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Abstract6

Finite frames, or spanning sets for finite-dimensional Hilbert spaces, are a ubiquitous tool in signal processing.7

There has been much recent work on understanding the global structure of collections of finite frames with prescribed8

properties, such as spaces of unit norm tight frames. We extend some of these results to the more general setting of9

fusion frames—a fusion frame is a collection of subspaces of a finite-dimensional Hilbert space with the property10

that any vector can be recovered from its list of projections. The notion of tightness extends to fusion frames, and we11

consider the following basic question: is the collection of tight fusion frames with prescribed subspace dimensions12

path connected? We answer (a generalization of) this question in the affirmative, extending the analogous result for13

unit norm tight frames proved by Cahill, Mixon and Strawn. We also extend a result of Benedetto and Fickus, who14

defined a natural functional on the space of unit norm frames (the frame potential), showed that its global minimizers15

are tight, and showed that it has no spurious local minimizers, meaning that gradient descent can be used to construct16

unit-norm tight frames. We prove the analogous result for the fusion frame potential of Casazza and Fickus, implying17

that, when tight fusion frames exist for a given choice of dimensions, they can be constructed via gradient descent.18

Our proofs use techniques from symplectic geometry and Mumford’s geometric invariant theory.19

1 Introduction20

A frame is a spanning collection of vectors in a Hilbert space which satisfies a certain Parseval-like condition [28].21

Frames are important in the context of signal processing, where a signal is modeled as a vector in a Hilbert space22

and is encoded by the list of its inner products with the vectors in the frame [26]. A frame is generally overcomplete23

(i.e., linearly dependent), a property which is useful in applications because the resulting signal representations are,24

by virtue of their redundancy, more robust to noise than representations in a basis. For practical reasons, there has25

been increased interest in finite frames, that is, spanning sets of vectors for finite-dimensional Hilbert spaces; see [24]26

and [59] for general surveys. For the rest of the paper, we will only consider finite frames and will therefore work27

under the simplifying convention that our Hilbert space is Kd , K =R or C, endowed with the standard inner product28

�⋅, ⋅�, with standard norm denoted � ⋅�.29

Typically, one requires a frame to satisfy certain norm or spectral constraints. For example, a frame { f1, . . . , fN}30

for Kd is called tight if the frame operator map v�∑N
i=1�v, fi� fi is a constant multiple of the identity map on K

d .31

Tight frames are of particular interest, since they guarantee optimal robustness under certain noise models [20, 34].32

Equivalently, a frame is tight if the spectrum of its frame operator is constant. The collection of all length-N frames33

for Kd with prescribed frame vector norms and frame operator spectrum defines a complicated algebraic variety, and34

topological and geometrical properties of these varieties have been the focus of a growing body of recent research35

[14, 16, 29, 52–54].36

The goal of this paper is to extend results on spaces of frames to the setting of a more general signal processing37

tool: a fusion frame is an ordered collection (S1, . . . ,SN) of subspaces of Kd such that the frame operator v�∑N
i=1 Piv38

is invertible (and hence necessarily positive definite), where Pi ∶Kd → Si is the orthogonal projection. Observe that39

if all subspaces are 1-dimensional, this essentially reduces to the definition of a (classical) frame. Fusion frames40

were introduced by Casazza and Kutyniok in [21] as a hierarchical approach to the construction of large frames with41

desirable properties. Fusion frames were subsequently developed into a general tool for distributed data processing42

[22,23,44]—the basic idea is that factors such as hardware limitations may require a collection of local vector-valued43
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signal measurements to be coherently and robustly fused into a global measurement. Fusion frames have more recently44

been applied to compressed sensing for structured signals or low quality measurement modalities [2, 6, 60].45

In both the original definition and much of the subsequent literature, fusion frames allow for positive weights to46

be attached to the subspaces. In what follows we will either generalize to operator-valued frames (which include all47

weighted fusion frames) or specialize to unweighted fusion frames, so in this paper (as in [44]), we only give the48

definition in the unweighted case and when we say “fusion frames” we really mean “unweighted fusion frames.”49

As in the case of (classical) frames, there is typically a focus on fusion frames with extra structure. For instance,50

the notion of a tight frame generalizes to that of a tight fusion frame—this is a fusion frame such that the frame operator51

is a multiple of the identity map. We study the topology and geometry of spaces of tight fusion frames, as well as52

spaces of fusion frames with more general prescribed data. We give precise formulations of our results in subsections53

1.1 and 1.2 below, but our main contributions are described informally as follows.54

• Fusion Frame Homotopy Theorem (Theorem 1.9).55

We show that the space of tight fusion frames in a complex Hilbert space with a prescribed sequence of subspace56

dimensions is path connected. This gives a generalization of the (complex) Frame Homotopy Theorem, which57

says that the space of length-N tight frames for a complex Hilbert space, whose frame vectors are all unit norm,58

is path connected. This was proved by Cahill, Mixon and Strawn in [14], affirming a conjecture of Larson from59

2002 (although the conjecture was first published in [29]). The Frame Homotopy Theorem was generalized by60

the authors of the present paper to spaces of frames with more general prescribed spectral and norm data using61

techniques from symplectic geometry [52] and to spaces of quaternionic frames using the theory of isoparametric62

submanifolds [55]. We once again apply symplectic techniques to prove the analogous result for fusion frames—63

in fact, our techniques work in much greater generality, and we are able to prove a connectivity result for spaces64

of operator-valued frames. Our result is described in detail below in Section 1.1.65

• Benedetto–Fickus Theorem for Fusion Frames (Theorem 1.14).66

In [7], Benedetto and Fickus introduced the frame potential, a natural energy functional on the space of frames67

consisting of a fixed number of unit vectors in a fixed Hilbert space. They showed that the global minimizers68

of the frame potential are tight frames and proved the surprising result that the frame potential has no spurious69

local minimizers, meaning that tight frames can reliably be generated via gradient descent—we refer to this70

result ([7, Theorem 7.1], also stated below as Theorem 1.12) as the Benedetto–Fickus theorem. Casazza and71

Fickus defined a more general functional on the space of fusion frames, called the fusion frame potential, and72

characterized its minimizers [18]. We extend the Benedetto–Fickus theorem to give general conditions which73

guarantee that the fusion frame potential has no spurious local minimizers (Theorem 1.14), which implies that74

if tight fusion frames exist in a given space of fusion frames, they can always be reached by gradient descent75

(Corollary 1.15). Together with Mixon and Villar, we gave several strengthenings of the Benedetto–Fickus76

theorem in [49], one of which was proved using ideas from Mumford’s geometric invariant theory (GIT) [51].77

Theorem 1.14 is proved by extending this application of GIT to the fusion frame setting. We precisely state and78

further contextualize our result below in Section 1.2.79

The structure of the paper is as follows. The remaining subsections of the introduction pin down exact definitions,80

set notation, and give precise statements of our main results. Section 2 provides necessary background on symplectic81

geometry, in preparation for the proof of the Fusion Frame Homotopy Theorem (Theorem 1.9), which is then proved82

in Section 3. The Benedetto–Fickus Theorem for Fusion Frames (Theorem 1.12) is proved in Section 4, after intro-83

ducing the main ideas of GIT. We remark that the exposition about symplectic geometry and GIT in Sections 2 and 4,84

respectively, is intended to be accessible to non-experts in these fields. The paper concludes with a discussion of open85

problems and future directions in Section 5.86

1.1 Fusion Frame Homotopy87

Recall that a tight fusion frame (TFF) is a fusion frame (S1, . . . ,SN) such that the frame operator ∑i Pi is a multiple of88

the identity. If ki = dim(Si) = rk(Pi) then, since all nonzero eigenvalues of an orthogonal projector are equal to 1,89

tr�
N
�
i=1

Pi� =
N
�
i=1

tr(Pi) =
N
�
i=1

ki =∶ n,
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so it must be the case that a TFF has frame operator equal to n
d Id , where Id is the identity operator on K

d . Since the Pi90

uniquely determine and are uniquely determined by the Si, we will also call (P1, . . . ,PN) a (tight) fusion frame when91

the corresponding (S1, . . . ,SN) is.92

With the frame homotopy conjecture [29] (resolved by Cahill, Mixon, and Strawn in 2017 [14]) in mind, the93

following is a very natural question:94

Question 1.1. Is the space of TFFs in K
d with given ranks (k1, . . . ,kN) path-connected?95

The first goal of this paper is to show that the answer to Question 1.1 is always “yes” for complex fusion frames96

(i.e., when K =C). In fact, we will prove a much more general theorem about spaces of operator-valued frames with97

fixed spectral data.98

To motivate the definition given below, notice that, for a fusion frame (P1, . . . ,PN), each projector Pi has a full-rank99

square root Ai ∶Kd →K
ki so that A∗i Ai = Pi. This square root is unique up to composing with a unitary transformation100

of the codomain:101

Proposition 1.2 ([36, Theorem 7.3.11]). Suppose A ∶Kd →K
k and B ∶Kd →K

k are linear maps. Then A∗A = B∗B if102

and only if there exists a unitary transformation U ∈U(k) so that B =UA.103

Hence, up to this indeterminacy, we can also think of a fusion frame as a collection of operators (A1, . . . ,AN) so104

that A∗i Ai is an orthogonal projector for each i = 1, . . . ,N and so that A∗1 A1+ ⋅ ⋅ ⋅+A∗NAN is positive definite. This is the105

definition we will generalize by relaxing the condition on the individual A∗i Ai:106

Definition 1.3. Let d,N,k1, . . . ,kN be positive integers. Let kkk ∶= (k1, . . . ,kN). Then an operator-valued frame of type107

(d,kkk) is an N-tuple AAA ∶= (A1, . . . ,AN) of linear maps Ai ∶Kd →K
ki so that the frame operator108

SAAA ∶=
N
�
i=1

A∗i Ai

is positive definite. The space of operator-valued frames of type (d,kkk) will be denoted OFK
d ,kkk.109

This definition is essentially the specialization to finite dimensions of Kaftal, Larson, and Zhang’s definition [37]110

of an operator-valued frame (see also [9]). As with fusion frames, we will define Pi ∶= A∗i Ai, so that the frame operator111

is ∑i Pi. In practice, we will make the simplifying assumption rk(Ai) = ki, by restricting the codomain of Ai to its112

image if necessary.113

The feature that distinguishes fusion frames among the operator-valued frames is that the Pi are orthogonal projec-114

tors of rank ki, which means precisely that the ki nonzero eigenvalues of Pi are all equal to 1. More generally, we can115

consider spaces of operator-valued frames with fixed spectral data:116

Definition 1.4. Let d,N,k1, . . . ,kN be positive integers and kkk ∶= (k1, . . . ,kN). For each i, let rrri = (ri1, . . . ,riki) with117

ri1 ≥ ⋅ ⋅ ⋅ ≥ riki > 0,1 and let rrr = (rrr1, . . . ,rrrN). OFK
d ,kkk(rrr) will denote the space of operator-valued frames (A1, . . . ,AN) of118

type (d,kkk) for which Pi = A∗i Ai has nonzero eigenvalues equal to rrri. Equivalently, each ri j = s2
i j, where the si j are the119

singular values of Ai.120

Example 1.5. Let kkk = (k1, . . . ,kN) and let rrr = (rrr1, . . . ,rrrN) such that every rrri is a list of ki ones. Then OFK
d ,kkk(rrr) is121

equivalent to the space of fusion frames with prescribed ranks kkk. Indeed, it is the space of AAA = (A1, . . . ,AN) so that122

Pi = A∗i Ai is a rank-ki orthogonal projector and the frame operator SAAA =∑i Pi is positive-definite. Since this space is123

of particular interest, we use the specialized notation FFK
d ,kkk ∶=OFK

d ,kkk(rrr). As a special case, if ki = 1 for all i then124

FFK
d ,kkk is equivalent to the space of unit-norm frames of length N in K

d .125

Tight fusion frames are also distinguished among fusion frames by spectral data since multiples of the identity are126

uniquely determined by their spectra: l Id is the only operator with spectrum (l , . . . ,l). Fixing the spectral data of127

the frame operator is more natural than fixing the frame operator itself, since we can always diagonalize the frame128

operator by precomposing the Ai ∶ Kd → K
ki by a common unitary transformation of the domain. Hence, a natural129

generalization of tight frames is the collection of operator-valued frames with fixed spectrum of their frame operator:130

1Remember our simplifying assumption that the Ai should be full rank.
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Definition 1.6. Let d,N,k1, . . . ,kN be positive integers and kkk ∶= (k1, . . . ,kN). Let lll = (l1, . . . ,ld) with l1 ≥ ⋅ ⋅ ⋅ ≥ ld > 0.131

OFK
d ,kkk

lll will denote the space of operator-valued frames (A1, . . . ,AN)whose frame operator SAAA =∑i A∗i Ai has spectrum132

lll .133

Example 1.7. Let kkk = (k1, . . . ,kN) and let lll = (1, . . . ,1) be the list of d ones. ThenOFK
d ,kkk

lll could reasonably be called134

the space of Parseval operator-valued frames of type (d,kkk), by analogy with the case ki = 1 for all i, when OFK
d ,kkk

lll is135

equivalent to the space of Parseval frames of length N in K
d (that is, frames whose frame operator is the identity).136

Of course, the definition of a tight fusion frame includes both fixed spectral data of the Pi and fixed spectral data137

of the frame operator, so it involves intersecting two of the spaces defined above. In that spirit, define138

OFK
d ,kkk

lll (rrr) ∶=OFK
d ,kkk

lll ∩OFK
d ,kkk(rrr).

Hence, the operator-valued generalization of Question 1.1 is the following:139

Question 1.8. For given d,N,kkk,rrr,lll , is the space OFK
d ,kkk

lll (rrr) path-connected?140

In the case of complex classical frames (i.e., K = C and kkk = (1, . . . ,1), but general lll and rrr) we answered this141

question in the affirmative using symplectic geometry [52]. Here, we give an affirmative answer for general complex142

operator-valued frames:143

Theorem 1.9. The space OFC
d ,kkk

lll (rrr) is always path-connected.144

Since the empty set is trivially path-connected, the substantive content of this theorem is that OFC
d ,kkk

lll (rrr) is path-145

connected whenever it is non-empty. For discussion of when it is empty, see Remark 1.16.146

1.2 Benedetto–Fickus Theorem for Fusion Frames147

We now specialize back to fusion frames, but again work over K =R or C. Recall from Example 1.5 that, for d and N148

positive and kkk = (k1, . . . ,kN), FFK
d ,kkk denotes the space of (square roots of) fusion frames with prescribed ranks kkk.149

It is easy to generate random elements of FFK
d ,kkk: for each i, let Bi be a ki × d matrix with standard Gaussian150

entries, and let Ai be the result of orthogonalizing the rows of Bi. Given their usefulness in applications, it is desirable151

to generate not just fusion frames, but tight fusion frames. Following the lead of Benedetto and Fickus [7], a plausible152

strategy for doing so is to define a potential function on FFK
d ,kkk whose global minima are exactly the set of TFFs,153

and then flow along the negative gradient direction of this potential. A natural candidate for such a potential is the154

fusion frame potential defined by Casazza and Fickus [18], generalizing Benedetto and Fickus’ frame potential. In155

the definition below, and at times throughout the rest of the paper, we will abuse notation and also use �⋅, ⋅� and � ⋅ �156

to denote, respectively, the Frobenius inner product and norm on a space of operators; the meaning should always be157

clear from context.158

Definition 1.10. Let d,N,k1, . . . ,kN be positive integers. The fusion frame potential FFP ∶FFK
d ,kkk →R is defined by159

FFP(AAA) ∶= �SAAA�2 .

Note that the fusion frame potential could be generalized to arbitrary spaces of operator-valued frames, though we160

will not do so here. As Casazza and Fickus showed (see also Proposition 4.1), the fusion frame potential satisfies a161

Welch-type lower bound which is achieved exactly at the TFFs. Hence, when they exist, TFFs are exactly the global162

minima of FFP, and it is natural to ask whether we can get to these global minima by negative gradient flow:163

Question 1.11. When they exist, can we construct TFFs by flowing along the negative gradient of FFP? That is, are164

all local minima of FFP also global in this setting?165

An affirmative answer to this question is essentially a conjecture of Massey, Ruiz, and Stojanoff [47, Conjec-166

ture 4.3.3]. For unit-norm tight frames, Benedetto and Fickus showed that there are no spurious local minima of the167

frame potential, completely resolving Question 1.11 in this case:168
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Theorem 1.12 (Benedetto–Fickus theorem [7]). Let d and N be positive and kkk = (1, . . . ,1). Then FFP ∶FFK
d ,kkk →R169

has no spurious local minimizers.170

In [49] we gave three new proofs of this result, one of which we now intend to generalize to fusion frames. The171

exposition here is self-contained, but parallels that in [49, §4].172

To state our theorem, we need to define a suitable notion of genericity for fusion frames.173

Definition 1.13. Let AAA ∈FFK
d ,kkk and recall that, for each i = 1, . . . ,N, the image of the orthogonal projector Pi = A∗i Ai174

is a ki-dimensional subspace Si ⊂Kd . We say that AAA has property S if, for all proper linear subspaces Q ⊂Kd ,175

1
dimQ

N
�
i=1

dim(Si∩Q) ≤
1
d

N
�
i=1

ki =
n
d
.

Roughly speaking, this condition says that no subspace of Kd intersects too many of the Si. For example, in the176

classical frames case kkk = (1, . . . ,1), property S says the fraction of frame vectors lying in any given r-dimensional177

subspace is no more than r
d . In particular, this is a much weaker condition than being full spark.178

More generally, in the case of equal-rank fusion frames—i.e., each Pi is rank k—property S is weaker than the179

condition∑N
i=1 dim(Si∩Q) ≤ dimQ for all proper subspacesQ ⊂Kd . Fusion frames satisfying this latter condition are180

relevant to the problem of compressed sensing with block sparsity [11, 30] since they provide unique reconstructions181

for the largest possible class of block-sparse signals, much as classical full spark frames are optimal for traditional182

compressed sensing [3, 27].183

Theorem 1.14. Let 0 < d,N,k1, . . . ,kN. Consider the negative gradient flow G ∶FFK
d ,kkk×[0,∞)→FFK

d ,kkk defined by184

the differential equation185

G(AAA0,0) = AAA0,
d
dt

G(AAA0,t) = −gradFFP(G(AAA0,t))

where grad is the Riemannian gradient and AAA0 = (A1, . . . ,An) ∈FFK
d ,kkk is an initial frame.186

If AAA0 has property S , then AAA∞ ∶= limt→∞G(AAA0,t) ∈FFK
d ,kkk is a global minimum of FFP.187

As mentioned above, for parameters d and kkk which admit TFFs, the TFFs are exactly the global minima of FFP, so188

for those parameters this theorem implies that fusion frames with property S always flow to tight fusion frames. More-189

over, these are exactly the parameters for which FFK
d ,kkk contains fusion frames with property S (Corollary 4.14),190

which turn out to be dense in FFK
d ,kkk (Corollary 4.7). This implies that there are fusion frames arbitrarily close to any191

non-minimal critical point of FFP which flow to a global minimum, so non-minimal critical points of FFP cannot be192

basins of attraction of the gradient flow. In turn, FFP is a polynomial defined on an analytic submanifold of Euclidean193

space, so it will have a Łojasiewicz exponent (cf. [10, Corollary 4.2]), and an argument analogous to [1, Theorem 3]194

shows that local minima must be basins of attraction. Hence, non-minimal critical points cannot be local minima.195

Corollary 1.15. When FFK
d ,kkk contains TFFs, all local minima of FFP are global minima.196

This generalizes Benedetto and Fickus’ result to fusion frames and completely answers Question 1.11. See also197

work of Heineken, Llarena, and Morillas [32], which gives a similar answer for a restriction of FFP to a subset of198

FFK
d ,kkk, and of Massey, Ruiz, and Stojanoff [47], who proved an analogous result with respect to a different notion of199

distance on fusion frames.200

Even in some situations where there cannot be any TFFs—for example, when d = N = 3 and kkk = (1,1,2)—the201

negative gradient flow of FFP empirically seems to avoid spurious local minima, so there is hope that the conclusion202

of Corollary 1.15 follows from weaker hypotheses.203

Remark 1.16 (Admissibility). In light of Corollary 1.15, it would be useful to know when the space of TFFs is non-204

empty. More generally, we can ask whether OFK
d ,kkk

lll (rrr) is non-empty, which is really prior to the question of whether205

it is path-connected. In the context of classical frames (i.e., kkk = (1, . . . ,1)), this is sometimes called the admissibility206

problem, and its resolution follows easily from the Schur–Horn theorem [36, 56] (see also [4, 25] and Cahill, Fickus,207
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Mixon, Poteet, and Strawn’s contructive solution [13]): in this setting, rrr = (r1, . . . ,rN) is a single list of positive208

numbers, and OFK
d ,kkk

lll (rrr) is nonempty precisely when lll majorizes rrr [46], meaning that209

d
�
i=1

li =
N
�
i=1

ri and
k
�
i=1

li ≥
k
�
i=1

ri for all k = 1, . . . ,d,

where we assume lll and rrr are sorted in decreasing order. In particular, the space OFK
d ,kkk�N
d ,...,N

d �(1, . . . ,1) of unit-norm210

tight frames is always nonempty when N ≥ d.211

More generally, admissibility has been completely resolved for all spaces of tight fusion frames (therefore precisely212

determining the scope of Theorem 1.14 and Corollary 1.15): by Casazza, Fickus, Mixon, Wang, and Zhou [19] when213

all Pi have the same rank, and in general by Bownik, Luoto, and Richmond [12]. Even for tight fusion frames, the214

conditions on d and kkk which ensure non-emptiness are quite complicated, boiling down to non-vanishing of certain215

Littlewood–Richardson coefficients.216

However, this is not really surprising, given that in general admissibility for operator-valued frames is equivalent217

to the following question: what lll ,rrr1, . . . ,rrrN can be the eigenvalues of d ×d Hermitian matrices M,P1, . . . ,PN so that218

M = P1 + ⋅ ⋅ ⋅+PN? In 1962, Horn conjectured necessary and sufficient conditions involving a complicated system of219

inequalities between lll and the rrri [35]. This became known as the Horn conjecture, which was eventually proved in220

the late 1990s by Klyachko [41] and Knutson and Tao [42, 43]; see Fulton’s survey [31] for more, and Berenstein and221

Sjamaar’s paper [8] for a generalization. The answer does not depend on the base field: if OFC
d ,kkk

lll (rrr) is non-empty,222

then so is OFR
d ,kkk

lll (rrr) (see, e.g., [31, Theorem 20]).223

Thus, the admissibility problem for operator-valued frames is at least implicitly resolved by the proof of the Horn224

conjecture (see also [47]), and more explicit solutions exist in the most common cases of interest, namely frames and225

tight fusion frames.226

2 Symplectic Machinery227

As in our earlier work on frames [52], our strategy for proving Theorem 1.9 involves symplectic geometry. First,228

we will review some standard concepts from symplectic geometry, which will help both to provide a quick reference229

and to establish our notation and sign conventions. Our main references for symplectic geometry are McDuff and230

Salamon [48] and Cannas da Silva [17].231

2.1 Definitions232

A symplectic manifold is a pair (M,w), where M is a (smooth, real) manifold and w is a closed, nondegenerate 2-form233

on M. For each point p ∈M and for each pair of tangent vectors X ,Y ∈ TpM, we write wp(X ,Y) ∈R for the evaluation234

of w at the point on the pair. Being closed means that dw is identically zero, where d is the exterior derivative on235

M, and being nondegenerate means that, for each p ∈M and each X ∈ TpM, there exists Y ∈ TpM so that wp(X ,Y) ≠ 0.236

Nondegeneracy implies that a symplectic manifold must be even-dimensional over R.237

Example 2.1. The simplest example of a symplectic manifold is C
n ≈ R2n. For p ∈ Cn there is a natural isomor-238

phism TpC
n ≈ Cn, and complex coordinates (x1 +

√
−1y1, . . . ,xn +

√
−1yn) for C

n correspond to real coordinates239

(x1, . . . ,xn,y1, . . . ,yn), with respect to which the standard symplectic form on C
n is given by240

w = dx1∧dy1+ ⋅ ⋅ ⋅+dxn∧dyn.

We can rewrite this in complex coordinates as follows: given p ∈Cn and Z = (z1, . . . ,zn),W = (w1, . . . ,wn) ∈ TpC
n ≈Cn,241

wp(Z,W) = −Im(w1z1+ ⋅ ⋅ ⋅+wnzn) = −Im(W∗Z) = −Im�Z,W �.

In fact, Darboux’s theorem [48, Theorem 3.2.2] implies that every point in a symplectic manifold has a neighbor-242

hood on which the symplectic structure looks like the standard one on C
n.243

Symplectic geometry grew out of Hamiltonian mechanics, and a big emphasis both historically and currently is244

on the interactions between symplectic structures and symmetries; that is, group actions on symplectic manifolds. In245
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general, if G is a Lie group with Lie algebra g and G acts on a manifold M, then each x ∈ g determines a vector field246

Yx on M as follows. For p ∈M and g ∈G, let g ⋅ p denote the action of g on p. Then we define247

Yx �p ∶=
d

de
�
e=0

exp(ex) ⋅ p,

where exp ∶ g→ F is the exponential map of G.248

Now, suppose G acts on a symplectic manifold (M,w). If g∗ is the dual of g, a map F ∶ M → g∗ is called a249

momentum map for the G-action if it satisfies the following conditions.250

First, let DF(p) ∶ TpM → TF(p)g∗ be the derivative of F at p ∈M. Since g∗ is a vector space, there is a natural251

isomorphism TF(p)g∗ ≈ g∗, so we can interpret DF(p) as a map to g∗. Hence, for each X ∈ TpM, DF(p)(X) is an252

element of the dual space of g; that is, DF(p)(X) ∶ g→R. For F to be a momentum map we require this map to satisfy253

the compatibility condition254

DF(p)(X)(x) =wp(Yx �p ,X)

for all x ∈ g.255

Also, we require a momentum map F to be equivariant with respect to the given action of G on M and the natural256

coadjoint action of G on g∗. More explicitly, the adjoint action of G on g is the linearization at the identity of the257

conjugation action of G on itself; that is, for each g ∈G the map Adg ∶ g→ g is the derivative at the identity of the map258

h� ghg−1. In turn, the coadjoint action of G on g∗ gives a map Ad∗g ∶ g∗ → g∗ for each g ∈ G which is defined by259

Ad∗g (c)(x) ∶= c(Adg−1(x)). When G is a matrix group, both Adg and Ad∗g can be interpreted as conjugation by g.260

Now, the equivariance condition on momentum maps is that, for each g ∈G and each p ∈M,261

Ad∗g (F(p)) =F(g ⋅ p).

When a G-action admits a momentum map, the action is called Hamiltonian and the tuple (M,w,G,F) is a262

Hamiltonian G-space.263

Proposition 2.2 (cf. [48, Exercise 5.3.16]). Suppose G is a Lie group and (Mi,wi,G,Fi) are Hamiltonian G-spaces264

for i = 1, . . . ,n. Then the diagonal action of G on M1×⋅ ⋅ ⋅×Mn is Hamiltonian with momentum map265

F(p1, . . . , pn) =F1(p1)+ ⋅ ⋅ ⋅+Fn(pn).

Proof. The standard symplectic form on a product ∏n
i=1 Mi of symplectic manifolds is p∗1 w1 + ⋅ ⋅ ⋅+ p∗n wn, where266

pk ∶∏n
i=1 Mi→Mk is projection onto the kth factor and p∗k is the induced pullback operator on forms.267

Any tangent vector X ∈ T(p1,...,pn)∏n
i=1 Mi is of the form X = (X1, . . . ,Xn) for Xi ∈ TpiMi for all i = 1, . . . ,n. In268

particular, if x ∈ g, then the associated vector field269

Yx �(p1,...,pn) = ((Y1)x �p1
, . . . , (Yn)x �pn

),

where each (Yi)x �pi
= (dpi)(p1,...,pn) Yx �(p1,...,pn) is the vector field on Mi associated to x .270

Let F ∶∏n
i=1 Mi→ g∗ be defined as in the statement of the proposition and let X = (X1, . . . ,Xn) ∈ T(p1,...,pn)∏n

i=1 Mi.
Then

DF(p1, . . . , pn)(X1, . . . ,Xn)(x) =
n
�
i=1

DFi(pi)(x) =
n
�
i=1
(wi)pi(Yx �pi

,Xi) =
n
�
i=1
(w1)pi((dpi)(pi,...,pi) Yx �(p1,...,pn) ,Xi)

=
n
�
i=1

p∗i (wi)pi(Yx �(p1,...,pn) ,Xi)

=w(p1,...,pn)(Yx �(p1,...,pn) ,(X1, . . . ,Xn)),

where we’ve used linearity in various places. So F satisfies the appropriate compatibility condition with w .271

Moreover, if g ∈G and (p1, . . . , pn) ∈∏n
i=1 Mi, then272

Ad∗g (F(p1, . . . , pn)) =Ad∗g �
n
�
i=1

Fi(pi)� =
n
�
i=1

Ad∗g (Fi(pi)) =
n
�
i=1

Fi(g ⋅ pi) =F(g ⋅ p1, . . . ,g ⋅ pn) =F(g ⋅(p1, . . . , pn))

using the linearity of Ad∗g and the G-equivariance of the Fi, so F is G-equivariant, and hence is a momentum map for273

the G-action.274
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2.2 Coadjoint Orbits275

An important class of Hamiltonian spaces are coadjoint orbits, which we now describe in some detail, loosely follow-276

ing [48, Example 5.3.11].277

Let G be a Lie group with Lie algebra g and dual Lie algebra g∗. Let c ∈ g∗ and let Oc be the coadjoint orbit278

through c; that is,279

Oc ∶= �Ad∗g (c) �g ∈G� .

It is a standard fact that Oc has a natural symplectic form called the Kirillov–Kostant–Souriau (KKS) form [5, II.3.c],280

denoted wKKS, defined as follows. The tangent space toOc at c consists of vectors of the form ad∗x c , where x ∈ g and281

ad∗x is the coadjoint representation of g on g∗; that is, the derivative of the coadjoint representation Ad∗ ∶G→Aut(g∗)282

at the identity. Then283

wKKS
c (ad∗x (c),ad∗z (c)) ∶= c([x ,z ]),

where [⋅, ⋅] is the Lie bracket on g.284

The action of G on Oc is Hamiltonian, with momentum map F ∶Oc → g∗ simply being the inclusion map. To see285

this, first notice that the vector field Yx on Oc induced by x ∈ g is286

Yx �c =
d

de
�
e=0

Ad∗expex (c) = ad∗x c.

If F is the inclusion of Oc into g∗, then its derivative DF(c) ∶ TcOc → g∗ is also an inclusion, so

DF(c)(ad∗z (c))(x) = ad∗z (c)(x) = c(−adz (x)) = c(−[z ,x ]) = c([x ,z ])

=wKKS(ad∗x (c),ad∗z (c)) =wKKS(Yx �c ,ad∗z (c)).
Since F is obviously equivariant, this shows that it is a momentum map for the G-action on Oc .287

Combining the above discussion with Proposition 2.2 yields the following corollary:288

Corollary 2.3. Let G be a Lie group with dual Lie algebra g∗. Let O1, . . . ,On ⊂ g∗ be coadjoint orbits with their KKS289

forms wKKS
i . Then �∏n

i=1Oi,∑n
i=1 p∗i wKKS

i � is symplectic and the diagonal coadjoint action of G is Hamiltonian with290

momentum map291

F(c1, . . . ,cn) = c1+ ⋅ ⋅ ⋅+cn,

where on the right hand side we have identified each ci ∈Oi with its inclusion into g∗.292

2.3 Level Sets of Momentum Maps293

We are shortly going to associate Pi with fixed spectra with points on a coadjoint orbit of U(d), so fixing the spectra294

of P1, . . . ,PN corresponds to choosing coadjoint orbits of U(d) and taking their Cartesian product, and the associated295

momentum map of the diagonal U(d) action will be the frame operator by Corollary 2.3. This will all be explained in296

the next section, but the point is that the tight operator-valued frames whose Pi have a given spectrum will be precisely297

a level set of the momentum map, and the frame homotopy problem in this case boils down to showing connectedness298

of this level set. Fortunately for us, there are powerful results showing that level sets of momentum maps are usually299

connected.300

While one can prove somewhat more general results, we will only consider Hamiltonian G-spaces (M,w,G,F)301

where both M and G are compact. Since we intend to apply these results to the diagonal action of U(d) on a product302

of its coadjoint orbits, this will suffice for our purposes.303

Fix a G-invariant inner product on the Lie algebra g. This induces a vector space isomorphism of g∗ with g, and304

hence determines an inner product and norm on the codomain g∗ of the momentum map F. Kirwan [39] showed that,305

while it is not quite a Morse–Bott function, the norm-squared map �F�2 has many of the desirable properties of such306

functions.307

Theorem 2.4 (Kirwan [39, Theorem 4.16]). The set of critical points for �F�2 is a finite disjoint union of closed308

subsets {Cb ∶ b ∈ B} on each of which �F�2 takes a constant value (here the indexing set B is a finite subset of the309

positive Weyl chamber t+ of g � g∗).310
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Moreover, there is a smooth stratification {Sb ∶ b ∈ B} of M, where p ∈ Sb if and only if the limit set of its image311

under the flow of −grad�F�2 (for an appropriate choice of G-invariant Riemannian metric on M) is contained in Cb .312

Finally, for each b the inclusion Cb � Sb is an equivalence of Čech cohomology and also G-invariant cohomology.313

Moreover, Kirwan showed [39, 4.18] that the Sb are all locally closed, even-dimensional submanifolds of M.314

Since it is impossible to disconnect a manifold by removing submanifolds of codimension ≥ 2, each stratum must be315

connected. In particular, the stratum S0 of points which flow to F−1(0) is connected; by the equivalence of Čech316

cohomology, the level set F−1(0) =C0 is also connected:317

Theorem 2.5 (Kirwan [40, (3.1)]; see also [57, Remark 5.8]). Let (M,w,G,F) be a Hamiltonian G-space with M and318

G compact. Then F−1(0) is connected.319

In general, we will be interested not just in F−1(0), but also in F−1(O), where O ⊂ g∗ is a coadjoint orbit.320

Fortunately, the “shifting trick” will allow us to easily translate Theorem 2.5 to this more general setting:321

Corollary 2.6. Let (M,w,G,F) be a Hamiltonian G-space with M and G compact and let O ⊂ g∗ be a coadjoint322

orbit. Then F−1(O) is connected.323

Proof. The goal is to build a new Hamiltonian G-space (M,w,G,F) so that F−1(0) ≈F−1(O). This is exactly what324

the shifting trick (see [17, §24.4] or [48, Proof of Proposition 5.4.15]) was designed to do.325

Specifically, we know that (O,wKKS) is symplectic, and hence so is (O,−wKKS). Let M =M×O with symplectic326

form w = p∗1 w +p∗2 (−wKKS), where as usual pi is projection onto the ith factor. Let the G action on M be the diagonal327

action. Then Proposition 2.2 and the discussion in Section 2.2 imply that328

F(p,c) ∶=F(p)−c

is a momentum map for this action.329

Now,330

F−1(0) = {(p,F(p)) � p ∈M,F(p) ∈O}

is connected by Theorem 2.5. Since this space is certainly homeomorphic to F−1(O), we conclude that F−1(O) is331

also connected.332

3 The Symplectic Geometry of Spaces of Operator-Valued Frames333

We now relate the general machinery of the previous section to operator-valued frames. Throughout this section we334

will fix positive integers d,N,k1, . . . ,kN . We will also fix rrr = (rrr1, . . . ,rrrN), where rrri = (ri1, . . . ,riki) with ri1 ≥ ⋅ ⋅ ⋅ ≥ riki > 0.335

Given this data, consider the space OFC
d ,kkk(rrr) of all operator-valued frames (A1, . . . ,An), where Ai ∶Cd →C

ki is336

linear and Pi ∶= A∗i Ai has spectrum rrri. The space OFC
d ,kkk(rrr) is not obviously symplectic, but our first goal is to show337

that the quotientOFC
d ,kkk(rrr)�(U(k1)×⋅ ⋅ ⋅×U(kN)) is symplectic, and in fact is essentially a product of coadjoint orbits338

of U(d).339

To start, we recall that the spaceH(d) of d×d Hermitian matrices can be identified with the dual u(d)∗ of the Lie
algebra of U(d) by the isomorphism

a ∶H(d)→ u(d)∗

x � �h �
√
−1
2

tr(h∗x) = �
√
−1
2

x ,h� =∶ ax (h)� .

We collect relevant lemmas from our previous paper [52, §2.2.1 and §2.2.2] in the following proposition:340

Proposition 3.1. Under this identification, the coadjoint action of U(d) on u(d)∗ corresponds to the conjugation341

action of U(d) on H(d), and hence coadjoint orbits of U(d) can be identified with collections of Hermitian matrices342

with fixed spectrum µµµ , which we will denote Oµµµ ⊂H(d).343
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For each i = 1, . . . ,N, the collection of Pi ∈H(d) with spectrum rrri is exactly Orrri , and so344

PFC
d ,kkk(rrr) ∶= {(P1, . . . ,PN) ∈H(d)N � spec(P1) = rrr1, . . . ,spec(PN) = rrrN} =Orrr1 ×⋅ ⋅ ⋅×OrrrN (1)

is a product of coadjoint orbits. Corollary 2.3 now has the following immediate consequence:345

Corollary 3.2. The momentum map F for the diagonal conjugation action of U(d) on PFC
d ,kkk(rrr) is precisely the346

frame operator:347

F(P1, . . . ,PN) = P1+ ⋅ ⋅ ⋅+PN .

Fix lll = (l1, . . . ,ld) with l1 ≥ ⋅ ⋅ ⋅ ≥ ld > 0. Define348

PFC
d ,kkk

lll (rrr) ∶= {(P1, . . . ,PN) ∈H(d)N � spec(P1) = rrr1, . . . ,spec(PN) = rrrN ,spec(P1+ ⋅ ⋅ ⋅+PN) = lll}. (2)

In other words, this is the collection of Pi with both the correct individual spectra and the correct spectrum of the frame349

operator. Then Corollaries 2.6 and 3.2 imply:350

Proposition 3.3. PFC
d ,kkk

lll (rrr) =F−1(Olll ) ⊂PFC
d ,kkk(rrr) is connected.351

Note that, if we think of fusion frames in the usual way as a collection of subspaces or, equivalently, orthogonal352

projectors, this already gives an affirmative answer to Question 1.1 in the case K =C.353

In the more general operator-valued frame case, the question is how PFC
d ,kkk

lll (rrr) relates toOFC
d ,kkk

lll (rrr), which is the354

space we want to show is connected. As previously discussed, while Ai ∶Cd →C
ki uniquely determines Pi = A∗i Ai, the355

operator Ai cannot be uniquely determined from Pi. Indeed, if U ∈U(ki), then356

(UAi)∗(UAi) = A∗i U∗UAi = A∗i Ai = Pi,

so composing with a unitary transformation of the codomain leaves Pi invariant. Proposition 1.2 says that this is the357

only indeterminacy, and hence the set of Pi with given spectrum is precisely the collection of cosets of the (left) unitary358

action on the set of Ai with given singular values:359

{Pi ∶Cd →C
d � specPi = rrri} ≈ {Ai ∶Cd →C

ki � spec(A∗A) = rrri}�U(ki).

In turn, this implies that360

PFC
d ,kkk(rrr) ≈OFK

d ,kkk(rrr)�(U(k1)×⋅ ⋅ ⋅×U(kN)), (3)

and hence that361

PFC
d ,kkk

lll (rrr) ≈OFK
d ,kkk

lll (rrr)�(U(k1)×⋅ ⋅ ⋅×U(kN)).

Here, we are using the fact that the operations of taking a level set and taking a quotient commute with one another.362

That is, suppose that X is a topological space with an action by a group G and Y ∶X→Y is a G-invariant map, so that the363

induced quotient map Ỹ ∶ X�G→Y taking an equivalence class [x] to Y(x) is well defined; then Ỹ−1(y) =Y−1(y)�G364

for any y ∈Y . Indeed, [x] ∈ Ỹ−1(y) if and only if x ∈Y−1(y), or equivalently [x] ∈Y−1(y)�G.365

Therefore, the following lemma (with X =OFK
d ,kkk

lll (rrr) and G =U(k1)×⋅ ⋅ ⋅×U(kN)) combined with Proposition 3.3366

implies that OFK
d ,kkk

lll (rrr) is connected. Since OFK
d ,kkk

lll (rrr) is a real algebraic set in C
k1×d ×⋅ ⋅ ⋅×CkN×d ≈R2(k1+⋅⋅⋅+kN)d , it367

is locally path-connected, so that connectivity implies path-connectivity, completing the proof of Theorem 1.9.368

Lemma 3.4. Let X be a topological space and let G be a connected topological group acting continuously on X. If369

X�G is connected, then X is connected.370

The lemma follows from standard point-set topology arguments (see, e.g., [45, Exercise 5.5]), since connectedness371

of G implies the fibers of the quotient map are connected.372
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4 Tightening Fusion Frames373

We now specialize to fusion frames, but relax our assumption on the base field, so that K=R or C. Recall the definition374

of the fusion frame potential FFP ∶FFK
d ,kkk →R:375

FFP(AAA) ∶= �SAAA�2 .

One of Casazza and Fickus’ first results about the fusion frame potential was a Welch-type lower bound:376

Proposition 4.1 ( [18, Proposition 1]). Let d,N,k1, . . . ,kN be positive integers and define n ∶= k1 +�+ kN. Then for377

AAA = (A1, . . . ,AN) ∈FFK
d ,kkk,378

FFP(AAA) ≥ 1
d
�

N
�
i=1

ki�
2

= n2

d

with equality if and only if AAA is a tight fusion frame.379

Let L= n
d and define LLL= (L, . . . ,L). If they exist, the TFFs must have frame operator LId , so thatFFK

d ,kkk
LLL ⊂FFK

d ,kkk
380

is exactly the collection of TFFs. Hence, Proposition 4.1 says that if this collection of TFFs is nonempty then it is381

exactly the set of global minimizers of FFP in FFK
d ,kkk.382

The hard work of proving Theorem 1.14 is in proving the K =C case. The real case then follows immediately since383

FFR
d ,kkk ⊂FFC

d ,kkk is invariant under the gradient flow of FFP. We record this observation in the following proposition:384

Proposition 4.2. For given d and kkk, if Theorem 1.14 is true for FFC
d ,kkk, then it is also true for FFR

d ,kkk.385

Except where explicitly pointed out below, we will assume K = C in what follows. The strategy for proving the386

complex case of Theorem 1.14 is to show that property S (Definition 1.13) satisfies the following conditions:387

(i) gradient flow (and its limit) preserves S , but388

(ii) no non-minimizing critical point of the fusion frame potential satisfies S .389

Our argument has roots in Mumford’s geometric invariant theory (GIT) [51] (see [58] for a nice introduction),390

which we introduce in some generality before specializing.391

Let G be a reductive algebraic group that acts linearly on a finite-dimensional complex vector space V . For392

example, G might be GL(V) or SL(V). A nonzero vector v ∈V is unstable under the action of G if the closure G ⋅v393

of the G-orbit of v contains the origin; otherwise v is semi-stable. Notice that the unstable points are precisely those394

in the vanishing locus of every G-invariant homogeneous polynomial on V , and hence the semi-stable points are those395

on which some G-invariant homogeneous polynomial does not vanish.396

As one might expect, semi-stability is a feature of the orbit of v: either the entire orbit consists of semi-stable397

points, or the entire orbit consists of unstable points.398

Proposition 4.3 (see, e.g., [49, Proposition 6]). Given a nonzero v ∈V that is semi-stable, every point in G ⋅v is also399

semi-stable.400

4.1 V and the SL(d) Action401

In our application of GIT, we will have G = SL(d). To determine the appropriate vector space V , we first recall the402

Plücker embedding Grk(Cd)→ P(�k
C

d), defined on the Grassmannian Grk(Cd) of k-dimensional linear subspaces403

of Cd . We can represent a k-plane by any basis v1, . . . ,vk for it. Then the Plücker embedding is defined to be the404

projectivization of the map t ∶ (Cd)k →�k
C

d defined by405

t(v1, . . . ,vk) ∶= v1∧⋅ ⋅ ⋅∧vk.

When (u1, . . . ,uk) and (v1, . . . ,vk) span the same k-dimensional subspace, then t(u1, . . . ,uk) = det(h)t(v1, . . . ,vk)406

where h ∈ GL(k) is the change-of-basis matrix, so both map to the same point in projective space, and the Plücker407
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embedding is well-defined on the Grassmannian. Of course, the standard action of SL(d) on C
d induces an action on408

�k
C

d by409

g ⋅(v1∧⋅ ⋅ ⋅∧vk) ∶= (gv1)∧⋅ ⋅ ⋅∧(gvk)
and extending linearly.410

How do we get from fusion frames to Grassmannians, and hence to such a representation of SL(d)?411

For AAA ∈FFC
d ,kkk, each Pi =A∗i Ai is a rank-ki orthogonal projector and the rows ai1, . . . ,aiki of Ai give an orthonormal412

basis for the ki-dimensional subspace which is the image of Pi. Moreover,Orrri is the collection of all rank-ki orthogonal413

projectors, which is symplectomorphic to the Grassmannian Grki(Cd).414

Define ti ∶ Ai� a∗i1∧⋅ ⋅ ⋅∧a∗iki
, the projectivization of which is exactly the Plücker embedding of Grki(Cd), and ti is415

equivariant with respect to the right SL(d) action g ⋅Ai ∶= Aig∗ on the domain and the SL(d) action described above416

on the codomain:417

t(g ⋅Ai) = t(Aig∗) = (ga∗i1)∧⋅ ⋅ ⋅∧(ga∗iki
) = g ⋅t(Ai)

for any g ∈ SL(d).418

Next, define t ∶FFC
d ,kkk →�k1 C

d ⊗⋅⋅ ⋅⊗�kN C
d by t ∶= t1⊗⋅⋅ ⋅⊗tN , so that419

t(AAA) = t1(A1)⊗⋅⋅ ⋅⊗tN(AN) = �a∗11∧⋅ ⋅ ⋅∧a∗1k1
�⊗⋅⋅ ⋅⊗�a∗N1∧⋅ ⋅ ⋅∧a∗NkN

� .

In other words, the projectivization of t is the Segre embedding of the product of Plücker embeddings of the individual420

factors.421

Finally, then, our vector space V =�k1 C
d ⊗⋅⋅ ⋅⊗�kN C

d , on which G = SL(d) acts by422

g ⋅�(v11∧⋅ ⋅ ⋅∧v1k1)⊗⋅⋅ ⋅⊗(vN1∧⋅ ⋅ ⋅∧vNkN )� ∶= �(gv11)∧⋅ ⋅ ⋅∧(g1k1))⊗⋅⋅ ⋅⊗((gvN1)∧⋅ ⋅ ⋅∧(gvNkN ))�

and extending linearly.423

The point of defining property S as we have is the following theorem of Mumford (stated originally in terms of424

Grassmannians):425

Theorem 4.4 (Mumford [51, Proposition 4.3]; see also [50] and [39, §16.3]). AAA has property S if and only if t(AAA) is426

semi-stable with respect to the SL(d) action.427

As pointed out just before Proposition 4.3, the semi-stable points in V are those on which some G-invariant ho-428

mogeneous polynomial does not vanish. Hence, Theorem 4.4 implies that if AAA ∈FFC
d ,kkk has property S , then there429

is some G-invariant homogeneous polynomial which does not vanish at t(AAA). Since the coordinates of t(AAA) are pre-430

cisely the determinants of all the ki × ki minors of the Ai, and since these determinants are themselves polynomials431

in the entries of AAA, this means that there is some polynomial expression in the coordinates of AAA which does not van-432

ish. Therefore, the collection of AAA with property S is Zariski-open in the smooth, connected, real algebraic variety433

FFC
d ,kkk, and hence is either empty or dense (see, e.g., [14, Proposition 5.11]). Moreover, the same reasoning applies434

in FFR
d ,kkk. Therefore, we have:435

Proposition 4.5. Let K =R or C. When it is non-empty, the collection of all fusion frames in FFK
d ,kkk with property436

S is dense.437

We also take this opportunity to show that TFFs always have property S .438

Proposition 4.6. Let K =R or C and suppose AAA ∈FFK
d ,kkk is a TFF. Then AAA has property S .439

Proof. Since AAA is tight, its frame operator SAAA = n
d Id . Let Q ⊂ Kd be a proper subspace and let PQ be orthogonal440

projection onto Q.441

For each i = 1, . . . ,N, any nonzero vector inQ∩Si is fixed by the product PQPi, and hence tr(PQPi) ≥ dim(Q∩Si),442

since all eigenvalues of PQPi are real and non-negative. Therefore, since PQSAAA = n
d PQ,443

n
d

dim(Q) = tr(PQSAAA) =
N
�
i=1

tr(PQPi) ≥
N
�
i=1

dim(Q∩Si),

so AAA has property S .444

Combining Propositions 4.5 and 4.6 yields the following immediate corollary:445

Corollary 4.7. Whenever there are TFFs in FFK
d ,kkk, the fusion frames with property S are dense in FFK

d ,kkk.446
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4.2 Property S Satisfies (i) and (ii)447

4.2.1 Property S Satisfies (i)448

The goal in this subsection is to show that the gradient flow of FFP preserves property S .449

Notice that, if AAA = (A1, . . . ,AN) is a fusion frame, then the rows of each Ai form an orthonormal set, and hence each450

a∗i1 ∧ ⋅ ⋅ ⋅ ∧a∗iki
∈�ki C

d is a unit vector with respect to the standard inner product on �ki C
d . In turn, this implies that451

t(AAA) ∈ ��k1 C
d�⊗⋅⋅ ⋅⊗��kN C

d� is also a unit vector. In other words:452

Lemma 4.8. t �FFC
d ,kkk� is contained in the unit sphere, and in particular is bounded away from the origin.453

Now we compute the gradient of FFP, first by computing the extrinsic gradient of its extension to the entire vector454

space containing FFC
d ,kkk:455

Lemma 4.9. Define EFP ∶ Ck1×d × ⋅ ⋅ ⋅ ×CkN×d → R to be the extension of FFP to all of Ck1×d × ⋅ ⋅ ⋅ ×CkN×d given by456

EFP(A1, . . . ,AN) ∶= �∑N
i=1 A∗i Ai�

2
. Its gradient is457

∇EFP(AAA) = (4A1SAAA, . . . ,4ANSAAA). (4)

Proof. Let BBB = (B1, . . . ,BN) ∈ TAAA(Ck1×d × ⋅ ⋅ ⋅ ×CkN×d) ≈ Ck1×d × ⋅ ⋅ ⋅ ×CkN×d and consider the directional derivative of
EFP at AAA in the direction BBB. In the following, we slightly abuse notation and generically use �⋅, ⋅� for the Frobenius
inner product on matrix spaces of various dimensions. We have

d
de
�
e=0

EFP(AAA+eBBB) = d
de
�
e=0
�

N
�
i=1
(Ai+eBi)∗(Ai+eBi)�

2

= d
de
�
e=0
�

N
�
i=1
(A∗i Ai+e(A∗i Bi+B∗i Ai)+e2B∗i Bi),

N
�
i=1
(A∗i Ai+e(A∗i Bi+B∗i Ai)+e2B∗i Bi)�

= 2Re�
N
�
i=1

A∗i Ai,
N
�
i=1
(A∗i Bi+B∗i Ai)�

= 4Re
N
�
i=1
�SAAA,A∗i Bi� (5)

=Re
N
�
i=1
�4AiSAAA,Bi� =Re�(4A1SAAA, . . . ,4ANSAAA),(B1, . . . ,BN)� . (6)

The equality (5) makes the replacement SAAA =∑N
i=1 A∗i Ai, uses linearity in the second coordinate to move the summation458

out of the inner product and uses properties of the (real part of the) inner product to equate Re�⋅,A∗i Bi +B∗i Ai� =459

2Re�⋅,A∗i Bi�. The quantity (6) is the (real part of the) standard inner product for C
k1×d × ⋅ ⋅ ⋅ ×CkN×d applied to460

(4A1SAAA, . . . ,4ANSAAA) (the claimed formula for the gradient) and BBB. This implies (4).461

And now the intrinsic gradient:462

Lemma 4.10. The Riemannian gradient of FFP ∶FFC
d ,kkk →R, is463

gradFFP(AAA) = (4(A1SAAA−(A1SAAAA∗1 )A1), . . . ,4(ANSAAA−(ANSAAAA∗N)AN)) .

Proof. The Riemannian gradient gradFFP(AAA) is the projection of the extrinsic gradient ∇EFP(AAA) onto the tangent464

space to FFC
d ,kkk at AAA. This means that on the ith block we need to project 4AiSAAA onto the orthogonal complement of465

the row span of Ai. This orthogonal projection is accomplished by right-multiplying by (Id −A∗i Ai), so the projection466

is 4AiSAAA(Id −A∗i Ai) = 4(AiSAAA−(AiSAAAA∗i )Ai). The result follows.467

Proposition 4.11. Suppose AAA0 ∈FFC
d ,kkk has property S and that G ∶FFK

d ,kkk × [0,∞)→FFK
d ,kkk is the gradient flow468

defined in Theorem 1.12. Then AAA∞ ∶= limt→∞G(AAA0,t) has property S .469
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Proof. Using Lemma 4.10, we have that the ith block of gradFFP(AAA) is470

4(AiSAAA−(AiSAAAA∗i )Ai) =
d

de
�
e=0

4exp(−eAiSAAAA∗i )Ai exp(eSAAA). (7)

Exponentiating a matrix always yields an invertible matrix, so (7) tells us that gradFFP(AAA) is tangent to the orbit471

�GL(d)×∏N
i=1 GL(ki)� ⋅AAA, where (g,(h1, . . . ,hN)) ∈GL(d)×∏N

i=1 GL(ki) acts on∏N
i=1C

ki×d by472

(g,(h1, . . . ,hN)) ⋅AAA = (h1A1g∗, . . . ,hNAng∗).
For (g,(h1, . . . ,hN)) ∈GL(d)×∏N

i=1 GL(ki), we normalize g to get something in SL(d)without changing the action473

by moving a scalar to the other factor: �(detg)−1�dg,�(detg)−1�dh1, . . . ,(detg)−1�d ,hN�� ∈ SL(d)×∏N
i=1 GL(ki) and474

(g,(h1, . . . ,hN)) ⋅AAA = �(detg)−1�dg,�(detg)−1�dh1, . . . ,(detg)−1�d ,hN�� ⋅AAA,

so gradFFP(AAA) is actually in the tangent space to �SL(d)×∏N
i=1 GL(ki)� ⋅AAA at AAA. Therefore,475

G(AAA0,t) ∈ �SL(d)×
N
�
i=1

GL(ki)� ⋅AAA0 for all t ≥ 0.

If (g,(h1, . . . ,hN) ∈ SL(d)×∏N
i=1 GL(ki), then

t((g,(h1, . . . ,hN)) ⋅AAA) = �(ga∗11h∗1 )∧⋅ ⋅ ⋅∧�ga∗1k1
h∗1��⊗⋅⋅ ⋅⊗�(ga∗N1h∗N)∧⋅ ⋅ ⋅∧�ga∗NkN

h∗N��
= �det(h∗1 )(ga∗11)∧⋅ ⋅ ⋅∧�ga∗1k1

��⊗⋅⋅ ⋅⊗�det(h∗N)(ga∗N1)∧⋅ ⋅ ⋅∧�ga∗NkN
��

=
N
�
i=1

det(h∗i )��(ga∗11)∧⋅ ⋅ ⋅∧�ga∗1k1
��⊗⋅⋅ ⋅⊗�(ga∗N1)∧⋅ ⋅ ⋅∧�ga∗NkN

��� ∈ �SL(d)×C×� ⋅t(AAA),

where (g,a) ∈ SL(d)×C× acts on ��k1 C
d�⊗⋅⋅ ⋅⊗��kN C

d� by476

(g,a) ⋅ ��v11∧⋅ ⋅ ⋅∧v1k1�⊗⋅⋅ ⋅⊗�vN1∧⋅ ⋅ ⋅∧vNkN�� ∶= a��(gv11)∧⋅ ⋅ ⋅∧�gv1k1��⊗⋅⋅ ⋅⊗�(gvN1)∧⋅ ⋅ ⋅∧�gvNkN��� .

This implies that t(G(AAA0,t)) ∈ (SL(d)×C×) ⋅ t(AAA0) for all t ≥ 0. Since t(G(AAA0,t)) is a unit vector for all t by477

Lemma 4.8, so is the limit t(AAA∞).478

Since everything is bounded away from the origin and since rescaling a vector by a nonzero scalar does not affect479

its semistability with respect to the SL(d)-action, Proposition 4.3 implies that the entire gradient flow line, including480

t(AAA∞), is semi-stable, and hence AAA∞ has property S by Theorem 4.4.481

4.2.2 Property S Satisfies (ii)482

Finally, we need to show that critical points which are not global minima do not satisfy property S . We do this by483

showing that, if AAA is a non-minimizing critical point, then t(AAA) is not semi-stable with respect to the SL(d) action.484

Semi-stability is defined in terms of the full group orbit, but this is typically much too big to be tractable. Instead, it is485

preferable to work with one-parameter subgroups, which remarkably turn out to be sufficient.486

We briefly return to discussing a general reductive group G acting linearly on a vector space V . A one-parameter487

subgroup of G is a homomorphism of algebraic groups l ∶C×→G. Any such homomorphism induces a decomposition488

V =�i∈I Vi and integer weights w ∶ I→Z so that, for every i ∈ I, v ∈Vi, and t ∈C×,489

l(t) ⋅v = tw(i)v.
It follows immediately from the definition that a nonzero vector v ∈V is unstable under the action of G if there exists490

a one-parameter subgroup l so that491

lim
t→0

l(t) ⋅v = 0.

Much less obvious is that the converse holds:492
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Theorem 4.12 (Hilbert–Mumford criterion [33, 51]). v ∈V �{0} is unstable under the action of G if and only if there493

exists a one-parameter subgroup l of G so that494

lim
t→0

l(t) ⋅v = 0.

This will be our key tool in proving that property S satisfies (ii).495

Proposition 4.13. Suppose AAA ∈ FFC
d ,kkk is a critical point of FFP which is not tight. Then AAA does not have property496

S . In particular, if AAA is a critical point which is not a global minimum, then it does not have property S .497

Proof. Let AAA ∈FFC
d ,kkk be a critical point of FFP. Then gradFFP(AAA) = 0; by Lemma 4.10, this implies that, for each498

i = 1, . . . ,N,499

0 = AiSAAA−AiSAAAA∗i Ai = AiSAAA(Id −A∗i Ai).

The operator Id −A∗i Ai is orthogonal projection onto the orthogonal complement of row(Ai), the row space of Ai (since500

AAA is a fusion frame, the rows of Ai are orthonormal). The above equation then says that the rows of AiSAAA lie in row(Ai).501

In other words, row(Ai) is an invariant subspace for the frame operator SAAA, and hence has an orthonormal basis of502

eigenvectors of SAAA�row(Ai), so there exists Ui ∈U(ki) so that the rows of Ãi ∶=UiAi are eigenvectors of SAAA�row(Ai), and503

hence also of SAAA = SÃAA. So far, this is not new: the conclusion of the previous sentence is exactly Casazza and Fickus’504

characterization of the critical points of the fusion frame potential [18, Theorem 4].505

If AAA is not tight, then the frame operator SAAA has at least two distinct eigenvalues. Let l be the largest eigenvalue,506

with corresponding eigenspace El of dimension ` and orthogonal complement E�l of dimension d − `. Since the507

average of the eigenvalues of SAAA is508

1
d

tr(SAAA) =
1
d

tr�
N
�
i=1

A∗i Ai� =
1
d

N
�
i=1

tr(A∗i Ai) =
1
d

N
�
i=1

ki =
n
d

and the eigenvalues aren’t all equal, we know that the largest eigenvalue l > n
d .509

Up to conjugating SAAA by U ∈U(d) (corresponding to right-multiplying each Ai by U∗), we can make the simplifying510

assumption that the frame operator is diagonal: SAAA = �
l I` 0
0 S′�, where S′ is a diagonal (but not necessarily scalar)511

matrix. Hence, El = span{e1, . . . ,e`} and E�l = span{e`+1, . . . ,ed}.512

If, for each i = 1, . . . ,N, ãi1, . . . , ãiki are the rows of Ãi, then, since each ãi j is an eigenvector of SAAA and distinct513

eigenspaces are orthogonal, the ãi j split into two perpendicular groups: those in El and those in E�l . Let b̃1, . . . , b̃m be514

the collection contained in El . Then515

m
�
i=1

b̃∗i b̃i = �
l I` 0
0 0�

so that b̃∗1 , . . . , b̃∗m are a l -tight frame for El . Since the b̃i are unit vectors,516

`l = tr�l I` 0
0 0� = tr(

m
�
i=1

b̃∗1 b̃m) = tr(
m
�
i=1

b̃ib̃∗i ) =m,

it follows that l = m
` and hence that m

` >
n
d ; equivalently, md−n` > 0.517

We’re now ready to show that AAA does not have property S . To see this, consider the 1-parameter subgroup518

l ∶C×→ SL(d) given as a block matrix by519

l(t) = �t
d−`

I` 0
0 t−`Id−`� .

Since ã∗i1∧⋅ ⋅ ⋅∧ ã∗iki
= det(U∗i )a∗i1∧⋅ ⋅ ⋅∧a∗iki

, it follows that t(AAA) = rt(ÃAA) for unimodular r =∏N
i=1 det(Ui), and hence

l(t) ⋅t(AAA) = rl(t) ⋅t(ÃAA) = r �(l(t)ã∗11)∧⋅ ⋅ ⋅∧�l(t)ã∗1k1
��⊗⋅⋅ ⋅⊗�(l(t)ã∗N1)∧⋅ ⋅ ⋅∧�l(t)ã∗NkN

��

= tm(d−`)−(n−m)`r �ã∗11∧⋅ ⋅ ⋅∧ ã∗1k1
�⊗⋅⋅ ⋅⊗�ã∗N1∧⋅ ⋅ ⋅∧ ã∗NkN

� = tmd−n`rt(ÃAA),
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Figure 1: Left: Values of FFP at each step in a simple gradient descent with fixed step sizes starting from a random
point in FFR

d ,(1,1,2). Right: The limiting fusion frame of this gradient descent which achieves the minimum possible
value of 11

2 .

which goes to zero as t → 0 since md−n` > 0.520

Therefore, t(AAA) is not semi-stable, and hence, by Theorem 4.4, AAA does not have property S .521

Finally, if AAA is not a global minimum, then it cannot be tight by Proposition 4.1, so we see that non-minimum522

critical points cannot have property S .523

If d,N, and kkk are such that FFK
d ,kkk contains no TFFs (see Remark 1.16 for conditions on when this occurs), then524

any global minimum AAA of FFP cannot be tight, so Proposition 4.13 shows that AAA cannot have property S . By the525

contrapositive of Proposition 4.11, then, nothing in FFK
d ,kkk that flows to AAA under the negative gradient flow of FFP526

can have property S , either. Since this is true for all global minima, there is some open set containing the global527

minima which completely avoids the fusion frames with property S . Therefore, the set of fusion frames in FFK
d ,kkk

528

with property S cannot be dense, and hence, by Proposition 4.5, must be empty. In other words:529

Corollary 4.14. FFK
d ,kkk contains fusion frames with property S if and only if it contains TFFs.530

4.2.3 Completing the Proof of Theorem 1.14531

We now have all the tools we need to prove that gradient descent limits to a global minimizer.532

Proof of Theorem 1.14. If AAA0 ∈FFC
d ,kkk has property S , the limit AAA∞ ∶= limt→∞G(AAA0,t) has property S by Proposi-533

tion 4.11. Since AAA∞ is a limit point of the gradient flow, it must be a critical point of FFP. Since it has property S ,534

Proposition 4.13 implies that AAA∞ is a global minimizer of FFP.535

This proves Theorem 1.14 when K =C. The real case then follows immediately by Proposition 4.2.536

5 Discussion537

There are choices of d, N, and kkk for which there are no fusion frames with property S : for example, d = N = 3 and538

kkk = (1,1,2). Elements (A1,A2,A3) ∈FFR
3,(1,1,2) will determine two lines `1 = row(A1) and `2 = row(A2) and a plane539

S = row(A3). If Q is a plane containing `1 and `2, then it must intersect S at least in a line, so540

1
dimQ

(dim(`1∩Q)+dim(`2∩Q)+dim(S ∩Q)) ≥ 3
2
> 4

3
= dim`1+dim`2+dimS

3
.

Hence, nothing in FFR
3,(1,1,2) has property S , so Theorem 1.14 tells us nothing. Moreover, by Proposition 4.6, there541

are no TFFs in FFR
3,(1,1,2).542

Nonetheless, running gradient descent from random starting points in FFR
3,(1,1,2) seems to always find minimiz-543

ers of FFP in practice. Figure 1 shows the value of FFP rapidly decreasing to the global minimum value 11
2 , which544

is greater than the value 16
3 that a TFF would have. As observed by Casazza and Fickus [18, p. 17], the minimum is545
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achieved by fusion frames of the form shown on the right of Figure 1, where `1 and `2 lie in a plane Q perpendicular546

to S and the lines `1, `2, and Q∩S correspond to a tight Mercedes–Benz frame for Q.547

This suggests that the fusion frame Benedetto–Fickus theorem may hold even for parameters where there are no548

fusion frames with property S . We also expect our approach to proving Theorem 1.14 will extend to more general549

spaces OFK
d ,kkk(rrr) of operator-valued frames whose Pi have a given spectrum (including weighted fusion frames),550

though the details seem more complicated. Hence, we pose the following conjecture:551

Conjecture 5.1. Let d,N,k1, . . .kN be positive integers and fix rrr. Let OFP ∶OFK
d ,kkk(rrr)→R be the obvious general-552

ization of FFP to operator-valued frames. Then all local minima of FFP are global minima.553

We expect that, as in the case of classical frames [53], OFH
d ,kkk

lll (rrr) is path-connected, where H is the skew-field554

of quaternions. However, OFR
d ,kkk

lll (rrr) cannot always be connected. For example, translating a result of Kapovich555

and Millson [38, Theorem 1] to our setting and notation implies that OFR
2,(1,1,1,1)(5,5) (3,3,3,1) is not connected. On556

the other hand, Cahill, Mixon, and Strawn [15] proved that the space OFR
d ,(1,...,1)
�N

d ,...,N
d � (1, . . . ,1) of real unit-norm tight557

frames is connected for all d ≥ 2 and N ≥ d +2, so there is some interesting characterization of when the OFR
d ,kkk

lll (rrr)558

are connected still waiting to be discovered.559

Cahill, Mixon, and Strawn’s proof of the Frame Homotopy Theorem relied heavily on the use of eigensteps, which560

are the eigenvalues of the partial sums of the Pi. While eigensteps can be similarly defined for fusion frames and even561

operator-valued frames, it is not clear whether they would be a useful tool for studying connectedness in the real case.562

Eigensteps give good coordinates for classical frame spaces because they are action coordinates—that is, they are563

the coordinates of a momentum map for a Hamiltonian action of a half-dimensional torus [54]. This means that not564

only is the image a convex polytope, but the fibers of the eigenstep map are reasonably simple and well-understood.565

For dimension-counting reasons it seems unlikely that eigensteps could give action coordinates for fusion frames or566

operator-valued frames, but it is desirable to find similarly useful coordinates in this more general setting.567
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