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We study capacity sizing of park-and-ride lots that offer services to commuters sensitive to congestion and
parking availability information. The goal is to determine parking lot capacities that maximize the total
social welfare for commuters whose parking lot choices are predicted using the multinomial logit model. We
formulate the problem as a non-convex nonlinear program that involves a lower and an upper bound on each
lot’s capacity, and a fixed-point constraint reflecting the effects of parking information and congestion on
commuters’ lot choices. We show that except for at most one lot, the optimal capacity of each lot takes one
of three possible values. Based on analytical results, we develop a one-variable search algorithm to solve the
model. We learn from numerical results that the optimal capacity of a lot with a high intrinsic utility tends
to be equal to the upper bound. By contrast, a lot with a low or moderate-sized intrinsic utility tends to
attain an optimal capacity on its effective lower bound. We evaluate the performance of the optimal solution
under different choice scenarios of commuters who are shared with real-time parking information. We learn
that commuters are better off in an average choice scenario when both the effects of parking information
and congestion are considered in the model than when either effect is ignored from the model.
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1. Introduction
Park-and-ride has become an indispensable part of life for many people who commute between

their homes in suburban areas and workplaces in central business districts (CBDs). A park-and-ride
lot (or simply, a lot) is a key facility in a park-and-ride system where commuters can park their cars
and get access to public transit. Park-and-ride lots are designed, maintained, and managed by state
or local departments of transportation (DOTs) to serve communities in the satellite cities of a core
urban area. For example, there are 134 park-and-ride lots with around 22,453 spaces scattered in the
satellite cities surrounding the Seattle CBD (WSDOT, 2022). Table 1 shows example park-and-ride
lots, their capacities, and average daily utilization in 2021 (PSRC, 2022).

Park and ride in the United States can date back to the 1930s (Noel, 1988) and received great
attention in the 1970s when the DOTs in different urban areas attempted to introduce an economical
travel mode as an alternative to driving private cars all the way to office, in response to growing

1



Xinchang Wang, Qie He: Optimal Capacity Sizing of Park-and-Ride Lots
2 Manuscript

Table 1 The spaces and utilization of example park-and-ride lots in the Greater Seattle Area in 2021.

Park & Ride Name Address Capacity Utilization
Arlington P&R SR 9 & SR 530 25 36%
Smokey Point Community Church SmokeyPt Blvd/77th St NE 50 24%
All Saints Lutheran Church 27225 Military Rd S 75 46%

oil prices brought about by the Oil Crisis (Spillar, 1997). As green mobility attracts the growing
attention of policymakers, recent years have witnessed an increasing interest in park and ride that is
believed to reduce traffic jams and emissions (Holgúin-Veras et al., 2012; Stieffenhofer et al., 2016).

This work investigates the optimal capacity sizing problem for a park-and-ride system, in which a
DOT plans to design or re-design a set of park-and-ride lots in a specific service area, e.g., a satellite
city, and needs to determine the optimal capacity of each lot. The capacities of all the lots form a
vector called a capacity plan. The ridership demand model that forecasts the demand at a lot plays a
central role in the problem. The demand is interchangeably used with the traffic flow routed through
the lot in this paper and measured as the number of commuter vehicles parked at the lot during
a period of time (e.g., peak hours on weekday mornings) in practice. The number of park-and-ride
commuters per parked vehicle is often estimated according to the experience of practitioners and
historical data. For instance, the number is estimated to be 1.4 in Bullard and Christiansen (1983).
Without loss of generality (w.l.o.g.), we assume that one parked vehicle is occupied by one commuter.

A ridership demand model is expected to possess several basic features. First, the demands at all
lots within the same service area are interdependent, since they serve the same group of commuters.
Second, the demands are influenced by the DOT’s capacity sizing decision. To elaborate, the capac-
ities of the lots will affect the parking utilization that will be shared with commuters (cf. Table 1),
and therefore affect the attractiveness of each lot to the commuters who are aware of (and sensitive
to) the information. As a result, the capacity sizing decision may affect the likelihood of commuters
choosing to visit a particular lot, thus affecting the demands. Third, the congestion effect should
be captured by the demand model. The congestion effect refers to the phenomenon that the utility
of a service or facility erodes as it serves a higher demand. Given a capacity sizing decision, the
utility of a lot perceived by commuters, which represents the preference of commuters toward the
lot, drops as more commuters choose to use the lot due to the congestion effect and increasing park-
ing utilization. Observe that the park-and-ride demands depend on the utilities of the lots, which
are, in turn, affected by the demands. This relation may lead to the well-known phenomenon called
traffic equilibrium, which has been observed in queueing systems (Maglaras et al., 2018), seaport
operation systems (Wang and Meng, 2019), and transportation systems (Cascetta, 2009). Discrete
choice models, such as the multinomial logit (MNL) model, nested logit (NL) model, and mixed logit
(ML) model (Train, 2009; Ben-Akiva and Lerman, 1985), have been broadly used to model the choice
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behavior of travelers facing a set of transportation modes such as riding public transit and driving a
private car (Naumov et al., 2020; Holgúin-Veras et al., 2012).

We will model the ridership demand at a lot using an MNL-based commuter choice model. The
commuter choice model forecasts the probability of commuters choosing a lot based on the utilities
of all the lots, thus reflecting the interdependence among the demands at all the lots. A lot’s utility
is first affected by a variety of physical attributes such as the lot’s economic attraction, accessibility,
and the transit fare. This part of the utility is called the intrinsic utility. Meanwhile, the utility is
formulated to depend on the demand and (average) parking utilization to account for the effects
of congestion and parking information on commuter choice. The commuter choice model developed
in this work can be viewed as an extended version of the site-level demand model which has been
applied to forecast the demands for individual park-and-ride lots (Abdus-Samad and Grecco, 1972;
Bullard and Christiansen, 1983; Spillar, 1997; Niles and Pogodzinski, 2021). Using the MNL-based
commuter choice model, we represent the demands at all lots at equilibrium (given a capacity sizing
decision) as a solution to a (vector) fixed-point equation.

Next, we explain the objective value and various constraints in the problem. As explained in Litman
(2019), one of the primary goals of public transit is to achieve social welfare benefits. The total social

welfare can be interpreted as the overall satisfaction received by all park-and-ride commuters, where
the satisfaction of a commuter can be measured by the utility of the park-and-ride lot that the
commuter chooses to use. As a policymaker, the DOT intends to maximize the total social welfare
when sizing a set of park-and-ride lots. Meanwhile, the demand realized at each lot cannot exceed
the lot’s capacity, which is referred to as a capacity constraint. Also, the demands at all lots need
to satisfy the fixed-point equation, which is referred to as the fixed-point constraint. Besides, as
explained in Bullard and Christiansen (1983), there are often constraints on both the minimum and
maximum lot sizes due to design and operational features of park-and-ride services. For example, a
lot should be designed with a minimum size to ensure that it can at least accommodate the demand
arriving between two consecutive buses during the morning commute, which we refer to as a lower-

bound constraint. Meanwhile, there is always an upper bound on the capacity due to limited space
and budget, which is referred to as an upper-bound constraint. Both the lower- and upper-bound
constraints are called bound constraints.

1.1. The Objective and Contributions

This section describes our objective and contributions. Since we now live in the era of smartphones,
it is easier than ever for commuters to access parking availability information through mobile apps
or websites. However, the effect of parking information on the travel mode choice of commuters has
not been well addressed in the literature on park-and-ride capacity sizing.
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This work is aimed at bridging the gap by studying optimal capacity sizing of park-and-ride lots
with consideration of information-aware commuters. The problem will be formulated as an optimiza-
tion model, in which we intend to determine an optimal capacity plan for a set of park-and-ride lots
in a specific service area to maximize the total social welfare received by commuters while honoring
the capacity constraints, lower- and lower-bound constraints, and the fixed-point constraint.

The main objective of this work is threefold: (i) to characterize the optimal capacities of the lots,
(ii) to develop effective algorithms to determine optimal capacities by leveraging the characterization
results, and (iii) to provide managerial insights into the properties of optimal capacities and the value
of modeling the effects of parking information and congestion in park-and-ride capacity sizing.

This work makes the following theoretical contributions:
(a) We formulate the optimal capacity sizing problem as a non-convex nonlinear optimization model

with capacity and bound constraints as well as the fixed-point constraint reflecting the effect
of parking information on commuter choice. The problem is challenging to solve due to these
constraints. To resolve the challenge, we transform the model into an equivalent flow-based
model, in which the optimal traffic flow rather than capacity is determined for each lot and the
fixed-point constraint is dropped. To the best of our knowledge, this work is the first to model
the effect of parking information in park-and-ride capacity sizing, which extends the existing
literature by adding a novel model and opens doors for future studies on park-and-ride with
information-aware commuters.

(b) We show that the flow-based model is equivalent to a univariate optimization model with only
one decision variable (i.e., the total traffic flow through all lots). The univariate model is built
upon a subproblem in which the capacity, bound, and fixed-point constraints are reformulated
as constraints over intervals. The subproblem is tractable to analyze due to its simple form of
constraints, which paves the way for obtaining analytical results for the capacity sizing problem.

(c) We provide analytical results that characterize the structure of the optimal solution to the
subproblem. Based on the structural results, we characterize the capacity plan that solves the
optimal capacity sizing problem.

(d) We develop a one-variable search algorithm to determine a near-optimal capacity plan by lever-
aging the characterization results. The algorithm involves an efficient solution procedure to
determine the traffic flow pattern at equilibrium under any given capacity plan. The procedure
is not only useful in sizing park-and-ride lots, but also provides traffic engineers with a method
to forecast equilibrium traffic flows under the MNL model.

We provide numerical results by solving the optimal capacity sizing problem for the park-and-ride
lots in the city of Bellevue in Washington State. The numerical analysis serves two purposes: to
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obtain insights into park-and-ride lot design in a satellite city such as Bellevue and to investigate the
value of modeling the effects of congestion and parking information in sizing park-and-ride lots.

We obtain the following managerial insights from the theoretical and numerical results:
(1) The optimal capacity sizing model may be infeasible, which signals the need to adopt smaller

lower bounds and/or larger upper bounds on the lots’ capacities. When the problem is feasible,
except for at most one lot whose optimal capacity is strictly between the lower and upper
bounds, the optimal capacity of each lot is equal to one of three values: the lower bound, the
upper bound, and the traffic flow through the lot.

(2) We learn from numerical results that a lot with a high intrinsic utility tends to have its optimal
capacity equal to the upper bound. A lot with a low intrinsic utility and a small lower bound
tends to have the optimal capacity equal to the optimal traffic flow through the lot, leading to
full utilization of the lot. However, when the lower bound is not small, the optimal capacity
tends to be equal to the lower bound. We also observe that the parking availability at a lot
with full utilization may not be improved by allowing for a smaller lower bound and/or a larger
upper bound on the lot’s capacity.

(3) When a lot has a high initial utilization rate, its utilization seems to be non-increasing as com-
muters become more sensitive to parking availability. However, if a lot attains low utilization with
commuters weakly sensitive to parking availability, the utilization tends to be non-decreasing
with possible jumps to lower levels as commuters care more about parking availability.

(4) Opening a subset of the potential park-and-ride lots may yield a higher total social welfare than
utilizing all of the available lots.

1.2. The Outline of the Work

The remainder of the paper is organized as follows. Section 2 reviews the related literature. Section 3
formally defines the optimal capacity sizing problem. In Section 4, we formulate the problem as a non-
convex nonlinear program and transform it into an equivalent flow-based model. We then pass on to
Section 5 to reformulate the flow-based model as a one-variable optimization model. Section 6 presents
a search algorithm to solve the problem. Numerical studies are provided in Section 7 and conclusions
are drawn in Section 8. Supplement materials and all proofs are provided in the e-companion.
2. Literature Review

There are two streams of research related to our work: park-and-ride capacity sizing and mul-
tiproduct price optimization under customer choice, which are discussed in Sections 2.1 and 2.2,
respectively.

2.1. Capacity Sizing for Park-and-Ride Lots

This work follows the line of research on capacity sizing for park-and-ride lots. Early studies,
such as Abdus-Samad and Grecco (1972) and Spillar (1997), were mostly performed in collaboration



Xinchang Wang, Qie He: Optimal Capacity Sizing of Park-and-Ride Lots
6 Manuscript

with local DOTs and focused on developing site-level demand models, in which regression analysis
is applied to forecast the demand at an individual park-and-ride lot based on characteristics such
as the location and accessibility. These studies treat demand forecasting and capacity sizing as two
separate decision-making processes: Demand is estimated first and a capacity size is then chosen to
serve the anticipated demand. This two-step method suffers from two drawbacks. First, the method
results in an independent-demand model (Talluri and van Ryzin, 2004): The demand at a lot is
not influenced by capacity sizing decisions, which is not necessarily true in practice. Second, the
demand is estimated for a single lot and does not depend on the demands at all other lots, which
may be unrealistic when multiple lots serve the same area and are thus regarded as substitutable
or interchangeable by commuters. Nordstrom and Christiansen (1981) and Bullard and Christiansen
(1983) applied site-level models to estimate park-and-ride demands in Texas based on nonlinear
regression that uses parking capacity as one of the predictor variables. They use a presumed capacity
size for demand forecasting, which may, however, result in a forecasted demand violating the capacity
constraint. In a recent study, Niles and Pogodzinski (2021) developed ridership demand models for
individual park-and-ride lots in San José, Seattle, and Los Angeles using regression.

Region-level demand models have also been employed by researchers, such as Hendricks and Out-
water (1998), Spillar (1997), and Holgúin-Veras et al. (2012), to forecast park-and-ride demands. In
these models, the flows routed through different paths/travel modes between each pair of origin and
destination zones over a study area are estimated and the park-and-ride demands are then calculated
based on the flows. Nonetheless, site-level demand models have continued to receive attention from
practitioners for two reasons. First, a site-level demand model is often more effective in providing
accurate site-specific forecasts, while a region-level model tends to overestimate park-and-ride de-
mands, particularly when the travel characteristics incorporated into the model do not correspond
to the realized design and construction conditions of the park-and-ride lots (Spillar, 1997). Second, a
site-level model often requires a smaller amount of data to estimate than a region-level model, thus
particularly favored by practitioners with limited data and computational resources. The commuter
choice model developed in this work can be thought of as an improved site-level demand model, by
which the forecasted park-and-ride demands are interdependent across all the lots in the same service
area and dependent on capacity sizing decisions.

The literature on addressing demand forecasting and capacity sizing for park-and-ride lots under
a unified optimization model is limited. For instance, Garćıa and Maŕın (2002) formulated a joint
capacity sizing and pricing problem for park-and-ride lots as a bi-level programming model, which
involves a nested logit model to describe the travel mode choice of travelers. Song et al. (2017) solved
the optimal location problem for park-and-ride lots by determining the optimal capacities and fre-
quencies of transit services at the lots. The problem was formulated as a mathematical program with
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equilibrium constraints under an MNL model. Liu et al. (2018) studied optimal capacity sizing for
the park-and-ride facilities in a suburban area and formulated the problem as a mathematical pro-
gram with equilibrium constraints, where a crossed-nested logit model is used to describe the choice
behavior of travelers. Henry et al. (2022) investigated the park-and-ride facility location problem
for an on-demand transportation system and used an MNL model to forecast commuters’ choice.
Rezaei et al. (2022) studied the optimal park-and-ride facility location for Nashville, Tennessee using
a mixed-integer linear program integrated with an MNL-based demand model. Readers are referred
to Haque et al. (2021) for more literature on park-and-ride.

Our work sets itself apart from these studies in two major aspects. First, these studies do not
address the impact of parking availability information on commuter choice. Second, their studies are
focused on developing numerical solutions to find a (local or global) optimal solution, while our work
aims to obtain analytical results that characterize the global optimal solution and gain insights from
the numerical results.

2.2. Multiproduct Price Optimization under Customer Choice

This work is also related to the literature on multiproduct price optimization under customer
choice, particularly on the methodological side. For the sake of comparison, loosely speaking, a park-
and-ride lot in this work corresponds to a product in multiproduct pricing, the traffic flow routed
through a lot resembles the sales of a product, and the capacity of a lot, like the price, serves as a
decision lever to adjust demands.

In this literature, one of the inspiring results is that the objective value function, i.e., the total
profit of the products, under the MNL model is generally not concave with respect to the price vector,
but it turns out to be concave with respect to the market share vector (there exists a one-to-one
correspondence between the price and market share vectors) (Song and Xie, 2007; Li and Huh, 2011).
As a result, it has been shown that the optimal markup prices for different products are equal when
the price sensitivity parameters are identical for the products under the MNL model (Hopp and Xu,
2005; Li and Huh, 2011).

Efforts have recently been invested in understanding whether or not the same or similar results
hold under other choice models. To mention only a few, Gallego and Wang (2014) studied price
optimization and competition for multiple products under the NL model with heterogeneous price
sensitivity parameters within and across the nests. The authors maintained that the objective value
function with respect to the market share vector is not necessarily concave under the NL model. Ray-
field et al. (2015) developed approximation methods to solve the multiproduct price and assortment
optimization problems under the NL model. A unique feature considered in this work is that there are
lower and upper bounds on the prices. Zhang et al. (2018) studied multiproduct price optimization
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with convex constraints on purchase probabilities under the generalized extreme value models (which
include the MNL and NL models as special cases). The authors showed that the optimal markup
price is constant across products when the problem is unconstrained and price sensitivities are homo-
geneous. They also showed that the market-share-based transformation with constraints is, in fact,
a convex program. More examples include Dong et al. (2019) based on Markov choice models and Li
(2020) with diffusion-choice models. However, these works do not involve the fixed-point constraint,
which is critical in the park-and-ride capacity sizing problem considered in our work.

Du et al. (2016) are the first to study multiproduct price optimization under the network effect
that a product becomes more appealing to consumers as it attracts a larger market share. The
problem was formulated as a nonlinear program with a vector fixed-point equation constraint based
on the MNL model. The authors highlighted that the objective value function in the sales-based
(i.e. market-share-based) transformation is not necessarily convex or concave. The authors obtained
an interesting result that the optimal prices can take at most two distinct values even when the
intrinsic utilities, network sensitivities, and price sensitivities are identical for different products. In
their subsequent work, Du et al. (2018) solved the worst-case pricing problem for a single product
under the network effects. Nosrat et al. (2021) studied optimal pricing for a single product with
multiple customer segments and the network effects under a mixture of MNL models. Our work
distinguishes itself from this series of works by the following features. First, these studies do not
consider bound constraints on sales or prices, while we consider that the traffic flow (corresponding
to the sales) at each lot is limited by its capacity and the capacity (corresponding to the price) is
bounded from below and above. Second, the utility function of a product is separable in the sales and
price, while the utility of a park-and-ride lot is non-separable in the traffic flow and capacity. Third,
the utility of a park-and-ride lot is non-increasing in the traffic flow due to the effects of congestion
and parking information, while the utility of a product is non-decreasing in the sales due to the
network effects in their studies. Fourth, the objective is to maximize the total profit of a firm in their
works, while it is to maximize the total social welfare of commuters in our work. Due to all these
different features, which are ultimately attributed to the fact that we consider a different application
in transportation, the results and proof techniques in these works do not easily carry through. For
instance, the first-order optimality condition that is one of the key proof techniques in these and
other existing studies on optimal pricing needs to be revisited with capacity and bound constraints.
Therefore, new analysis techniques are needed to tackle the problem considered in our work.
3. Problem Description

This section describes the optimal capacity sizing problem for park-and-ride lots with information-
aware commuters. More specifically, Section 3.1 introduces the notation adopted in this work. In
Section 3.2, we develop the MNL-based commuter choice model with the effects of congestion and
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parking information. In Section 3.3, we discuss the properties of the traffic flows at equilibrium. We
formulate the total social welfare in Section 3.4.

3.1. Notation

We use R+ := [0,∞) to denote the set of non-negative real numbers and R++ := (0,∞) to represent
the set of positive real numbers. Let [n] denote the integer set [n] := {1,2, . . . , n} for any n ∈N. For
any x ∈Rn, where n ∈N, let diag(x) denote the n× n diagonal matrix generated from x such that
xi is the i-th diagonal entry for each i ∈ [n] and all other entries are zeros. Let e ∈ RJ denote a
J-dimensional vector with all entries equal to one. All vectors are column vectors unless otherwise
specified. However, for the economical use of space, we write x = (x1, x2, . . . , xn) inside of the text
to describe entries of vector x ∈ Rn. In addition, we conform to the convention that 1/∞ = 0,
log(0) =−∞, and a +∞=∞ for all a∈R and that any set {m,m + 1, . . . , n} is empty if m > n for
any m,n∈Z. Let 1{A} denote the indicator function for any event A and ∥ · ∥1 denote the 1-norm.
Define x ∨ y := max{x, y} and x ∧ y := min{x, y} for all x, y ∈ R. Let |A| denote the cardinality of
any discrete set A.

3.2. Commuter Choice Model with Congestion and Parking Information

In this section, we formulate the commuter choice model with congestion and parking effects.
Consider a population of commuters who travel on workdays from their homes within a service area

(e.g., a satellite city) to their work sites in an urban CBD. There exists a set [J ] of park-and-ride lots
available to the commuters in the service area, where J ∈N. For each j ∈ [J ], let qj ∈R+ denote the
(average) traffic flow attracted by j during a given time period, e.g., the morning commute between
7–9 am on workdays. Define q := (qj , j ∈ [J ]) as the vector of flows for all the lots, which is referred to
as the flow pattern. Let Cj ∈ [0,∞] denote the capacity of the lot j and define C := (C1,C2, . . . ,CJ)
as the vector of capacities, which is referred to as the capacity plan. Let ℓj ∈R++ denote the lower
bound on the capacity Cj and uj ∈ R++ denote the upper bound on Cj , where ℓj < uj . The lower
bound represents the minimum design capacity to meet operations constraints, such as the minimum
number of commuters to be served during the time headway between two consecutive transit services
and the upper bound is due to constraints such as space and budget limits.

Let Uj(qj ,Cj) denote the utility of any j ∈ [J ] perceived by commuters, which is expressed as a
random variable consisting of two components as follows:

Uj(qj ,Cj) = νj(qj ,Cj) + ϵj , (1)

where νj(qj ,Cj) is the systematic utility and ϵj is the random error reflecting the variation in the
preferences of commuters toward j. The systematic utility is a function of qj and Cj defined as

νj(qj ,Cj) = bj − βqθ
j + φ (1− qj/Cj) . (2)
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The first term bj ∈ R represents the intrinsic utility of the park-and-ride lot j, which measures the
attractiveness of j due to characteristics such as accessibility, location, reputation, and transit fares.
The second term is similar in form to the widely used BPR function in urban transportation (Sheffi,
1985), which reflects the congestion effect. As in the BPR function, θ ∈ R+ is a parameter to be
estimated from data and β ∈R+ is the congestion sensitivity parameter. The third term captures the
effect of parking information, in which qj/Cj is the utilization of the lot j shared with commuters
such as those in Table 1, (1− qj/Cj) is the corresponding parking availability at j, and φ ∈ R+ is
the parking sensitivity parameter, which is assumed to be nonnegative to reflect that commuters
appreciate a lot better if it has more availability. Define ν(q,C) := (νj(qj ,Cj), j ∈ [J ]) as the vector
of utilities for all the park-and-ride lots.

Let Q∈R++ denote the total travel demand originating from the service area during the given time
period. Then, we have Q =

∑J
j=0 qj , where q0 ∈ [0,Q] denotes the number of commuters choosing not

to park and ride, such as those driving private cars to office. Let j = 0 denote the no-park-and-ride
alternative representing the choice of commuters not to park and ride at any lot in [J ]. Let ν0 and
ϵ0 denote the systematic utility and random error of the no-park-and-ride alternative, respectively.

Define pj :RJ 7→ [0,1] as a choice function mapping from ν(q,C) to the probability of commuters
choosing the park-and-ride lot j from the set [J ]. We assume that each commuter is a utility maximizer
who will choose the alternative with the largest utility among from [J ]. We also assume that the
random errors {ϵj}J

j=0 are independent and identically distributed Gumbel random variables with a
location parameter 0 and scale parameter 1. Then, according to the random utility theory (Ben-Akiva
and Lerman, 1985), we have

pj(ν(q,C)) := exp(νj(qj ,Cj))
exp(ν0) +

∑J
k=1 exp(νk(qk,Ck))

= exp(νj(qj ,Cj))
1 +

∑J
k=1 exp(νk(qk,Ck))

, (3)

where ν0 is normalized to zero. It follows from the traffic equilibrium principle (Cascetta, 2009) that
the traffic flow through j at equilibrium satisfies,

qj = Qpj(ν(q,C)) = Q
exp

(
bj − βqθ

j + φ
(
1− qj

Cj

))
1 +

∑J
k=1 exp

(
bk− βqθ

k + φ
(
1− qk

Ck

)) .

Note that we can assume, w.l.o.g., that Q = 1; otherwise, by setting β′ := βQθ and q′
k := qk/Q and

C ′
k := Ck/Q for all k ∈ [J ], the above equation is equivalent to q′

j = pj(ν(q′,C′)) with β replaced
by β′, where q′ := (q′

j , j ∈ [J ]) and C′ := (C ′
j , j ∈ [J ]). Thus, it follows that q satisfies the following

vector fixed-point equation,

qj = pj(ν(q,C)) =
exp

(
bj − βqθ

j + φ
(
1− qj

Cj

))
1 +

∑J
k=1 exp

(
bk− βqθ

k + φ
(
1− qk

Ck

)) , ∀j ∈ [J ]. (4)
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Note that q ∈ [0,1]J . Given any capacity plan C ∈ (0,∞]J , define a choice operator F(·,C) :
[0,1]J 7→ [0,1]J such that F(q,C) := (pj(ν(q,C)), j ∈ [J ]) for any q ∈ [0,1]J . Then, (4) can be written
in a vector form:

q = F(q,C). (5)

3.3. Properties of the Equilibrium Flow Pattern

In this section, we discuss the properties of the solution to the fixed-point equation (5), which will
be useful in later sections.

Remark 1 shows the existence and uniqueness of the solution to (5) for any given capacity plan.

Remark 1. Consider any C∈ (0,∞]J . Since F(·,C) is a continuous function defined in the set [0,1]J ,
[0,1]J is a nonempty compact and convex set, and the range F([0,1]J ,C) ⊂ [0,1]J , it follows from
the Brouwer’s fixed-point theorem in Section A.3.1 of Cascetta (2009) that there exists a solution
to (5). Moreover, since νj is strictly decreasing in qj for each j ∈ [J ], it follows from Cascetta (2009,
pp. 311–312) that the solution to (5) is unique.

Define Q := {q ∈ [0,1]J : qj > 0 ∀ j ∈ [J ], ∥q∥1 < 1}. Remark 2 provides an alternative form of the
fixed-point equation and shows that any equilibrium flow pattern is in Q.

Remark 2. The fixed-point equation (4) (and (5)) is equivalent to: log(qj) = log (1−∥q∥1) + bj −
βqθ

j + φ (1− qj/Cj) for all j ∈ [J ]. For any C∈ (0,∞]J , if q = F(q,C), then q ∈Q.

Proposition 1 characterizes the monotonicity of the total traffic flow served by all the lots with
respect to C at equilibrium.

Proposition 1. Given capacity plans C1,C2 ∈ (0,∞]J , let qi := (qi
j , j ∈ [J ]) be the flow pattern

such that qi = F(qi,Ci) for i∈ {1,2}. If C1 ≤C2 (component-wisely), then ∥q1∥1 ≤ ∥q2∥1.

Proposition 1 states that if we increase or maintain the same capacity for each lot, then the total
number of commuters choosing to park and ride will not decrease at equilibrium.

3.4. The Total Social Welfare

In this section, we formulate the total social welfare and define the optimal capacity sizing problem.
Let V (q,C) denote the total social welfare, which is the sum of the systematic utilities received

by all commuters, namely,

V (q,C) :=
J∑

j=1
qjνj(qj ,Cj) =

J∑
j=1

qj

[
bj − βqθ

j + φ

(
1− qj

Cj

)]
. (6)

We hereby note that V (q,C) can be explained as the expected utility that an average commuter
would receive upon her arrival at a lot, which is not the same as the E[maxj∈[J]∪{0} Uj(qj ,Cj)] known
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as the satisfaction of commuters (Sheffi, 1985). The satisfaction can be thought of as the expected
perceived utility of a commuter upon departure from home.

When the system reaches equilibrium under a given capacity plan C, it follows from Remark 2
that bj − βqθ

j + φ (1− qj/Cj) = log(qj)− log(1−∥q∥1) for each j ∈ [J ]. Substituting it into (6) gives
that the total social welfare can also be re-written as a function h :Q 7→R:

h(q) :=
J∑

j=1
qj [log(qj)− log (1−∥q∥1)] = V (q,C). (7)

Let W : [−e−1,∞) 7→ [−1,∞) denote the principal branch of the Lambert-W function (Stewart,
2005). Proposition 2 shows that h is strictly convex over Q.

Proposition 2. h is strictly convex over Q and attains a unique minimum over Q at q† =
(q†, q†, . . . , q†), where q† := W (J/e)/[J(W (J/e) + 1)]. Furthermore, h(q†) =−W (J/e).

We close this section by formally stating the optimal capacity sizing problem for park-and-ride
lots: The DOT needs to determine the capacity plan that maximizes the total social welfare subject
to the capacity and bound constraints as well as the fixed-point constraint (5).
4. The Models

In this section, we formulate the optimal capacity sizing problem as optimization models.
The optimal capacity sizing problem can be formulated as the following basic model:

(Basic) sup
q,C

V (q,C) (8)

s.t. log(qj) = log (1−∥q∥1) + bj − βqθ
j + φ

(
1− qj

Cj

)
, ∀j ∈ [J ], (9)

Cj ∈ [ℓj , uj ], ∀j ∈ [J ], (10)

qj ≤Cj , ∀j ∈ [J ], (11)

q ∈Q. (12)

where the objective function value (8) is the total social welfare to be maximized, Constraints (9)
ensure that a feasible flow pattern satisfies the fixed-point equation (5), Constraints (10) set the
upper and lower bounds on the capacity of each lot, Constraints (11) ensure that the traffic flow
through each lot does not exceed the lot’s capacity, and Constraint (12) is the natural constraint.
Throughout the remaining paper, let (q∗,C∗) denote an optimal solution to the model (Basic),
where C∗ := (C∗

j , j ∈ [J ]) is the optimal capacity plan and q∗ := (q∗
j , j ∈ [J ]) is the equilibrium flow

pattern under C∗.
Next, we reformulate the model (Basic) as an optimization model that has q1, q2, . . . , qJ rather

than C1,C2, . . . ,CJ as decision variables. Define a function

ξj(q) := φqj

yj(q) , (13)
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for all q ∈ Q, where yj(q) := bj + φ − βqθ
j + log (1−∥q∥1) − log(qj) for all j ∈ [J ]. Also define a

vector-valued function ξ := (ξ1, ξ2, . . . ξJ) such that ξ(q) := (ξj(q), j ∈ [J ]) for all q ∈Q.
Let D :=

{
q ∈Q : ξ(q)∈RJ

++
}

denote the domain of ξ mapping into positive vectors. Some dis-
cussions on the function ξ(q) are provided in Remark 3 and Lemma 1.

Remark 3. For every q ∈D, (q,C) satisfies q = F(q,C) if and only if C = ξ(q). Thus, C∗ = ξ(q∗).

Lemma 1 claims that ξ :D :7→RJ
++ is bijective.

Lemma 1. ξ is a continuous bijection in D and ξ−1 :RJ
++ 7→ D exists.

It follows from h(q) defined in (7) and (9) that the model (Basic) is equivalent to the following
flow-based model, where the primary decision variables are in q = (q1, q2, . . . , qJ):

(Flow) max
q

h(q)

s.t. ξj(q)≥ qj , ∀ j ∈ [J ], (14)

ξj(q)≥ ℓj , ∀ j ∈ [J ], (15)

ξj(q)≤ uj , ∀ j ∈ [J ], (16)

(12),

where ξj(q) is defined in (13).
Let S := {q ∈Q : ξ(q)∈∏J

j=1[ℓj , uj ],ξ(q)≥ q} denote the feasible set of the model (Flow). Since
Q is open, it is not obvious that S is open or closed. We need to examine the compactness of S
to conclude whether or not an optimal solution can be attained in S. Proposition 3 guarantees the
existence of an optimal solution in S when the model (Flow) is feasible, which justifies the use of
“max” instead of “sup” in the model and is shown based on Lemma 1.

Proposition 3. S is a compact set. If S ̸=∅, then there exists an optimal solution in S that solves
the model (Flow).

Figure 1 illustrates the feasible set and the objective function h(q) in the model (Flow) when
J = 2, β = 18.929, θ = 0.923, φ = 3.301, b1 =−2.551, b2 =−3.281, ℓ1 = 0.05, u1 = 0.95, ℓ2 = 0.15, and
u2 = 0.85. A circle in Figure 1(a) denotes a feasible flow pattern q = (q1, q2) and a cube in Figure 1(b)
represents h(q) at a feasible q.

As illustrated in Figure 1, the feasible set in the model (Flow) is not necessarily convex, which
makes the model challenging to solve or analyze. The model is further complicated by the following
features. First, the objective function h(q) is strictly convex (cf. Proposition 2), and therefore, we are
confronted with a non-convex program. Second, the unconstrained first-order optimality condition,
which is one of the key analysis techniques used in the existing literature, may not hold due to the
capacity and bound constraints. Third, the model may be infeasible due to these constraints. Thus,
it requires a better understanding of the conditions under which the model is feasible.
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Figure 1 The illustration of the feasible set and objective function in the model (Flow).

5. Characterizing the Optimal Capacity Plan
In this section, we characterize the structure of the optimal capacity plan. First, we build in

Section 5.1 a univariate model that is equivalent to the model (Flow) but more amenable to anal-
ysis. Then, in Section 5.2, we characterize the optimal solution to the subproblem embedded in the
univariate model, based on which we obtain characterizations of the optimal capacity plan.

5.1. An Equivalent Univariate Model

The model (Flow) is challenging to analyze due to its non-convexity and constraints. To resolve the
challenge, we build in this section a univariate model and show its equivalence to the model (Flow).

Let z := ∥q∥1 denote the total traffic flow attracted by all lots, where qj is the traffic flow through j

for any j ∈ [J ]. Note that z =
∑J

k=1 exp(νk(qk,Ck))/(1+
∑J

k=1 exp(νk(qk,Ck))) according to the fixed-
point equation (4). By a change of variables, we will transform the model (Flow) with q1, q2, . . . , qJ

as decision variables into a univariate model with z as the only decision variable.

Reformulating Constraints (14)–(16). First, we reformulate Constraints (14)–(16) as a function
of variable z. It can be observed from (13)–(16) that given z = ∥q∥1, the feasible region of the traffic
flow qj for any lot j ∈ [J ] is independent of the traffic flows for all other lots. Hence, these constraints
can be represented as the intersection of individual feasible regions of q1, q2, . . . , qJ .

For j ∈ [J ], let Qj(z) denote the feasible region of qj given the total traffic flow z ∈ (0,1). To obtain
an explicit expression of Qj(z), define a function ζj,i(·, z) : [0,1] 7→ [−∞,∞) as:

ζj,i(x, z) := βxθ + log(x) + φ (1{i = 1}+ x1{i = 2}/ℓj + x1{i = 3}/uj)− (log(1− z) + bj + φ) (17)

for i∈ {1,2,3}.
The functions ζj,i(x, z) for i∈ {1,2,3} are used to reformulate the constraints ξj(q)≥ qj , ξj(q)≥ ℓj

and ξj(q) ≤ uj in (14)–(16) as ζj,1(qj , z) ≥ 0, ζj,2(qj , z) ≥ 0, and ζj,3(qj , z) ≤ 0, respectively, when
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z is the given total traffic flow. To explain, given z, it follows from (13) that ξj(q) ≥ qj leads to
φqj/yj(q) ≥ qj , which is equivalent to φ− yj(q) = βqθ

j + log(qj)− (log(1− z) + bj) = ζj,1(qj , z) ≥ 0
since qj > 0 due to q ∈ Q. Similarly, ξj(q)≥ ℓj and ξj(q)≤ uj can be substituted by ζj,2(qj , z)≥ 0
and ζj,3(qj , z)≤ 0, respectively.

Remark 4 provides a description of Qj(z) based on the explanations above.

Remark 4. For any z ∈ (0,1) and j ∈ [J ], the feasible region Qj(z) of qj specified in (14)–(16) can
be represented by

Qj(z) = {qj ∈ [0,1] : ζj,1(qj , z)≥ 0, ζj,2(qj , z)≥ 0, ζj,3(qj , z)≤ 0} .

The Univariate Model. The univariate model is represented as:

(Univar) max
z∈(0,1)

π(z) := ĥ(z)− z log(1− z),

where z is the only decision variable and ĥ(z) is the optimal objective value of the subproblem:

(Sub) ĥ(z) :=max
q

J∑
j=1

qj log(qj)

s.t. qj ∈Qj(z), ∀j ∈ [J ],
J∑

j=1
qj = z.

Proposition 4 formally establishes the equivalence between the models (Flow) and (Univar).

Proposition 4. Consider any optimal flow pattern q∗ that solves the model (Flow). Define z∗ :=
∥q∗∥1. Then, z∗ is optimal to the model (Univar) and q∗ is optimal to the model (Sub) with
parameter z = z∗. Consider any ẑ ∈ (0,1) optimal to the model (Univar) and q̂ optimal to the
model (Sub) with parameter z = ẑ. Then, q̂ is optimal to the model (Flow).

Proposition 4 have several implications. First, it implies that the model (Univar) is feasible if and
only if the model (Flow) is feasible. Second, when both the models are feasible, one can retrieve
an optimal solution to the model (Flow) from that to the model (Univar). Third, the structure of
the optimal flow pattern that solves the model (Flow) can be understood by studying the optimal
solution to the model (Sub).

5.2. The Subproblem

In this section, we characterize the optimal solution to the model (Sub).

Feasibility. First, we discuss the feasibility of the subproblem to gain insights into the feasibil-
ity of the model (Univar), which informs of the feasibility of the model (Flow) as indicated by
Proposition 4. The feasibility conditions will also be used to develop solution algorithms in Section 6.

Corollary 1 provides a complete characterization of Qj(z) (i.e., the feasible region of qj) for any
j ∈ J under any given z, which directly follows from Proposition EC.1.
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Corollary 1. Consider any z ∈ (0,1) and j ∈ [J ]. The following holds:
(1) If log(1− z) + bj + φ > β + φmin{1,1/ℓj}, then Qj(z) =∅.
(2) If log(1−z)+ bj +φ≤ β +φmin{1,1/ℓj}, there exists a unique x∗

i ∈ (0,1] such that ζj,i(x∗
i , z) = 0

for i∈ {1,2}. Define the lower-bound flow qL
j (z) := max{x∗

1, x∗
2}.

(i) If log(1− z) + bj + φ ≤ β + φ/uj, there exists a unique x∗
3 ∈ (0,1] such that ζj,3(x∗

3, z) = 0.
If x∗

3 > uj, Qj(z) = ∅; otherwise, define the upper-bound flow qH
j (z) := x∗

3, and we have
qH

j (z)≥ qL
j (z) and Qj(z) = [qL

j (z), qH
j (z)]

(ii) If log(1− z) + bj + φ > β + φ/uj, define qH
j (z) := 1 and we have Qj(z) = [qL

j (z), qH
j (z)].

Corollary 1 provides conditions for Qj(z) = ∅ and represents Qj(z) as a simple interval when it is
nonempty. If the condition in (1) holds, either ζj,1(qj , z)≥ 0 or ζj,2(qj , z)≥ 0 fails to hold, resulting
in Qj(z) = ∅. If the condition in (2)(i) holds but x∗

3 > uj , either ζj,1(qj , z)≥ 0 or ζj,3(qj , z)≤ 0 will
be violated, causing Qj(z) =∅. Otherwise, there exist a lower-bound flow qL

j (z) and an upper-bound
traffic flow qH

j (z) such that Qj(z) can be represented as a nonempty interval [qL
j (z), qH

j (z)].
Corollary 1 can be used to determine the feasibility of the model (Flow): If Qj(z) =∅ for some j,

then the model (Sub) is infeasible for the given z. Moreover, if the model (Sub) is infeasible for all
z ∈ (0,1), both the models (Univar) are (Flow) are infeasible. Also, representing Qj(z) as intervals
allows for obtaining characterization results in Theorem 1. Corollary 1 will also be applied to reduce
the search space of z in Algorithm 2.

Characterizations of the Optimal Solution to the Subproblem. Next, we characterize in
Theorem 1 the optimal solution to the model (Sub) using Corollary 1.

Theorem 1. Consider any z ∈ (0,1). Assume that log(1− z) + bj + φ≤ β + φmin{1,1/ℓj} for all
j ∈ [J ] and that if there exists j ∈ [J ] and x∗ ∈ (0,1] such that ζj,3(x∗, z) = 0, it holds that x∗ ≤ uj.
Let qL

j (z)∈ (0,1] and qH
j (z)∈ (0,1] be as in Corollary 1. Then, the model (Sub) is equivalent to

max
q

J∑
j=1

qj log(qj) (18)

s.t. qj ∈
[
qL

j (z), qH
j (z)

]
, ∀j ∈ [J ], (19)

J∑
j=1

qj = z. (20)

Let q∗(z) := (q∗
1(z), q∗

2(z), . . . , q∗
J(z)) denote an optimal solution to the model (18)–(20). Then, there

exists at most one lot k ∈ [J ] such that q∗(z) is given by,

q∗
j (z)


∈ (qL

j (z), qH
j (z)) if j = k,

= qL
j (z) if j ̸= k and qH

j (z) = 1,
∈ {qL

j (z), qH
j (z)} if j ̸= k and qH

j (z) < 1,
(21)

for all j ∈ [J ], where qL
j (z) < 1 for all j ∈ [J ].
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Theorem 1 indicates that when the model (Sub) is feasible for the given z, there exists at most
one lot k such that q∗

k(z) is strictly between the lower- and upper-bound flows, and for any other lot
j ̸= k, q∗

j (z) is equal to either the lower- or upper-bound flow.
For each j ∈ [J ], define the effective lower bound ℓeff

j := max{ℓj , q
∗
j }. Theorem 2 characterizes

the optimal capacity plan that solves the model (Basic), which is obtained based on Remark 3,
Lemma EC.3, Corollary 1, Theorem 1, and Proposition 4.

Theorem 2 (Characterization of the Optimal Capacity Plan). Either the model (Basic) is
infeasible or there exists at most one lot k ∈ [J ] such that C∗

k ∈ (ℓeff
k , uk) and C∗

j ∈ {ℓeff
j , uj} for all

j ∈ [J ] and j ̸= k.

Theorem 2 implies that when the optimal capacity sizing model (Basic) is feasible, except for at
most one lot k whose optimal capacity is strictly between the lower bound ℓj and upper bound uj ,
the optimal capacity of each lot j ̸= k is equal to one of the following three values: ℓj , uj , and the
optimal traffic flow q∗

j . The theorem also suggests that under an optimal capacity plan, one of the
three constraints (14)–(16) is binding for each j ̸= k in the model (Flow).
6. Algorithms

In this section, we develop a one-variable search algorithm to determine an optimal capacity plan.
More specifically, first, we refine the feasible range of z in the model (Univar). Then, in Section 6.1,
we propose an algorithm to determine the unique equilibrium flow pattern under any capacity plan,
by which we can determine the refined feasible range of z. In Section 6.2, we present the one-variable
search algorithm.

Let qL := (qL
j , j ∈ [J ]) denote the equilibrium flow pattern under the all-lower-bound capacity plan

CL := (ℓ1, ℓ2, . . . , ℓJ) and qH := (qH
j , j ∈ [J ]) denote the equilibrium flow pattern under the all-upper-

bound capacity plan CH := (u1, u2, . . . , uJ). Proposition 5 provides a refined range of z that consists
of all the feasible points of z to the model (Univar).

Proposition 5. If z ∈ (0,1) is feasible to the model (Univar), then z ∈ [∥qL∥1,∥qH∥1].

Proposition 5 indicates that the feasible region (0,1) of z can be replaced by [∥qL∥1,∥qH∥1] without
excluding any feasible solutions in the model (Univar). The refined range will later be used in
Algorithm 2 to speed up the solution procedure.

6.1. Solving the Equilibrium Flow Pattern for a Given Capacity Plan

We need to determine qi under Ci for i ∈ {L,H} to obtain the refined range of z. To that end,
in this section, we present in Algorithm 1 a solution procedure to solve the unique equilibrium flow
pattern q that satisfies q = F(q,C) under any given capacity plan C∈ (0,∞]J .

Algorithm 1 is developed based on Proposition EC.2 and the classical bisection search Algo-
rithm EC.1. The key idea is to treat the total traffic flow z under C as a variable and show that
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Algorithm 1 Solving the equilibrium flows under a capacity plan
Input: J , fj in (EC.17) for j ∈ [J ], δ1, δ2 > 0, ub← 1, lb← z0, z← (lb + ub)/2, and C.
Output: q such that q = F(q,C).

1: Find qj ∈ [0,1] such that fj(qj) = log(1− z) using Algorithm EC.1 for each j ∈ [J ];
2: Set Γ(z)←∑J

j=1 qj − z;
3: while |Γ(z)|> δ1 and ub− lb > δ2 do
4: Set lb← z if Γ(z) > 0; set ub← z otherwise;
5: Set z← (lb + ub)/2;
6: Find qj ∈ [0,1] such that fj(qj) = log(1− z) using Algorithm EC.1 for each j ∈ [J ];
7: Set Γ(z)←∑J

j=1 qj − z;
8: end while

the equilibrium z that satisfies the fixed-point equation q = F(q,C) is the unique root of a strictly
decreasing and continuous function (cf. Proposition EC.2). Then, the equilibrium z can be deter-
mined using the bisection search method (see Algorithm EC.1) and the equilibrium flow pattern can
be obtained using Proposition EC.2. While Algorithm 1 will be used to determine qL and qH in
Algorithm 2, it is useful in its own right in forecasting traffic flows under an MNL choice model.

6.2. A One-Variable Search Algorithm

In this section, we present in Algorithm 2 a solution procedure to determine an optimal capacity
plan by solving the model (Univar) based on Corollary 1 and Theorem 1.
Discretizing z. In Algorithm 2, we discretize the range [∥qL∥1,∥qH∥1] with a step size of ∆z > 0.
For each discretized value of z, we will calculate the objective value π(z) in the model (Univar).
Then, an optimal solution z∗ can be obtained by comparing π(z) at all discretized values (cf. Step 6).

Generating candidate optimal solutions to the model (Sub). For each discretized z, we need
to solve the model (Sub) to obtain ĥ(z), by which we can compute π(z) = ĥ(z)− z log(1− z).

We can determine an optimal solution q∗(z) to the model (Sub) (if feasible) using Theorem 1,
which suggests that there exists at most one lot k such that q∗

k(z) is between qL
k (z) and qH

k (z) and
q∗

j (z) is equal to either qL
j (z) or qH

j (z) for any lot j ̸= k.
For each such k, we can generate a candidate q∗(z) as follows. Assign qL

j (z) or qH
j (z) to q∗

j (z) for all
j ̸= k and calculate q∗

k(z) = z−∑
j ̸=k q∗

j (z). If q∗
k(z)∈ [qL

k (z), qH
k (z)], the q∗(z) so generated is a valid

candidate optimal solution; it is non-valid and will be dropped otherwise. To facilitate the exposition
of the generation of candidate q∗(z) in Algorithm 2, let Q̂k(z) denote the set of (valid and non-valid)
candidate q∗(z) generated for any k ∈ [J ], which is represented by

Q̂k(z) :=

q ∈RJ : qj

{
= qL

j (z) if qH
j (z) = 1,

∈
{

qL
j (z), qH

j (z)
}

if qH
j (z) < 1,

, qk = z−
∑
j ̸=k

qj , ∀j ∈ [J ] and j ̸= k

 . (22)
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Algorithm 2 A one-variable search method
Input: φ, β, θ, J , (bj , j ∈ [J ]), (ℓj , j ∈ [J ]), (uj , j ∈ [J ]), CL, CH , ∆z, Z ←∅.
Output: C∗.
Step 1. Obtain qi by solving qi = F(qi,Ci) for i∈ {L,H} using Algorithm 1. Set z←∥qL∥1.
Step 2. If z > ∥qH∥, go to Step 6; execute the following otherwise. Set Q̃←∅, k← 1, and n← 1. If

there exists j ∈ [J ] such that log(1− z) + bj + φ > β + φmin{1,1/ℓj}, then set z→ z + ∆z

and go to Step 2; go to Step 3 otherwise.
Step 3. For each j ∈ [J ], solve x∗

k ∈ (0,1] such that ζj,k(x∗
k, z) = 0 for k ∈ {1,2} using Algorithm EC.1

and set qL
j (z)←max{x∗

1, x∗
2}.

Step 4. For each j ∈ [J ], if log(1−z)+ bj +φ > β +φ/uj , set qH
j (z)← 1; Otherwise, solve x∗

3 ∈ (0,1]
such that ζj,3(x∗

3, z) = 0 using Algorithm EC.1, set qH
j (z)← x∗

3 if x∗
3 ≤ uj , and set z→ z+∆z

and go to Step 2 if x∗
3 > uj .

Step 5. Set q = (qj , j ∈ [J ])←The n-th element in Q̂k(z) as defined in (22). If qk ∈ [qL
k (z), qH

k (z)],
set Q̃← Q̃∪{q}. Then, execute the following:

(a) If n < |Q̂k(z)|, set n← n + 1 and go to Step 5;
(b) If k < J and n = |Q̂k(z)|, set k← k + 1, n← 1, and go to Step 5;
(c) If k = J and n = |Q̂k(z)|, find q∗(z) := (q∗

j (z), j ∈ [J ]) ∈ arg maxq∈Q̃
∑J

j=1 qj log(qj), set
ĥ(z) =

∑J
j=1 q∗

j (z) log(q∗
j (z)), calculate π(z) = ĥ(z) − z log(1 − z), set Z ← Z ∪ {z}, set

z→ z + ∆z, and go to Step 2;
Step 6. Find z∗ ∈ arg maxz∈Z π(z). Set C∗← ξ(q∗(z∗)), where ξ is defined in (13).

Then, as in Step 5, we can obtain ĥ(z) by comparing the objective values in the model (Sub) at all
valid candidate q∗(z) in Q̂k(z) for all k ∈ [J ]. Note |Q̂k(z)| ≤ 2J−1.

More discussions on Q̂k(z). For each discretized z, we find a flow pattern q∗(z) that satisfies (21)
for all j ̸= k and is thus a candidate optimal solution to the model (Sub). It further requires that
the total traffic flow ∥q∗(z)∥1 is equal to z. The set Q̂k(z) consists of all such q∗(z)’s.

Feasibility check and expedition. Algorithm 2 involves procedures skipping infeasible values of z

in Step 2 and Step 4, by which the solution procedure is expedited. The feasibility of each discretized z

is checked using the conditions provided in Corollary 1. More specifically, ifQj(z) = [qL
j (z), qH

j (z)] =∅

for some j at z, then such z is infeasible. Note that qL
j (z) and qH

j (z) can be obtained as in Corollary 1
using Algorithm EC.1.
7. Numerical Experiments

In this section, we provide numerical results to gain insights into the optimal capacity design for
park-and-ride lots in a satellite city and to investigate the value of modeling the congestion and
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parking effects in optimal sizing of park-and-ride lots. In Section 7.1, we describe the data related to
the park-and-ride lots in Bellevue of Washington State (WA). In Section 7.2, we apply our developed
models and algorithms to solve the optimal capacities of Bellevue’s park-and-ride lots. Section 7.3
provides sensitivity analysis. In Section 7.4, we evaluate the performance of the optimal capacity
plan under different choice behavior of commuters.

The model (Univar) is solved using Algorithm 2 with ∆z = 10−7 and the numerical results are
obtained using Matlab R2022a on a desktop computer with Intel i7 CPU@3.20Ghz and 16GB RAM.

7.1. Bellevue’s Park-and-Ride Lots and Data

In this section, we study the park-and-ride lots in the city of Bellevue in Washington State (WA),
which is a satellite city of Seattle.

According to King County Metro (2022a), there are J = 7 park-and-ride lots accessible to com-
muters in Bellevue. Figure 2 shows the names and locations of the lots on the map of Bellevue.
Table EC.1 shows their addresses and current capacities.

We will (re)design the capacities of these lots using our developed models and algorithms. The
objective of this section is twofold: (i) to demonstrate that our models and algorithms can be applied
to real-world cases, where the DOT needs to design a set of new park-and-ride lots or re-design
existing lots to accommodate the growing demand for parking electric vehicles, and (ii) to obtain
insights into the optimal capacity design of park-and-ride lots in a satellite city such as Bellevue.

P&R

6. Bellevue Christian 
Reformed Church

P&R2. Wilburton

P&R

1. South Bellevue

P&R
7. Eastgate

P&R 3. Eastgate 
Congregational

P&R

4. Newport 
Covenant Church

P&R

5. Newport 
Hills 

98004
98005

98007
98008

98006

Figure 2 The names and locations of the park-and-ride lots in Bellevue, WA (King County Metro, 2022a).

Determining catchment areas. We geographically partition Bellevue into seven catchment areas
such that each catchment area contains a single park-and-ride lot, the entire Bellevue is the union
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of all the catchment areas, and the catchment areas of any two different lots do not overlap. The
catchment area of any lot is an area where commuters would choose to visit that lot (rather than
others) if they base their decisions solely on congestion-free travel time. Let Hj ∈ R+ denote the
number of households in the catchment area of any lot j ∈ [J ], which is provided in Table EC.2. The
catchment areas and Hj ’s are determined in Section EC.5.2.

Table EC.3 shows bi-directional time distances between different pairs (i, j) of lots in Bellevue,
where i, j ∈ [J ], which are collected around 3 am on October 8, 2022 (Saturday) using Google Map
(2022). Since congestion seldom occurs around 3 am on a Saturday morning, these data can be used
to approximate the congestion-free travel time from the catchment area of a lot i ∈ [J ] to that of a
lot j ∈ [J ], which is denoted by τi,j ∈R+.

Next, we estimate the values of attributes such as the economic value, number of bus routes, bus
frequency, and congestion-free access time, which will be used to estimate the intrinsic utilities of
Bellevue’s park-and-ride lots.

Economic value. Let r̂j,1 ∈R+ denote the economic value of any lot j ∈ [J ], which is represented
by the median house/condo value for j as shown in Table EC.2. The median house/condo value for
each j ∈ [J ] is the median value of the houses/condominiums in the area with the same zip code as
j, which reflects the economic value of j’s location and is obtained from City-Data (2016).

The number of bus routes. There is a bus stop next to each lot, through which commuters
access transit services. Let r̂j,2 ∈R+ denote the number of bus routes traversing (the bus stop next
to) lot j, which is provided in Table EC.2 and obtained from King County Metro (2022a).

Bus frequency. Let r̂j,3 ∈R+ denote the bus frequency that measures the frequency of bus arrivals
at lot j, which is estimated as follows. For each bus route passing by j, we calculate the average inter-
arrival time (in minutes) of the buses arriving at j between 7 am and 9 am on workdays using King
County Metro (2022b) and Sound Transit (2022). Next, the average bus headway for j as shown in
Table EC.2 is calculated as the mean of the average inter-arrival times for all the bus routes passing
along j. Then, r̂j,3 can be computed as the reciprocal of the average bus headway for j.

Congestion-free access time. Let r̂j,4 ∈ R+ denote the congestion-free access time to lot j as
shown in Table EC.2, which is the average travel time to j per trip (or vehicle) under no congestion.
Let η denote the average number of park-and-ride trips per household on a workday morning. Hence,
Hjη approximates the number of commuters’ trips generated from the catchment area of j. Then,
r̂j,4 can be estimated by,

r̂j,4 =
∑

i∈[J] Hiητi,j∑
i∈[J] Hiη

=
∑

i∈[J] Hiτi,j∑
i∈[J] Hi

,

where we assume that for the commuters generated from the catchment area of any lot, the congestion-
free travel time to that lot is zero.
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Scaling. We will conduct sensitivity analysis in Section 7.3 to investigate and compare the impacts
of the sensitivities of commuters to different attributes on optimal capacity sizing. Since the data in
Table EC.2 are of different scales, it often requires scaling the data to facilitate the comparison (and
make optimization used to estimate the choice model well-conditioned) (Lantz, 2013). To that end,
we choose the South Bellevue (i.e., j = 1) as the reference lot. Then, we obtain rj,k := r̂j,k/r̂1,k as the
normalized attribute value for all j ∈ [J ] and k ∈ {1,2,3,4}, which is provided in Table EC.4.

Then, for each j ∈ [J ], the intrinsic utility bj can be estimated by,

bj = α1rj,1 + α2rj,2 + α3rj,3−α4rj,4, (23)

where αk ∈R+ is the sensitivity parameter for k ∈ {1,2,3,4}.
7.2. Optimal Capacities and Flows under Different Lower- and Upper-Bound Capacities

In this section, we solve the optimal capacity sizing problem for Bellevue’s park-and-ride lots.
We set αk = 2.5 for all k ∈ {1,2,3,4}, β = 2.5, θ = 0.5, and φ = 2.5 throughout this section, where

the parameters are arbitrarily chosen and we will explore the influence of the variations in these
parameters on optimal solutions in Section 7.3.

We choose South Bellevue (i.e., j = 1) as the reference lot. First, we select values of ℓ1 and u1.
Then, for any lot j ∈ {2,3, . . . ,7}, ℓj (uj) is computed as ℓ1 (u1) multiplied by the ratio of the current
capacity of lot j (cf. Table EC.1) to that of South Bellevue, by which the relative sizes of the lower
and upper bounds of all the lots are consistent with the relative sizes of their current capacities.

We obtain numerical results for a variety of cases specified by different values of ℓ1 and u1 (as
well as different lower and upper bounds for j ∈ {2,3, . . . ,7} determined as previously mentioned).
Define ρ∗

j := q∗
j /C∗

j as the optimal utilization at lot j ∈ [J ]. Tables 2 and 3 show the intrinsic utilities,
optimal capacities, traffic flows, and utilizations under different cases of ℓ1 and u1. Table EC.5 shows
the same content as Tables 2–3 except that different ℓ1 and u1 are considered to provide results under
a broader range of lower and upper bounds.

We observe the following from Tables 2, 3, and EC.5.
(1) A lot with a high intrinsic utility tends to attain the optimal capacity on the upper bound. If

a lot has a low/moderate-sized intrinsic utility and a small lower bound, its optimal capacity
tends to be equal to the optimal traffic flow through the lot, yielding high utilization at the lot.
However, a lot with a low/moderate-sized intrinsic utility and a lower bound that is not small
tends to attain the optimal capacity on the lower bound. For example, Lot 6 attains its optimal
capacity on the lower bound when ℓ1 exceeds a threshold value (e.g., when ℓ1 > 0.05). Since
b6 =−0.4637 < 0, lot 6 is potentially less attractive to commuters than other lots and the no-
park-and-ride alternative. Therefore, it tends to be optimal to set the optimal capacity C∗

6 = ℓ6
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Table 2 The optimal capacities, traffic flows, and utilizations under ℓ1 ∈ {0.05, 0.25, 0.5, 0.7} and
u1 ∈ {0.75, 0.85}.

j bj
ℓ1 = 0.05, u1 = 0.75 ℓ1 = 0.05, u1 = 0.85

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.0500 0.7500 0.7500 0.2612 34.82% 0.0500 0.8500 0.8500 0.2538 29.85%
2 2.4119 0.0062 0.0930 0.0930 0.0376 40.48% 0.0062 0.1054 0.1054 0.0367 34.85%
3 1.6794 0.0007 0.0100 0.0055 0.0055 100.00% 0.0007 0.0113 0.0048 0.0048 100.00%
4 2.5824 0.0025 0.0375 0.0375 0.0251 67.02% 0.0025 0.0425 0.0425 0.0254 59.70%
5 1.3456 0.0092 0.1375 0.1369 0.0248 18.13% 0.0092 0.1558 0.1558 0.0231 14.80%
6 -0.4637 0.0007 0.0100 0.0007 0.0007 100.00% 0.0007 0.0113 0.0007 0.0007 97.72%
7 7.7539 0.0538 0.8070 0.8070 0.6437 79.77% 0.0538 0.9146 0.9146 0.6546 71.57%

j bj
ℓ1 = 0.25, u1 = 0.75 ℓ1 = 0.25, u1 = 0.85

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.2500 0.7500 0.7500 0.2607 34.76% 0.2500 0.8500 0.8500 0.2534 29.81%
2 2.4119 0.0310 0.0930 0.0930 0.0376 40.40% 0.0310 0.1054 0.1054 0.0367 34.79%
3 1.6794 0.0033 0.0100 0.0056 0.0056 99.18% 0.0033 0.0113 0.0047 0.0047 100.00%
4 2.5824 0.0125 0.0375 0.0375 0.0251 66.91% 0.0125 0.0425 0.0425 0.0253 59.63%
5 1.3456 0.0458 0.1375 0.1375 0.0248 18.03% 0.0458 0.1558 0.1552 0.0230 14.81%
6 -0.4637 0.0033 0.0100 0.0033 0.0020 58.61% 0.0033 0.0113 0.0033 0.0018 54.70%
7 7.7539 0.2690 0.8070 0.8070 0.6430 79.68% 0.2690 0.9146 0.9146 0.6540 71.51%

j bj
ℓ1 = 0.5, u1 = 0.75 ℓ1 = 0.5, u1 = 0.85

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.5000 0.7500 0.7500 0.2602 34.69% 0.5000 0.8500 0.8500 0.2527 29.73%
2 2.4119 0.0620 0.0930 0.0930 0.0375 40.30% 0.0620 0.1054 0.1054 0.0366 34.69%
3 1.6794 0.0067 0.0100 0.0069 0.0064 93.06% 0.0067 0.0113 0.0067 0.0060 89.17%
4 2.5824 0.0250 0.0375 0.0375 0.0250 66.79% 0.0250 0.0425 0.0425 0.0253 59.48%
5 1.3456 0.0917 0.1375 0.1375 0.0247 17.97% 0.0917 0.1558 0.1558 0.0229 14.70%
6 -0.4637 0.0067 0.0100 0.0067 0.0028 42.56% 0.0067 0.0113 0.0067 0.0026 39.20%
7 7.7539 0.5380 0.8070 0.8070 0.6422 79.57% 0.5380 0.9146 0.9146 0.6529 71.39%

j bj
ℓ1 = 0.7, u1 = 0.75 ℓ1 = 0.7, u1 = 0.85

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.7000 0.7500 0.7500 0.2595 34.60% 0.7000 0.8500 0.8500 0.2521 29.66%
2 2.4119 0.0868 0.0930 0.0930 0.0374 40.19% 0.0868 0.1054 0.1054 0.0365 34.59%
3 1.6794 0.0093 0.0100 0.0095 0.0079 83.50% 0.0093 0.0113 0.0093 0.0074 79.47%
4 2.5824 0.0350 0.0375 0.0375 0.0250 66.64% 0.0350 0.0425 0.0425 0.0252 59.36%
5 1.3456 0.1283 0.1375 0.1375 0.0246 17.90% 0.1283 0.1558 0.1554 0.0228 14.68%
6 -0.4637 0.0093 0.0100 0.0093 0.0033 35.57% 0.0093 0.0113 0.0093 0.0030 32.55%
7 7.7539 0.7532 0.8070 0.8070 0.6411 79.44% 0.7532 0.9146 0.9146 0.6519 71.28%

to accommodate the limited demand it attracts, provided that ℓ6 is not smaller than the demand

(which happens when ℓ1 is not small). However, when ℓ6 is smaller than the demand (which

happens when ℓ1 is small, e.g., when ℓ1 = 0.05), it is optimal to set C∗
6 = q∗

6 to accommodate the

demand, resulting in the utilization of 100% of the lot.

(2) In general, a lot with a large (small) intrinsic utility tends to attract a high (low) traffic flow.

However, this is not always true: A lot with a high intrinsic utility and high parking utilization

may attract fewer commuters than that with a low intrinsic utility and low utilization. For
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Table 3 The optimal capacities, traffic flows, and utilizations under ℓ1 ∈ {0.05, 0.25, 0.5, 0.7} and u1 ∈ {0.95, 1}.

j bj
ℓ1 = 0.05, u1 = 0.95 ℓ1 = 0.05, u1 = 1

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.0500 0.9500 0.9500 0.2525 26.58% 0.0500 1.0000 1.0000 0.2493 24.93%
2 2.4119 0.0062 0.1178 0.1178 0.0368 31.20% 0.0062 0.1240 0.1240 0.0363 29.30%
3 1.6794 0.0007 0.0127 0.0043 0.0043 100.00% 0.0007 0.0133 0.0041 0.0041 100.00%
4 2.5824 0.0025 0.0475 0.0473 0.0260 54.92% 0.0025 0.0500 0.0500 0.0261 52.23%
5 1.3456 0.0092 0.1742 0.0092 0.0064 69.71% 0.0092 0.1833 0.0093 0.0063 67.78%
6 -0.4637 0.0007 0.0127 0.0007 0.0006 95.19% 0.0007 0.0133 0.0007 0.0006 93.48%
7 7.7539 0.0538 1.0222 1.0222 0.6725 65.79% 0.0538 1.0760 1.0760 0.6763 62.86%

j bj
ℓ1 = 0.25, u1 = 0.95 ℓ1 = 0.25, u1 = 1

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.2500 0.9500 0.9500 0.2470 26.00% 0.2500 1.0000 1.0000 0.2441 24.41%
2 2.4119 0.0310 0.1178 0.1178 0.0359 30.44% 0.0310 0.1240 0.1240 0.0355 28.61%
3 1.6794 0.0033 0.0127 0.0041 0.0041 100.00% 0.0033 0.0133 0.0039 0.0039 100.00%
4 2.5824 0.0125 0.0475 0.0475 0.0255 53.77% 0.0125 0.0500 0.0500 0.0256 51.25%
5 1.3456 0.0458 0.1742 0.1712 0.0215 12.55% 0.0458 0.1833 0.1822 0.0209 11.48%
6 -0.4637 0.0033 0.0127 0.0033 0.0017 51.65% 0.0033 0.0133 0.0033 0.0017 50.35%
7 7.7539 0.2690 1.0222 1.0222 0.6633 64.89% 0.2690 1.0760 1.0760 0.6675 62.03%

j bj
ℓ1 = 0.5, u1 = 0.95 ℓ1 = 0.5, u1 = 1

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.5000 0.9500 0.9500 0.2463 25.93% 0.5000 1.0000 1.0000 0.2433 24.33%
2 2.4119 0.0620 0.1178 0.1178 0.0357 30.34% 0.0620 0.1240 0.1240 0.0353 28.51%
3 1.6794 0.0067 0.0127 0.0067 0.0057 85.72% 0.0067 0.0133 0.0067 0.0056 84.15%
4 2.5824 0.0250 0.0475 0.0475 0.0255 53.64% 0.0250 0.0500 0.0500 0.0256 51.11%
5 1.3456 0.0917 0.1742 0.1652 0.0212 12.86% 0.0917 0.1833 0.1787 0.0207 11.60%
6 -0.4637 0.0067 0.0127 0.0067 0.0024 36.62% 0.0067 0.0133 0.0067 0.0024 35.53%
7 7.7539 0.5380 1.0222 1.0222 0.6622 64.78% 0.5380 1.0760 1.0760 0.6662 61.91%

j bj
ℓ1 = 0.7, u1 = 0.95 ℓ1 = 0.7, u1 = 1

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.7000 0.9500 0.9500 0.2457 25.86% 0.7000 1.0000 1.0000 0.2428 24.28%
2 2.4119 0.0868 0.1178 0.1178 0.0356 30.26% 0.0868 0.1240 0.1240 0.0353 28.44%
3 1.6794 0.0093 0.0127 0.0093 0.0071 75.99% 0.0093 0.0133 0.0093 0.0070 74.52%
4 2.5824 0.0350 0.0475 0.0475 0.0254 53.52% 0.0350 0.0500 0.0500 0.0255 51.02%
5 1.3456 0.1283 0.1742 0.1675 0.0212 12.67% 0.1283 0.1833 0.1726 0.0205 11.89%
6 -0.4637 0.0093 0.0127 0.0093 0.0028 30.24% 0.0093 0.0133 0.0093 0.0027 29.28%
7 7.7539 0.7532 1.0222 1.0222 0.6612 64.68% 0.7532 1.0760 1.0760 0.6653 61.83%

example, if commuters base their decisions only on intrinsic utilities, q∗
2 ≤ q∗

4 holds under all cases
since b2 < b4. When commuters are additionally information-aware, we have q∗

2 = 0.0376 > q∗
4 =

0.0251 under the case of ℓ1 = 0.25 and u1 = 0.75, since lot 2 has higher parking availability than
lot 4. Thus, under an optimal capacity plan, it tends to reallocate information-aware commuters
from high-utilization lots to low-utilization lots. This finding highlights the impact of parking
information on capacity sizing with information-aware commuters.

(3) The parking availability at a high-utilization lot may not be improved by allowing for a smaller
lower or a larger upper bound for the lot. For example, although lot 3 has high utilization, the
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utilization may not drop and commuters may not be better off if the DOT allows for a different
lower or upper bound for the lot. When ℓ1 = 0.5, u1 = 0.75, C∗

3 is strictly between ℓ3 and u3,
indicating non-binding lower- and upper-bound constraints. Hence, the utilization will not drop
even when ℓ3 decreases or u3 increases.

(4) It is possibly both inevitable and beneficial to deploy lots around the peripheral area of a satellite
city, and a peripheral lot may gain full or nearly full utilization. Examples include lots 3 & 6 in
Bellevue. On the one hand, practically, these lots are needed to provide nearby households with
points of access to public transit, as the transit center is usually distant from the peripheral
area (e.g., Bellevue Transit Center is located in the downtown). Analytically, even though a
peripheral lot is initially used by very few commuters, it will gain more visits when the system
reaches equilibrium due to the effects of congestion and parking information. Meanwhile, it
seems reasonable not to set large upper bounds for the lots in the peripheral area. After all, a
peripheral lot attracts a limited number of commuters due to its long access time and limited
bus services near the lot, the optimal capacity tends to be equal to the effective lower bound.

(5) It seems desirable to have a large-sized lot close to the downtown area as long as the budget and
space allow. However, the lot may not gain a good utilization rate, possibly due to the long bus
waiting time caused by congestion. An example is lot 2 which is close to downtown Bellevue. As
Table EC.2 shows, lot 2 has the longest average bus headway, i.e., the average inter-arrival time
between two consecutive buses, which jeopardizes its attractiveness to morning commuters who
are eager to arrive at their office as early as possible, and thus, results in a low utilization rate.

Optimal capacities with unused lots. We have thus far considered that all the seven candidate
lots are opened with positive lower bounds on their capacities. Our model and algorithms are also
applicable when the DOT is allowed to use only a subset of the lots. Let J̄ ∈ {1,2, . . . ,7} denote the
number of used lots. Figure EC.1 shows the optimal total social welfare as a function of J̄ under
different upper bounds (indicated by different u1) but no lower bounds. We observe that: (i) Opening
only one lot may be unable to accommodate the need of all commuters, particularly when the upper
bound is not large enough, e.g., when u1 ∈ {0.75,0.85}; (ii) Opting to open only a portion of the lots
may lead to a higher overall social welfare compared to utilizing all available lots. For example, the
maximum total social welfare when J̄ = 3 is greater than that when J̄ = 7.

7.3. Sensitivity Analysis

In this section, we investigate how the changes in the sensitivity parameters αk for k ∈ {1,2,3,4},
β, and φ affect optimal capacities.

We choose ℓ1 = 0.25 and u1 = 0.75. Then, the lower and upper bounds for all lots are shown in
Table 2. Figures EC.2–EC.7 show the optimal capacity and traffic flow of each Bellevue’s park-
and-ride lot as functions of α1, α2, α3, α4, β, and φ, respectively, and Figure 3 shows the optimal
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utilization of each lot as a function of φ. In each figure, the optimal capacities, traffic flows, or
utilizations are obtained under different values of a particular sensitivity parameter, while the values
of all other sensitivity parameters are fixed and as specified in Section 7.2.
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Figure 3 The optimal utilization ρ∗
j as a function of φ for all j ∈ {1, 2, . . . , 7}.

We make the following observations from Figures EC.2–EC.7 and 3.
(1) As commuters become more sensitive to a particular attribute, such as economic value, the

number of bus routes, bus frequency, or congestion-free access time, the optimal traffic flows
through the lots with large values of the attribute tends to be increasing, while those through the
lots with small values of the attribute appear to be non-increasing. For example, as α2 increases,
the optimal traffic flow through lot 7 is increasing, while that through any other lot is decreasing.
With a larger α2, commuters are more sensitive to the number of bus routes passing by a lot.
Since there are 14 bus routes serving lot 7, which exceeds the numbers of bus routes passing
through all other lots by at least nine, the lot 7 is likely to attract commuters from other lots
as α2 increases.

(2) As commuters become more sensitive to congestion, it tends to reallocate commuters from lots
with high traffic flows to those with low traffic flows under the optimal capacity plan. For example,
lot 7 has the largest traffic flow among all lots when commuters are congestion-insensitive, i.e.,
when β = 0. As β increases, the optimal traffic flow through lot 7 decreases, while that through
any other lot increases.

(3) As commuters become more sensitive to parking information, the utilization of a lot with high
initial utilization tends to be non-increasing, while that of a lot with low initial utilization tends
to be non-decreasing with possible jumps to lower values. For example, the former result applies
to lots 3, 4, and 7, while the latter result applies to lots 1, 2, 5, and 6.
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(4) For any lot, the optimal capacity seems to be non-decreasing in the optimal traffic flow. This is

likely due to the capacity constraint qj ≤Cj for all j ∈ [J ] in the model (Basic).

7.4. The Performance of the Optimal Capacity Plan Under Real-Time Parking Information

In this section, we use simulation to evaluate the performance of the optimal capacity plan for

Bellevue’s park-and-ride lots when commuters are provided with (and sensitive to) real-time parking

information. To that end, we first introduce three capacity plans to be compared as follows:

C∗: The DOT considers that commuters are information-, congestion-, and intrinsic-utility-aware,

solves the model (Basic), and obtains the optimal capacity plan C∗.

C1: (The congestion effect is ignored) The DOT considers that commuters are information-

and intrinsic-utility-aware but congestion-unaware, which is equivalent to treating β as zero,

solves the model (Basic) (with β = 0), and obtains the optimal solution as C1.

C2: (The parking effect is ignored) The DOT considers that commuters are congestion-

and intrinsic-utility-aware but information-unaware, which is equivalent to presuming φ = 0.

Then, the DOT solves the fixed-point equation (5) (with φ = 0) using Algorithm 1 and obtains

the equilibrium flow pattern q̃ = (q̃1, q̃2, . . . , q̃J). The DOT sets C̃j := min{max{ℓj , q̃j}, uj} for

all j ∈ [J ] and obtains the capacity plan C2 := (C̃j , j ∈ [J ]).

Then, in Section EC.5.1, we define nine choice scenarios, describe the departure process of com-

muters, and build commuter choice models under real-time parking information and different choice

scenarios. To evaluate the performance of the optimal capacity plan C∗, we will compare the expected

total social welfare generated by C∗, C1, and C2 under the nine choice scenarios.

Next, we generate the departures and choices of commuters using simulation, and then calculate

the expected total social welfare (i.e., Πm(C) in (EC.21)) using sample average approximations.

We set T = 7,200 seconds to account for commuters departing within 7–9 am on Mondays and

κ = 1. Hence, Q = ⌊7200κ⌋. The values of rj,k’s are as in Table EC.4 and those of αk for k ∈ {1,2,3,4},
θ, β, and φ are as specified in Section 7.2. Similar to Section 7.2, the comparison results are obtained

under different lower and upper bounds.

For each choice scenario m∈ {1,2, . . . ,9} and capacity plan C∈ {C∗,C1,C2}, let Π̄m(C) denote the

sample average approximation of Πm(C) computed using 1,000 sample paths of the joint departure

and choice processes of commuters. Define the relative gap

Gapm
i := Π̄m(C∗)− Π̄m(Ci)

|Π̄m(C∗)|
× 100,

for each m and the total relative gap TGi :=
∑9

m=1 Gapm
i , where i ∈ {1,2}. The total relative gap

TGi measures the performance of C∗ versus Ci under an average choice scenario of commuters.



Xinchang Wang, Qie He: Optimal Capacity Sizing of Park-and-Ride Lots
28 Manuscript

Table 4 Π̄m(C), Gapm
i , and TGi for i ∈ {1, 2}, m ∈ {1, 2, . . . , 9}, and C ∈ {C∗, C1, C2} when
ℓ1 ∈ {0.05, 0.25, 0.5, 0.7} and u1 ∈ {0.75, 0.85}.

m
ℓ1 = 0.05, u1 = 0.75 ℓ1 = 0.05, u1 = 0.85

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 61307 61662 58281 -0.58 4.94 62377 62770 58304 -0.63 6.53
2 61334 61671 58284 -0.55 4.97 62414 62799 58310 -0.62 6.57
3 55796 55643 52974 0.27 5.06 62680 62509 52975 0.27 15.48
4 46738 53124 49486 -13.66 -5.88 46743 54067 49453 -15.67 -5.80
5 9756 7241 8275 25.78 15.19 9802 7222 8304 26.32 15.28
6 55152 54882 52390 0.49 5.01 62087 61795 52391 0.47 15.62
7 55669 55528 52860 0.25 5.05 62568 62413 52861 0.25 15.51
8 9741 7215 8270 25.93 15.10 9786 7196 8299 26.47 15.19
9 21652 16119 16605 25.56 23.31 22263 16133 16634 27.53 25.29

TGi – – – 63.49 72.75 – – – 64.39 109.67

m
ℓ1 = 0.25, u1 = 0.75 ℓ1 = 0.25, u1 = 0.85

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 61296 61425 59492 -0.21 2.94 62367 62500 59489 -0.21 4.61
2 61325 61450 59485 -0.20 3.00 62404 62536 59482 -0.21 4.68
3 55797 55765 53055 0.06 4.91 62681 62656 53056 0.04 15.36
4 46626 51293 49021 -10.01 -5.14 46631 52061 48991 -11.64 -5.06
5 9771 8545 8941 12.55 8.50 9817 8551 8970 12.90 8.63
6 55157 55098 52444 0.11 4.92 62093 62037 52445 0.09 15.54
7 55670 55640 52935 0.05 4.91 62569 62549 52935 0.03 15.40
8 9756 8519 8931 12.68 8.46 9802 8524 8959 13.03 8.59
9 21670 17753 17840 18.08 17.67 22279 17794 17869 20.13 19.80

TGi – – – 33.11 50.17 – – – 34.16 87.55

m
ℓ1 = 0.5, u1 = 0.75 ℓ1 = 0.5, u1 = 0.85

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 61286 61322 60349 -0.06 1.53 62352 62396 60345 -0.07 3.22
2 61314 61353 60340 -0.06 1.59 62390 62435 60336 -0.07 3.29
3 55799 55786 53126 0.02 4.79 62684 62677 53126 0.01 15.25
4 46458 48797 48002 -5.04 -3.32 46442 49407 47967 -6.39 -3.28
5 9816 9510 9562 3.12 2.59 9879 9518 9590 3.65 2.92
6 55162 55147 52487 0.03 4.85 62101 62085 52488 0.02 15.48
7 55671 55659 53001 0.02 4.80 62571 62568 53001 0.00 15.29
8 9800 9478 9549 3.29 2.56 9863 9487 9578 3.81 2.89
9 21711 19854 19808 8.55 8.77 22337 19892 19836 10.95 11.19

TGi – – – 9.87 28.16 – – – 11.91 66.25

m
ℓ1 = 0.7, u1 = 0.75 ℓ1 = 0.7, u1 = 0.85

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 61273 61279 60599 -0.01 1.10 62340 62353 60595 -0.02 2.80
2 61302 61312 60588 -0.02 1.16 62378 62394 60584 -0.03 2.87
3 55800 55792 53149 0.02 4.75 62686 62683 53149 0.01 15.21
4 46271 46694 46437 -0.91 -0.36 46255 47179 46398 -2.00 -0.31
5 9886 9884 9871 0.02 0.15 9949 9896 9900 0.53 0.50
6 55167 55159 52505 0.01 4.82 62106 62098 52506 0.01 15.46
7 55673 55665 53022 0.01 4.76 62573 62574 53023 0.00 15.26
8 9871 9851 9855 0.20 0.16 9934 9863 9883 0.71 0.51
9 21783 21489 21446 1.35 1.55 22407 21575 21474 3.72 4.16

TGi – – – 0.67 18.09 – – – 2.93 56.46
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Table 4 shows Π̄m(C), Gapm
i , and TGi for i∈ {1,2}, m∈ {1,2, . . . ,9}, and C∈ {C∗,C1,C2} when

ℓ1 ∈ {0.05,0.25,0.5,0.7} and u1 ∈ {0.75,0.85}. Table EC.6 shows the same content as Table 4 except
for u1 ∈ {0.95,1}.

The following observations are obtained from Tables 4 and EC.6:
(1) The optimal capacity plan performs the best under an average choice scenario of commuters

compared with C1 and C2. This is justified by TGi > 0 for i∈ {1,2}.
(2) The information-aware commuters may be better off if commuters are treated as congestion-

unaware regardless of whether or not they are congestion-aware in reality. Since Gapm
1 < 0 for

m∈ {1,2,4}, C1 outperforms C∗ under these scenarios where commuters are information-aware
but may be congestion-aware or not.

(3) The optimal capacity plan may perform the best even when commuters are information-unaware.
This is justified by Gapm

i > 0 for i ∈ {1,2} and m ∈ {5,6,7,8,9} where commuters are
information-unaware.

(4) The two capacity plans C∗ and C1 perform closely with a negligible gap (≤ 1%) when commuters
base their decisions on attributes such as economic value, the number of buses, and bus frequency.
This observation is due to |Gapm

i |< 1% for m∈ {1,2,3,6,7}, where commuters are sensitive to
the economic value, number of buses, and bus frequency for a lot.

(5) The optimal capacity plan outperforms C2 under all but one choice scenarios.
8. Conclusions

This work is concerned with optimal sizing of park-and-ride lots from the perspective of a public
transit policymaker that attempts to determine the optimal capacities of a set of lots. The problem
is formulated as a non-convex nonlinear optimization model with a fixed-point equation constraint
reflecting the effects of congestion and parking information on commuter choice. A novel feature of
the model is to involve information-aware commuters who make lot selections based on the published
parking availability information.

We transform the model into a univariate optimization model with a single decision variable and
a subproblem involving only interval constraints, allowing for tractable analysis to obtain insights
into the structure of the optimal capacities. We show that except for at most one lot whose optimal
capacity is strictly between the lower and upper bounds on the capacity, the optimal capacity of each
lot is equal to one of the three values: the lower bound, the upper bound, and the optimal traffic
flow through the lot. We develop a one-variable search algorithm to solve the model by leveraging
the structural results.

We learn from the numerical results that the optimal capacity of a lot with a low or moderate-
sized intrinsic utility and a small lower bound tends to be equal to its optimal traffic flow. However,
when the lower bound is not small, the optimal capacity tends to equal its lower bound. The optimal
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capacity of a lot with a high intrinsic utility tends to be equal to the upper bound. We observe that if
a lot has high utilization when commuters are weakly sensitive to parking information, as commuters
become more sensitive, the utilization is non-increasing. If a lot has low utilization when customers
are weakly sensitive to parking information, its utilization is non-decreasing, with possible jumps to
lower levels as commuters care more about parking availability. We also learn that under real-time
parking information, the optimal capacity plan obtained when both congestion and parking effects
are considered in the model outperforms that obtained when either effect is ignored from the model.
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Garćıa R, Maŕın A (2002) Parking capacity and pricing in park’n ride trips: A continuous equilibrium network
design problem. Annals of Operations Research 116(1):153–178.

Google Map (2022) Driving directions and times at 3:00 AM in Bellevue, WA. https://www.google.com/

maps, accessed: 2022-10-08.

https://www.city-data.com/zipmaps/Bellevue-Washington.html
https://www.city-data.com/zipmaps/Bellevue-Washington.html
https://www.google.com/maps
https://www.google.com/maps


Xinchang Wang, Qie He: Optimal Capacity Sizing of Park-and-Ride Lots
Manuscript 31

Haque AM, Rezaei S, Brakewood C, Khojandi A (2021) A literature review on park-and-rides. Journal of

Transport and Land Use 14(1):1039–1060.

Hendricks S, Outwater M (1998) Demand forecasting modle for park-and-ride lots in King County, Wash-
ington. Transportation Research Record 1623:80–87.

Henry E, Furno A, EI Faouzi NE, Rey D (2022) Locating park-and-ride facilities for resilient on-demand
urban mobility. Transportation Research Part E: Logistics and Transportation Review 158:102557.
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E-Companion
EC.1. Supplementary Results, Supporting Lemmas, and Proofs for Section 3

Proof of Remark 2. Taking logarithm on both sides of (4), we have

log(qj) = log (1−∥q∥1) + bj − βqθ
j + φ (1− qj/Cj) , ∀j ∈ [J ]. (EC.1)

If qj = 0 for some j, it follows from (EC.1) that ∥q∥1 = 1, which with (EC.2) further indicates
qj = 0 for all j. Thus, we have ∥q∥1 = 0, contradicting ∥q∥1 = 1. Thus, qj > 0 for all j. If ∥q∥1 = 1,
it again follows from (EC.2) that qj = 0 for all j. Thus, we have ∥q∥1 = 0, contradicting ∥q∥1 = 1.
Thus, q ∈Q. Q.E.D.

Proof of Proposition 1. It follows from Remark 2 that

log
(
1−∥qi∥1

)
= β(qi

j)θ + φ

Ci
j

qi
j + log(qi

j)− bj −φ, ∀j ∈ [J ], i∈ {1,2}. (EC.2)

Assume by contradiction that ∥q1∥1 > ∥q2∥1, which yields log (1−∥q1∥1) < log (1−∥q2∥1). It
follows from (EC.2) that

log(q1
j ) + β(q1

j )θ + φ
q1

j

C1
j

< log(q2
j ) + β(q2

j )θ + φ
q2

j

C2
j

, ∀ j ∈ [J ], (EC.3)

which implies q1
j < q2

j for all j. To see this, suppose that q1
j ≥ q2

j for some j. Since C1 ≤C2,

log(q1
j ) + β(q1

j )θ + φ
q1

j

C1
j

≥ log(q2
j ) + β(q2

j )θ + φ
q2

j

C1
j

≥ log(q2
j ) + β(q2

j )θ + φ
q2

j

C2
j

,

contradicting (EC.3). Since q1
j < q2

j for all j, it follows that ∥q1∥1 < ∥q2∥1, contradicting ∥q1∥1 >

∥q2∥1. This proves the desired result. Q.E.D.

Corollary EC.1. Consider capacity plans C1,C2 ∈ (0,∞]J . There exists some k ∈ [J ] such that
C1

k < C2
k and C1

j = C2
j for all j ∈ [J ] and j ̸= k. Let qi := (qi

j , j ∈ [J ]) denote the flow pattern satisfying
qi = F(qi,Ci) for i ∈ {1,2}. Then, it holds that ∥q1∥1 < ∥q2∥1, q2

k > q1
k, and q2

j < q1
j for all j ∈ [J ]

and j ̸= k.

Proof. It follows from Proposition 1 and Remark 1 that ∥q1∥1 < ∥q2∥1. Since C1
j = C2

j for all
j ∈ [J ] and j ̸= k, it follows from (EC.2) and ∥q1∥1 < ∥q2∥1 that q1

j > q2
j for j ̸= k. Since ∥q1∥1 =

q1
k +

∑
j ̸=k q1

j < ∥q2∥1 = q2
k +

∑
j ̸=k q2

j , implying q2
k > q1

k. Q.E.D.
Corollary EC.1 suggests that if the capacity of a park-and-ride lot becomes larger while the ca-

pacities of all other lots do not change, then at equilibrium, more commuters will choose to use that
lot but any other park-and-ride lot will attract fewer commuters.

Lemma EC.1 will be useful, which follows from Stewart (2005).

ec1
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Lemma EC.1. The following holds:
(1) W (x)≥ 0 for all x≥ 0 and W (x) > 0 for all x > 0.
(2) W (x) is a strictly monotone increasing continuously differentiable function over x∈R+.

Proof of Proposition 2. First, we show that h is strictly convex over Q. We have that

h(q) =
J∑

j=1
qj log(qj)− log

(
1−

J∑
k=1

qk

) J∑
j=1

qj

 ,

and for each j ∈ [J ],

∂h(q)
∂qj

= log(qj) + 1 +
∑J

j=1 qj

1−∑J
k=1 qk

− log
(

1−
J∑

k=1
qk

)

= log(qj) + 1
1− e⊺q

+ log
( 1

1− e⊺q

)
.

(EC.4)

Thus, the Hessian of h is represented as,

∇2h(q) = diag
{ 1

q1
,

1
q2

, . . . ,
1
qJ

}
+ ee⊺

( 1
(1− e⊺q)2 + 1

1− e⊺q

)
.

Consider any x ∈RJ and x ̸= 0. It follows that

x⊺∇2h(q)x =
J∑

j=1

x2
j

qj

+ x⊺ee⊺x
( 1

(1− e⊺q)2 + 1
1− e⊺q

)

=
J∑

j=1

x2
j

qj

+

 J∑
j=1

xj

2( 1
(1− e⊺q)2 + 1

1− e⊺q

)
> 0,

for all q ∈Q, implying that ∇2h(q) is positive-definite and that h is strictly convex over Q. Thus, h

attains its unique minimum.
Second, we show that the vector q† := (q†

1, q†
2, . . . , q†

J) satisfying ∇h(q†) = 0 is in Q. Note that for
any j, ∂h(q)/∂qj is strictly increasing in qj with qk fixed for all k ̸= j. Moreover, we have that

lim
qj→0

∂h(q)
∂qj

=−∞, lim
e⊺q→1

∂h(q)
∂qj

=∞.

Thus, any q† satisfying ∇h(q†) = 0 is in Q and q† is the unique minimizer of h(q) according to the
strict convexity of h.

Third, we show that q†
1 = q†

2 = · · ·= q†
J . It follows from (EC.4) that

log(q†
j) = log(q†

k) =−
[ 1

1− e⊺q† + log
( 1

1− e⊺q†

)]
for any j, k. Since log(x) is monotone strictly increasing, we have that q†

j = q†
k and q†

1 = q†
2 = · · · q†

J .
Define g(q) := Jq log[q/(1− Jq)]. Note that g(q) = h(q) for all q ∈ (0,1/J) and q = (q, q, . . . , q).

Since h is strictly convex over Q, it follows that g(λq1 + (1− λ)q2) = h(λq1 + (1− λ)q2) < λh(q1) +
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(1− λ)q2 = λg(q1) + (1− λ)g(q2) for all q1, q2 ∈ (0,1/J) and λ ∈ [0,1], where qi = (qi, qi, . . . , qi) for
i∈ {1,2}. Thus, g is strictly convex.

By setting g′(q̂) = 0, we have

log q̂

1− Jq̂
+ 1

1− Jq̂
= 0,

which is equivalent to

log
(

Jq̂

1− Jq̂

)
+ Jq̂

1− Jq̂
= log (J/e) . (EC.5)

It follows from the definition of the Lambert-W function W (x) and (EC.5) that

Jq̂

1− Jq̂
= W (J/e) ,

implying q̂ = W (J/e)
W (J/e)+1 · 1

J
and

log (W (J/e)) + W (J/e) = log (J/e) , (EC.6)

which further yields that

log
(

q̂

1− Jq̂

)
= log

(
W (J/e)

J

)
= log (W (J/e))− log J =−W (J/e)− 1 (EC.7)

It follows from (EC.7) that

g(q̂) = Jq̂ log q̂

1− Jq̂

= J
W (J/e)

W (J/e) + 1
1
J
· (−W (J/e)− 1)

=−W (J/e).

Note that q̂ ∈ (0,1/J). Since g is strictly convex, q̂ is the unique minimizer of g(q), i.e., g(q) > g(q̂)
for all q ∈ (0,1/J) and q ̸= q̂.

Define q† := q†
1 = q†

2 = · · ·= q†
J . Therefore, q† = (q†, q†, . . . , q†). Since q† is the unique minimizer of

h, we have that h(q) > h(q†) for all q ∈Q and q ̸= q†. Assume by contradiction that q̂ ̸= q†. Define
q̂ := (q̂, q̂, . . . , q̂). Thus, q̂ ̸= q† and h(q̂) = g(q̂) > h(q†) = g(q†), contradicting q̂ being the unique
minimizer of g(q). Therefore, we have q† = q̂ = W (J/e)

W (J/e)+1 · 1
J

and h(q†) = g(q†) = g(q̂) = −W (J/e).
This completes the proof. Q.E.D.
EC.2. Proofs for Section 4

Proof of Lemma 1. First, ξ is continuous since yj(q) is continuous for all j ∈ [J ]. Then, we show
that ξ is surjective. For any given capacity plan z∈RJ

++, it follows from Remark 1 that there exists
a solution q ∈Q that satisfies the fixed-point equation (5). Then, it follows from Remark 2 that q

satisfies (9), which is equivalent to ξ(q) = z, indicating that ξ is surjective.
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Next, we show that ξ is injective. Consider any two points z1,z2 ∈RJ
++ such that z1 = z2, where

zi := (zi
1, zi

2, . . . , zi
J). We represent z := z1 = z2. Consider qi = (qi

1, qi
2, . . . , qi

J)∈Q such that ξ(qi) = zi

for i∈ {1,2}. Thus, we have from the definition of ξ that

zj =
φqi

j

yj(q) ∀ i∈ {1,2}, j ∈ [J ].

which implies that both q1 and q2 satisfy (9) for the same z and satisfy the fixed-point equation (5)
for the same given z. We have from Remark 1 again that the fixed-point equation (5) has a unique
solution. Thus, we have q1 = q2, showing that ξ is injective. Thus ξ is a continuous bijection and
ξ−1 exists. Q.E.D.

Proof of Proposition 3. If S is empty, S is trivially compact. We consider S ̸=∅ from now on.
Note that Q is bounded. Since S is a subset of Q, S is also bounded. It remains to show that

S is closed. Consider any given convergent sequence {qk}∞
k=1 ⊂ S such that qk → q̂ = (q̂j , j ∈ [J ])

as k→∞. Let Q̄ denote the closure of Q. Since S ⊂Q⊂ Q̄ and Q̄ is a closed set, we have q̂ ∈ Q̄.
Since ξ is continuous according to Lemma 1, it follows that ξ(q̂) = limk→∞ ξ(qk) ∈∏J

j=1[ℓj , uj ] and
ξ(q̂)≥ q̂.

Next, we show that q̂ ∈Q. Since q̂ ∈ Q̄, we consider the following two cases.
Case 1.

∑J
k=1 q̂k = 1. Since ξ(q̂)∈∏J

j=1[ℓj , uj ] and ℓj > 0 for all j ∈ [J ], it follows from the definition
of ξ that

bj + φ− β(q̂j)θ + log
(

1−
J∑

k=1
qk

)
= φq̂j

ξj(q̂) + log(q̂j), (EC.8)

holds for all j, yielding that q̂j = 0 for all j. It thus follows
∑J

k=1 q̂k = 0, contradicting
∑J

k=1 q̂k = 1.
Case 2.

∑J
k=1 q̂k ̸= 1 and there exists some j ∈ [J ] such that q̂j = 0. Fix such j. Thus, the left-hand

side of (EC.8) is finite but the right-hand side of (EC.8) is equal to −∞, arriving at a contradiction.
Combining q̂ ∈ Q̄ with the results from the two cases gives that

∑J
k=1 q̂k ̸= 1 and q̂ > 0, indicating

that q̂ ∈Q. It follows from ξ(q̂)∈∏J
j=1[ℓj , uj ], ξ(q̂)≥ q̂, and q̂ ∈Q that q̂ ∈ S, implying that S is a

closed set. Thus, S is compact.
Since h is continuous and S is a nonempty compact set, h attains its maximum and minimum in

S. Thus, there exists an optimal solution in S that solves the model (Flow). Q.E.D.
EC.3. Supporting Lemmas and Proofs for Section 5

Proof of Proposition 4. Due to the optimality of q∗ = (q∗
j , j ∈ [J ]) to the model (Flow), we have

q∗ ∈Q, which indicates q∗
j > 0 for all j ∈ [J ] and z∗ = ∥q∗∥ ∈ (0,1).

First, we show that q∗ is optimal to the model (Sub) with parameter z = z∗ ∈ (0,1). Assume
by contradiction that there exists q ̸= q∗ that is feasible to the model (Sub) and

∑J
j=1 qj log(qj) >∑J

j=1 q∗
j log(q∗

j ). Since q is feasible to the model (Sub), we have z∗ = ∥q∥1. It follows from Remark 4
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that q satisfies (14)–(16). Note qj > 0 for all j;
∑J

j=1 qj log(qj) >
∑J

j=1 q∗
j log(q∗

j ) is violated otherwise.
Since ∥q∥1 = z∗ < 1, we have q ∈Q, implying q is feasible to the model (Flow). Therefore, we have

h(q) =
J∑

j=1
qj log(qj)− z∗ log(1− z∗) >

J∑
j=1

q∗
j log(q∗

j )− z∗ log(1− z∗) = h(q∗),

contradicting the optimality of q∗ to the model (Flow). Thus, q∗ is optimal to the model (Sub)
with parameter z = z∗.

Next, we show that z∗ is optimal to the model (Univar). Since q∗ is optimal to the model (Sub)
with parameter z = z∗, we have ĥ(z∗) =

∑J
j=1 q∗

j log(q∗
j ). Consider any z ∈ (0,1) and q that is optimal

to the model (Sub) with parameter z. Then, we have z = ∥q∥1. It follows from Remark 4 that q is
feasible to the model (Flow). Then, it follows that

π(z) = ĥ(z)− z log(1− z) =
J∑

j=1
qj log(qj)− z log(1− z) = h(q)

≤ h(q∗) =
J∑

j=1
q∗

j log(q∗
j )− z∗ log(1− z∗)

= ĥ(z∗)− z∗ log(1− z∗) = π(z∗),

indicating that z∗ is optimal to the model (Univar).
Since q̂ is optimal to the model (Sub), we have from Remark 4 that q̂ is feasible to the

model (Flow) and ẑ = ∥q̂∥1. For any q feasible to the model (Flow), define z := ∥q∥1. We then
have from Remark 4 that q is feasible to the model (Sub) with parameter z, which implies

h(q) =
J∑

j=1
qj log(qj)− z log(1− z)≤ ĥ(z)− z log(1− z)≤ ĥ(ẑ)− ẑ log(1− ẑ) = h(q̂),

implying that q̂ is optimal to the model (Flow), where the first inequality follows from the fea-
sibility of q to the model (Sub) and the second inequality follows from the optimality of ẑ to the
model (Univar). Q.E.D.

Lemma EC.2 will be useful.

Lemma EC.2. Consider f(x) := βxθ + log(x) + Ax − B or f(x) := βxθ + log(x) + A − B, where

A ∈ R++, B ∈ R, and x ∈ [0,1]. Then, there exists x ∈ (0,1] such that f(x)≥ 0 if and only if there

exists a unique x∗ ∈ (0,1] such that f(x∗) = 0 and if and only if β + A≥B.

Proof. Suppose that there exists x0 ∈ (0,1] such that f(x)≥ 0. Since f(x) is strictly increasing and
continuous over x ∈ [0,1] and note that f(0) =−∞. Thus, there exists a unique x∗ ∈ (0, x0]⊂ (0,1]
such that f(x∗) = 0. Suppose that there x∗ ∈ (0,1] such that f(x∗) = 0. Since f(x) is increasing in
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x, we have that 0 = f(x∗)≤ f(1) = β + A−B, implying B ≤ β + A. Suppose that β + A≥B. Then,
f(1) = β + A−B ≥ 0, implying that there exists x = 1∈ (0,1] such that f(x)≥ 0. Q.E.D.

Lemma EC.3 compares the solutions to ζj,1(x, z) = 0, ζj,2(x, z) = 0, and ζj,3(x, z) = 0 for any
z ∈ (0,1) and j ∈ [J ], which follows from Lemma EC.2.

Lemma EC.3. Consider any z ∈ (0,1) and j ∈ [J ]. Suppose that there exists xi ∈ (0,1] such that
ζj,i(xi, z) = 0 for i∈ {1,2,3}. Then, the following holds:
(1) x2 < x3,
(2) x2 > ℓj (x2 = ℓj) if and only if x2 < x1 (x2 = x1),
(3) x3 > uj (x3 = uj) if and only if x3 < x1 (x3 = x1).

Proof. Fix z and j. Since ζj,i(xi, z) = 0 for i∈ 2,3, it holds that

βxθ
2 + log(x2) + φx2

ℓj

= βxθ
3 + log(x3) + φx3

uj

= log(1− z) + bj + φ,

implying that x2 < x3 since ℓj < uj . We only show Result (2) and Result (3) can be proved by a
similar argument. Drop argument z and subscript j from ζj,i for i ∈ {1,2,3} for simplicity. Since
ζ1(x1) = ζ2(x2) = 0, we have that

βxθ
1 + log(x1)− [βxθ

2 + log(x2)] = φx2

ℓ
−φ. (EC.9)

Suppose that x2 > ℓ (x2 = ℓ). Then, it follows from (EC.9) that

βxθ
1 + log(x1)− [βxθ

2 + log(x2)] = φx2

ℓ
−φ > 0(= 0),

yielding x1 > x2 (x1 = x2). Now, suppose that x2 < x1 (x2 = x1). Then, it follows from (EC.9) that

βxθ
1 + log(x1)− [βxθ

2 + log(x2)] = φx2

ℓ
−φ > 0(= 0),

yielding that x2 > ℓ (x2 = ℓ) This completes the proof. Q.E.D.

Proposition EC.1 characterizes Qj(z) based on Lemmas EC.2 and EC.3.

Proposition EC.1. For any z ∈ (0,1) and j ∈ [J ], the following cases hold:
Case 1. uj > ℓj ≥ 1.
(1) If log(1− z) + bj + φ∈ (β + φ/ℓj ,∞), then Qj(z) =∅.
(2) If log(1 − z) + bj + φ ∈ (β + φ/uj , β + φ/ℓj ], then there exists a unique x∗

i ∈ (0,1] such that
ζj,i(x∗

i , z) = 0 for i∈ {1,2}, x∗
1 ≤ x∗

2, and Qj(z) = [x∗
2,1].

(3) If log(1−z)+bj +φ∈ (−∞, β +φ/uj ], then there exists a unique x∗
i ∈ (0,1] such that ζj,i(x∗

i , z) =
0 for i∈ {1,2,3}, x∗

1 ≤ x∗
2 < x∗

3, and Qj(z) = [x∗
2, x∗

3].
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Case 2. uj ≥ 1 > ℓj.
(1) If log(1− z) + bj + φ∈ (β + φ,∞), then Qj(z) =∅.
(2) If log(1 − z) + bj + φ ∈ (β + φ/uj , β + φ], then there exists a unique x∗

i ∈ (0,1] such that
ζj,i(x∗

i , z) = 0 for i∈ {1,2} and,
(i) If x∗

2 ≤ ℓj, then x∗
1 ≤ x∗

2 and Qj(z) = [x∗
2,1].

(ii) If x∗
2 > ℓj, then x∗

1 > x∗
2 and Qj(z) = [x∗

1,1].
(3) If log(1−z)+bj +φ∈ (−∞, β +φ/uj ], then there exists a unique x∗

i ∈ (0,1] such that ζj,i(x∗
k, z) =

0 for i∈ {1,2,3}, x∗
2 < x∗

3, and
(i) If x∗

2 ≤ ℓj, then x∗
1 ≤ x∗

2 and Qj(z) = [x∗
2, x∗

3].
(ii) If x∗

2 > ℓj, then x∗
1 > x∗

2 and Qj(z) = [x∗
1, x∗

3].
Case 3. 1 > uj > ℓj.
(1) If log(1− z) + bj + φ∈ (β + φ,∞), then Qj(z) =∅.
(2) If log(1−z)+ bj +φ∈ (−∞, β +φ], then there exists a unique x∗

i ∈ (0,1] such that ζj,i(x∗
k, z) = 0

for i∈ {1,2,3} and x∗
2 < x∗

3. Furthermore, if x∗
3 > uj, Qj(z) =∅; otherwise,

(i) If x∗
2 ≤ ℓj, then x∗

1 ≤ x∗
2 and Qj(z) = [x∗

2, x∗
3].

(ii) If x∗
2 > ℓj, then x∗

1 > x∗
2 and Qj(z) = [x∗

1, x∗
3].

Proof. We drop argument z from functions ζj,1, ζj,2, and ζj,3, and drop subscript j for simplicity.
We consider the following three cases.
Case 1. u > ℓ≥ 1. We have that β + φ/u < β + φ/ℓ≤ β + φ. We have the following cases:
(1) Consider log(1− z) + b + φ ∈ (β + φ/ℓ,∞). It follows from Lemma EC.2 that there exists no

x∈ (0,1] such that ζ2(x)≥ 0, implying that Q(z) =∅.
(2) Consider log(1− z) + b + φ ∈ (β + φ/u,β + φ/ℓ]. Thus, we have log(1− z) + b + φ≤ β + φ/ℓ≤

β + φ. It follows from Lemma EC.2 that there exist a unique x∗
i ∈ (0,1] that ζi(x∗

i ) = 0 for
i ∈ {1,2}. Note that ζi is strictly increasing for i ∈ {1,2,3}. Then, ζi(x) ≥ 0 if and only if
x ∈ [x∗

i ,1] for i ∈ {1,2}. Also note that for all x ∈ [0,1], since ζ3 is strictly increasing, we have
ζ3(x)≤ ζ3(1) = β + φ/u− (log(1− z) + b + φ)≤ 0. Thus, Q(z) = [x∗

1,1]∩ [x∗
2,1]∩ [0,1].

Since x∗
2 ≤ 1≤ ℓ, it follows from Lemma EC.3(2) that x∗

2 ≥ x∗
1, implying that Q(z) = [x∗

2,1].
(3) Consider log(1 − z) + b + φ ∈ (−∞, β + φ/u]. Thus, we have log(1 − z) + b + φ ≤ β + φ/u <

β +φ/ℓ≤ β +φ. It follows from Lemma EC.2 that there exist a unique x∗
i ∈ (0,1] that ζi(x∗

i ) = 0
for i ∈ {1,2,3}. Since xi ≤ 1≤ ℓ < u for all i ∈ 1,2, it follows from Lemma EC.3 that x∗

2 < x∗
3,

x∗
2 ≥ x∗

1, and x∗
3 ≥ x∗

1, implying that x∗
1 ≤ x∗

2 < x∗
3. Due to the strict increasingness and continuity

of ζi for all i∈ {1,2,3}, we have that Q(z) = [x∗
1,1]∩ [x∗

2,1]∩ [0, x∗
3] = [x∗

2, x∗
3].

Case 2. u≥ 1 > ℓ. We have that β + φ/u≤ β + φ < β + φ/ℓ. We have the following cases:
(1) Consider log(1 − z) + b + φ ∈ (β + φ,∞). It follows from Lemma EC.2 that there exists no

x∈ (0,1] such that ζ1(x)≥ 0, implying that Q(z) =∅.
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(2) Consider log(1−z)+b+φ∈ (β +φ/u,β +φ]. Thus, we have log(1−z)+b+φ≤ β +φ < β +φ/ℓ.
It follows from Lemma EC.2 that there exist a unique x∗

i ∈ (0,1] that ζi(x∗
i ) = 0 for i ∈ {1,2}.

Note that ζi is strictly increasing and continuous for i ∈ {1,2,3}. Then, ζi(x)≥ 0 if and only if
x ∈ [x∗

i ,1] for i ∈ {1,2}. Also note that for all x ∈ [0,1], since ζ3 is strictly increasing, we have
ζ3(x)≤ ζ3(1) = β + φ/u− (log(1− z) + b + φ)≤ 0. Thus, Q(z) = [x∗

1,1]∩ [x∗
2,1]∩ [0,1]. Then, it

follows from Lemma EC.3(2) that,
(i) if x∗

2 ≤ ℓ, we have x∗
2 ≥ x∗

1, implying that Q(z) = [x∗
2,1],

(ii) if x∗
2 > ℓ, we have x∗

2 < x∗
1, implying that Q(z) = [x∗

1,1].
(3) Consider log(1 − z) + b + φ ∈ (−∞, β + φ/u]. Thus, we have log(1 − z) + b + φ ≤ β + φ/u <

β +φ≤ β +φ/ℓ. It follows from Lemma EC.2 that there exist a unique x∗
i ∈ (0,1] that ζi(x∗

i ) = 0
for i∈ {1,2,3}. Note that ζi is strictly increasing and continuous for i∈ {1,2,3}. Thus, we have
Q(z) = [x∗

1,1]∩ [x∗
2,1]∩ [0, x∗

3]. Since x3 ≤ 1≤ u, it follows from Lemma EC.3 that x∗
2 < x∗

3 and
x∗

3 ≥ x∗
1. It again follows from Lemma EC.3(2) that,

(i) if x∗
2 ≤ ℓ, we have x∗

2 ≥ x∗
1, implying that Q(z) = [x∗

2, x∗
3],

(ii) if x∗
2 > ℓ, we have x∗

2 < x∗
1, implying that Q(z) = [x∗

1, x∗
3].

Case 3. 1 > u > ℓ. We have that β + φ < β + φ/u < β + φ/ℓ. We have the following cases:
(1) Consider log(1 − z) + b + φ ∈ (β + φ,∞). It follows from Lemma EC.2 that there exists no

x∈ (0,1] such that ζ1(x)≥ 0, implying that Q(z) =∅.
(2) Consider log(1− z) + b + φ∈ (−∞, β + φ]. Thus, we have log(1− z) + b + φ≤ β + φ < β + φ/u <

β + φ/ℓ. It follows from Lemma EC.2 that there exist a unique x∗
i ∈ (0,1] that ζi(x∗

i ) = 0 for
i ∈ {1,2,3}. Note that ζi is strictly increasing and continuous for i ∈ {1,2,3}. Thus, we have
Q(z) = [x∗

1,1] ∩ [x∗
2,1] ∩ [0, x∗

3]. If x∗
3 > u, it follows from Lemma EC.3(3) that x∗

3 < x∗
1, which

indicates that Q(z) = ∅; otherwise, it again follows from Lemma EC.3 that x∗
3 ≥ x∗

1, x∗
2 < x∗

3,
and

(i) if x∗
2 ≤ ℓ, we have x∗

2 ≥ x∗
1, implying that Q(z) = [x∗

2, x∗
3],

(ii) if x∗
2 > ℓ, we have x∗

2 < x∗
1, implying that Q(z) = [x∗

1, x∗
3]. Q.E.D.

Proof of Theorem 1. Drop z from q∗(z), qL
j (z), and qH

j (z) for all j ∈ [J ] for notational simplicity.
It follows from Corollary 1 that model (P1) is equivalent to model (18)–(20) under the assumption
that log(1− z) + bj + φ ≤ β + φmin{1,1/ℓj} for all j ∈ [J ] and that whenever there exists j ∈ [J ]
and x∗ ∈ (0,1] such that ζj,3(x∗, z) = 0, it holds that x∗ ≤ uj . Since Constraints (19) and (20) are all
linear, there exist Lagrangian multipliers λj ≥ 0 and µj ≥ 0 for j ∈ [J ] and σ ∈R such that

log
(
q∗

j

)
+ 1 + λj −µj + σ = 0, ∀ j ∈ [J ], (EC.10)

λj(q∗
j − qL

j ) = 0, ∀ j ∈ [J ], (EC.11)
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µj(qH
j − q∗

j ) = 0, ∀ j ∈ [J ], (EC.12)

q∗
j ≥ qL

j , ∀ j ∈ [J ], (EC.13)

q∗
j ≤ qH

j , ∀ j ∈ [J ], (EC.14)
J∑

j=1
q∗

j = z. (EC.15)

It follows from (EC.13)–(EC.14) that q∗
j ∈ [qL

j , qH
j ]. Note that we have qL

j < 1, and for any j ∈ [J ],
q∗

j = qL
j if qH

j = 1; otherwise, it contradicts (EC.15) since z ∈ (0,1).
First, we consider the case that q∗

j ∈ {qL
j , qH

j } for all j ∈ [J ]. Then, the result trivially holds.
From now on, we consider that there exists k ∈ [J ] such that q∗

k ∈ (qL
k , qH

k ). Define

Λ :=
{

j ∈ [J ] : q∗
j ∈ (qL

j , qH
j )
}

,

and we thus have Λ ̸= ∅. For any j1, j2 ∈ Λ, we have from (EC.11)–(EC.12) that λj1 = µj1 = λj2 =
µj2 = 0. We then have from (EC.10) that log(q∗

j1
)+1+σ = log(q∗

j2
)+1+σ = 0, implying that q∗

j1
= q∗

j2
.

Define qM := q∗
j for some j ∈Λ. It follows from the definition of Λ that

0 < qL
j < qM < qH

j ≤ 1, ∀ j ∈Λ. (EC.16)

Next, we show that Λ is a singleton. Assume by contradiction that there exist j1, j2 ∈Λ and j1 ̸= j2

such that q∗
j1

= q∗
j2

= qM . It follows from (EC.16) that q∗
j1

= q∗
j2

= qM ∈ (qL
j1

, qH
j1

) ∩ (qL
j2

, qH
j2

). Define
ε := min{(qM − qL

j1
)/2, (qH

j2
− qM)/2}> 0. We thus have that qM − ε∈ (qL

j1
, qH

j1
) and qM + ε∈ (qL

j2
, qH

j2
).

It thus follows from (EC.16) that qM − ε∈ (0,1) and qM + ε∈ (0,1).
Define q̂ := (q̂1, q̂2, . . . , q̂J) such that

q̂j =


q∗

j if j ∈ [J ], j /∈ {j1, j2},
qM − ε if j = j1,
qM + ε if j = j2.

Note that q̂ satisfies (19)–(20) and q̂ ̸= q∗. It follows from the strict convexity of function x log(x)
over x∈ (0,1) that

ĥ(q̂) :=
J∑

j=1
q̂j log(q̂j)

=
∑

j /∈{j1,j2}

q∗
j log(q∗

j ) + (qM − ε) log(qM − ε) + (qM + ε) log(qM + ε)

>
∑

j /∈{j1,j2}

q∗
j log(q∗

j ) + 2(qM) log(qM) = ĥ(q∗),

which contradicts the optimality of q∗. Thus, Λ = {k}.
Therefore, qM = q∗

k ∈ (qL
k , qH

k ). For j ̸= k, we have q∗
j ∈ {qL

j , qH
j } and the following two cases:

(1) If qH
j = 1, we have q∗

j ̸= qH
j (z); otherwise, q∗ will violate (EC.15) and z ∈ (0,1). Then, q∗

j = qL
j (z).
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(2) If qH
j < 1, we have q∗

j ∈ {qL
j (z), qH

j (z)}.
Thus, we obtain q∗ as defined in (21). Q.E.D.

Proof of Theorem 2. Assume the model (Basic) is feasible with optimal solution (q∗,C∗). Thus,
the model (Flow) is also feasible with q∗ being the optimal flow pattern. Then, q∗ ∈ S, which
implies q∗

j > 0, ∥q∗∥1 < 1, and ξj(q∗) = φqj/yj(q∗)≥ ℓj > 0, implying yj(q∗) > 0 for all j ∈ [J ].
It follows from Proposition 4 that q∗ is optimal to the model (Sub) with parameter z = z∗ := ∥q∗∥1.

It then follows Theorem 1 that there exists at most one k ∈ [J ] such that q∗
k ∈ (qL

k (z∗), qH
k (z∗)), where

qL
k (z∗) = max{x∗

1, x∗
2} and x∗

i is the solution to ζk,i(x, z∗) = 0 for i ∈ {1,2} as in Corollary 1. It then
follows that q∗

k > x∗
i for i ∈ {1,2}. Since ζj,i(x, z∗) is strictly increasing in x, we have ζj,i(q∗

k, z∗) >

ζj,i(x∗
i , z∗) = 0, which with the definition of ζj,i implies

ζj,i(q∗
k, z∗) = φ(1{i = 1}+ x1{i = 2}/ℓj)− yk(q∗) > 0,

yielding ξk(q∗) = φq∗
k/yk(q∗) > q∗

k and ξk(q∗) = φq∗
k/yk(q∗) > ℓk due to q∗

k > 0 and yk(q∗) > 0. It
follows from Remark 3 that C∗

k = ξk(q∗) > max{q∗
k, ℓk}= ℓeff

k . By the bound constraints (10), C∗
k ≤ uk.

Then, either C∗
k ∈ (ℓeff

k , uk) or C∗
k = uk.

Consider any j ̸= k. It follows Theorem 1 that q∗
j = qL

j (z∗) or q∗
j = qH

j (z∗) < 1, where qL
j (z∗) =

max{x∗
1, x∗

2}, qH
j (z∗) = x∗

3, and x∗
i is the solution to ζj,i(x, z∗) = 0 for i ∈ {1,2,3}. First, consider

q∗
j = qL

j (z∗). If x∗
1 > x∗

2, we have q∗
j = x∗

1, which implies ζj,1(q∗
j , z∗) = φ− yj(q∗) = 0. Thus, we have

C∗
j = ξj(q∗) = φq∗

j /yj(q∗) = q∗
j . Since x∗

1 > x∗
2, it follows from Lemma EC.3 that x∗

2 > ℓj , which yields
x∗

1 = q∗
j = C∗

j > x∗
2 > ℓj . If x∗

1 ≤ x∗
2, we have q∗

j = x∗
2, which implies ζj,2(q∗

j , z∗) = φq∗
j /ℓj − yj(q∗) = 0.

Thus, we have C∗
j = ξj(q∗) = φq∗

j /yj(q∗) = ℓj . Since x∗
1 ≤ x∗

2, it follows from Lemma EC.3 that
x∗

2 ≤ ℓj . We thus have C∗
j = ℓj ≥ x∗

2 = q∗
j . Summarizing the above results gives C∗

j = ℓeff
j = max{ℓj , q

∗
j }.

Second, consider q∗
j = qH

j (z∗) < 1, where qH
j (z∗) is the solution to ζj,3(x, z∗) = 0. Thus, ζj,3(q∗

j , z∗) =
φq∗

j /uj − yj(q∗) = 0, which implies C∗
j = ξj(q∗) = uj . This completes the proof. Q.E.D.

EC.4. Supporting Lemmas, Algorithms, and Proofs for Section 6
Proof of Proposition 5. Consider any z ∈ (0,1) feasible to the model (Univar). Then, there exists

q feasible to the model (Sub) with z = ∥q∥1 < 1. It follows from Remark 4 that q satisfies (14)–(16).
Note qj > 0 for all j ∈ [J ]; Qj(z) =∅, contradicting the feasibility of q to the model (Sub) otherwise.
Thus, q ∈Q, indicating q is feasible to the model (Flow). Define C := ξ(q). We have CL ≤C≤CH .

We have from Remark 3 that q = F(q,C). It follows from the definitions of qL and qH that
qi = F(qi,Ci) for i ∈ {L,H}. We then have from Proposition 1 that ∥qL∥1 ≤ ∥q∥1 = z ≤ ∥qH∥1,
which proves the result. Q.E.D.

For each j ∈ [J ], define fj : [0,1] 7→ [−∞, β + φ/Cj − bj −φ] as:

fj(x) := βxθ + log(x) + φx

Cj

− bj −φ. (EC.17)
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Also, define z0 := maxj∈[J]
(
1− eβ+φ/Cj−bj−φ

)+.
Lemmas EC.4 and EC.5 will be useful.

Lemma EC.4. For each j ∈ [J ], fj(x) is strictly increasing and continuous over [0,1].

Lemma EC.5. For each j ∈ [J ] and z ∈ [
(
1− eβ+φ/Cj−bj−φ

)+
,1], there exists a unique x∈ [0,1] such

that fj(x) = log(1− z).

Proof. Fix j ∈ [J ]. Define g(x) := fj(x)− log(1− z). It follows from Lemma EC.4 that g(x) is
strictly increasing and continuous over x ∈ [0,1]. Note that log[1− (1− eβ+φ/ℓ−bj−φ)+] = (β + φ/ℓ−
bj −φ)−. Thus, it follows that log(1− z)∈ [−∞, (β + φ/ℓ− bj −φ)−] and,

g(0) = fj(0)− log(1− z) =−∞− log(1− z)≤ 0,

g(1) = fj(1)− log(1− z) = β + φ/ℓ− bj −φ− log(1− z)≥ β + φ/ℓ− bj −φ− (β + φ/ℓ− bj −φ)− ≥ 0,

which with the continuity and strict increasingness of g(y) implies that there exists x ∈ [0,1] such
that g(x) = 0, equivalent to f(x) = log(1− z). Q.E.D.

Lemma EC.5 allows us to define functions related fj . For each j ∈ [J ], define a mapping γj :
[(1− eβ+φ/Cj−bj−φ)+,1] 7→ [0,1] such that γj(z) is the unique solution to fj(x)− log(1− z) = 0, i.e.,
fj(γj(z)) = log(1− z). Then, define a function Γ : [z0,1] 7→R as follows:

Γ(z) :=
J∑

j=1
γj(z)− z, (EC.18)

where recall that z0 := maxj∈[J]
(
1− eβ+φ/Cj−bj−φ

)+.

Lemma EC.6. The following holds:

(1) Γ(z) is strictly decreasing and continuous over [z0,1].
(2) Γ(z0) > 0 and Γ(1) < 0
(3) There exists a unique z∗ ∈ (z0,1) such that Γ(z∗) = 0.

Proof. Choose k ∈ arg maxj∈[J]
(
1− eβ+φ/Cj−bj−φ

)+. We have that

z0 = (1− eβ+φ/Ck−bk−φ)+.

It then follows from Lemma EC.5 that γj is well defined over [z0,1] for all j ∈ [J ]. Consider z1, z2 ∈
[z0,1] such that z1 > z2. It follows from the definition of γj that fj(γj(z1)) = log(1−z1) < log(1−z2) =
fj(γj(z2)), which with Lemma EC.4 implies that γj(z1) < γj(z2). Thus, γj is strictly decreasing for
all j ∈ [J ]. The continuity of γi follows from the continuity of fi. Thus, it follows from (EC.18) that
Γ is strictly decreasing and continuous over [z0,1], which is Result (1).
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Note that log(1− z0) = (β + φ/Ck− bk−φ)−. Choose any j ∈ [J ]. It follows from the definition of

γj that

fj(γj(z0)) = log(1− z0) = (β + φ/Ck− bk−φ)− >−∞.

Since fj(0) =−∞ and strictly increasing, we have that γj(z0) > 0, and more specifically,

γj(z0)
{

= 1 if β + φ/Ck− bk−φ < 0,
> 0 if β + φ/Ck− bk−φ≥ 0,

which yields that

Γ(z0) =
J∑

j=1
γj(z0)− z0 ≥ γ1(z0)− (1− eβ+φ/Ck−bk−φ)+ > 0.

Also note fj(γj(1)) = log(1− 1) = −∞, fj(0) = −∞, and fj is strictly increasing and continuous,

indicating that γj(1) = 0. Thus, it follows that Γ(1) =
∑J

j=1 γj(1)− 1 < 0, which proves Result (2).

Result (3) follows from Results (1) and (2). Q.E.D.

Proposition EC.2 asserts that the traffic flow pattern q that satisfies q = F(q,C) can be obtained

through solving an one-dimensional function Γ(z) = 0.

Proposition EC.2. Let z∗ ∈ (z0,1) be the unique solution to Γ(z) = 0. Define qj := γj(z∗) for all

j ∈ [J ]. Then, q := (qj , j ∈ [J ]) satisfies (5), i.e., q = F(q,C).

Proof. Let z∗ ∈ (z0,1) be the unique solution of Γ(z) = 0. Define qj := γj(z∗) for all j ∈ [J ]. Then

it follows from (EC.18) that z∗ =
∑J

k=1 γk(z∗) =
∑J

k=1 qk. It follows from the definition of γj that

fj(γj(z∗)) = fj(qj) = βqθ
j + log(qj) + φqj/Cj − bj −φ = log(1− z∗) = log

(
1−

J∑
k=1

qk

)
, ∀ j ∈ [J ],

which, by Remark 2, implies that q satisfies (5). Q.E.D.

Algorithm EC.1 The bisection search method
Input: strictly monotone function f , δ1, δ2 > 0, domain [ub,ub], x∗← (lb + ub)/2.
Output: x∗ such that f(x∗) = 0

1: while |f(x∗)|> δ1 and ub− lb > δ2 do

2: If f is decreasing, set lb← x∗ if f(x∗) > 0; set ub← x∗ otherwise;
3: If f is increasing, set ub← x∗ if f(x∗) > 0; set lb← x∗ otherwise;
4: Set x∗← (lb + ub)/2;
5: end while
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EC.5. Supplementary Materials for Section 7
EC.5.1. The Departures and Choice Scenarios of Commuters under Real-time Parking

Information

This section describes the departure process and choice models of commuters when shared with
real-time parking information.

We consider that the departures of commuters (from home in Bellevue) follow a homogeneous
Poisson process {N(t) : t≥ 0} with rate κ > 0, where N(t) represents the number of departures till
time t≥ 0. Denote by tn ≥ 0 the departure time of the n-th commuter (called customer n), where
n ∈N. Let T ∈R+ denote the time period of interest, such as 7–9 am on Monday mornings. Then,
the total travel demand during the time period is expected to be Q =E[N(T )] = ⌊κT ⌋, where ⌊x⌋ is
the integer part of any number x∈R.

For commuters departing at time t≥ 0, the travel time to any lot j ∈ [J ] can be represented by
a BPR-type function cj(t) := rj,4 + α′(qon

j (t))θ, where rj,4 is the congestion-free access time to j as
defined in Section 7.1, qon

j (t) is the on-road traffic flow representing the fraction of the total expected
demand Q on travel to but having not arrived at j at t, and α′ ∈R and θ ∈R+ are parameters to be
estimated from data (Sheffi, 1985). We refer to cj(t) as the congestion-dependent access time to j at
time t.

The real-time parking utilization (or availability) of each lot at any time t ≥ 0 is announced to
commuters. Let qat

j (t) denote the at-park traffic at t, which denotes the fraction of Q parked at j at
time t. Hence, the parking utilization of j at time t is qat

j (t)/Cj , where Cj is the capacity of j (which
is scaled by Q; see discussions on parameter scaling in Section 3.2).

Upon departure, each commuter n chooses an alternative from [J ]∪{0}, where as in Section 3.2,
we use 0 to denote the no-park-and-ride alternative. However, the underlying choice model that
describes the true choice behavior of commuters is unknown to the DOT or analysts, and hence, may
not be consistent with the choice model used for modeling the optimal capacity sizing problem by
the DOT. We consider the following nine choice scenarios with each imitating a particular type of
true choice behavior of commuters:

1. Commuters are information-, congestion-, and intrinsic-utility-aware.
2. Commuters are information- and intrinsic-utility-aware but congestion-unaware.
3. Commuters are information-unaware but congestion- and intrinsic-utility-aware.
4. Commuters are information-aware but congestion- and intrinsic-utility-unaware.
5. Commuters base their decisions only on congestion-free access time.
6. Commuters base their decisions only on the utility due to economic value, the number of bus

routes, and bus frequency.
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7. Commuters base their decisions only on intrinsic utilities.

8. Commuters base their decisions only on congestion-dependent access time.

9. Each commuter chooses alternatives in [J ]∪{0} with equal probabilities (flip-a-coin).

Again, the true choice behavior of commuters is unknown. These choice scenarios describe various

types of commuters’ choice behavior that are considered to be true from the perspective of an analyst.

For any j ∈ [J ], define rj := α1rj,1 + α2rj,2 + α3rj,3 as the utility of j due to its economic value,

number of bus routes, and bus frequency. Let νm
j (t) denote the systematic utility of j perceived by

commuters at any time t≥ 0 when scenario m∈ {1,2, . . . ,9} is true, which is represented by,

νm
j (t) :=rj1{m∈ {1,2,3,6,7}}−α4rj,41{m∈ {1,2,3,5,7,8}}− β(qon

j (t))θ1{m∈ {1,3,8}}

+φ

(
1− qat

j (t)
Cj

)
1{m∈ {1,2,4}},

where α4 is the time sensitivity parameter as in (23), β(qon
j (t))θ reflects the congestion effect, φ(1−

qat
j (t)/Cj) captures the parking effect, and β = α4α′ and φ are the congestion and parking sensitivity

parameters, respectively, as defined in (2).

Let jn ∈ [J ] ∪ {0} denote the alternative chosen by customer n. The probability of commuter

n choosing jn = j ∈ [J ] ∪ {0} upon departure at time tn under scenario m ∈ {1,2, . . . ,9} can be

represented by,

Pm(jn = j) :=



exp(νm
j (tn))1{qat

j (tn)<Cj}
1+
∑J

k=1 exp(νm
k

(tn))1{qat
k

(tn)<Ck} for m∈ {1,2,4},
exp(νm

j (tn))
1+
∑J

k=1 exp(νm
k

(tn)) for m∈ {3,5,6,7,8},

1
J+1 for m = 9,

(EC.19)

and Pm(jn = 0) = 1−∑j∈[J] Pm(jn = j).

The systematic utility of j ∈ [J ] received by commuters departing at t is represented by,

νj(t) :=
(

bj − β(qon
j (t))θ + φ

(
1− qat

j (t)
Cj

))
1
{

qat
j (t + cj(t)) < Cj

}
, (EC.20)

where bj = rj − α4rj,4 is the intrinsic utility as defined in (23), t + cj(t) is the arrival time at j of

customers with departure time t, and we assume that the commuters who choose to visit a parking

lot but find it full upon arrival are lost and receive zero utilities.

Let Πm(C) denote the expected total social welfare under any capacity plan C ∈ {C∗,C1,C2},
choice scenario m∈ {1,2, . . . ,9}, and real-time parking information, which is represented by

Πm(C) =E

N(T )∑
n=1

J∑
j=1

Pm(jn = j)νj(tn)

 . (EC.21)
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EC.5.2. Supplementary Data and Materials for Section 7.1

The catchment areas are determined based on zip codes. As shown in Figure 2, Bellevue is mainly
constituted by five zip codes: 98004, 98005, 98006, 98007 and 98008. Based on the zip codes of all
the lots in Table EC.1, the catchment area of South Bellevue or Wilburton can approximately be
estimated as half the total area of 98004 and 98005. The catchment area of of Bellevue Christian
Reformed Church or Eastgate is considered to be half the total area of 98007 and 98008. The area
of 98006 is evenly split into the catchment areas of Newport Hills, Newport Covenant Church, and
Eastgate Congregational.

Now, we explain how to estimate Hj . According to U.S. Census Bureau (2020), the numbers of
households in 98004, 98005, 98006, 98007, and 98008 are 17,460, 8,590, 13,030, 11,578, and 9,125,
respectively. In the same spirit as catchment area determination, the number of households in the
neighborhood of South Bellevue or Wilburton is estimated as (17,460 + 8,590)/2 = 13025. The
number of households in the neighborhood of Bellevue Christian Reformed Church or Eastgate is
approximated as (11,578 + 9,125)/2 ≈ 10,352. The number of households in the neighborhood of
Newport Hills, Newport Covenant Church, or Eastgate Congregational is equal to 13,030/3≈ 4,343.

Table EC.1 Current capacities of Bellevue’s park-and-ride lots.

ID Name Address Capacity
1 South Bellevue P&R 2700 Bellevue Wy SE, 98004 1,500
2 Wilburton P&R 720 114th Ave SE, 98004 186
3 Eastgate Congregational 15318 SE Newport Way, 98006 20
4 Newport Covenant Church 12800 SE Coal Creek Pkwy, 98006 75
5 Newport Hills P&R 5115 113th Pl SE, 98006 275
6 Bellevue Christian Reformed Church 1221 148th Ave NE, 98007 20
7 Eastgate P&R 14200 SE Eastgate Way, 98007 1,614

Table EC.2 The data used for sizing Bellevue’s park-and-ride lots.

j
Median House/ Number of Average Bus Number of Congestion-free
Condo Value ($) Bus Routes Headway (min) Households Access Time (min)

1 961,846 5 21.04 13,025 4.26
2 961,846 3 43.22 13,025 4.78
3 754,626 2 26.71 4,343 5.54
4 754,626 2 18.83 4,343 5.40
5 754,626 2 27.86 4,343 5.97
6 486,806 1 30.50 10,352 6.73
7 486,806 14 23.40 10,352 4.70
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Table EC.3 Congestion-free time distances (min) between Bellevue’s park-and-ride lots.

@
@
@i
j 1 2 3 4 5 6 7

1 0 4 6 5 5 9 5
2 5 0 7 6 6 8 6
3 6 7 0 5 7 7 4
4 4 5 5 0 4 9 4
5 5 6 6 3 0 9 7
6 8 8 7 9 9 0 7
7 4 7 4 5 7 7 0

Table EC.4 Normalized attribute values for calculating intrinsic utilities.

j rj,1 rj,2 rj,3 rj,4
1 1.0000 1.0000 1.0000 1.0000
2 1.0000 0.6000 0.4868 1.1220
3 0.7846 0.4000 0.7877 1.3005
4 0.7846 0.4000 1.1174 1.2690
5 0.7846 0.4000 0.7552 1.4015
6 0.5061 0.2000 0.6898 1.5814
7 0.5061 2.8000 0.8991 1.1037
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EC.5.3. Supplementary Results for Section 7.2

Table EC.5 The optimal capacities, traffic flows, and utilizations under ℓ1 ∈ {0.05, 0.15, 0.35, 0.55} and
u1 ∈ {0.6, 0.7}.

j bj
ℓ1 = 0.05, u1 = 0.6 ℓ1 = 0.05, u1 = 0.7

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.0500 0.6000 0.6000 0.2743 45.72% 0.0500 0.7000 0.7000 0.2652 37.89%
2 2.4119 0.0062 0.0744 0.0744 0.0392 52.64% 0.0062 0.0868 0.0868 0.0381 43.93%
3 1.6794 0.0007 0.0080 0.0078 0.0077 99.17% 0.0007 0.0093 0.0061 0.0061 99.65%
4 2.5824 0.0025 0.0300 0.0300 0.0246 82.10% 0.0025 0.0350 0.0350 0.0250 71.38%
5 1.3456 0.0092 0.1100 0.1100 0.0284 25.80% 0.0092 0.1283 0.1283 0.0259 20.18%
6 -0.4637 0.0007 0.0080 0.0010 0.0010 100.00% 0.0007 0.0093 0.0008 0.0008 100.00%
7 7.7539 0.0538 0.6456 0.6456 0.6230 96.50% 0.0538 0.7532 0.7532 0.6375 84.63%

j bj
ℓ1 = 0.15, u1 = 0.6 ℓ1 = 0.15, u1 = 0.7

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.1500 0.6000 0.6000 0.2741 45.69% 0.1500 0.7000 0.7000 0.2650 37.86%
2 2.4119 0.0186 0.0744 0.0744 0.0391 52.60% 0.0186 0.0868 0.0868 0.0381 43.89%
3 1.6794 0.0020 0.0080 0.0076 0.0076 99.91% 0.0020 0.0093 0.0060 0.0060 99.99%
4 2.5824 0.0075 0.0300 0.0300 0.0246 82.06% 0.0075 0.0350 0.0350 0.0250 71.33%
5 1.3456 0.0275 0.1100 0.1100 0.0284 25.78% 0.0275 0.1283 0.1283 0.0259 20.16%
6 -0.4637 0.0020 0.0080 0.0020 0.0016 80.82% 0.0020 0.0093 0.0020 0.0015 74.29%
7 7.7539 0.1614 0.6456 0.6456 0.6228 96.46% 0.1614 0.7532 0.7532 0.6371 84.59%

j bj
ℓ1 = 0.35, u1 = 0.6 ℓ1 = 0.35, u1 = 0.7

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.3500 0.6000 0.6000 0.2737 45.62% 0.3500 0.7000 0.7000 0.2647 37.81%
2 2.4119 0.0434 0.0744 0.0744 0.0391 52.52% 0.0434 0.0868 0.0868 0.0380 43.82%
3 1.6794 0.0047 0.0080 0.0076 0.0076 99.75% 0.0047 0.0093 0.0062 0.0062 99.04%
4 2.5824 0.0175 0.0300 0.0300 0.0246 81.96% 0.0175 0.0350 0.0350 0.0249 71.24%
5 1.3456 0.0642 0.1100 0.1100 0.0283 25.72% 0.0642 0.1283 0.1283 0.0258 20.11%
6 -0.4637 0.0047 0.0080 0.0047 0.0027 58.49% 0.0047 0.0093 0.0047 0.0025 52.80%
7 7.7539 0.3766 0.6456 0.6456 0.6222 96.38% 0.3766 0.7532 0.7532 0.6366 84.52%

j bj
ℓ1 = 0.55, u1 = 0.6 ℓ1 = 0.55, u1 = 0.7

ℓj uj C∗
j q∗

j ρ∗
j ℓj uj C∗

j q∗
j ρ∗

j

1 5.0000 0.5500 0.6000 0.6000 0.2735 45.58% 0.5500 0.7000 0.7000 0.2641 37.74%
2 2.4119 0.0682 0.0744 0.0744 0.0390 52.47% 0.0682 0.0868 0.0868 0.0380 43.73%
3 1.6794 0.0073 0.0080 0.0076 0.0076 99.69% 0.0073 0.0093 0.0075 0.0070 93.27%
4 2.5824 0.0275 0.0300 0.0300 0.0246 81.89% 0.0275 0.0350 0.0350 0.0249 71.12%
5 1.3456 0.1008 0.1100 0.1100 0.0283 25.69% 0.1008 0.1283 0.1283 0.0257 20.05%
6 -0.4637 0.0073 0.0080 0.0073 0.0035 47.74% 0.0073 0.0093 0.0073 0.0031 42.54%
7 7.7539 0.5918 0.6456 0.6456 0.6218 96.32% 0.5918 0.7532 0.7532 0.6358 84.41%
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Figure EC.1 The optimal total social welfare as a function of the number J̄ of used park-and-ride lots, where
J̄ ∈ {1, 2, . . . , 7}, under different u1 when there are no lower-bound constraints. There are no feasible
solutions when J̄ = 1 for u1 ∈ {0.75, 0.85}.
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EC.5.4. Supplementary Results for Section 7.3
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(d) j = 6.
Figure EC.2 The optimal capacity C∗

j and traffic flow q∗
j as a function of α1 for all j ∈ {1, 2, . . . , 7}.
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(d) j = 6.
Figure EC.3 The optimal capacity C∗

j and traffic flow q∗
j as a function of α2 for all j ∈ {1, 2, . . . , 7}.
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(c) j ∈ {3,4}.
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(d) j = 6.
Figure EC.4 The optimal capacity C∗

j and traffic flow q∗
j as a function of α3 for all j ∈ {1, 2, . . . , 7}.



ec22 e-companion to Xinchang Wang, Qie He: Optimal Capacity Sizing of Park-and-Ride Lots

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

α4

q∗
1 C∗

1 q∗
7 C∗

7

(a) j ∈ {1,7}.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

α4

q∗
2 C∗

2 q∗
5 C∗

5

(b) j ∈ {2,5}.
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(c) j ∈ {3,4}.
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(d) j = 6.
Figure EC.5 The optimal capacity C∗

j and traffic flow q∗
j as a function of α4 for all j ∈ {1, 2, . . . , 7}.
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(b) j ∈ {2,5}.
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(c) j ∈ {3,4}.
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(d) j = 6.
Figure EC.6 The optimal capacity C∗

j and traffic flow q∗
j as a function of β for all j ∈ {1, 2, . . . , 7}.
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(b) j ∈ {2,5}.
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(c) j ∈ {3,4}.
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(d) j = 6.
Figure EC.7 The optimal capacity C∗

j and traffic flow q∗
j as a function of φ for all j ∈ {1, 2, . . . , 7}.
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EC.5.5. Supplementary Results for Section 7.4

Table EC.6 Π̄m(C), Gapm
i , and TGi for i ∈ {1, 2}, m ∈ {1, 2, . . . , 9}, and C ∈ {C∗, C1, C2} when
ℓ1 ∈ {0.05, 0.25, 0.5, 0.7} and u1 ∈ {0.95, 1}.

m
ℓ1 = 0.05, u1 = 0.95 ℓ1 = 0.05, u1 = 1

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 63283 63636 58318 -0.56 7.85 63662 64015 58318 -0.55 8.39
2 63324 63669 58314 -0.55 7.91 63705 64051 58314 -0.54 8.46
3 64154 63988 52975 0.26 17.43 64531 64361 52975 0.26 17.91
4 50992 54793 49450 -7.45 3.02 50998 55102 49450 -8.05 3.04
5 9426 7217 8319 23.44 11.75 9439 7215 8319 23.56 11.87
6 64079 63759 52391 0.50 18.24 64463 64139 52391 0.50 18.73
7 64182 64004 52861 0.28 17.64 64561 64379 52861 0.28 18.12
8 9404 7190 8314 23.54 11.60 9417 7188 8314 23.67 11.72
9 20376 16156 16648 20.71 18.30 20594 16165 16648 21.51 19.16

TGi – – – 60.17 113.74 – – – 60.64 117.40

m
ℓ1 = 0.25, u1 = 0.95 ℓ1 = 0.25, u1 = 1

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 63243 63369 59488 -0.20 5.94 63623 63748 59488 -0.20 6.50
2 63285 63413 59481 -0.20 6.01 63668 63793 59481 -0.20 6.58
3 64157 64149 53056 0.01 17.30 64534 64527 53056 0.01 17.79
4 46590 52673 48976 -13.06 -5.12 46612 52924 48976 -13.54 -5.07
5 9855 8555 8984 13.19 8.84 9872 8556 8984 13.33 9.00
6 64093 64017 52446 0.12 18.17 64477 64400 52446 0.12 18.66
7 64184 64155 52936 0.04 17.53 64563 64535 52936 0.04 18.01
8 9839 8529 8973 13.32 8.80 9856 8529 8973 13.46 8.96
9 22860 17824 17882 22.03 21.77 23116 17836 17882 22.84 22.64

TGi – – – 35.25 99.24 – – – 35.86 103.07

m
ℓ1 = 0.5, u1 = 0.95 ℓ1 = 0.5, u1 = 1

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 63224 63271 60344 -0.07 4.56 63604 63652 60344 -0.08 5.13
2 63268 63319 60335 -0.08 4.64 63649 63701 60335 -0.08 5.21
3 64161 64170 53127 -0.01 17.20 64539 64548 53127 -0.01 17.68
4 46394 49882 47948 -7.52 -3.35 46407 50043 47948 -7.84 -3.32
5 9927 9527 9604 4.02 3.25 9949 9535 9604 4.16 3.46
6 64105 64064 52489 0.06 18.12 64491 64449 52489 0.06 18.61
7 64188 64174 53002 0.02 17.43 64568 64554 53002 0.02 17.91
8 9911 9496 9592 4.19 3.22 9933 9504 9592 4.32 3.44
9 22929 19932 19850 13.07 13.43 23191 19989 19850 13.81 14.40

TGi – – – 13.68 78.50 – – – 14.36 82.52

m
ℓ1 = 0.75, u1 = 0.95 ℓ1 = 0.75, u1 = 1

Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2 Π̄m(C∗) Π̄m(C1) Π̄m(C2) Gapm
1 Gapm

2
1 63213 63232 60594 -0.03 4.14 63593 63615 60594 -0.03 4.72
2 63257 63281 60583 -0.04 4.23 63639 63666 60583 -0.04 4.80
3 64163 64176 53149 -0.02 17.16 64541 64554 53149 -0.02 17.65
4 46212 47671 46378 -3.16 -0.36 46218 47857 46378 -3.55 -0.35
5 9999 9899 9914 1.00 0.85 10020 9903 9914 1.17 1.06
6 64110 64077 52507 0.05 18.10 64496 64462 52507 0.05 18.59
7 64190 64180 53023 0.02 17.40 64569 64559 53023 0.02 17.88
8 9983 9866 9897 1.17 0.86 10004 9870 9897 1.34 1.07
9 22999 21565 21488 6.24 6.57 23268 21594 21488 7.20 7.65

TGi – – – 5.23 68.95 – – – 6.14 73.07
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EC.6. Optimal Capacity Sizing with Flow Interactions
In this section, we provide models for optimal capacity sizing of park-and-ride lots with the con-

sideration of explicit interactions between the traffic flows through different lots.
The congestion experienced by a commuter choosing a particular lot j ∈ [J ] does not only depend

on the traffic flow qj but may also depend on the traffic flows (qk, k ∈ [J ], k ̸= k) through all other
lots since all commuters originating from the same service area share the same road network. This
phenomenon is referred to as flow interactions.

To explicitly model flow interactions, the systematic utility of any lot j ∈ [J ] in (2) can be updated
as,

νj(q,Cj) = bj − βqθ
j −ω

∑
k ̸=j

qk + φ (1− qj/Cj) , (EC.22)

where ω ∈ R+ represents the sensitivity of commuters to the congestion in the entire road network
except for their own paths. We also update the vector of utilities as ν(q,C) := (νj(q,Cj), j ∈ [J ])
and the fixed-point equation (4) as

qj = pj(ν(q,C)) =
exp

(
bj − βqθ

j −ω
∑

k ̸=j qk + φ
(
1− qj

Cj

))
1 +

∑J
k=1 exp

(
bk− βqθ

k−ω
∑

k′ ̸=k qk′ + φ
(
1− qk

Ck

)) , ∀j ∈ [J ]. (EC.23)

The uniqueness and existence of the solution to (EC.23) follow from Remark 1.
The total social welfare is now defined as,

V (q,C) :=
J∑

j=1
qjνj(qj ,Cj) =

J∑
j=1

qj

bj − βqθ
j −ω

∑
k ̸=j

qk + φ

(
1− qj

Cj

) .

Therefore, at equilibrium, the total social welfare can also be represented as,

h(q) = V (q,C) =
J∑

j=1
qj [log(qj)− log (1−∥q∥1)] .

The yj(q) function in (13) is modified as

yj(q) := bj + φ− βqθ
j −ω(∥q∥1− qj) + log (1−∥q∥1)− log(qj) (EC.24)

for each j ∈ [J ] and we still define
ξj(q) := φqj

yj(q) .

The optimal capacity sizing with flow interactions can thus be formulated as the following opti-
mization model,

(Basic-2) sup
q,C

V (q,C)

s.t. log(qj) = log (1−∥q∥1) + bj − βqθ
j −ω(∥q∥1− qj) + φ

(
1− qj

Cj

)
, ∀j ∈ [J ],
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(10)–(12),

which is equivalent to the model (Flow) with yj(q)’s in ξj(q) updated as (EC.24).
Next, we transform the model (Flow) with flow interactions to a univariate optimization model.
We redefine the ζj,i(x, z) in (17) as

ζj,i(x, z) := βxθ−ωx+log(x)+φ (1{i = 1}+ x1{i = 2}/ℓj + x1{i = 3}/uj)−(log(1−z)+bj +φ−ωz)
(EC.25)

for i∈ {1,2,3}, j ∈ [J ] and any given z ∈ (0,1). Note that

Qj(z) = {qj ∈ [0,1] : ζj,1(qj , z)≥ 0, ζj,2(qj , z)≥ 0, ζj,3(qj , z)≤ 0}

as defined in Remark 4. Then, the univariate optimization model with flow interactions is the same
as the model (Univar) with ζj,i(x, z)’s in Qj(z) updated as (EC.25).
References
Sheffi Y (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Meth-

ods (Englewood Cliff, NJ, USA: Prentice Hall).

Stewart S (2005) A new elementary function for our curricula? Australian Senior Mathematics Journal

19(2):8–26.

US Census Bureau (2020) American community survey data. https://www.census.gov/programs-surveys/

acs/data.html, accessed: 2022-10-08.

https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html

	ParkRide_Main
	Introduction
	The Objective and Contributions
	The Outline of the Work

	Literature Review
	Capacity Sizing for Park-and-Ride Lots
	Multiproduct Price Optimization under Customer Choice

	Problem Description
	Notation
	Commuter Choice Model with Congestion and Parking Information
	Properties of the Equilibrium Flow Pattern
	The Total Social Welfare

	The Models
	Characterizing the Optimal Capacity Plan
	An Equivalent Univariate Model
	The Subproblem

	Algorithms
	Solving the Equilibrium Flow Pattern for a Given Capacity Plan
	A One-Variable Search Algorithm

	Numerical Experiments
	Bellevue's Park-and-Ride Lots and Data
	Optimal Capacities and Flows under Different Lower- and Upper-Bound Capacities
	Sensitivity Analysis
	The Performance of the Optimal Capacity Plan Under Real-Time Parking Information

	Conclusions

	E-Companion
	Supplementary Results, Supporting Lemmas, and Proofs for Section 3 
	Proofs for Section 4 
	Supporting Lemmas and Proofs for Section 5
	Supporting Lemmas, Algorithms, and Proofs for Section 6
	Supplementary Materials for Section 7
	The Departures and Choice Scenarios of Commuters under Real-time Parking Information
	Supplementary Data and Materials for Section 7.1
	Supplementary Results for Section 7.2
	Supplementary Results for Section 7.3
	Supplementary Results for Section 7.4

	Optimal Capacity Sizing with Flow Interactions


