10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Fusion Frame Homotopy and Tightening Fusion Frames by
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Abstract

Finite frames, or spanning sets for finite-dimensional Hilbert spaces, are a ubiquitous tool in signal processing.
There has been much recent work on understanding the global structure of collections of finite frames with prescribed
properties, such as spaces of unit norm tight frames. We extend some of these results to the more general setting of
fusion frames—a fusion frame is a collection of subspaces of a finite-dimensional Hilbert space with the property
that any vector can be recovered from its list of projections. The notion of tightness extends to fusion frames, and we
consider the following basic question: is the collection of tight fusion frames with prescribed subspace dimensions
path connected? We answer (a generalization of) this question in the affirmative, extending the analogous result for
unit norm tight frames proved by Cahill, Mixon and Strawn. We also extend a result of Benedetto and Fickus, who
defined a natural functional on the space of unit norm frames (the frame potential), showed that its global minimizers
are tight, and showed that it has no spurious local minimizers, meaning that gradient descent can be used to construct
unit-norm tight frames. We prove the analogous result for the fusion frame potential of Casazza and Fickus, implying
that, when tight fusion frames exist for a given choice of dimensions, they can be constructed via gradient descent.
Our proofs use techniques from symplectic geometry and Mumford’s geometric invariant theory.

1 Introduction

A frame is a spanning collection of vectors in a Hilbert space which satisfies a certain Parseval-like condition [28].
Frames are important in the context of signal processing, where a signal is modeled as a vector in a Hilbert space
and is encoded by the list of its inner products with the vectors in the frame [26]. A frame is generally overcomplete
(i.e., linearly dependent), a property which is useful in applications because the resulting signal representations are,
by virtue of their redundancy, more robust to noise than representations in a basis. For practical reasons, there has
been increased interest in finite frames, that is, spanning sets of vectors for finite-dimensional Hilbert spaces; see [24]
and [59] for general surveys. For the rest of the paper, we will only consider finite frames and will therefore work
under the simplifying convention that our Hilbert space is K¢, K =R or C, endowed with the standard inner product
(-,-), with standard norm denoted |- |.

Typically, one requires a frame to satisfy certain norm or spectral constraints. For example, a frame {f,..., fy}
for K¢ is called tight if the frame operator map v — Zﬁl (v, f;i) f; is a constant multiple of the identity map on K.
Tight frames are of particular interest, since they guarantee optimal robustness under certain noise models [20, 34].
Equivalently, a frame is tight if the spectrum of its frame operator is constant. The collection of all length-N frames
for K¢ with prescribed frame vector norms and frame operator spectrum defines a complicated algebraic variety, and
topological and geometrical properties of these varieties have been the focus of a growing body of recent research
[14,16,29,52-54].

The goal of this paper is to extend results on spaces of frames to the setting of a more general signal processing
tool: a fusion frame is an ordered collection (Sj,...,Sy) of subspaces of K¢ such that the frame operator v ~ Zﬁl Pv
is invertible (and hence necessarily positive definite), where P, : K¢ - S; is the orthogonal projection. Observe that
if all subspaces are 1-dimensional, this essentially reduces to the definition of a (classical) frame. Fusion frames
were introduced by Casazza and Kutyniok in [21] as a hierarchical approach to the construction of large frames with
desirable properties. Fusion frames were subsequently developed into a general tool for distributed data processing
[22,23,44]—the basic idea is that factors such as hardware limitations may require a collection of local vector-valued
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signal measurements to be coherently and robustly fused into a global measurement. Fusion frames have more recently
been applied to compressed sensing for structured signals or low quality measurement modalities [2, 6, 60].

In both the original definition and much of the subsequent literature, fusion frames allow for positive weights to
be attached to the subspaces. In what follows we will either generalize to operator-valued frames (which include all
weighted fusion frames) or specialize to unweighted fusion frames, so in this paper (as in [44]), we only give the
definition in the unweighted case and when we say “fusion frames” we really mean “unweighted fusion frames.”

As in the case of (classical) frames, there is typically a focus on fusion frames with extra structure. For instance,
the notion of a tight frame generalizes to that of a tight fusion frame—this is a fusion frame such that the frame operator
is a multiple of the identity map. We study the topology and geometry of spaces of tight fusion frames, as well as
spaces of fusion frames with more general prescribed data. We give precise formulations of our results in subsections
1.1 and 1.2 below, but our main contributions are described informally as follows.

* Fusion Frame Homotopy Theorem (Theorem 1.9).

We show that the space of tight fusion frames in a complex Hilbert space with a prescribed sequence of subspace
dimensions is path connected. This gives a generalization of the (complex) Frame Homotopy Theorem, which
says that the space of length-N tight frames for a complex Hilbert space, whose frame vectors are all unit norm,
is path connected. This was proved by Cahill, Mixon and Strawn in [14], affirming a conjecture of Larson from
2002 (although the conjecture was first published in [29]). The Frame Homotopy Theorem was generalized by
the authors of the present paper to spaces of frames with more general prescribed spectral and norm data using
techniques from symplectic geometry [52] and to spaces of quaternionic frames using the theory of isoparametric
submanifolds [55]. We once again apply symplectic techniques to prove the analogous result for fusion frames—
in fact, our techniques work in much greater generality, and we are able to prove a connectivity result for spaces
of operator-valued frames. Our result is described in detail below in Section 1.1.

¢ Benedetto-Fickus Theorem for Fusion Frames (Theorem 1.14).

In [7], Benedetto and Fickus introduced the frame potential, a natural energy functional on the space of frames
consisting of a fixed number of unit vectors in a fixed Hilbert space. They showed that the global minimizers
of the frame potential are tight frames and proved the surprising result that the frame potential has no spurious
local minimizers, meaning that tight frames can reliably be generated via gradient descent—we refer to this
result ([7, Theorem 7.1], also stated below as Theorem 1.12) as the Benedetto—Fickus theorem. Casazza and
Fickus defined a more general functional on the space of fusion frames, called the fusion frame potential, and
characterized its minimizers [18]. We extend the Benedetto—Fickus theorem to give general conditions which
guarantee that the fusion frame potential has no spurious local minimizers (Theorem 1.14), which implies that
if tight fusion frames exist in a given space of fusion frames, they can always be reached by gradient descent
(Corollary 1.15). Together with Mixon and Villar, we gave several strengthenings of the Benedetto—Fickus
theorem in [49], one of which was proved using ideas from Mumford’s geometric invariant theory (GIT) [51].
Theorem 1.14 is proved by extending this application of GIT to the fusion frame setting. We precisely state and
further contextualize our result below in Section 1.2.

The structure of the paper is as follows. The remaining subsections of the introduction pin down exact definitions,
set notation, and give precise statements of our main results. Section 2 provides necessary background on symplectic
geometry, in preparation for the proof of the Fusion Frame Homotopy Theorem (Theorem 1.9), which is then proved
in Section 3. The Benedetto—Fickus Theorem for Fusion Frames (Theorem 1.12) is proved in Section 4, after intro-
ducing the main ideas of GIT. We remark that the exposition about symplectic geometry and GIT in Sections 2 and 4,
respectively, is intended to be accessible to non-experts in these fields. The paper concludes with a discussion of open
problems and future directions in Section 5.

1.1 Fusion Frame Homotopy

Recall that a tight fusion frame (TFF) is a fusion frame (Sj,...,Sy) such that the frame operator }; P; is a multiple of
the identity. If k; = dim(S;) = rk(F;) then, since all nonzero eigenvalues of an orthogonal projector are equal to 1,

N N N
tr(ZP,) = Ztr(P,) = Zkl- =:n,
i=1 i=1 i=1
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so it must be the case that a TFF has frame operator equal to %1, where I is the identity operator on K?. Since the P;
uniquely determine and are uniquely determined by the S;, we will also call (Py,...,Py) a (tight) fusion frame when
the corresponding (Sy,...,Sy) is.

With the frame homotopy conjecture [29] (resolved by Cahill, Mixon, and Strawn in 2017 [14]) in mind, the
following is a very natural question:

Question 1.1. Is the space of TFFs in K¢ with given ranks (ki,...,ky) path-connected?

The first goal of this paper is to show that the answer to Question 1.1 is always “yes” for complex fusion frames
(i.e., when K = C). In fact, we will prove a much more general theorem about spaces of operator-valued frames with
fixed spectral data.

To motivate the definition given below, notice that, for a fusion frame (Py,...,Py), each projector P; has a full-rank
square root A; : K¢ - K¥ so that A7 A; = P, This square root is unique up to composing with a unitary transformation
of the codomain:

Proposition 1.2 ([36, Theorem 7.3.11]). Suppose A:K? - K* and B: K? - KF are linear maps. Then A*A = B*B if
and only if there exists a unitary transformation U € U(k) so that B = UA.

Hence, up to this indeterminacy, we can also think of a fusion frame as a collection of operators (Aj,...,Ax) so
that ATA; is an orthogonal projector for each i=1,...,N and so that AfA; +---+ Ay Ay is positive definite. This is the
definition we will generalize by relaxing the condition on the individual A A;:

Definition 1.3. Let d,N,ki,...,ky be positive integers. Let k := (ky,...,ky). Then an operator-valued frame of type
(d,k) is an N-tuple A := (A1, ...,Ay) of linear maps A; : K¢ - K so that the frame operator

N
Sp = ZA?A,‘
i=1

d
is positive definite. The space of operator-valued frames of type (d,k) will be denoted OF Kok,

This definition is essentially the specialization to finite dimensions of Kaftal, Larson, and Zhang’s definition [37]
of an operator-valued frame (see also [9]). As with fusion frames, we will define P, := A] A;, so that the frame operator
is ¥; P.. In practice, we will make the simplifying assumption rk(A;) = k;, by restricting the codomain of A; to its
image if necessary.

The feature that distinguishes fusion frames among the operator-valued frames is that the P; are orthogonal projec-
tors of rank k;, which means precisely that the k; nonzero eigenvalues of P; are all equal to 1. More generally, we can
consider spaces of operator-valued frames with fixed spectral data:

Definition 1.4. Let d,N,kq,...,ky be positive integers and k := (ki,...,ky). For each i, let r; = (ri1,...,ry,) with

d
Tl 2 2 g > 0, andletr=(ry,...,ry). oFk ’k(r) will denote the space of operator-valued frames (Ay,...,Ay) of
type (d, k) for which P, = A{A; has nonzero eigenvalues equal to r;. Equivalently, each r;; = Gizj, where the 0;; are the
singular values of A;.

d
Example 1.5. Let k= (ki,...,ky) and let r = (rq,...,ry) such that every r; is a list of k; ones. Then OFK ’k(r) is
equivalent to the space of fusion frames with prescribed ranks k. Indeed, it is the space of A = (Aj,...,Ay) so that
P; = A}A; is a rank-k; orthogonal projector and the frame operator S4 = Y., P; is positive-definite. Since this space is

d d
of particular interest, we use the specialized notation FF% k.- oFK ’k(r). As a special case, if k; = 1 for all i then

d
FFE ks equivalent to the space of unit-norm frames of length N in K¢,

Tight fusion frames are also distinguished among fusion frames by spectral data since multiples of the identity are
uniquely determined by their spectra: Al is the only operator with spectrum (4,...,4). Fixing the spectral data of
the frame operator is more natural than fixing the frame operator itself, since we can always diagonalize the frame
operator by precomposing the A; : K¢ - K% by a common unitary transformation of the domain. Hence, a natural
generalization of tight frames is the collection of operator-valued frames with fixed spectrum of their frame operator:

IRemember our simplifying assumption that the A; should be full rank.
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Definition 1.6. Letd,N,ky,..., ky be positive integers and k := (k1,...,ky). Let A = (A1,...,Ag) with Ay >---> ;> 0.

d
OF f * will denote the space of operator-valued frames (A, ...,Ay) whose frame operator S4 = Y.; A/ A; has spectrum

A.

d
Example 1.7. Letk=(ki,...,ky) andlet A = (1,...,1) be the list of d ones. Then O.?-'f * could reasonably be called

d
the space of Parseval operator-valued frames of type (d, k), by analogy with the case k; = 1 for all i, when OF f * i
equivalent to the space of Parseval frames of length N in K¢ (that is, frames whose frame operator is the identity).

Of course, the definition of a tight fusion frame includes both fixed spectral data of the P; and fixed spectral data
of the frame operator, so it involves intersecting two of the spaces defined above. In that spirit, define

K k K k K k
OF, "(r):=0F, "nOF" “(r).
Hence, the operator-valued generalization of Question 1.1 is the following:

d
uestion 1.0. ror given d,/V,K,r, A, 1S the Space (r pat -connected’
Question 1.8. For given d,N, k,r,A, is th OF* h d?

In the case of complex classical frames (i.e., K=C and k= (1,...,1), but general A and r) we answered this
question in the affirmative using symplectic geometry [52]. Here, we give an affirmative answer for general complex
operator-valued frames:

d
Theorem 1.9. The space OF i: ’k(r) is always path-connected.

d
Since the empty set is trivially path-connected, the substantive content of this theorem is that OF E ’k(r) is path-
connected whenever it is non-empty. For discussion of when it is empty, see Remark 1.16.

1.2 Benedetto-Fickus Theorem for Fusion Frames

We now specialize back to fusion frames, but again work over K =R or C. Recall from Example 1.5 that, for d and N
d
positive and k = (k1,...,ky), FFE* denotes the space of (square roots of) fusion frames with prescribed ranks k.

d
It is easy to generate random elements of FFE*. for each i, let B; be a k; x d matrix with standard Gaussian
entries, and let A; be the result of orthogonalizing the rows of B;. Given their usefulness in applications, it is desirable
to generate not just fusion frames, but zight fusion frames. Following the lead of Benedetto and Fickus [7], a plausible

strategy for doing so is to define a potential function on FF 'k whose global minima are exactly the set of TFFs,
and then flow along the negative gradient direction of this potential. A natural candidate for such a potential is the
fusion frame potential defined by Casazza and Fickus [18], generalizing Benedetto and Fickus’ frame potential. In
the definition below, and at times throughout the rest of the paper, we will abuse notation and also use (-,-) and | - |
to denote, respectively, the Frobenius inner product and norm on a space of operators; the meaning should always be
clear from context.

Definition 1.10. Let d, N, ki,...,ky be positive integers. The fusion frame potential FFP: FFX"* L R is defined by
2
FFP(A) := [ Sa|”.

Note that the fusion frame potential could be generalized to arbitrary spaces of operator-valued frames, though we
will not do so here. As Casazza and Fickus showed (see also Proposition 4.1), the fusion frame potential satisfies a
Welch-type lower bound which is achieved exactly at the TFFs. Hence, when they exist, TFFs are exactly the global
minima of FFP, and it is natural to ask whether we can get to these global minima by negative gradient flow:

Question 1.11. When they exist, can we construct TFFs by flowing along the negative gradient of FFP? That is, are
all local minima of FFP also global in this setting?

An affirmative answer to this question is essentially a conjecture of Massey, Ruiz, and Stojanoff [47, Conjec-
ture 4.3.3]. For unit-norm tight frames, Benedetto and Fickus showed that there are no spurious local minima of the
frame potential, completely resolving Question 1.11 in this case:
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d
Theorem 1.12 (Benedetto—Fickus theorem [7]). Ler d and N be positive and k = (1,...,1). Then FFP: FFrEk LR
has no spurious local minimizers.

In [49] we gave three new proofs of this result, one of which we now intend to generalize to fusion frames. The
exposition here is self-contained, but parallels that in [49, §4].
To state our theorem, we need to define a suitable notion of genericity for fusion frames.

d
Definition 1.13. Let A ¢ FFX * and recall that, for each i =1,...,N, the image of the orthogonal projector P, = A} A;
is a k;-dimensional subspace S; c K¢. We say that A has property . if, for all proper linear subspaces Q c K¢,

1
dim

n

N ] 1 N
Q;mm(é‘m Q) < E;ki: —

d

Roughly speaking, this condition says that no subspace of K¢ intersects too many of the S;. For example, in the
classical frames case k = (1,...,1), property . says the fraction of frame vectors lying in any given r-dimensional
subspace is no more than 7. In particular, this is a much weaker condition than being full spark.

More generally, in the case of equal-rank fusion frames—i.e., each P; is rank k—property . is weaker than the
condition Zﬁl dim(S;n Q) <dim Q for all proper subspaces Q c K¢. Fusion frames satisfying this latter condition are
relevant to the problem of compressed sensing with block sparsity [11,30] since they provide unique reconstructions
for the largest possible class of block-sparse signals, much as classical full spark frames are optimal for traditional

compressed sensing [3,27].

Theorem 1.14. Let 0 <d,N,ki,... ky. Consider the negative gradient flow I : f]—'Kd’k x[0,00) —> ]:Kd‘k defined by
the differential equation

d
I'(Ao,0) = Ao, EF(AOJ) = - grad FFP(I'(A¢,1))

d
where grad is the Riemannian gradient and Ao = (Ay,...,A,) € FFE ks an initial frame.
d
If A has property .7, then Ao :=lim;_.0, T'(Ag,7) € FFE*isq global minimum of FFP.

As mentioned above, for parameters d and k which admit TFFs, the TFFs are exactly the global minima of FFP, so
for those parameters this theorem implies that fusion frames with property . always flow to tight fusion frames. More-

d
over, these are exactly the parameters for which FFE* contains fusion frames with property . (Corollary 4.14),

which turn out to be dense in FF Kk (Corollary 4.7). This implies that there are fusion frames arbitrarily close to any
non-minimal critical point of FFP which flow to a global minimum, so non-minimal critical points of FFP cannot be
basins of attraction of the gradient flow. In turn, FFP is a polynomial defined on an analytic submanifold of Euclidean
space, so it will have a Lojasiewicz exponent (cf. [10, Corollary 4.2]), and an argument analogous to [1, Theorem 3]
shows that local minima must be basins of attraction. Hence, non-minimal critical points cannot be local minima.

d
Corollary 1.15. When FF Kk contains TFFs, all local minima of FFP are global minima.

This generalizes Benedetto and Fickus’ result to fusion frames and completely answers Question 1.11. See also
work of Heineken, Llarena, and Morillas [32], which gives a similar answer for a restriction of FFP to a subset of

FF Kd’k, and of Massey, Ruiz, and Stojanoff [47], who proved an analogous result with respect to a different notion of
distance on fusion frames.

Even in some situations where there cannot be any TFFs—for example, when d = N =3 and k = (1,1,2)—the
negative gradient flow of FFP empirically seems to avoid spurious local minima, so there is hope that the conclusion
of Corollary 1.15 follows from weaker hypotheses.

Remark 1.16 (Admissibility). In light of Corollary 1.15, it would be useful to know when the space of TFFs is non-

d
empty. More generally, we can ask whether OF f ’k(r) is non-empty, which is really prior to the question of whether
it is path-connected. In the context of classical frames (i.e., k= (1,..., 1)), this is sometimes called the admissibility
problem, and its resolution follows easily from the Schur—Horn theorem [36, 56] (see also [4,25] and Cahill, Fickus,
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Mixon, Poteet, and Strawn’s contructive solution [13]): in this setting, r = (r1,...,ry) is a single list of positive

d
numbers, and OF f ’k(r) is nonempty precisely when A majorizes r [46], meaning that

k k
Zaizzn and 21522;’,' forallk=1,...,d,
; j i=1 i=1

K9 k

where we assume A and r are sorted in decreasing order. In particular, the space OF R N)(l,..., 1) of unit-norm
ard

tight frames is always nonempty when N > d.

More generally, admissibility has been completely resolved for all spaces of tight fusion frames (therefore precisely
determining the scope of Theorem 1.14 and Corollary 1.15): by Casazza, Fickus, Mixon, Wang, and Zhou [19] when
all P; have the same rank, and in general by Bownik, Luoto, and Richmond [12]. Even for tight fusion frames, the
conditions on d and k which ensure non-emptiness are quite complicated, boiling down to non-vanishing of certain
Littlewood—Richardson coefficients.

However, this is not really surprising, given that in general admissibility for operator-valued frames is equivalent
to the following question: what A,ry,...,ry can be the eigenvalues of d x d Hermitian matrices M, Py, ..., Py so that
M =P +---+Py? In 1962, Horn conjectured necessary and sufficient conditions involving a complicated system of
inequalities between A and the r; [35]. This became known as the Horn conjecture, which was eventually proved in
the late 1990s by Klyachko [41] and Knutson and Tao [42,43]; see Fulton’s survey [31] for more, and Berenstein and

d
Sjamaar’s paper [8] for a generalization. The answer does not depend on the base field: if O]:E ’k(r) is non-empty,

then so is Of?d’k(r) (see, e.g., [31, Theorem 20]).

Thus, the admissibility problem for operator-valued frames is at least implicitly resolved by the proof of the Horn
conjecture (see also [47]), and more explicit solutions exist in the most common cases of interest, namely frames and
tight fusion frames.

2 Symplectic Machinery

As in our earlier work on frames [52], our strategy for proving Theorem 1.9 involves symplectic geometry. First,
we will review some standard concepts from symplectic geometry, which will help both to provide a quick reference
and to establish our notation and sign conventions. Our main references for symplectic geometry are McDuff and
Salamon [48] and Cannas da Silva [17].

2.1 Definitions

A symplectic manifold is a pair (M, @), where M is a (smooth, real) manifold and  is a closed, nondegenerate 2-form
on M. For each point p € M and for each pair of tangent vectors X,Y € T,M, we write ®,(X,Y) € R for the evaluation
of w at the point on the pair. Being closed means that d® is identically zero, where d is the exterior derivative on
M, and being nondegenerate means that, for each p € M and each X € T,M, there exists ¥ € T,M so that @,(X,Y) #0.
Nondegeneracy implies that a symplectic manifold must be even-dimensional over R.

Example 2.1. The simplest example of a symplectic manifold is C" ~ R*". For p € C" there is a natural isomor-
phism 7,C" ~ C", and complex coordinates (x1 +vV=1y1,...,x, + V—1y,) for C" correspond to real coordinates
(X1,-+«sXn Y1, --,Yn), With respect to which the standard symplectic form on C" is given by

o =dxy Adyy +---+dx, Adyy.
We can rewrite this in complex coordinates as follows: given p e C" and Z = (z1,...,2,),W = (wy,...,w,) € T,C"~ C",
©,(Z,W) = =Im(Wz) +-+Wzn) = —Im(W*Z) = ~Im(Z,W).

In fact, Darboux’s theorem [48, Theorem 3.2.2] implies that every point in a symplectic manifold has a neighbor-
hood on which the symplectic structure looks like the standard one on C".

Symplectic geometry grew out of Hamiltonian mechanics, and a big emphasis both historically and currently is
on the interactions between symplectic structures and symmetries; that is, group actions on symplectic manifolds. In
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general, if G is a Lie group with Lie algebra g and G acts on a manifold M, then each £ € g determines a vector field
Ye on M as follows. For p e M and g € G, let g- p denote the action of g on p. Then we define

d
Y5|p:: Te

exp(e¢)-p,
e=0
where exp : g — F is the exponential map of G.

Now, suppose G acts on a symplectic manifold (M,®). If g* is the dual of g, a map ®: M — g* is called a
momentum map for the G-action if it satisfies the following conditions.

First, let D®(p) : T,M — T p)g* be the derivative of @ at p e M. Since g* is a vector space, there is a natural
isomorphism Tg(,)g* ~ g%, so we can interpret D®(p) as a map to g*. Hence, for each X € T,M, D®(p)(X) is an
element of the dual space of g; that is, D®(p)(X) : g > R. For ® to be a momentum map we require this map to satisfy
the compatibility condition

DD(p)(X)(§) = @p(¥e]| .X)

forall £ eg.

Also, we require a momentum map ® to be equivariant with respect to the given action of G on M and the natural
coadjoint action of G on g*. More explicitly, the adjoint action of G on g is the linearization at the identity of the
conjugation action of G on itself; that is, for each g € G the map Ad, : g — g is the derivative at the identity of the map
h— ghg™!. In turn, the coadjoint action of G on g* gives a map Ad; :g* - g* for each g € G which is defined by
Adg (x)(8) = x(Ad,-1(§)). When G is a matrix group, both Ad, and Ad; can be interpreted as conjugation by g.
Now, the equivariance condition on momentum maps is that, for each g € G and each p e M,

Ad; (@(p)) = P(g-p).

When a G-action admits a momentum map, the action is called Hamiltonian and the tuple (M, ©,G,®) is a
Hamiltonian G-space.

Proposition 2.2 (cf. [48, Exercise 5.3.16]). Suppose G is a Lie group and (M;, ®;,G,®;) are Hamiltonian G-spaces
fori=1,....n. Then the diagonal action of G on M x --- x M,, is Hamiltonian with momentum map

D(p1,...,pn) = P1(p1) +--+ Pu(pn).

Proof. The standard symplectic form on a product []i_; M; of symplectic manifolds is 7 @; +--- + 7, ®,, where
m : [T/~ M; - M is projection onto the kth factor and 7 is the induced pullback operator on forms.

Any tangent vector X € T(,, .,y [Ti=; M; is of the form X = (Xi,...,X,) for X; e T, M; for all i=1,...,n. In
particular, if € € g, then the associated vector field

= ((Yl)5|pl e (Yn)§|,,n)7

o) is the vector field on M; associated to &.

Yel o)

where each (Yi)g |p1 = (dni)(P]7-~-7l7n) Y5|(p1

Let ®:J];L; M; — g” be defined as in the statement of the proposition and let X = (X1,...,X,) € T(,, .. »,) [Tiz1 Mi.
Then

Dq)(Pl,n-apn)(Xlw-~7Xn)(€):iD(I)i(Pi)(é Z(wt)p,(Y§| Z; )p,((dﬂl)(p,7 Di) §|(171 Pn)’ l)

a)(pl ..... Pn)( §|(Pl Pn )’(Xla"'aXVl))v

where we’ve used linearity in various places. So ® satisfies the appropriate compatibility condition with ®.
Moreover, if g € G and (py,...,p,) € [17; M, then

Ady (®(p1,..-,pn)) = Ady (Z‘I’(pz ):Zn;Ad;f(CDi(pi))=Zn;CPi(g-pi)=<1>(g-p17...,g-pn)=<I>(g-(p1,..~,pn))

using the linearity of Ad; and the G-equivariance of the ®;, so ® is G-equivariant, and hence is a momentum map for
the G-action. O
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2.2 Coadjoint Orbits

An important class of Hamiltonian spaces are coadjoint orbits, which we now describe in some detail, loosely follow-
ing [48, Example 5.3.11].

Let G be a Lie group with Lie algebra g and dual Lie algebra g*. Let x € g* and let O, be the coadjoint orbit
through x; that is,

Oy ={Ad; (x)|g<G}.

It is a standard fact that O, has a natural symplectic form called the Kirillov—Kostant-Souriau (KKS) form [5, 11.3.c],
denoted @*¥S, defined as follows. The tangent space to Oy at x consists of vectors of the form adg X, where £ € g and
adg is the coadjoint representation of g on g*; that is, the derivative of the coadjoint representation Ad* : G — Aut(g*)

at the identity. Then
oS (adZ (x),adf () = 2([&. €D,

where [-,-] is the Lie bracket on g.
The action of G on O, is Hamiltonian, with momentum map ®: O, — g* simply being the inclusion map. To see
this, first notice that the vector field Yz on Oy induced by Eegis

d

Y<5|x: %Lo

Ad;xps.{j (X) = adg X
If ® is the inclusion of O, into g*, then its derivative D® () : T,,O, — g* is also an inclusion, so

D®(x)(adz(x))(&) =adz(x)(§) = x(-ads(8)) = x(-[¢.E]) = x([&.€])
= 0 (ad} (1), adg (1)) = @S (Y|, ,ad} (1))

Since @ is obviously equivariant, this shows that it is a momentum map for the G-action on O,
Combining the above discussion with Proposition 2.2 yields the following corollary:

Corollary 2.3. Let G be a Lie group with dual Lie algebra g*. Let Oy,...,0, c g* be coadjoint orbits with their KKS
forms wiKKS. Then (H:‘l:l O,y a)l-KKS ) is symplectic and the diagonal coadjoint action of G is Hamiltonian with
momentum map

q)(xh" '7%") =Xit+t X,

where on the right hand side we have identified each y; € O; with its inclusion into g*.

2.3 Level Sets of Momentum Maps

We are shortly going to associate P; with fixed spectra with points on a coadjoint orbit of U(d), so fixing the spectra
of Pj,...,Py corresponds to choosing coadjoint orbits of U(d) and taking their Cartesian product, and the associated
momentum map of the diagonal U(d) action will be the frame operator by Corollary 2.3. This will all be explained in
the next section, but the point is that the tight operator-valued frames whose P; have a given spectrum will be precisely
a level set of the momentum map, and the frame homotopy problem in this case boils down to showing connectedness
of this level set. Fortunately for us, there are powerful results showing that level sets of momentum maps are usually
connected.

While one can prove somewhat more general results, we will only consider Hamiltonian G-spaces (M, ®,G,®)
where both M and G are compact. Since we intend to apply these results to the diagonal action of U(d) on a product
of its coadjoint orbits, this will suffice for our purposes.

Fix a G-invariant inner product on the Lie algebra g. This induces a vector space isomorphism of g* with g, and
hence determines an inner product and norm on the codomain g* of the momentum map ®. Kirwan [39] showed that,
while it is not quite a Morse—Bott function, the norm-squared map ||®|?> has many of the desirable properties of such
functions.

Theorem 2.4 (Kirwan [39, Theorem 4.16]). The set of critical points for |®|? is a finite disjoint union of closed
subsets {Cg : B € B} on each of which |®|? takes a constant value (here the indexing set B is a finite subset of the
positive Weyl chamber t, of g~ g*).
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Moreover, there is a smooth stratification {Sﬁ :B eB} of M, where p € Sg if and only if the limit set of its image
under the flow of —grad HCII'H2 (for an appropriate choice of G-invariant Riemannian metric on M) is contained in Cg.
Finally, for each B the inclusion C s = Sg is an equivalence of Cech cohomology and also G-invariant cohomology.

Moreover, Kirwan showed [39, 4.18] that the Sy are all locally closed, even-dimensional submanifolds of M.
Since it is impossible to disconnect a manifold by removing submanifolds of codimension > 2, each stratum must be
connected. In particular, the stratum Sy of points which flow to ®~! (0) is connected; by the equivalence of Cech
cohomology, the level set ®~!(0) = Cj is also connected:

Theorem 2.5 (Kirwan [40, (3.1)]; see also [57, Remark 5.8]). Let (M, ®,G,®) be a Hamiltonian G-space with M and
G compact. Then ®~1(0) is connected.

In general, we will be interested not just in ®~'(0), but also in ®~!(©), where O c g* is a coadjoint orbit.
Fortunately, the “shifting trick” will allow us to easily translate Theorem 2.5 to this more general setting:

Corollary 2.6. Let (M,®,G,®) be a Hamiltonian G-space with M and G compact and let O c g* be a coadjoint
orbit. Then ®~'(O) is connected.

Proof. The goal is to build a new Hamiltonian G-space (M, ®,G,®) so that 3 (0) ~®~!(O). This is exactly what
the shifting trick (see [17, §24.4] or [48, Proof of Proposition 5.4.15]) was designed to do.

Specifically, we know that (O, @%¥%) is symplectic, and hence so is (O, -@®KS). Let M = M x O with symplectic
form @ = ] 0+ 715 (—®XS), where as usual 7; is projection onto the ith factor. Let the G action on M be the diagonal
action. Then Proposition 2.2 and the discussion in Section 2.2 imply that

6(pa%) = CI)(P)—X

is a momentum map for this action.
Now,

3 (0) = {(p,®(p)) |p e M, D(p) € O}

is connected by Theorem 2.5. Since this space is certainly homeomorphic to ®~!(0), we conclude that ®~'(0O) is
also connected. O

3 The Symplectic Geometry of Spaces of Operator-Valued Frames

We now relate the general machinery of the previous section to operator-valued frames. Throughout this section we
will fix positive integers d,N, ki, ..., ky. We will also fix r = (r1,...,ry), where r; = (ri1, ..., rir;) With rip >--- >y, > 0.

d
Given this data, consider the space OFC *(r) of all operator-valued frames (A1, ...,A,), where A; : C¢ - Ci s
d
linear and P, := A} A; has spectrum r;. The space OF C ’k(r) is not obviously symplectic, but our first goal is to show

d
that the quotient OFC *(r)/(U(k;) x---x U(ky)) is symplectic, and in fact is essentially a product of coadjoint orbits
of U(d).

To start, we recall that the space H(d) of d x d Hermitian matrices can be identified with the dual u(d)* of the Lie
algebra of U(d) by the isomorphism

o:H(d) > u(d)”

%H(TIHJj

2

V1
2

tr(n*@:( é,n):ag(n)).

We collect relevant lemmas from our previous paper [52, §2.2.1 and §2.2.2] in the following proposition:

Proposition 3.1. Under this identification, the coadjoint action of U(d) on u(d)* corresponds to the conjugation
action of U(d) on H(d), and hence coadjoint orbits of U(d) can be identified with collections of Hermitian matrices
with fixed spectrum L, which we will denote Oy c H(d).
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Foreachi=1,...,N, the collection of P, € H(d) with spectrum r; is exactly O,,, and so

d
P:FC ,k(r) = {(Ph'“uPN) EH(d)N| SpeC(Pl) :r17"'ﬂspeC(PN) = rN} = Orl X"'XOVN (1)
is a product of coadjoint orbits. Corollary 2.3 now has the following immediate consequence:

d
Corollary 3.2. The momentum map ® for the diagonal conjugation action of U(d) on PFC *(r) is precisely the
frame operator:

@(P],...,PN) =P1 +'-~+PN.

Fix A = (A1,...,A4) with A; >--- > A4 > 0. Define

P]-"Ed’k(r) = {(P1,...,Py) e H(d)" | spec(P,) = ry,...,spec(Py) = ry,spec(P, +---+Py) = A}. )

In other words, this is the collection of P, with both the correct individual spectra and the correct spectrum of the frame
operator. Then Corollaries 2.6 and 3.2 imply:

. c? k -1 Clk N
Proposition 3.3. PF, "(r) =@ (0, ) c PF~ *(r) is connected.
Note that, if we think of fusion frames in the usual way as a collection of subspaces or, equivalently, orthogonal
projectors, this already gives an affirmative answer to Question 1.1 in the case K = C.

d d
In the more general operator-valued frame case, the question is how PF E ’k( r) relates to OF E ’k(r), which is the

space we want to show is connected. As previously discussed, while A; : C¢ — Ck uniquely determines P; = AlA;, the
operator A; cannot be uniquely determined from P;. Indeed, if U € U(k;), then

(UA;))*(UA;) =AfU*UA; = A*A; = B,

so composing with a unitary transformation of the codomain leaves P, invariant. Proposition 1.2 says that this is the
only indeterminacy, and hence the set of P; with given spectrum is precisely the collection of cosets of the (left) unitary
action on the set of A; with given singular values:

{P.:C? - C?specP, = r;i} ~ {A;: C? - Chi| spec(A*A) = r;} | U(k;).

In turn, this implies that
d d
PFEH(r) » OF*(r)[(U(kr) x -+ x U(kn)), 3)
and hence that
Cliky N K k
P]:A (r)~ (9]-"/1 (r)/(U(ky) x---xU(ky))-

Here, we are using the fact that the operations of taking a level set and taking a quotient commute with one another.
That is, suppose that X is a topological space with an action by a group G and ¥: X — Y is a G-invariant map, so that the
induced quotient map ¥ : X /G — Y taking an equivalence class [x] to W(x) is well defined; then ¥~ (y) =¥~ (y)/G
for any y € Y. Indeed, [x] € ¥~!(y) if and only if x e ¥~' (), or equivalently [x] € ¥~ (y)/G.

d
Therefore, the following lemma (with X = OF f *(r) and G = U(k;) x---xU(ky)) combined with Proposition 3.3

d d
implies that (’)Ff *(r) is connected. Since (’)Ff K(r) is a real algebraic set in CK*? x ... x Chvxd 5 R2(ki+-+kn)d g
is locally path-connected, so that connectivity implies path-connectivity, completing the proof of Theorem 1.9.

Lemma 3.4. Let X be a topological space and let G be a connected topological group acting continuously on X. If
X /G is connected, then X is connected.

The lemma follows from standard point-set topology arguments (see, e.g., [45, Exercise 5.5]), since connectedness
of G implies the fibers of the quotient map are connected.

10
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4 Tightening Fusion Frames

We now specialize to fusion frames, but relax our assumption on the base field, so that K =R or C. Recall the definition
d
of the fusion frame potential FFP : FF Kk L R:

2
FFP(A) := |4,
One of Casazza and Fickus’ first results about the fusion frame potential was a Welch-type lower bound:

Proposition 4.1 ( [18, Proposition 1]). Let d,N,ky,...,ky be positive integers and define n :=ky +---+ky. Then for
d
A=(Ay,... Ay) e FFEK
2
2

1 (X n
FFP(A) > 7 (;k,) =7

with equality if and only if A is a tight fusion frame.

d d
Let A= % and define A = (A,...,A). If they exist, the TFFs must have frame operator Ally, so that 7 F f ke FrKk
is exactly the collection of TFFs. Hence, Proposition 4.1 says that if this collection of TFFs is nonempty then it is

d
exactly the set of global minimizers of FFP in FF Kok,
The hard work of proving Theorem 1.14 is in proving the K = C case. The real case then follows immediately since

d d
FFR*c 77 ¥ is invariant under the gradient flow of FFP. We record this observation in the following proposition:

d d
Proposition 4.2. For given d and k, if Theorem 1.14 is true for FF Ck then it is also true for FFR,,

Except where explicitly pointed out below, we will assume K = C in what follows. The strategy for proving the
complex case of Theorem 1.14 is to show that property . (Definition 1.13) satisfies the following conditions:

(i) gradient flow (and its limit) preserves ., but
(i1) no non-minimizing critical point of the fusion frame potential satisfies .#.

Our argument has roots in Mumford’s geometric invariant theory (GIT) [51] (see [58] for a nice introduction),
which we introduce in some generality before specializing.

Let G be a reductive algebraic group that acts linearly on a finite-dimensional complex vector space V. For
example, G might be GL(V) or SL(V). A nonzero vector v € V is unstable under the action of G if the closure G-v
of the G-orbit of v contains the origin; otherwise v is semi-stable. Notice that the unstable points are precisely those
in the vanishing locus of every G-invariant homogeneous polynomial on V, and hence the semi-stable points are those
on which some G-invariant homogeneous polynomial does not vanish.

As one might expect, semi-stability is a feature of the orbit of v: either the entire orbit consists of semi-stable
points, or the entire orbit consists of unstable points.

Proposition 4.3 (see, e.g., [49, Proposition 6]). Given a nonzero v €V that is semi-stable, every point in G-v is also
semi-stable.

4.1 V and the SL(d) Action

In our application of GIT, we will have G = SL(d). To determine the appropriate vector space V, we first recall the
Pliicker embedding Gr;(C?) - P(AFC?), defined on the Grassmannian Gr; (C?) of k-dimensional linear subspaces
of C?. We can represent a k-plane by any basis vy,...,v; for it. Then the Pliicker embedding is defined to be the
projectivization of the map 7: (C%)* - A*C? defined by

T(Vi,.e ey Vi) =V A AWy

When (uy,...,u;) and (vi,...,v;) span the same k-dimensional subspace, then T(uy,...,u;) = det(h)T(vy,...,vk)
where h € GL(k) is the change-of-basis matrix, so both map to the same point in projective space, and the Pliicker

11
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embedding is well-defined on the Grassmannian. Of course, the standard action of SL(d) on C? induces an action on
A*C by
g (vin-Avg) = (gvi) A A(gvk)
and extending linearly.
How do we get from fusion frames to Grassmannians, and hence to such a representation of SL(d)?

ForAe FF (Cd’k, each P, = A7 A; is arank-k; orthogonal projector and the rows a1, ..., ay, of A; give an orthonormal
basis for the k;-dimensional subspace which is the image of P,. Moreover, O,, is the collection of all rank-k; orthogonal
projectors, which is symplectomorphic to the Grassmannian Grkl.((Cd).

Define 7;: A; = ajj A++- Aaj, the projectivization of which is exactly the Pliicker embedding of Gry, (C%), and 7; is
equivariant with respect to the right SL(d) action g-A; := A;g* on the domain and the SL(d) action described above
on the codomain:

t(g-Ai) = T(Aig”") = (ga;) A A (gay,) = g-T(Ai)
for any g € SL(d).
d
Next, define T FFC kL ANiClg-..o NV Cd by 7:=17; ®---® Ty, so that

T(A) =T (A) @@ty (AN) = (af; A+ Aafy, ) @@ (ayy A Aany, ) -
In other words, the projectivization of 7 is the Segre embedding of the product of Pliicker embeddings of the individual
factors.
Finally, then, our vector space V = NiC?®---@ A C4, on which G = SL(d) acts by
g.((v“ Ao AV ) ® @ (Vg /\"'/\VNkN)) = ((gv“)/\.../\(glkl))®...®((ng1)/\...,\(ngkN)))

and extending linearly.
The point of defining property . as we have is the following theorem of Mumford (stated originally in terms of
Grassmannians):

Theorem 4.4 (Mumford [51, Proposition 4.3]; see also [50] and [39, §16.3]). A has property .7 if and only if T(A) is
semi-stable with respect to the SL(d) action.

As pointed out just before Proposition 4.3, the semi-stable points in V are those on which some G-invariant ho-

mogeneous polynomial does not vanish. Hence, Theorem 4.4 implies that if A € F. ]—'Cd"k has property ., then there
is some G-invariant homogeneous polynomial which does not vanish at 7(A). Since the coordinates of 7(A) are pre-
cisely the determinants of all the k; x k; minors of the A;, and since these determinants are themselves polynomials
in the entries of A, this means that there is some polynomial expression in the coordinates of A which does not van-
ish. Therefore, the collection of A with property . is Zariski-open in the smooth, connected, real algebraic variety

d
FFC ’k, and hence is either empty or dense (see, e.g., [14, Proposition 5.11]). Moreover, the same reasoning applies
d
in FFROK, Therefore, we have:

d
Proposition 4.5. Let K =R or C. When it is non-empty, the collection of all fusion frames in FFEK with property
< is dense.

We also take this opportunity to show that TFFs always have property .7

d
Proposition 4.6. Let K =R or C and suppose A ¢ FF Kk is a TFF. Then A has property .

Proof. Since A is tight, its frame operator Sq = 7. Let Q c K“ be a proper subspace and let Pg be orthogonal
projection onto Q.

Foreachi=1,...,N, any nonzero vector in @nS; is fixed by the product PgP,, and hence tr(PgP;) > dim(QnS;),
since all eigenvalues of PgF; are real and non-negative. Therefore, since PoSs = 5 Pg,

N N
gdim(Q) —tr(PgSa) = Y tr(PoP) > 3 dim(QnS)),
i=1 i=1

so A has property .7 O
Combining Propositions 4.5 and 4.6 yields the following immediate corollary:

d d
Corollary 4.7. Whenever there are TFFs in FFEk the fusion frames with property . are dense in FF Kok

12
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4.2 Property .7 Satisfies (i) and (ii)
4.2.1 Property .7 Satisfies (i)

The goal in this subsection is to show that the gradient flow of FFP preserves property ..
Notice that, if A = (Ay,...,Ay) is a fusion frame, then the rows of each A; form an orthonormal set, and hence each
a;j A A a;{i e A% C? is a unit vector with respect to the standard inner product on A% C¢. In turn, this implies that

T(A) € (/\kl (Cd) ®-® (/\kN (Cd) is also a unit vector. In other words:

d
Lemma 4.8. 7 (.7-' FC ’k) is contained in the unit sphere, and in particular is bounded away from the origin.
Now we compute the gradient of FFP, first by computing the extrinsic gradient of its extension to the entire vector
d
space containing FF Cok,
Lemma 4.9. Define EFP: CK1*d x ... x C'W*4 L R 10 be the extension of FFP to all of Ch*¢ x...x Cov*d giyen by
2
EFP(Ay,...,AyN) = ”ZZIAZ'AI-” . Its gradient is
VEFP(A) = (4A1S4,...,4ANSA). 4)

Proof. Let B=(By,...,By) € Ta(Ch*d x...x Chvxd) 5 Chi*d x ... x Ckv*d and consider the directional derivative of
EFP at A in the direction B. In the following, we slightly abuse notation and generically use {-,-) for the Frobenius
inner product on matrix spaces of various dimensions. We have

d d| || ?
— EFP(A+8B) = — (A,'+SB,')*(AZ‘+SB,‘)
dg e=0 dg e=0 i=1
d ul 2 N 2
= % 0<Z(ATA1'+8(A;B,‘+B?A,')+8 B;B,’),Z(A?Ai+£(A;Bi+B;Ai)+€ B:rBl)
€=0\i=1 i=1

N N
= 2Re<ZAi*A,-7Z(AfBi +B,»*Ai)>
i=1 i=1
N
—4Re (Sa,A?B;) o)
i=1

M=

=Re ) (4A;S4,B;) =Re((4AS4,...,4ANSA), (B1,...,By)). (6)

1

Il
—_

The equality (5) makes the replacement S4 = Zfil A7 A;, uses linearity in the second coordinate to move the summation
out of the inner product and uses properties of the (real part of the) inner product to equate Re(-,AfB; + B} A;) =
2Re(-,A¥B;). The quantity (6) is the (real part of the) standard inner product for C*1*? x ... x Ckv*@ applied to
(4A1S,,...,4ANS,) (the claimed formula for the gradient) and B. This implies (4). O

And now the intrinsic gradient:
Lemma 4.10. The Riemannian gradient of FFP : FF Chk R, is
gradFFP(A) = (4(A]SA - (A]SAAT)Al ), cee 74—(141\/5‘4 - (ANSAAXI)AN)) .

Proof. The Riemannian gradient grad FFP(A) is the projection of the extrinsic gradient VEFP(A) onto the tangent

d
space to FF Tk at A. This means that on the ith block we need to project 4A;S4 onto the orthogonal complement of
the row span of A;. This orthogonal projection is accomplished by right-multiplying by (I, —A*A;), so the projection
is 4A;Sa(I;—AFA;) =4 (AiSa — (AiSaA} ) A;). The result follows. O

Proposition 4.11. Suppose Ag € FFC ‘i has property . and that T": .7-'.7-'Kd’k x[0,00) > FF Kk is the gradient flow
defined in Theorem 1.12. Then Ao = 1im,_, o ['(Ag,t) has property ..

13
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Proof. Using Lemma 4.10, we have that the ith block of gradFFP(A) is
d
4(Al'SA - (A,SAA;-)AI) = % 46Xp(—8AiSAA;- )A,-exp(eSA). (7)
e=0
Exponentiating a matrix always yields an invertible matrix, so (7) tells us that grad FFP(A) is tangent to the orbit
(GL(d) xTTY, GL(k;)) - A, where (g, (h1,...,hy)) € GL(d) x [T GL(k;) acts on [T, Ck*¢ by
(gv (h17 LR 7hN)) A = (hlAlg*a LR 7hNAng*)~
For (g, (hi,...,hy)) € GL(d) x [TY, GL(k;), we normalize g to get something in SL(d) without changing the action
by moving a scalar to the other factor: ((detg)_l/dg, ((detg)_l/dhl Yoo (detg)_l/d,hN)) € SL(d) x T, GL(k;) and
(8, (- ) -A = ((detg)™ g, ((detg) ™ hy, .. (detg) ™/, hy) ) -4,

so grad FFP(A) is actually in the tangent space to (SL(d) x I, GL(k;))-A at A. Therefore,

N
I'(Ao,t) € (SL(d) x HGL(k,»)) Ay forallt>0.
i=1

If (g, (hy,...,hy) € SL(d) x [TY.; GL(k;), then

t((g, (h1,....hn))-A) = ((gai hy) A+ A (gl 1Y) @@ ((gamihy) A+ A (gan, v )
= (det(hy) (gajy) A--A(galy,)) @ ® (det(hy) (gam) A+ A (ganiy )

N
= [Tdethy) [((gain) oo (s )) @@ ((8hn) oo (86iey ) )] € (SLAA) % €7) - 2(4),

where (g,a) € SL(d) x C* acts on (/\k1 (Cd) ®® (/\kN (Cd) by

(g,a)~[(v1] /\"'/\Vlkl)®"'®(VNl /\‘“/\kaN)] 12&[((8V11)/\"‘/\(8V1k1))®"'®((gVNl)/\"'/\(gVNkN))]-

This implies that T(I'(Ag,?)) € (SL(d) xC*)-t(Aop) for all 7 > 0. Since 7(I'(Ag,?)) is a unit vector for all 7 by
Lemma 4.8, so is the limit T(Ao ).

Since everything is bounded away from the origin and since rescaling a vector by a nonzero scalar does not affect
its semistability with respect to the SL(d)-action, Proposition 4.3 implies that the entire gradient flow line, including
T(A ), is semi-stable, and hence Ao, has property . by Theorem 4.4. O

4.2.2 Property . Satisfies (ii)

Finally, we need to show that critical points which are not global minima do not satisfy property .. We do this by
showing that, if A is a non-minimizing critical point, then 7(A) is not semi-stable with respect to the SL(d) action.
Semi-stability is defined in terms of the full group orbit, but this is typically much too big to be tractable. Instead, it is
preferable to work with one-parameter subgroups, which remarkably turn out to be sufficient.

We briefly return to discussing a general reductive group G acting linearly on a vector space V. A one-parameter
subgroup of G is ahomomorphism of algebraic groups A : C* — G. Any such homomorphism induces a decomposition
V = ®j¢ Vi and integer weights w: I — Z so that, for every i€ I, veV;, and r € C*,

A1) v=r"0y,

It follows immediately from the definition that a nonzero vector v € V is unstable under the action of G if there exists
a one-parameter subgroup A so that

lin(n)),(t) -v=0.

11—

Much less obvious is that the converse holds:
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Theorem 4.12 (Hilbert-Mumford criterion [33,51]). v e V\{0} is unstable under the action of G if and only if there
exists a one-parameter subgroup A of G so that

limA(7)-v=0.
t—0
This will be our key tool in proving that property . satisfies (ii).

d
Proposition 4.13. Suppose A € FF Ck is a critical point of FFP which is not tight. Then A does not have property
. In particular, if A is a critical point which is not a global minimum, then it does not have property .

d
Proof. LetAeF FC ¥ be a critical point of FFP. Then grad FFP(A) = 0; by Lemma 4.10, this implies that, for each
i=1,...,N,
0=A;Sq—A;SAATA; =A;SA (T, - A A)).

The operator I; —A A; is orthogonal projection onto the orthogonal complement of row(4;), the row space of A; (since
A is a fusion frame, the rows of A; are orthonormal). The above equation then says that the rows of A;Sy lie in row(4;).
In other words, row(A4;) is an invariant subspace for the frame operator S4, and hence has an orthonormal basis of
eigenvectors of Sa (4, SO there exists U; € U(k;) so that the rows of A; := UiA; are eigenvectors of Salrow(a;)> and
hence also of S4 = S3. So far, this is not new: the conclusion of the previous sentence is exactly Casazza and Fickus’
characterization of the critical points of the fusion frame potential [18, Theorem 4].

If A is not tight, then the frame operator S4 has at least two distinct eigenvalues. Let A be the largest eigenvalue,
with corresponding eigenspace E; of dimension ¢ and orthogonal complement E i of dimension d —/¢. Since the
average of the eigenvalues of Sy is

Lisa) = Lo ]ZV:A*A —1gjtr(A*A-)—1§jk-—ﬁ
d A_d i:ll l _di:1 ' l_diZII_d

and the eigenvalues aren’t all equal, we know that the largest eigenvalue A > 5
Up to conjugating Sy by U € U(d) (corresponding to right-multiplying each A; by U*), we can make the simplifying
AL, 0
0o
matrix. Hence, E; =span{ey,...,e;} and Ei =span{egq,...,e4}-

assumption that the frame operator is diagonal: S4 = ] where S’ is a diagonal (but not necessarily scalar)

If, for each i=1,...,N, dj,...,dj, are the rows of A;, then, since each d;j is an eigenvector of S4 and distinct
eigenspaces are orthogonal, the d;; split into two perpendicular groups: those in E; and those in E/{ Let by,...,b,, be
the collection contained in £ . Then

so that b7 ,...,b}, are a A-tight frame for Ej. Since the b; are unit vectors,

AL O R g ey
él—tr[o O]—tr(;blbm)—tr(;b,bi)—m,

it follows that A = 7 and hence that 7 > 5; equivalently, md —n¢ > 0.
We’re now ready to show that A does not have property .. To see this, consider the 1-parameter subgroup
A :C* — SL(d) given as a block matrix by

141 0
wo-"5 8|

Since djy A--- Ay =det(U; )ajy A+ Aaj, it follows that T(A) = pT(A) for unimodular p = [T, det(U;), and hence

A1) 2(A) = pA(1)-2(A) = p (A(D)aj)) A A (A(1)aT, ) @ ® (A()ay) A~ (A (1N, )

=m0~ (a7 A nal ) @0 ® (G A Ady, ) =" p(A),

15



520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

)

65" ‘.

.
.
.
L .
o‘..
.............
5.5F
L L L
20 40 60

Figure 1: Left: Values of FFP at each step in a simple gradient descent with fixed step sizes starting from a random

A

d
point in FF RE(L12) Right: The limiting fusion frame of this gradient descent which achieves the minimum possible
value of 1.
2

which goes to zero as t — 0 since md —nf > 0.

Therefore, 7(A) is not semi-stable, and hence, by Theorem 4.4, A does not have property .7 .

Finally, if A is not a global minimum, then it cannot be tight by Proposition 4.1, so we see that non-minimum
critical points cannot have property .&. O

d
If d,N, and k are such that 7 F Kk contains no TFFs (see Remark 1.16 for conditions on when this occurs), then
any global minimum A of FFP cannot be tight, so Proposition 4.13 shows that A cannot have property .. By the

d
contrapositive of Proposition 4.11, then, nothing in FF K7k that flows to A under the negative gradient flow of FFP
can have property .7, either. Since this is true for all global minima, there is some open set containing the global

d
minima which completely avoids the fusion frames with property .. Therefore, the set of fusion frames in FF Kk
with property .# cannot be dense, and hence, by Proposition 4.5, must be empty. In other words:

d
Corollary 4.14. FF Kk contains fusion frames with property . if and only if it contains TFFs.

4.2.3 Completing the Proof of Theorem 1.14

We now have all the tools we need to prove that gradient descent limits to a global minimizer.

Proof of Theorem 1.14. 1f Ay e FF Clk has property ., the limit Ao, := lim,_,o, ['(Ag,?) has property . by Proposi-
tion 4.11. Since Ao is a limit point of the gradient flow, it must be a critical point of FFP. Since it has property .7,
Proposition 4.13 implies that A is a global minimizer of FFP.

This proves Theorem 1.14 when K = C. The real case then follows immediately by Proposition 4.2. O

5 Discussion

There are choices of d, N, and k for which there are no fusion frames with property .: for example, d = N =3 and

3
k=(1,1,2). Elements (A;,A»,A3) e FFX (11:2) will determine two lines ¢; = row (A1) and £, = row(A>) and a plane
S =row(As3). If Q is a plane containing ¢; and ¢, then it must intersect S at least in a line, so

1 (dim(6;n Q) +dim(f2n Q) +dim(Sn Q)) 3 > » & = dimf +dimb +dimS
dim Q 2 3 3
3
Hence, nothing in F. FRL12) pag property ., so Theorem 1.14 tells us nothing. Moreover, by Proposition 4.6, there

3
are no TFFs in FFX (112), 5
Nonetheless, running gradient descent from random starting points in FF B5AL2) seems to always find minimiz-
ers of FFP in practice. Figure 1 shows the value of FFP rapidly decreasing to the global minimum value 12—1, which

is greater than the value % that a TFF would have. As observed by Casazza and Fickus [18, p. 17], the minimum is

16



546

547

548

549

550

551

552

553

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

achieved by fusion frames of the form shown on the right of Figure 1, where ¢ and ¢; lie in a plane Q perpendicular
to S and the lines /1, ¢, and QNS correspond to a tight Mercedes—Benz frame for Q.

This suggests that the fusion frame Benedetto—Fickus theorem may hold even for parameters where there are no
fusion frames with property .. We also expect our approach to proving Theorem 1.14 will extend to more general

d
spaces OF K ’k(r) of operator-valued frames whose P; have a given spectrum (including weighted fusion frames),
though the details seem more complicated. Hence, we pose the following conjecture:

d
Conjecture 5.1. Let d,N,ky,...ky be positive integers and fix r. Let OFP : oOFk ’k(r) — R be the obvious general-
ization of FFP to operator-valued frames. Then all local minima of FFP are global minima.

d
We expect that, as in the case of classical frames [53], (’).7’-']1;\:]I ’k(r) is path-connected, where H is the skew-field

d
of quaternions. However, OF f "k(r) cannot always be connected. For example, translating a result of Kapovich

2
and Millson [38, Theorem 1] to our setting and notation implies that (97-"?5"5()1’1’1’1)

the other hand, Cahill, Mixon, and Strawn [15] proved that the space O]:?Z,’(l",;;’)l)

N
frames is connected for all d >2 and N > d +2, so there is some interesting characterization of when the OF de’k(r)
are connected still waiting to be discovered.

Cahill, Mixon, and Strawn’s proof of the Frame Homotopy Theorem relied heavily on the use of eigensteps, which
are the eigenvalues of the partial sums of the P;. While eigensteps can be similarly defined for fusion frames and even
operator-valued frames, it is not clear whether they would be a useful tool for studying connectedness in the real case.
Eigensteps give good coordinates for classical frame spaces because they are action coordinates—that is, they are
the coordinates of a momentum map for a Hamiltonian action of a half-dimensional torus [54]. This means that not
only is the image a convex polytope, but the fibers of the eigenstep map are reasonably simple and well-understood.
For dimension-counting reasons it seems unlikely that eigensteps could give action coordinates for fusion frames or
operator-valued frames, but it is desirable to find similarly useful coordinates in this more general setting.

(3,3,3,1) is not connected. On

(1,...,1) of real unit-norm tight
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