, . . . ,1ÞT then (12) Y ið Þ = X ið Þ
σi

� ci
σi
1 and

then (13) Y =XS� 1�rT where (14) S= ½1=σ1
. .
.

1=σn� and (15)

r = ½c1=σ1, . . . ,cn=σn�T and then (16) Yx = X�Sð Þx � 1�rT�x. Let (17)
Z =X�S. Since (18) rTx =

Pn
i = 1rixi,Yx =Zx � ðPn

i= 1xiriÞ1. Since Z is as
sparse as X we can do everything with sparse matrices as (19)
xTY = xTZ � xT 1

� �
rT = xTZ � ðPn

i= 1xiÞrT . Now matrix-vector multi-
plication has a complexity of the number of nonzero elements in X
(which never exceeds the number of contacts in the map). Projected
time andmemory usagewere calculated by fitting a power decay curve,
R2 of fit = 0.95 for time, and R2 of fit = 0.98 for memory usage.

After compartment calling, chromatin marks were profiled at
features that overlap A or B compartments by overlapping with ChIP-
seq peaks and using average signal profiles created by pyBigWig from
the deepTools package74. ChIP-seq peaks and bigwig files were
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obtained from the ENCODE Roadmap Epigenomics project75. We fil-
tered promoters with bivalent marks as active genes with twofold
higher H3K27me3 or H3K9me3 signal compared to the average at
promoters. Contiguous compartment domain sizes were calculated by
requiring at least two consecutive bins to have the same sign in the
eigenvector. We assigned genes to elongating, mid, and paused to
create profiles of A compartmental status along genes. Elongation
status was determined by RPKM GRO-seq signal within 250 bp of the
TSS compared to the gene body, excluding 500bp from the TSS.
Differences between Promoter—Gene Body GRO-seq signal were
ranked and placed into three equal categories considering only genes
≥20 kb in size.

Loop analysis
Loops were identified by HiCCUPS included in JuicerTools v1.14.082 or
SIP v1.432 at multiple resolutions. For HiCCUPS, we used parameters
–m 2000 –r 500,1000,5000,10000 –f .05,.05.05.05. For SIP, we used
an FDR 0.05 at each resolution with the parameters for resolutions of
500 bp; -d 15 –g 3.0; 1 kb: -d 17 –g 2.5; 5 kb: -d 6 –g 1.5; and 10 kb: -d 5 –g
1.3. Loops called by both methods were combined by placing all loops
into 10 kb bins, and if HiCCUPS and SIP called the same loopwithin the
10 kb bin, then only one instance of this loop was kept. Loops in sub-
sampledmapswere overlappedwith loops called in the full 20.3 billion
maps if the loopwaswithin ±25 kb of each other. Overlap of loopswith
CTCF was done using a published list of CTCF ChIP-seq peaks and
motifs2. Central 1 kb bins were assigned to those where we could
unambiguously assign a CTCF ChIP-seq peak to a unique bin at motifs
in convergent orientation. Only loops with unambiguous CTCF
assignment were used in loop-proximal, a.k.a. knot, analysis. Droso-
phila Pc loops were filtered for overlap between previously published
identifications31,40. Bullseye plots were created using SIPMeta v1.332,

and the rate of loss was calculated as the average at each Manhattan
distance (ring) moving away from the central bin. These values were
plotted as a ratio to the central bin’s signal. The central bin of loops
called at AUC values was computed using Simpson’s rule. The per-
centage rate of change listed in the main text was calculated by aver-
aging the number of kb between each 10% loss of signal. Loops were
placed into five equally sized categories (quintiles) based on AUC
values. AUC values between WT, ΔZF1, and ΔZF10 were normalized by
the diagonal to account for differences in the expected decay. Hi-C for
WT, ΔZF1, and ΔZF10 was obtained from GSE12559544, while WT vs.
ΔZF8 was obtained from GSE15394845.

TADs were identified by the onTAD v1.418 at 5 kb with default
parameters. Note that we tried higher resolutions and alternate
TAD callers but met with errors related to extensive memory
usage. Overlap with compartment borders vs. CTCF loop anchors
was performed by extending the TAD border 10 kb in either
direction and taking the closest feature. TAD strength was
directly derived by TAD. Fit-Hi-C76 interactions were identified in
1 kb bin-pairs with an FDR of 0.05.

Enhancer promoter interactions called in Hi-C were identified by
FitHiC v2.0776 while H3K27ac HiChIP significant interactions were
called by FitHiChIP42. Randomization of connections was done by
taking the identified enhancer-promoter interactions on chr1 and
shuffling the anchors randomly amongst themselves. H3K27ac HiChIP
data in GM12878 cells were obtained from GSE10149821.

Physical modeling of compartment structures
The physical model is based on the Minimal Chromatin Model
(MiChroM) 54, but here we represent each nucleosome, a mole-
cular assembly with a roughly cylindrical shape and a diameter of
10 nm, as a spherical particle with the same diameter. The dis-
tance between the centers of neighboring nucleosomes varies
from 10 to 20 nm, i.e., the length of a straight linker DNA of about
50 bp. Similar to MiChroM, the energy function of the developed

model consists of a term accounting for a generic homopolymer
(UHP) as already described, together with interactions accounting
for phase separation (Utype-to-type) and a translational invariant
term accounting for lengthwise compaction (UIC).

The energy function of the developed physical model takes the
form: (20)
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In this energy function expression, UHP indicates the homo-
polymer potential of the chromatin fiber and consists of the follow-
ing five terms, UFENE (Finite Extensible Nonlinear Elastic potential),
UAngle (angle potential), Uhc (hard-core repulsive potential between
nucleosome beads), Usc (soft-core repulsive potential for non-
bonded pairs of nucleosome beads) and Uc (confinement potential
between the chromatin and a spherical wall). The functional form of
individual terms above are the same as in MiChroM54, except in this
case, the UFENE is tuned to control the distance between neighboring
nucleosomes consistently with the length of the linker DNA. Besides
UHP, both Utype-to-type and UIC are defined by the crosslinking prob-
ability (21) f ðrijÞ= 1

2 ð1 + tanh½μðrc � rijÞ�Þ, with μ= 1:79σ, rc =3:43σ and
σ = 10 nm, and by the tunable coefficients α and γ (values are pro-
vided in attachments).

Molecular dynamics simulations were performed following the
protocol described in ref. 54,77. The production simulation of each
chromatin segment presented in this work was carried out over eight
replicas with 1:25× 108 steps, storing a frame every 1 × 103 steps that
generated a total of one million 3D structures. These structures were
used to calculate the in silico Hi-C maps which are compared with the
experimental ones. S

Parameters in the energy function were trained to reproduce the
Hi-C contact map at 1 kb resolution on the 39.5–42.5Mb region of
chromosome 7. Once trained, themodel is then used to predict the 3D
structural ensembles of other regions with the sole input of the
eigenvector for such regions. Then, the bead-to-bead distances in the
ensemble 3D structures are used to generate, in silico, Hi-C maps at
1 kb resolution.

Differences between the MiChroM distance maps and Hi-C were
quantified by taking the Pearson correlation compartmental matrix of
each and calculating the mean of the squared differences (MSD), (22)
MeanððPearsonHiCij � PearsonSimijÞ2Þ between the two matrices. To
estimate a null background, we took the MSD compared to Juicer’s
expected matrix.

OligoSTORM oligopaint analysis
The compartment classification of the OligoSTORM density map
relative to 8.16Mb region extending from chr19:7,400,000 (19p13.2)
to chr19:15,560,000 (19p13.12) in PGP1f was obtained from previously
published work27. Briefly, each of the nine chromosomal segments was
clustered based on five structural and spatial measures (the distance
score, the entanglement score, the surface area, the volume, and the
sphericity score) in twomajor clusters. A feature vectorwas created for
eachhomolog, which is a binary 1 × 9 vector encoding the cluster types
of each chromosomal segment in the region. The resulting chromo-
some matrix was hierarchically clustered using the one-way unweigh-
ted pair group method with arithmetic means (UPGMA) based on the
Jaccard similarity Jaccard index. POSSUMM was used to call compart-
ments at 5 kb resolution in the Hi-C data. Compartment similarity
matrices were calculated as abs (probeCompi – probeCompj), where
probeComp represents the median Hi-C eigenvector within the
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probed regionor the relative A/Bpercentages of eachprobed region in
OligoSTORM images.

Comparison with other datasets
Hi-C read-pairs from CTCF ΔZF1, ΔZF1, and wild-type were
downloaded from GSE12559544 and processed with juicer to the
mm10 genome. Hi-C maps from the D. melanogaster dm6 genome
and the C. elegans ce10 genome were obtained from our pre-
viously published work31,32. Hi-C maps used in our metric com-
parison are listed in Tables S2 and S7.

Enhancers were downloaded from DENdb19, and active enhancers
were defined as those that overlap with H3K27ac ChIP-seq peaks in
GM12878. Histone modification ChIP-seq data were obtained from the
ENCODE reference epigenome series ENCSR977QPF and RNAPII ChIP-
seq peaks were combined from RNAPII, RNAPIISer2ph, and RNAPII-
Ser5ph from ENCSR447YYN and ENCSR000DZK 20,78, with overlapping
peaks merged into a single peak. GRO-seq data from GM12878 was
downloaded fromGSM148032679, and chromHMMstates forGM12878
were downloaded from the Roadmap Epigenomics Project75.

Study consent, sex, and/or gender considerations
Consent from individuals was obtained under the Institutional Review
Board of Mass General Brigham #2013P000323 as a secondary analy-
sis. The approval number C-0806-023-246 for the AK1 individual was
assigned based on the Institutional Review Board of Seoul National
University guidelines. This study combines samples from both male
and female donors. Male lines include GM12891, GM11168, GM19239,
AK1. Female lines include GM12892, GM18951, GM18526, GM13976,
GM13977,GM12878. It wasnecessary to combine thedatasets to obtain
the resolution; therefore, we cannot compare and account for sex in
this study. Technological limitations and costs prevent achieving a
comparable resolution in each. We demonstrate the problems by
comparing low-resolution maps to high-resolution maps in the sup-
plementary figures. However, we provide the individual correlations
between individual maps along with the gender of each Source Data.
The individual maps are also available through the relevant accessions
listed in Data Availability.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human genome 19 (hg19) assembly is available from the
NCBI accession GCF_000001405.13. The Hi-C data from public LCLs
generated in this study have been deposited in the ENCODE database
under accession codes: ENCSR261EVH for GM13977 (https://www.
encodeproject.org/experiments/ENCSR261EVH/), ENCSR196MPD for
GM11168 (https://www.encodeproject.org/experiments/ENCSR196
MPD/), ENCSR118FFR for GM18951 (https://www.encodeproject.org/
experiments/ENCSR118FFR/), ENCSR634FNY for GM13976 (https://
www.encodeproject.org/experiments/ENCSR634FNY/), ENCSR410
MDC for GM12878 (https://www.encodeproject.org/experiments/
ENCSR410MDC/), ENCSR508EMN for AK1 (https://www.encode
project.org/experiments/ENCSR508EMN/), ENCSR859YSL for
GM12891 https://www.encodeproject.org/experiments/ENCSR859
YSL/), ENCSR075VWI for GM12892 https://www.encodeproject.org/
experiments/ENCSR075VWI/), ENCSR693CIM for GM18526 (https://
www.encodeproject.org/experiments/ENCSR693CIM/), and ENCSR2
64SMC for GM19239 (https://www.encodeproject.org/experiments/
ENCSR264SMC/). The combined signal matrix is browsable using
juicebox.js by selecting Harris HL, Gu H. et al. from the Juicebox
Archive menu. The previously published data used in this study are
available in the ENCODE database under accessions ENCSR977QPF
for histone modifications and DNase-seq, ENCSR447YYN for histone

marks and RNAPIIser5ph, ENCSR000DZK for RNAPIISer2ph, and
from the Gene Expression Omnibus (GEO) under accession
GSM1480326 for GRO-seq, GSE123552 for PGP1f Hi-C, GSE125595 for
Hi-C in ZF mutants, GSE101498 for H3K27ac HiChIP, GSE132640
for Hi-C in C. elegans, GSE80701 for Hi-C in D. melanogaster cells,
and from the Roadmap Epigenomics Project (https://egg2.wustl.
edu/roadmap/data/byFileType/chromhmmSegmentations/Chmm
Models/coreMarks/jointModel/final/E116_15_coreMarks_dense.bed.
gz) for chromHMM states. Chromatin 3D structures are deposited in
the Nucleome Data Bank https://ndb.rice.edu/Data and can be
downloaded by selecting Harris_etal_NatComm_2023 from the
dropdownmenu80. Source data for Fig. 1g, 2d, 3c, 3f, 3g, 5d, cell lines
by sex and/or gender, and MiChroM model parameters are included
in the Source Data file. Source data are provided with this paper.

Code availability
Our programs for subsampling, noise estimation, and eigenvector
calculation on sparse matrices can be downloaded from https://
github.com/JRowleyLab/HiCSampler81, https://github.com/JRowley
Lab/HiCNoiseMeasurer82, and https://github.com/aidenlab/Eigen
Vector83. These are open source and include source code as well
as implementations in python and C + +. Simulation software can be
found at https://github.com/DiPierroLab/NuChroM84.

References
1. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range

interactions reveals folding principles of the human genome. Sci-
ence 326, 289–293 (2009).

2. Rao, S. S. P. et al. A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell 159,
1665–1680 (2014).

3. Kalluchi, A. et al. Considerations and caveats for analyzing chro-
matin compartments. Front. Mol. Biosci. 10, 1168562 (2023).

4. Belaghzal, H. et al. Liquid chromatin Hi-C characterizes
compartment-dependent chromatin interaction dynamics. Nat.
Genet 53, 367–378 (2021).

5. Krietenstein, N. et al. Ultrastructural details of mammalian chro-
mosome architecture. Mol. Cell 78, 554–565.e557 (2020).

6. Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked
mammalian chromatin folding.Mol. Cell 78, 539–553.e538
(2020).

7. Rowley, M. J. et al. Condensin II counteracts cohesin and RNA
polymerase ii in the establishment of 3D chromatin organization.
Cell Rep. 26, 2890–2903.e2893 (2019).

8. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D
chromatin organization. Mol. Cell 67, 837–852 (2017).

9. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226
(2017).

10. Heinz, S. et al. Transcription elongation can affect genome 3D
structure. Cell 174, 1522–1536.e1522 (2018).

11. Durand, N. C. et al. Juicer provides a one-click system for analyzing
loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

12. Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data
and other genomically labeled arrays. Bioinformatics 36,
311–316 (2020).

13. Zheng, X. & Zheng, Y. CscoreTool: fast Hi-C compartment analysis
at high resolution. Bioinformatics 34, 1568–1570 (2018).

14. Liu, Y. et al. Systematic inference and comparison of multi-scale
chromatin sub-compartments connects spatial organization to cell
phenotypes. Nat. Commun. 12, 2439 (2021).

15. Rowley, M. J. & Corces, V. G. Organizational principles of 3D gen-
ome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

16. Dong, P. et al. 3D chromatin architecture of large plant genomes
determined by local A/B compartments. Mol. Plant 10, 1497–1509
(2017).

Article https://doi.org/10.1038/s41467-023-38429-1

Nature Communications | (2023)14:3303 14

https://www.encodeproject.org/reference-epigenomes/ENCSR977QPF/
https://www.encodeproject.org/reference-epigenomes/ENCSR447YYN/
https://www.encodeproject.org/experiments/ENCSR000DZK/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1480326
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
https://www.encodeproject.org/experiments/ENCSR261EVH/
https://www.encodeproject.org/experiments/ENCSR261EVH/
https://www.encodeproject.org/experiments/ENCSR196MPD/
https://www.encodeproject.org/experiments/ENCSR196MPD/
https://www.encodeproject.org/experiments/ENCSR118FFR/
https://www.encodeproject.org/experiments/ENCSR118FFR/
https://www.encodeproject.org/experiments/ENCSR634FNY/
https://www.encodeproject.org/experiments/ENCSR634FNY/
https://www.encodeproject.org/experiments/ENCSR410MDC/
https://www.encodeproject.org/experiments/ENCSR410MDC/
https://www.encodeproject.org/experiments/ENCSR508EMN/
https://www.encodeproject.org/experiments/ENCSR508EMN/
https://www.encodeproject.org/experiments/ENCSR859YSL/
https://www.encodeproject.org/experiments/ENCSR859YSL/
https://www.encodeproject.org/experiments/ENCSR075VWI/
https://www.encodeproject.org/experiments/ENCSR075VWI/
https://www.encodeproject.org/experiments/ENCSR693CIM/
https://www.encodeproject.org/experiments/ENCSR693CIM/
https://www.encodeproject.org/experiments/ENCSR264SMC/
https://www.encodeproject.org/experiments/ENCSR264SMC/
https://www.encodeproject.org/reference-epigenomes/ENCSR977QPF/
https://www.encodeproject.org/reference-epigenomes/ENCSR447YYN/
https://www.encodeproject.org/experiments/ENCSR000DZK/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1480326
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123552
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125595
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101498
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132640
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80701
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/E116_15_coreMarks_dense.bed.gz
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/E116_15_coreMarks_dense.bed.gz
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/E116_15_coreMarks_dense.bed.gz
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/E116_15_coreMarks_dense.bed.gz
https://ndb.rice.edu/Data
https://github.com/JRowleyLab/HiCSampler
https://github.com/JRowleyLab/HiCSampler
https://github.com/JRowleyLab/HiCNoiseMeasurer
https://github.com/JRowleyLab/HiCNoiseMeasurer
https://github.com/aidenlab/EigenVector
https://github.com/aidenlab/EigenVector
https://github.com/DiPierroLab/NuChroM


17. Rao, S. et al. Cohesin loss eliminates all loop domains. Cell 171,
305–320 (2017).

18. An, L. et al. OnTAD: hierarchical domain structure reveals the
divergence of activity among TADs and boundaries. Genome Biol.
20, 282 (2019).

19. Ashoor, H., Kleftogiannis, D., Radovanovic, A. & Bajic, V. B. DENdb:
database of integrated human enhancers. Database 2015. https://
doi.org/10.1093/database/bav085 (2015).

20. Zhang, J. et al. An integrative ENCODE resource for cancer geno-
mics. Nat. Commun. 11, 3696 (2020).

21. Mumbach, M. R. et al. Enhancer connectome in primary human
cells identifies target genes of disease-associated DNA elements.
Nat. Genet. 49, 1602–1612 (2017).

22. Ernst, J. & Kellis, M. Chromatin-state discovery and genome anno-
tation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

23. Zhou, J. Sequence-based modeling of three-dimensional genome
architecture from kilobase to chromosome scale. Nat. Genet. 54,
725–734 (2022).

24. vanSchaik, T., Vos,M., Peric-Hupkes, D., HnCelie, P. & vanSteensel,
B. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21,
e50636 (2020).

25. Briand, N. & Collas, P. Lamina-associated domains: peripheral
matters and internal affairs. Genome Biol. 21, 85 (2020).

26. Zheng, X. et al. Lamins organize the global three-dimensional
genome from the nuclear periphery. Mol. Cell 71, 802–815.e807
(2018).

27. Nir, G. et al. Walking along chromosomes with super-resolution
imaging, contact maps, and integrative modeling. PLoS Genet. 14,
e1007872 (2018).

28. Su, J. H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-
scale imaging of the 3D organization and transcriptional activity of
chromatin. Cell 182, 1641–1659.e1626 (2020).

29. Sawh, A. N. et al. Lamina-dependent stretching and unconventional
chromosome compartments in early C. elegans embryos.Mol. Cell
78, 96–111.e116 (2020).

30. Wang, S. et al. Spatial organization of chromatin domains and
compartments in single chromosomes. Science 353, 598–602
(2016).

31. Cubeñas-Potts, C. et al. Different enhancer classes in Drosophila
bind distinct architectural proteins and mediate unique chromatin
interactions and 3D architecture. Nucleic Acids Res. 45, 1714–1730
(2016).

32. Rowley, M. J. et al. Analysis of Hi-C data using SIP effectively
identifies loops in organisms fromC. elegans tomammals.Genome
Res. 30, 447–458 (2020).

33. Anderson, E. C. et al. XChromosomedomain architecture regulates
caenorhabditis elegans lifespan but not dosage compensation.
Dev. Cell. https://doi.org/10.1016/j.devcel.2019.08.004 (2019).

34. Kim, J. Jimenez, D. et al. Condensin DC loads and spreads from
recruitment sites to create loop-anchored TADs in C. elegans. Elife.
11, e68745 (2022).

35. Davidson, I. F., Peters, J. M. Genome folding through loop extrusion
by SMC complexes. Nat. Rev. Mol. Cell Biol. https://doi.org/10.
1038/s41580-021-00349-7 (2021).

36. Fudenberg, G. et al. Formation of chromosomal domains by loop
extrusion. Cell Rep. 15, 2038–2049 (2016).

37. Sanborn, A. L. et al. Chromatin extrusion explains key features of
loop and domain formation in wild-type and engineered genomes.
Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.
1518552112 (2015).

38. Nichols, M. H. & Corces, V. G. A CTCF code for 3D genome archi-
tecture. Cell 162, 703–705 (2015).

39. Gutierrez-Perez, I. et al. Ecdysone-induced 3D chromatin reorgani-
zation involves active enhancers bound by Pipsqueak and Poly-
comb. Cell Rep. 28, 2715–2727 (2019).

40. Eagen, K. P., Aiden, E. L. & Kornberg, R. D. Polycomb-mediated
chromatin loops revealed by a subkilobase-resolution chromatin
interaction map. Proc. Natl Acad. Sci. 114, 8764–8769 (2017).

41. Ogiyama, Y., Schuettengruber,B., Papadopoulos,G. L., Chang, J.M.
& Cavalli, G. Polycomb-dependent chromatin looping contributes
to gene silencing during drosophila development. Mol. Cell 71,
73–88 (2018).

42. Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification
of significant chromatin contacts from HiChIP data by FitHiChIP.
Nat. Commun. 10, 4221 (2019).

43. Islam, Z. et al. Active enhancers strengthen insulation by RNA-
mediated CTCF binding at chromatin domain boundaries. Genome
Res. https://doi.org/10.1101/gr.276643.122 (2023).

44. Saldana-Meyer, R. et al. RNA interactions are essential for CTCF-
mediated genome organization. Mol. Cell 76, 412–422.e415
(2019).

45. Soochit, W. et al. CTCF chromatin residence time controls three-
dimensional genome organization, gene expression and DNA
methylation in pluripotent cells. Nat. Cell Biol. 23, 881–893
(2021).

46. Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding
into topologically associating domains. Sci. Adv. 5, eaaw1668
(2019).

47. Sikorska, N. & Sexton, T. Defining functionally relevant spatial
chromatin domains: it is a TAD complicated. J. Mol. Biol. 432,
653–664 (2020).

48. Ea, V., Baudement, M. O., Lesne, A. & Forne, T. Contribution of
topological domains and loop formation to 3D chromatin organi-
zation. Genes 6, 734–750 (2015).

49. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture Micro-C
reveals coalescence of enhancers and promoters into nested
microcompartments. Nat. Genet. https://doi.org/10.1038/s41588-
023-01391-1 (2023).

50. Vilarrasa-Blasi, R. et al. Dynamics of genome architecture and
chromatin function during human B cell differentiation and neo-
plastic transformation. Nat. Commun. 12, 651 (2021).

51. Lucic, B. et al. Spatially clustered loci with multiple enhancers are
frequent targets of HIV-1 integration. Nat. Commun. 10, 4059
(2019).

52. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. &Mirny, L. A.
Chromatin organization by an interplay of loop extrusion and
compartmental segregation. Proc. Natl Acad. Sci. USA 115,
E6697–E6706 (2018).

53. Di Pierro, M., Cheng, R. R., Lieberman Aiden, E., Wolynes, P. G. &
Onuchic, J. N. De novo prediction of human chromosome struc-
tures: Epigenetic marking patterns encode genome architecture.
Proc. Natl Acad. Sci. USA 114, 12126–12131 (2017).

54. Di Pierro, M., Zhang, B., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N.
Transferable model for chromosome architecture. Proc. Natl Acad.
Sci. U.S.A. 113, 12168–12173 (2016).

55. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in
spatial genome organization. Cell 176, 1502–1515.e1510 (2019).

56. Luppino, J. M. et al. Cohesin promotes stochastic domain inter-
mingling to ensure proper regulation of boundary-proximal genes.
Nat. Genet. 52, 840–848 (2020).

57. Bintu, B. et al. Super-resolution chromatin tracing reveals domains
and cooperative interactions in single cells. Science 362 https://
doi.org/10.1126/science.aau1783 (2018).

58. Leidescher, S. et al. Spatial organization of transcribed eukaryotic
genes. Nat. Cell Biol. 24, 327–339 (2022).

59. Jiang, Y. et al. Genome-wide analyses of chromatin interactions
after the loss of Pol I, Pol II, and Pol III. Genome Biol. 21, 158
(2020).

60. Nichols, M. H. & Corces, V. G. Principles of 3D compartmentaliza-
tion of the human genome. Cell Rep. 35, 109330 (2021).

Article https://doi.org/10.1038/s41467-023-38429-1

Nature Communications | (2023)14:3303 15

https://doi.org/10.1093/database/bav085
https://doi.org/10.1093/database/bav085
https://doi.org/10.1016/j.devcel.2019.08.004
https://doi.org/10.1038/s41580-021-00349-7
https://doi.org/10.1038/s41580-021-00349-7
https://doi.org/10.1073/pnas.1518552112
https://doi.org/10.1073/pnas.1518552112
https://doi.org/10.1101/gr.276643.122
https://doi.org/10.1038/s41588-023-01391-1
https://doi.org/10.1038/s41588-023-01391-1
https://doi.org/10.1126/science.aau1783
https://doi.org/10.1126/science.aau1783


61. Stigler, J., Çamdere, G. Ö., Koshland, D. E. & Greene, E. C. Single-
molecule imaging reveals a collapsed conformational state for
DNA-bound cohesin. Cell Rep. https://doi.org/10.1016/j.celrep.
2016.04.003 (2016).

62. Davidson, I. F. et al. Rapid movement and transcriptional re-
localization of human cohesin on DNA. EMBO J. 35, 2671–2685
(2016).

63. Busslinger, G. A. et al. Cohesin is positioned in mammalian gen-
omes by transcription, CTCF and Wapl. Nature 544,
503–507 (2017).

64. You, Q. et al. Direct DNA crosslinking with CAP-C uncovers
transcription-dependent chromatin organization at high resolution.
Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0643-8
(2020).

65. Vian, L. et al. The energetics and physiological impact of cohesin
extrusion. Cell 175, 292–294 (2018).

66. Lebeau, B. et al. Single base-pair resolution analysis of DNA binding
motif with MoMotif reveals an oncogenic function of CTCF zinc-
finger 1 mutation. Nucleic Acids Res. https://doi.org/10.1093/nar/
gkac658 (2022).

67. Zhang, S. et al. RNA polymerase II is required for spatial chromatin
reorganization following exit from mitosis. Sci. Adv. 7,
eabg8205 (2021).

68. Batut, P. J. et al. Genome organization controls transcriptional
dynamics during development. Science 375, 566–570 (2022).

69. Kim, J. I. et al. A highly annotated whole-genome sequence of a
Korean individual. Nature 460, 1011–1015 (2009).

70. Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data
using a stratum-adjusted correlation coefficient. Genome Res. 27,
1939–1949 (2017).

71. Schreiber, J., Durham, T., Bilmes, J. &Noble,W. S. Avocado: amulti-
scale deep tensor factorization method learns a latent representa-
tion of the human epigenome. Genome Biol. 21, 81 (2020).

72. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

73. Baglama, J. & Lothar, R. Augmented implicitly restarted lanczos
bidiagonalization methods. SIAM J. Sci. Comput 27, 19–42
(2005).

74. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deep-
Tools: a flexible platform for exploring deep-sequencing data.
Nucleic Acids Res. 42, W187–W191 (2014).

75. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference
human epigenomes. Nature 518, 317–330 (2015).

76. Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation
for Hi-C data reveals regulatory chromatin contacts. Genome Res
24, 999–1011 (2014).

77. Oliveira Junior, A. B., Contessoto, V. G., Mello, M. F. &Onuchic, J. N.
A. Scalable computational approach for simulating complexes of
multiple chromosomes. J. Mol. Biol. 433, 166700 (2021).

78. Consortium, E. P. An integrated encyclopedia of DNA elements in
the human genome. Nature 489, 57–74 (2012).

79. Core, L. J. et al. Analysis of nascent RNA identifies a unified archi-
tecture of initiation regions at mammalian promoters and enhan-
cers. Nat. Genet. 46, 1311–1320 (2014).

80. Contessoto, V. G. et al. The Nucleome Data Bank: web-based
resources to simulate and analyze the three-dimensional genome.
Nucleic Acids Res. 49, D172–D182 (2021).

81. Krishna, A. & Rowley, M. J. Chromatin alternates between A and B
compartments at kilobase scale for subgenic organization. https://
github.com/JRowleyLab/HiCSampler. https://doi.org/10.5281/
zenodo.7783031 (2022).

82. Rowley, M.J. Chromatin alternates between A and B compartments
at kilobase scale for subgenic organization. https://github.com/

JRowleyLab/HiCNoiseMeasurer. https://doi.org/10.5281/zenodo.
7783035 (2022).

83. Olshansky, M. & Aiden, E. L. Chromatin alternates between A and B
compartments at kilobase scale for subgenic organization. https://
github.com/aidenlab/EigenVector (2022).

84. Wang, A. & Di Pierro, M. Chromatin alternates between A and B
compartments at kilobase scale for subgenic organization. https://
github.com/DiPierroLab/NuChroM (2023).

Acknowledgements
We acknowledge additional members of the ENCODE consortium’s
Nuclear ArchitectureWorkingGroup for thought-provoking discussions.
We also thank Ting Wu for the helpful discussions.

Author contributions
Conceptualization: H.G., H.H., M.O., Y.E., D.H.P., W.S.N, E.L.A., M.J.R.
Experiments: H.G., A.O.,M.P., A.P.A. Investigation: H.G., H.H.,M.O., A.W.,
I.F., Y.E., A.Kr., A.Ka., M.J., G.C., M.P., S.S.P.R., O.D., A.O., K.M., S.K.,
M.H.N., E.S.D., D.U., D.G., G.N.,M.D.P., M.J.R. PhysicalModeling: A.W. and
M.D.P. Project administration: A.P.A., V.G.C., D.H.P., W.S.N., M.DP., J.S.,
M.E.T., E.L.A., M.J.R. Software: M.O., A.Kr., A.Ka. Writing—original draft:
H.H., M.J.R. Writing—review & editing: H.G., M.O., A.W., Y.E., V.G.C.,
D.H.P., W.S.N., M.D.P., J.S., M.E.T., E.L.A. Project leads: E.L.A., M.J.R.

Funding
Research reported in this publication was supported by the following:
Cornelia de Lange Syndrome Foundation grant (S.S.P.R); National Insti-
tutes of Health grant T32-GM067553 (E.S.D); National Institutes of
Health grant R35-GM128645 (D.H.P.); National Institutes of Health grant
R35-GM139408 (V.G.C.); National Institutes of Health grant
R35GM146852 (M.D.P.); National Institutes of Health grant R01-
MH115957 (M.E.T.); CPRIT RR210018 (G.N.); National Institutes of Health
grant U24 ~HG009446 (W.S.N.); The Welch Foundation Q-1866 (E.L.A.);
AMcNairMedical Institute Scholar Award (E.L.A.); The NIH Encyclopedia
of DNA Elements Mapping Center Award UM1HG009375 (E.L.A.); A US-
Israel Binational Science Foundation Award 2019276 (E.L.A.); The Beha-
vioral Plasticity Research Institute NSF DBI-2021795 (E.L.A.); NSF Physics
Frontiers Center Award NSF PHY-2019745 (E.L.A., M.D.P., A.W.); National
Institutes of Health grant RM1HG011016-01A1 (E.L.A., including support
for I.F.); National Institutes of Health grants R00-GM127671 and R35-
GM147467 (M.J.R.); The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIH.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38429-1.

Correspondence and requests for materials should be addressed to
Erez Lieberman Aiden or M. Jordan Rowley.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-38429-1

Nature Communications | (2023)14:3303 16

https://doi.org/10.1016/j.celrep.2016.04.003
https://doi.org/10.1016/j.celrep.2016.04.003
https://doi.org/10.1038/s41587-020-0643-8
https://doi.org/10.1093/nar/gkac658
https://doi.org/10.1093/nar/gkac658
https://github.com/JRowleyLab/HiCSampler
https://github.com/JRowleyLab/HiCSampler
https://doi.org/10.5281/zenodo.7783031
https://doi.org/10.5281/zenodo.7783031
https://github.com/JRowleyLab/HiCNoiseMeasurer
https://github.com/JRowleyLab/HiCNoiseMeasurer
https://doi.org/10.5281/zenodo.7783035
https://doi.org/10.5281/zenodo.7783035
https://github.com/aidenlab/EigenVector
https://github.com/aidenlab/EigenVector
https://github.com/DiPierroLab/NuChroM
https://github.com/DiPierroLab/NuChroM
https://doi.org/10.1038/s41467-023-38429-1
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

1Department of Genetics, Cell Biology and Anatomy, University of NebraskaMedical Center, Omaha, NE, USA. 2Center for Genome Architecture, Department
ofMolecular andHumanGenetics, Baylor College ofMedicine, Houston, TX, USA. 3Computational Biology andClinical Informatics, Baker Heart andDiabetes
Institute, Melbourne, VIC, Australia. 4Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA. 5CNAG-CRG, Centre for Genomic
Regulation (CRG), Barcelona Institute of Science and Technology (BISB), 17 08028 Barcelona, Spain. 6Integrative Nuclear Architecture Laboratory, Center for
Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy. 7Paul G. Allen School of Computer Science & Engineering, University of Washington,
Seattle, WA, USA. 8Department of Genome Sciences, University of Washington, Seattle, WA, USA. 9Department of Structural Biology, Stanford University
School ofMedicine, Stanford,CA94305,USA. 10MassachusettsGeneralHospital, Boston,MA,USA. 11Macrogen Inc, Seoul, Republic of Korea. 12Department of
Human Genetics, Emory University School of Medicine, Atlanta, GA, USA. 13Curriculum in Bioinformatics and Computational Biology, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA. 14Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA. 15Department of Cell
Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA. 16Department of Biochemistry andMolecular Biology, University of Texas Medical
Branch, Galveston, TX,USA. 17Department of Physics, NortheasternUniversity, Boston,MA, USA. 18AsianGenome Institute, Seoul National University Bundang
Hospital, Gyeonggi-do, Republic of Korea. 19Department of Neurology, HarvardMedical School, Boston, MA, USA. 20Program inMedical Population Genetics
and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 21Center for Theoretical Biological Physics, Rice
University, Houston, TX, USA. 22These authors contributed equally: Hannah L. Harris, Huiya Gu. e-mail: erez@erez.com; jordan.rowley@unmc.edu

Article https://doi.org/10.1038/s41467-023-38429-1

Nature Communications | (2023)14:3303 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:erez@erez.com
mailto:jordan.rowley@unmc.edu

	Chromatin alternates between A and B compartments at kilobase scale for subgenic organization
	Results
	Generation of an ultra-deep in�situ Hi-C map in lymphoblastoid cells spanning 33 billion contacts
	Development of PCA of Sparse, SUper Massive Matrices (POSSUMM), and its use to create a genome-wide compartment profile with 500 bp resolution
	The median compartment interval is 12.5 kb long
	Kilobase-scale compartment intervals frequently give rise to contact domains
	Essentially all active promoter and enhancer elements localize in the A compartment
	The B compartment is largely characterized by an absence of commonly examined chromatin marks
	Many genes exhibit discordant compartmentalization, with the TSS in the A compartment and the TTS in the B compartment
	3D modeling helps delineate compartment domains
	Loci with ambiguous Hi-C compartment definitions have high cellular heterogeneity
	Loop extrusion forms diffuse loops
	Deletion of CTCF’s RNA binding domains leads to more punctate loops

	Discussion
	Methods
	Inclusion and ethics
	Library preparation, initial processing, and quality metrics
	Compartment analysis
	Introduction to PCA of Sparse, SUper Massive Matrices (POSSUMM)
	POSSUMM details
	Loop analysis
	Physical modeling of compartment structures
	OligoSTORM oligopaint analysis
	Comparison with other datasets
	Study consent, sex, and/or gender considerations
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




