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We study the multitask learning problem that aims to simultaneously an-
alyze multiple data sets collected from different sources and learn one model
for each of them. We propose a family of adaptive methods that automatically
utilize possible similarities among those tasks while carefully handling their
differences. We derive sharp statistical guarantees for the methods and prove
their robustness against outlier tasks. Numerical experiments on synthetic and
real data sets demonstrate the efficacy of our new methods.

1. Introduction. Multitask learning (MTL) solves a number of learning tasks simulta-
neously. It has become increasingly popular in modern applications with data generated by
multiple sources. When the tasks share certain common structures, a properly chosen MTL
algorithm can leverage that to improve the performance. However, task relatedness is usually
unknown and hard to quantify in practice; heterogeneity can even make multitask approaches
perform worse than independent task learning, which trains models separately on their in-
dividual data sets. In this paper, we study MTL from a statistical perspective and develop
a family of reliable approaches that adapt to the unknown task relatedness and are robust
against outlier tasks with possibly contaminated data.

To set the stage, let m ≥ 1 be the number of tasks and {Xj }mj=1 be sample spaces. For every

j ∈ [m], let Pj be a probability distribution over Xj , Dj = {ξ ji}
nj

i=1 be samples drawn from
Pj , and �j : Rd ×Xj → R be a loss function. The j th task is to estimate the population loss
minimizer

θ�
j ∈ arg min

θ∈Rd

Eξ∼Pj
�j (θ , ξ)

from the data. For instance, in multitask linear regression, each sample ξ ji can be written as
(xji, yji), where xji ∈ R

d is a covariate vector and yji is a response. The loss function is
�j (θ , (x, y)) = (x�θ − y)2.

Define the empirical loss function of the j th task as fj (θ) = 1
nj

∑nj

i=1 �j (θ , ξ ji). Many
MTL methods [13] are formulated as constrained minimization problems of the form

min
�∈�

{
m∑

j=1

wjfj (θ j )

}
,(1.1)

where � = (θ1, . . . , θm) ∈ R
d×m, {wj }mj=1 are weight parameters (e.g., wj = nj ), and

� ⊆ R
d×m encodes the prior knowledge of task relatedness. Independent task learning cor-

responds to � = R
d×m. Setting � = {β1�

m : β ∈ R
d} yields the data pooling strategy, where

we simply merge all data sets to train a single model. It is also easy to construct parameter
spaces so that the learned parameter vectors share part of their coordinates, cluster around a
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few points, lie in a low-dimensional subspace, etc. In general, the hard constraint � ∈ � in
(1.1) is overly rigid. When � fails to reflect the task structures, the model misspecification
may have a huge negative impact on the performance.

To resolve the aforementioned issue, we propose to solve an augmented program

min
�∈Rd×m,�∈�

{
m∑

j=1

wj

[
fj (θ j ) + λj‖θ j − γ j‖2

]
}
,(1.2)

obtain an optimal solution (�̂, �̂) and then use �̂ as the final estimate. Here, {λj }mj=1 are

regularization parameters and � = (γ 1, . . . ,γ m). Each task receives its own estimate θ̂ j ,
while the penalty terms shrink �̂ toward a prototype �̂ in the prescribed model space � so
as to promote relatedness among tasks. Our framework (1.2) can deal with different levels of
task relatedness if we properly tune the regularization parameters {λj }mj=1. When � nicely
captures the underlying structure, we can pick sufficiently large {λj }mj=1 so that the cusp of

the �2 penalty at zero enforces the strict equality �̂ = �̂. The new procedure then reduces to
the classical formulation (1.1). On the other hand, when � fails to reflect the structure, we
take small λj ’s to guarantee each θ̂ j ’s fidelity to its associated data. Observe that

θ̂ j ∈ arg min
θ∈Rd

{
fj (θ) + λj‖θ − γ̂ j‖2

}
∀j ∈ [m].

In words, θ̂ j minimizes a perturbed version of the loss function fj associated to the j th task.
When λj is not too large, the perturbation has limited influence and θ̂ j stays close to the
output of independent task learning arg minθ∈Rd fj (θ). This provides a safenet in case � is
significantly misspecified. We see that strong regularization helps utilize task relatedness if
that exists, while weak regularization better deals with heterogeneity.

Interestingly, there is a simple choice of {λj }mj=1 that provides the best of both worlds,
regardless of whether the prescribed model space � captures the underlying structure or not.
Roughly speaking, when n1 = · · · = nj = n, our theory suggests choosing wj = 1 and λj =
c
√

d
n

for some constant c; when {nj }mj=1 are different, our general results recommend wj =
nj and λj = c

√
d
nj

. In both cases, the factor c is shared by all of the m tasks. The estimator has
a single tuning parameter rather than m different ones, which is practically appealing. Thanks
to the unsquared �2 penalties in (1.2), the procedure automatically enforces an appropriate
degree of relatedness among the learned models.

Moreover, the method can tolerate a reasonable fraction of exceptional tasks that are dis-
similar to others or even have their data contaminated. Given the above merits, we name the
framework as Adaptive and Robust MUltitask Learning, or ARMUL for short.

Main contributions. Our contributions are two-fold.

• (Methodology) We introduce a flexible framework for multitask learning. It works as a
wrapper around any MTL method of the form (1.1), enhancing its ability to handle hetero-
geneous tasks.

• (Theory) We establish sharp guarantees for the framework on its adaptivity and robustness.
Our analysis provides one customized statistical error bound for every single task.

Related work. Our work relates to a vast literature on integrative data analysis [43]. A classi-
cal example is simultaneous estimation of multiple Gaussian means. The specification of our
method in this scenario is related to various shrinkage estimates [22, 26, 39]; see Section 2
for more discussions. An extension of multitask mean estimation is linear regression with
multiple responses [11], which is a special form of multitask linear regression with shared
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covariates. Chen et al. [14] studied Stein-type shrinkage estimates for multitask linear re-
gression with Gaussian data. Negahban and Wainwright [5, 46, 48, 54, 55, 61, 68] and [12]
investigated high-dimensional (generalized) linear MTL where the tasks have similar sparsity
patterns. There are also MTL approaches proposed to enforce other types of model similari-
ties such as clustering structures [28, 29, 37, 51], low-rank structures [1, 4, 42], among others.
The above list is far from being exhaustive.

Our study is largely motivated by the great empirical success in MTL with parameter
augmentation [15, 29, 38]. Our idea of nonsmooth regularization originates from the seminal
works by [22] and [21] on adaptive sparse estimation. Beyond the coordinatewise sparsity
of vectors, recent studies have developed the sum of �2 penalties to promote columnwise
sparsity in matrix estimation problems such as robust PCA [45, 50, 67] and robust low-rank
MTL [15, 57]. Our design of the penalty is closely related to theirs. The ARMUL penalty
also looks similar to the group lasso penalty

∑d
�=1(

∑m
j=1 |θj�|2)1/2 for variable selection in

sparse MTL [46]. While the group lasso sums up the norms of rows (variables), ours does
that to the columns (tasks).

Below we provide a selective overview of existing theories that are closely connected to
our analysis of adaptivity and robustness. Wu et al. [66] and [53] analyzed the impact of task
relatedness on linear models and one-hidden-layer neural networks when there are two tasks.
Balcan et al. [6] and Denevi et al. [19] studied online MTL and showed the benefit of task
relatedness. Konstantinov et al. [41] investigated multitask PAC learning with adversarial
corruptions. They assumed homogeneous tasks and focused on robustness against different
types of adversaries. Hanneke and Kpotufe [31] studied the adaptation in nonparametric MTL
under the Bernstein class condition. Du et al. [23] and [65] considered representation learning
from multiple data sets when the true statistical models share common latent structures. In
the agnostic learning framework, [7] and [49] presented generalization bounds on the average
risk across tasks, and [8] studied task-specific error bounds.

Outline. The rest of the paper is organized as follows. Section 2 studies multitask Gaussian
mean estimation as a warm-up example. Section 3 presents the methodology. Section 4 con-
ducts a sharp analysis of adaptivity and robustness. Section 5 verifies the theories and tests
the methodology through numerical experiments. Finally, Section 6 concludes the paper and
discusses possible future directions.

Notation. The constants c1, c2,C1,C2, . . . may differ from line to line. Define x+ =
max{x,0} for x ∈ R. We use the symbol [n] as a shorthand for {1,2, . . . , n} and | · | to de-
note the absolute value of a real number or cardinality of a set. For nonnegative sequences
{an}∞n=1 and {bn}∞n=1, we write an � bn or an = O(bn) or bn = �(an) if there exists a pos-
itive constant C such that an ≤ Cbn. In addition, we write an � bn if an � bn and bn � an;
an = o(bn) if an = O(cnbn) for some cn → 0. Let 1d be the d-dimensional all-one vector
and {ej }dj=1 canonical bases of Rd . Define S

d−1 = {x ∈ R
d : ‖x‖2 = 1} and B(x, r) = {y ∈

R
d : ‖y − x‖2 ≤ r} for x ∈ R

d and r ≥ 0. For any matrix A, we use aj to refer to its j th col-
umn and let Range(A) be its column space. ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 denotes the spectral
norm and ‖A‖F denotes the Frobenius norm. Define ‖X‖ψ2 = supp≥1{p−1/2

E
1/p|X|p} and

‖X‖ψ1 = supp≥1{p−1
E

1/p|X|p} for a random variable X; ‖X‖ψ2 = sup‖u‖2=1 ‖〈u,X〉‖ψ2

for a random vector X.

2. Warm-up: Estimation of multiple Gaussian means. In this section, we consider
the multitask mean estimation problem as a warm-up example. We first introduce the setup
and a simple estimation procedure. We relate the estimator to soft thresholding and Huber’s
location estimator. Then we show that it automatically adapts to the unknown task relatedness
and is robust against a small fraction of tasks with contaminated data. Finally, we discuss the
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connection between our estimator and several fundamental topics in statistics and machine
learning.

2.1. Problem setup. Suppose we want to simultaneously estimate the mean parameters
of m ≥ 2 Gaussian distributions {N(θ�

j ,1)}mj=1. For each j ∈ [m], we collect n i.i.d. sam-
ples {xji}ni=1 from N(θ�

j ,1). The m data sets {x1i}ni=1, . . . , {xmi}ni=1 are independent. This
is an extensively studied problem in statistics [25, 60] and a canonical example in multitask
learning, where the j th learning task is to estimate θ�

j .

• Without additional assumptions, it is natural to conduct maximum likelihood estimation
(MLE). Due to the independence of data sets, MLE amounts to estimating each θ�

j by the

sample mean x̄j = 1
n

∑n
i=1 xji of its associated data. The mean squared error is E(x̄j −

θ�
j )2 = 1

n
.

• If the parameters are very close, we may estimate them by the pooled sample mean x̄ =
1

mn

∑m
j=1

∑n
i=1 xji . In the ideal case θ�

1 = · · · = θ�
m, data pooling reduces the mean squared

error to 1
mn

.
• We may use Bayesian procedures if {θ�

j }mj=1 are independently drawn from some known
prior distribution. When the prior itself has unknown parameters, empirical Bayes methods
[27, 39] can be applied.

Since it is often hard to precisely quantify the prior knowledge in practice, we want an
estimation procedure that automatically adapts to the unknown similarity among the tasks.
Ideally, the procedure should also be robust against outlier tasks that are dissimilar to others or
even contain corrupted data. To introduce our method, we first present optimization perspec-
tives of MLE and its pooled version. Up to an affine transform, the negative log-likelihood
function for the j th task is equal to

fj (θ) =
1

2n

n∑

i=1

(xji − θ)2 ∀θ ∈ R.

MLE returns one estimator x̄j = arg minθj∈R fj (θj ) for each task, whereas data pooling out-
puts the same estimator x̄ = arg minθ∈R

∑m
j=1 fj (θ) for all tasks.

We propose to solve a convex optimization problem

(θ̂1, . . . , θ̂m, θ̂ ) ∈ arg min
θ1,...,θm,θ∈R

{
m∑

j=1

[
fj (θj ) + λ|θj − θ |

]
}

(2.1)

and use {θ̂j }mj=1 to estimate {θ�
j }mj=1. Here, λ ≥ 0 is a penalty parameter and θ̂ serves as a

global coordinator. Similar to MLE, each task receives one individual estimator based on its
loss function. Moreover, the penalty terms drive those estimators toward a common center.
When λ = 0, θ̂j = x̄j . When λ = ∞, θ̂j = θ̂ = x̄. Therefore, the method interpolates between
MLE and its pooled version. We will derive a simple choice of λ with guaranteed quality
outputs.

2.2. Adaptivity and robustness. It is easily seen from (2.1) that

θ̂ ∈ arg min
θ∈R

m∑

j=1

f̃j (θ) and θ̂j ∈ arg min
θ∈R

{
fj (θ) + λ|θ − θ̂ |

}
∀j ∈ [m],(2.2)

where f̃j (θ) = minξ∈R{fj (ξ) + λ|θ − ξ |} is the infimal convolution [32] of a quadratic loss
fj (·) and an absolute value penalty λ| · |. It is well known that such infimal convolution is
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closely related to the Huber loss function [35] with parameter λ:

ρλ(x) =
{
x2/2 if |x| ≤ λ,

λ
(
|x| − λ/2

)
if |x| > λ.

See, for example, Section 6.1 of [20]. Based on that, we have the following elementary char-
acterizations of θ̂ and {θ̂j }mj=1. The proof is deferred to Appendix C.1 in the Supplementary
Material [24].

LEMMA 2.1. We have f̃j (θ) = ρλ(θ − x̄j ) + 1
2n

∑n
i=1(xji − x̄j )

2,

θ̂ ∈ arg min
θ∈R

m∑

j=1

ρλ(θ − x̄j ),

θ̂j = θ̂ + sgn(x̄j − θ̂ )
(
|x̄j − θ̂ | − λ

)
+ = x̄j − min

{
λ, |x̄j − θ̂ |

}
sgn(x̄j − θ̂ ) ∀j ∈ [m].

According to Lemma 2.1, the global coordinator θ̂ in (2.1) is a Huber estimator applied to
sample means {x̄j }mj=1 of individual data sets. The estimators {θ̂j }mj=1 for {θ�

j }mj=1 are shrunk

toward θ̂ by soft thresholding. Intuitively, we may view the procedure (2.1) as a combina-
tion of hypothesis testing and parameter estimation. The first step is to test the homogeneity
hypothesis H0 : θ�

1 = · · · = θ�
m, with λ controlling the significance level. When {x̄j }mj=1 are

close enough, for example, maxj �=k |x̄j − x̄k| ≤ λ, the parameters {θ�
j }mj=1 do not seem to

be significantly different. We apply data pooling and get θ̂1 = · · · = θ̂m = θ̂ = x̄. The exact
equality θ̂j = θ̂ is enforced by the cusp of the absolute value penalty | · | at zero. When all
but a small fraction of {x̄j }mj=1 are close, the robustness property of the Huber loss makes

θ̂ a good summary of the majority; their corresponding θ̂j ’s are equal to θ̂ . In general, the
estimators {θ̂j }mj=1 can be different. It is worth pointing out that |θ̂j − x̄j | ≤ λ always holds,

thanks to the Lipschitz smoothness of | · |. This guarantees θ̂j ’s fidelity to its associated data
set {xji}ni=1. Hence, the proposed method easily handles heterogeneous tasks.

To analyze the statistical property of (2.1), we need to gauge the relatedness among tasks.

DEFINITION 2.1 (Parameter space). For any ε ∈ [0,1] and δ ≥ 0, define

�(ε, δ) =
{
θ� ∈ R

m : min
θ∈R

max
j∈S

∣∣θ�
j − θ

∣∣≤ δ and
∣∣Sc
∣∣/m ≤ ε for some S ⊆ [m]

}
.

We associate every θ� ∈ �(ε, δ) with a subset S = S(θ�) of [m] that satisfies the above
requirements.

ASSUMPTION 2.1 (Task relatedness). The m data sets {x1i}ni=1, . . . , {xmi}ni=1 are statis-
tically independent and there exists θ� ∈ �(ε, δ) such that for any j ∈ [m], {xji}ni=1 are i.i.d.
N(θ�

j ,1).

We say the m tasks are (ε, δ)-related when Assumption 2.1 holds. In words, all but an
ε fraction of the mean parameters {θ�

j }mj=1 live in an interval with half-width δ; the others
can be arbitrary. Smaller ε and δ imply more similarity among tasks. The extreme case
ε = δ = 0 corresponds to θ�

1 = · · · = θ�
m. Any m tasks of Gaussian mean estimation are

(0,maxj∈[m] |θ�
j |)-related.

Theorem 2.1 below characterizes the estimation errors. The proof can be found in Ap-
pendix C.2 [24].
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THEOREM 2.1 (Adaptivity and robustness). Let Assumption 2.1 hold. Choose any t ≥ 2

and λ = 6
√

2(logm+t)
n

. There is a universal constant C > 0 such that with probability at least

1 − e−t ,

max
j∈S

∣∣θ̂j − θ�
j

∣∣< C

(√
t

mn
+ min

{
δ,

√
logm + t

n

}
+ ε

√
logm + t

n

)
,

max
j∈[m]\S

∣∣θ̂j − θ�
j

∣∣< C

√
logm + t

n
,

1

m

m∑

j=1

∣∣θ̂j − θ�
j

∣∣2 ≤ C

(
t

mn
+ min

{
δ2,

logm + t

n

}
+ ε ·

logm + t

n

)
.

REMARK 1 (Data contamination). We can further relax the assumption on task related-
ness to allow the data sets {Dj }j /∈S to be arbitrarily contaminated. In that case, the results for
maxj∈S |θ̂j − θ�

j | in Theorem 2.1 continue to hold.

Theorem 2.1 provides maximum error bounds for the “good” tasks in S and “bad” tasks
in [m]\S, as well as the mean squared error (MSE) over all tasks. A crude error bound

maxj∈[m] |θ̂j − θ�
j | �

√
logm

n
always holds regardless of (ε, δ). On the other hand, elemen-

tary calculation shows that maxj∈[m] |x̄j − θ�
j |�

√
logm

n
with constant probability. Therefore,

the new method is always comparable to MLE. That provides a safe net.

Moreover, the suggested penalty parameter λ = 6
√

2(logm+t)
n

in Theorem 2.1 does not
depend on ε or δ at all. The estimator automatically adapts to the unknown task relatedness,
achieving higher accuracy when ε and δ are small. Up to logarithmic factors, the MSE bound
reads

1

m

m∑

j=1

∣∣θ̂j − θ�
j

∣∣2 �
1

mn
+ min

{
δ2,

1

n

}
+

ε

n
.(2.3)

The first term 1
mn

is the MSE of the pooled sample mean x̄ in the most homogeneous case
θ�

1 = · · · = θ�
m. When ε = δ = 0, only this term exists and our procedure reduces to data

pooling. The second term min{δ2, 1
n
} is nondecreasing in the discrepancy δ among {θ�

j }j∈S .
It increases first and then flattens out, never exceeding the error rate of MLE. When ε = 0,
we have

1

m

m∑

j=1

∣∣θ̂j − θ�
j

∣∣2 �
1

mn
+ min

{
δ2,

1

n

}
� min

{
1

mn
+ δ2,

1

n

}
.

Here, 1
n

and 1
mn

+ δ2 are the MSEs of the MLE and its pooled version, respectively. There-
fore, the new method achieves the smaller error between the two. It is closely related to
robust inference procedures considered by [10, 33] and others that (i) perform well when the
parameter of interest θ� truly lives in a small set (e.g., θ�

1 = · · · = θ�
m), and (ii) are nearly

minimax optimal over a larger parameter space (e.g., Rm). Our analysis covers a continuum
of parameter spaces {�(ε, δ) : 0 ≤ ε ≤ 1, δ ≥ 0} while those studies mostly look at the two
extremes.

When ε > 0, the third term ε
n

in (2.3) is the price we pay for not knowing the index set
Sc of tasks that may be very different from the others. As an illustration, suppose that δ = 0
and {θ�

j }j∈S are all equal to some θ�. Then {x̄j }j∈S are i.i.d. N(θ�,1/n) and {x̄j }j∈Sc can

be arbitrary. θ̂ is a Huber estimator of θ� based on ε-contaminated data {x̄j }mj=1. Our error
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bound has optimal dependence on ε up to a logarithmic factor [36], whereas the pooled MLE
can be ruined by a single outlier task.

We now present a minimax lower bound for an idealized problem with known ε and δ. It
is a special case (d = 1) of Theorem 4.3 for multivariate Gaussians.

THEOREM 2.2 (Minimax lower bound). There exist universal constants C,c > 0 such

that for any ε ∈ [0,1] and δ ≥ 0,

inf
θ̂

sup
θ�∈�(ε,δ)

Pθ�

[
1

m

m∑

j=1

∣∣θ̂j − θ�
j

∣∣2 ≥ C

(
1

mn
+ min

{
δ2,

1

n

}
+

ε

n

)]
≥ c.

The ARMUL estimator achieves the oracle error up to a logm factor without knowing ε

and δ. It would be interesting to investigate whether the logarithmic term is a fundamental
price of adaptation, as is the case with sparse Gaussian mean estimation [21].

For any given θ� ∈ R
m, there exist infinitely many pairs of (ε, δ) that make Assumption 2.1

hold. For instance, when θ� = e1, we can take any (ε, δ) in the set
{
(ε, δ) ∈ [0,1] × [0,+∞) : ε ≥ 1/m or δ ≥ 1

}
.

The MSE bound in Theorem 2.1 holds simultaneously for all of those (ε, δ). Unfortunately,
the bound is not directly computable from data. On the one hand, ε and δ are not uniquely
defined. On the other hand, even if we set ε = 0, the estimation error of δ will be of or-
der 1/

√
n. This results in an error up to O(1/n) in the estimated MSE bound and makes it

meaningless, because O(1/n) is the largest possible value of our MSE bound (up to a logm

factor). A similar phenomenon arises in nonparametric estimation. As [47] pointed out, “al-
though an estimate may be adaptive for squared error loss it may be impossible to make a
data dependent claim on how well you have done.”

2.3. Discussions. The estimation procedure and theory in this section have deep connec-
tions to several fundamental topics in statistics and machine learning.

2.3.1. James–Stein estimators. For the Gaussian mean estimation problem in Sec-
tion 2.1, a sufficient statistic is

√
n(x̄1, . . . , x̄m)� ∼ N(θ�, Im). Therefore, we may assume

n = 1 in the original problem without loss of generality. The goal then becomes estimat-
ing θ� ∈ R

m from a single sample x ∼ N(θ�, Im). The MLE is θ̂
MLE = x. In a semi-

nal paper, [39] proposed to shrink the MLE toward zero and introduce a new estimator

θ̂
JS,0 = (1 − m−2

‖x‖2
2
)x. Surprisingly, when m ≥ 3, the �2 risk of θ̂

JS,0
is always strictly smaller

than that of θ̂
MLE

:

Eθ�

∥∥θ̂ JS,0 − θ�
∥∥2

2 < Eθ�

∥∥θ̂MLE − θ�
∥∥2

2 ∀θ� ∈ R
d .(2.4)

The shrinking point does not have to be 0. They also introduced another estimator

θ̂ JS
j = x̄ +

(
1 −

m − 3
∑m

j=1(xj − x̄)2

)
(xj − x̄) ∀j ∈ [m],

whose entries are shrunk toward the pooled sample mean x̄. They proved the same dominance

as (2.4) for θ̂
JS

when m ≥ 4. The gain is the most significant when {θ�
j }mj=1 are close and m is

large. In the ideal case θ�
1 = · · · = θ�

m, we derive from equation (7.14) in [25] that Eθ�‖θ̂ JS −
θ�‖2

2 = 3, which is within a constant factor (3) times the �2 risk of the pooled sample mean.

The MLE has risk Eθ�‖θ̂MLE − θ�‖2
2 = m.
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Efron and Morris [27] adopted an empirical Bayes approach to the simultaneous estimation
problem and derived class of estimators that dominate the MLE. The positive part version of
the James–Stein estimator

θ̂ JS+
j = x̄ +

(
1 −

m − 3
∑m

j=1(xj − x̄)2

)

+
(xj − x̄) ∀j ∈ [m]

is one example, which avoids negative shrinkage factor. The lemma below connects θ̂
JS

and

θ̂
JS+

to multitask learning with ridge regularization [29]; see the proof in Appendix C.3 [24].

LEMMA 2.2. Let λ > 0 and

(θ̃1, . . . , θ̃m, θ̃ ) ∈ arg min
θ1,...,θm,θ∈R

{
m∑

j=1

[
(θj − xj )

2 + λ(θj − θ)2]
}
.(2.5)

We have θ̃ = x̄ and θ̃j = x̄ + 1
1+λ

(xj − x̄), ∀j ∈ [m]. If we define S =
∑m

j=1(xj − x̄)2, then

• θ̃ = θ̂
JS

when S > m − 3 and λ = m−3
S−(m−3)

;

• θ̃ = θ̂
JS+

when λ = min{S,m−3}
S−min{S,m−3} , with the convention that c/0 = +∞ for any c > 0.

Our estimator θ̂ is defined by the �1-regularized program (2.1) that differs from (2.5) in
the penalty function. As a result, the entries {θ̂j }mj=1 are shrunk toward a Huber estimator

θ̂ instead of the pooled sample mean used by James–Stein estimators; see Lemma 2.1. The
nonsmooth �1 penalty can shrink the difference θ̂j − θ̂ to exact zero. The relation between
Huber loss, quadratic loss and �1 penalty function has also been used by [3, 30, 58] and [18]
in wavelet thresholding and robust statistics.

The James–Stein estimators θ̂
JS,0

, θ̂
JS

and θ̂
JS+

are tailored for the Gaussian mean prob-
lem. Their strong theoretical guarantees such as (2.4) are built upon analytical calculations of
the �2 risk under the Gaussianity assumption. In contrast, our estimator θ̂ is constructed from
penalized MLE framework (2.1), which easily extends to general multivariate M-estimation
problems. We want the estimator to benefit from possible similarity among tasks while still
being reliable in unfavorable circumstances; see Theorem 2.1. In the worst case, the price of
generality is an extra logarithm factor in the risk.

2.3.2. Limited translation estimators. James–Stein estimators improve over the MLE in
terms of �2 risk, which measures the average performance over parameters {θ�

j }mj=1. There is
no guarantee on the individuals. It is well known that the estimators underperform MLE by a
large margin for θ�

j ’s far from the bulk. To make matters worse, such exceptional cases also
significantly reduce the overall �2 efficacy. Efron and Morris [26] and [60] proposed limited
translation estimators that restrict the amount of shrinkage. Hence, those estimators cannot
deviate far from the MLE. By carefully setting the restrictions, they are able to control the
maximum (�∞) error over all parameters. According to Lemma 2.1, our estimator θ̂ also has
limited translation bounded by λ. Theorem 2.1 presents a sharp bound on the �∞ error.

2.3.3. Soft-thresholding for sparse estimation. When the mean vector θ� is assumed to
be sparse, it is natural to shrink many entries of the estimator to exact zero. Donoho [22]
studied the �1-regularized estimator

θ̂
�1 ∈ arg min

θ∈Rm

{
m∑

j=1

[
(θj − xj )

2 + λ|θj |
]
}
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and its minimax optimality. For each j ∈ [m], θ̂
�1
j = xj − min{λ, |xj |} sgn(xj ) is a soft-

thresholded version of xj . If |xj | ≤ λ, then θ̂
�1
j = 0. Soft-thresholding and �1 regularization

have wide applications in statistics, including parameter estimation subject to good risk prop-
erties at zero [9], ideal spatial adaptation [21], variable selection [63], etc. Our use of the �1
penalty in (2.1) is inspired by this line of research. By Lemma 2.1, the difference θ̂j − θ̂

between individual estimator and the global coordinator is soft-thresholded. Merging some
θ̂j ’s to θ̂ pools the information across similar tasks. Soft-thresholding has been used for com-
bining the information in a small, high-quality data set and a less costly one with a possibly
different distribution; see [14] and [16]. Our formulation (2.1) handles multiple data sets.

2.3.4. Homogeneity of parameters. An extension of sparsity is homogeneity, which
refers to the phenomenon that parameters in similar subgroups are close to each other. Vari-
ous methods are developed to exploit such structure in high-dimensional regression, includ-
ing fused lasso [64], grouping pursuit [59] and CARDS [40]. Our method (2.1) uses one
global coordinator to utilize the homogeneity when a majority of parameters live within the
same small region. In Section 3, we will incorporate more than one coordinators to deal with
multiple clusters of parameters.

2.3.5. Minimax lower bounds. For sparse Gaussian mean estimation, [22] derived the
minimax lower bound on the �2 risk over {θ� ∈ R

m : ‖θ�‖0 ≤ εm} for ε ∈ (0,1), with precise
constant factors. Here, ‖x‖0 = |{i : xi �= 0}| is the �0 pseudo-norm. Their parameter space is a
subset of ours with δ = 0. We aim to cover broader regimes but make no endeavor to optimize
the constants. In a recent work, [17] studied fundamental limits of multitask and federated
learning. Their definition of task relatedness is similar to ours in Assumption 2.1 with ε = 0.
They construct m logistic models whose discrepancies are quantified by some parameter δ,
and derive a minimax lower bound on the estimation error of the form min{ 1√

mn
+ δ, 1√

n
}.

From there, they show that the optimal rate is achieved by either MLE or its pooled version.
Our lower bound in Theorem 2.2 is proved for the canonical Gaussian mean problem and
allows an ε fraction of the tasks to be arbitrarily different from the others. In that case, neither
MLE nor pooled MLE is optimal.

3. Methodologies. In this section, we present our framework for Adaptive and Robust
MUltitask Learning (ARMUL). We focus on three important cases and provide algorithms
for their efficient implementations.

3.1. Adaptive and robust multitask learning. Let m ∈ Z+. For every j ∈ [m], let Pj be
a probability distribution over a sample space Xj and �j : Rd × Xj → R be a loss function.
Suppose that we collect nj i.i.d. samples Dj = {ξ ji}

nj

i=1 from Pj for every j , and the m

data sets {Dj }mj=1 are independent. The j th learning task is to minimize the population risk
Eξ∼Pj

�j (θ; ξ) by estimating the population risk minimizer θ�
j ∈ arg minθ∈Rd Eξ∼Pj

�j (θ; ξ)

based on Dj . For statistical estimation in well-specified models, θ�
j is the true parameter and

�j can be the negative log-likelihood function. Multitask learning (MTL) targets all of the
m tasks simultaneously. The difficulty comes from the unknown task relatedness. It is often
unclear whether and how a task can be better resolved by incorporating the information in
other tasks.

Define the j th empirical loss function fj (θ) = 1
nj

∑nj

i=1 �(θ; ξ ji). Many MTL algorithms
can be formulated as constrained loss minimization problems of the form

min
�∈�

{
m∑

j=1

wjfj (θ j )

}
,(3.1)
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where wj and θ j are the weight and the model parameter of the j th task; � = (θ1, . . . , θm) ∈
R

d×m; � ⊆ R
d×m encodes the prior knowledge of task relatedness. Below are several exam-

ples.

EXAMPLE 3.1 (Independent task learning). A naïve approach is independent task learn-
ing which minimizes the m empirical loss functions separately. That is equivalent to (3.1)
with � =R

d×m.

EXAMPLE 3.2 (Data pooling). In the other extreme, one may pool all the data together,
solve the consensus program minβ∈Rd {

∑m
j=1 wjfj (β)} and output one estimate for all tasks.

We have � = {β1�
m : β ∈ R

d}.

EXAMPLE 3.3 (Clustered MTL). The one-size-fits-all strategy above can be extended to
clustered MTL, which handles multiples clusters of similar tasks. One may solve the program

min
β1,...,βK∈Rd

z1,...,zm∈[K]

{
m∑

j=1

wjfj (βzj
)

}
(3.2)

to get the estimated labels {̂zj }mj=1 and cluster centers {β̂j }Kj=1. The estimated model param-

eters for the m tasks are {β̂ ẑj
}mj=1. This method corresponds to � = {BZ : B ∈ R

d×K ,Z ∈
{0,1}K×m,Z�1K = 1m}.

EXAMPLE 3.4 (Low-rank MTL). By further relaxing the discrete class indicators in (3.2)
to continuous latent variables, one gets a formulation for low-rank MTL

min
B∈Rd×K ,Z∈RK×m

{
m∑

j=1

wjfj (Bzj )

}
.(3.3)

An optimal solution (B̂, Ẑ) yields estimated model parameters {B̂ẑj }mj=1 that lie in the range

of B̂ . We have � = {BZ : B ∈ R
d×K ,Z ∈ R

K×m}.

EXAMPLE 3.5 (Hard parameter sharing). A popular approach of MTL with neural net-
works is to learn a network shared by all tasks for feature extraction, plus task-specific linear
functions that map features to final predictions [13]. Thus, models of the m tasks share part
of their parameters. It can be viewed as (3.1) with � of the form

{(
β1�

m

�

)
: β ∈ R

d−K ,� ∈ R
K×m

}
,

where K is the number of features, β consists of weight parameters of the neural network,
and the columns of � are parameters of task-specific linear functions. This is a combination
of independent task learning and data pooling. When the neural network is replaced with a
linear transform, it is equivalent to low-rank MTL.

We propose a framework named Adaptive and Robust MUltitask Learning, or ARMUL for
short: solve an augmented program

(�̂, �̂) ∈ arg min
�∈Rd×m,�∈�

{
m∑

j=1

wj

[
fj (θ j ) + λj‖θ j − γ j‖2

]
}
,(3.4)
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and use the columns {̂θ j }mj=1 of �̂ as the estimated model parameters for m tasks. Here,
{λj }mj=1 are nonnegative regularization parameters. Setting all of λj ’s to zero or infinity result
in independent task learning or the constrained program (3.1), respectively. The framework
(3.4) is a relaxation of (3.1) so that the estimated models better fit their associated data. The
method (2.1) for multitask mean estimation is a special case, with d = 1, � = {θ1�

m : θ ∈ R}
and fj being the square loss.

REMARK 2 (Relaxation). One could also consider the following relaxation of (3.1):

min
�∈�r

{
m∑

j=1

wjfj (θ j )

}
,(3.5)

where

�r =
{
� ∈ R

d×m : ∃� ∈ � s.t.
m∑

j=1

wjλj‖θ j − γ j‖2 ≤ r

}
.

The programs (3.5) and (3.1) share the same form. Choosing a positive r helps deal with
possible misspecification of the space � for the true parameter �� = (θ�

1, . . . , θ
�
m). Also,

there exists some r ≥ 0 such that the constrained program (3.5) is equivalent to the penalized
program (3.4). Selecting r and {λj }mj=1 for (3.5) can be difficult when the amount of misspec-
ification is unknown. On the other hand, our theory shows that (3.4) enjoys strong guarantees
while being agnostic to the misspecification.

We see from (3.4) that �̂ solves a constrained problem min�∈�{
∑m

j=1 wj f̃j (γ j )} similar
to (3.1), where f̃j (γ ) = minξ∈Rd {fj (ξ) + λj‖γ − ξ‖2} is the infimal convolution of the loss
function fj (·) and the �2 penalty λj‖ · ‖2. Since the latter is λj -Lipschitz, as long as fj is
convex, the infimal convolution f̃j is always convex and λj -Lipschitz (Lemma F.4 in the
Supplementary Material [24]) just like the Huber loss function in Lemma 2.1. This makes
our method robust against a small fraction of tasks which are dissimilar to others or even
contain contaminated data. Meanwhile, the fact

θ̂ j ∈ arg min
θ∈Rd

{
fj (θ) + λj‖θ − γ̂ j‖2

}
∀j ∈ [m](3.6)

shows that �̂ is shrunk toward �̂ ∈ �. When the set � accurately reflects the relations among
m underlying models and λj is not too small, the cusp of the �2 norm penalty at zero forces
�̂ = �̂ ∈ �. When λj is not too large and fj is strongly convex near its minimizer, the Lips-
chitz smoothness of the �2 penalty ensures the closeness between θ̂ j and arg minθ∈Rd fj (θ).
Hence, the new method will at least be comparable to independent task learning. In Section 4
and Appendix D, we will conduct a formal analysis of the adaptivity and robustness. The

theory suggests choosing wj = nj and λj �
√

d+logm
nj

to achieve the goal.

3.2. Implementations. For efficient implementation of ARMUL, we define V = � − �

and transform the program (3.4) to a more convenient form

min
V ∈Rd×m,�∈�

{
m∑

j=1

wj

[
fj (γ j + vj ) + λj‖vj‖2

]
}
.(3.7)

We will optimize the two blocks of variables V and � in an alternating manner. Assume that
{fj }mj=1 are differentiable. If � is fixed, (3.7) decomposes into m independent programs

min
vj∈Rd

{
fj (γ j + vj ) + λj‖vj‖2

}
, j ∈ [m].(3.8)
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Algorithm 1: Adaptive and robust multitask learning (ARMUL)
Input: loss functions {fj }mj=1, weights {wj }mj=1, penalty parameters {λj }mj=1, step-size

ηv , number of iterations T , initial guesses V 0 ∈ R
d×m and �0 ∈ �.

For t = 0,1, . . . , T − 1
Compute V t+1 by

vt+1
j =

(
1 −

ηvλj

‖vt
j − ηv∇fj (γ j + vt

j )‖2

)

+

(
vt

j − ηv∇fj

(
γ t

j + vt
j

))
, j ∈ [m].

Compute �t+1.
Return: �̂ = �T + V T .

A natural algorithm for handling nonsmooth convex regularizers such as ‖ · ‖2 is proximal
gradient descent [56]. The iteration for solving (3.8) is

vt+1
j = proxηλj

(
vt

j − η∇fj

(
γ j + vt

j

))
, t = 0,1, . . . ,(3.9)

where η is the step-size and we define proxc(x) = (1 − c
‖x‖2

)+x. If V is fixed, (3.7) reduces
to a constrained program

min
�∈�

{
m∑

j=1

wjfj (γ j + vj )

}
(3.10)

of the form (3.1) with shifted loss functions. We will choose algorithms according to �. The
whole procedure above is summarized in Algorithm 1. For simplicity, we only perform a
single iteration of proximal gradient descent. Numerical experiments show that this already
gives satisfactory results.

Having introduced the general procedure, we now focus on three important cases of AR-
MUL (3.4) and derive the updating rules for their �’s. Their Python implementations are
available at https://github.com/kw2934/ARMUL/.

1. Vanilla ARMUL: � = {β1�
m : β ∈ R

d}. The original program (3.4) is equivalent to

min
�∈Rd×m,β∈Rd

{
m∑

j=1

wj

[
fj (θ j ) + λj‖θ j − β‖2

]
}
.(3.11)

It is jointly convex in (�,β) as long as {fj }mj=1 are convex functions. The intermediate
program (3.10) is equivalent to an unconstrained one

min
β∈Rd

{
m∑

j=1

wjfj (β + vj )

}
.

We can update β by gradient descent.
2. Clustered ARMUL: � = {BZ : B ∈ R

d×K ,Z ∈ {0,1}K×m,Z�1K = 1m}. The original
program (3.4) is equivalent to

min
�∈Rd×m,B∈Rd×K ,z∈[K]m

{
m∑

j=1

wj

[
fj (θ j ) + λj‖θ j − βzj

‖2
]
}
.(3.12)

The intermediate program (3.10) is equivalent to

min
B∈Rd×K ,z∈[K]m

{
m∑

j=1

wjfj (βzj
+ vj )

}
.
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When z is fixed, we update B by gradient descent; when B is fixed, we update z with its
optimal value

(
arg min
z∈[K]

f1(βz + v1), . . . , arg min
z∈[K]

fm(βz + vm)
)
.

We can repeat the above steps multiple times.
3. Low-rank ARMUL: � = {BZ : B ∈ R

d×K ,Z ∈ R
K×m}. The original program (3.4) is

equivalent to

min
�∈Rd×m,B∈Rd×K ,Z∈RK×m

{
m∑

j=1

wj

[
fj (θ j ) + λj‖θ j − Bzj‖2

]
}
.(3.13)

The intermediate program (3.10) is equivalent to

min
B∈Rd×K ,Z∈RK×m

{
m∑

j=1

wjfj (Bzj + vj )

}
.

When B or Z is fixed, we update the other by gradient descent. Again, the procedure can
be repeated.

Algorithm 1 returns the estimated model parameters {̂θ j }mj=1 ⊆ R
d for m tasks. As a

byproduct, vanilla ARMUL yields a center β̂ ∈ R
d ; clustered ARMUL yields K centers

{β̂k}Kk=1 ⊆ R
d together with m cluster labels {̂zj }mj=1 ⊆ [K]; low-rank ARMUL yields a

K-dimensional subspace Range(B̂) ⊆ R
d and m coefficient vectors {̂zj }mj=1 ⊆ R

K . These
quantities reveal intrinsic structures of the task population: the model parameters concentrate
around one point, multiple points or a low-dimensional linear subspace. Such knowledge is
valuable for dealing with new tasks of similar types.

4. Theoretical analysis. In this section, we conduct a nonasymptotic analysis of vanilla,
clustered and low-rank ARMUL algorithms. Our theoretical investigation shows that the pro-
posed estimators automatically adapt to the unknown task relatedness. The study under sta-
tistical settings is built upon the deterministic results in Appendix A, which could be of
independent interest.

4.1. Problem setup. Recall the setup in Section 3.1 where {Pj }mj=1 are probability distri-
butions over sample spaces {Xj }mj=1 and {�j }mj=1 are loss functions. We draw m independent

datasets {Dj }mj=1, where Dj = {ξ ji}
nj

i=1 are i.i.d. from Pj . For each j , define the population
loss function and its minimizer

Fj (θ) = Eξ∼Pj
�j (θ , ξ) and θ�

j ∈ arg minθ∈Rd Fj (θ).

Define the j th empirical loss function fj (θ) = 1
nj

∑nj

i=1 �j (θ , ξ ji). To facilitate illustration,

throughout this section we focus on the case where n1 = · · · = nm = n. We estimate {θ�
j }mj=1

by the solutions {̂θ j }mj=1 computed from the program (3.4) with λ1 = · · · = λm = λ and
w1 = · · · = wm = 1. We defer discussions on general sample sizes {nj }mj=1 to Appendix D
[24].

To analyze the estimation error, we make the following standard assumptions.

ASSUMPTION 4.1 (Regularity). For any j ∈ [m] and ξ ∈ Xj , �j (·, ξ) : Rd → R is
convex and twice differentiable. Also, there exist absolute constants c1, c2 > 0 and c1 <

ρ,L,M < c2 such that ρI � ∇2Fj (θ) � LI holds for all θ ∈ B(θ�
j ,M) and j ∈ [m].
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ASSUMPTION 4.2 (Concentration). There exist 0 ≤ σ, τ,p < c for an absolute constant
c such that for any j ∈ [m], we have

∥∥∇�j

(
θ�

j , ξ j1
)∥∥

ψ2
≤ σ,

∥∥〈(∇2�j (θ , ξ j1) −E
[
∇2�j (θ, ξ j1)

])
v,v

〉∥∥
ψ1

≤ τ 2 ∀θ ∈ B
(
θ�

j ,M
)
,v ∈ S

d−1,

EQj (ξ j1) ≤ τ 3dp,

where we define

Qj (ξ) = sup
θ1,θ2∈B(θ�

j ,M)

θ1 �=θ2

‖∇2�j (θ2, ξ) − ∇2�j (θ1, ξ)‖2

‖θ2 − θ1‖2
∀ξ ∈ Xj .

The gradients of �j are taken with respect to its first argument.

The regularity assumption requires the Hessian of the population loss function Fj to be
bounded from below and above near its minimizer θ�

j . The concentration assumption implies
light tails and smoothness of the empirical gradient and Hessian. They are commonly used
in statistical machine learning; see [52] and the references therein. Below we present several
examples for illustration.

EXAMPLE 4.1 (Gaussian mean estimation). Let Xj = R
d , Pj = N(θ�

j , I d) and

�j (θ , ξ) = ‖ξ − θ‖2
2. Then ∇�j (θ , ξ) = 2(θ − ξ) and ∇2�j (θ , ξ) = 2I d . Assumptions 4.1

and 4.2 clearly hold.

EXAMPLE 4.2 (Linear regression). Let ξ ji = (xji, yji) ∈ R
d × R, where xji is the co-

variate vector and yji is the response. Consider the square loss �j (θ, (x, y)) = (y − x�θ)2

and let εji = yji − x�
jiθ

�
j be the residual of the best linear prediction. Then ∇�j (θ , (x, y)) =

2x(x�θ − y) and ∇2�j (θ , (x, y)) = 2xx�. Assumption 4.1 holds when the eigenvalues
of E(x,y)∼Pj

(xx�) are bounded from above and below. Note that ∇�j (θ
�
j , (xji, yji)) =

−2xjiεji . If xji is sub-Gaussian and εji is bounded, then Assumption 4.2 holds. It is worth
pointing out that most of our results continue to hold up to logarithmic factors when εji is
unbounded but light-tailed.

EXAMPLE 4.3 (Logistic regression). Let ξ ji = (xji, yji) ∈ R
d × {0,1}, where xji is

the covariate vector and yji is the binary label. Define the logistic loss �j (θ , (x, y)) =
b(x�θ) − yx�θ where b(t) = log(1 + et ). We have ∇�j (θ , (x, y)) = x[b′(x�θ) − y],
∇2�j (θ , (x, y)) = b′′(x�θ)xx�, b′(t) = 1/(1 + e−t ) ∈ [0,1] and b′′(t) = et/(1 + et )2 =
1/(2 + et + e−t ) ∈ (0,1/4]. Hence, 0 ≺ ∇2Fj (θ) � (1/4)I for all θ , and Assumption 4.1
easily holds for bounded ‖θ�

j‖2 and M . When xji is sub-Gaussian, so is ∇�j (θ , (xji, yji));

for any θ ∈ R
d and v ∈ S

d−1, 〈v,∇2�j (θ , (xji, yji))v〉 = b′′(x�
jiθ)(x�

jiv)2 is subexponential.
From supt∈R |b′′′(t)| < ∞ and

∥∥∇2�j

(
θ2, (x, y)

)
− ∇2�j

(
θ1, (x, y)

)∥∥
2 =

∣∣b′′(x�θ2
)
− b′′(x�θ1

)∣∣ · ‖x‖2
2

� ‖θ2 − θ1‖2‖x‖3
2

we obtain that Qj (x, y) ≤ ‖x‖3
2. According to Remark 2.3 in [34], if ‖xji‖ψ2 � 1, then

EQj (xji, yji) ≤ E‖xji‖3
2 � d3/2. Based on the above, Assumption 4.2 holds.
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4.2. Personalization. Independent task learning estimates each θ�
j by the minimizer θ̃ j =

arg minθ∈Rd fj (θ) of its associated empirical loss, without referring to other tasks. ARMUL
(3.4) with λ1 = · · · = λm = λ and w1 = · · · = wm = 1 also yields one personalized model for
each task. Below we show their closeness and provide a way of choosing λ so that ARMUL
is at least comparable to independent task learning.

For any constraint set � ⊆ R
d×m, the output θ̂ j of ARMUL (3.4) always satisfies (3.6).

Therefore, θ̂ j and θ̃ j minimize similar functions. The penalty term λ‖θ − γ̂ j‖2 in (3.6) can be
viewed as a perturbation added to the objective function fj . According the following theorem,
it can only perturb the minimizer by a limited amount; see Appendix D.1 for stronger results
for general {nj }mj=1 and their proof.

THEOREM 4.1 (Personalization). Let Assumptions 4.1 and 4.2 hold. There exist con-

stants C, C1 and C2 such that under the conditions λ < ρM/4, n > C1d(logn)(logm) and

0 ≤ t < C2n/(d logn), the following holds with probability at least 1 − e−t :

∥∥θ̃ j − θ�
j

∥∥
2 ≤ Cσ

√
d + logm + t

n
and ‖θ̂ j − θ̃ j‖2 ≤

2λ

ρ
∀j ∈ [m].

The distance between the estimates θ̂ j and θ̃ j returned by ARMUL and independent task
learning is bounded using the penalty level λ and the strong convexity parameter ρ. In-
tuitively, when the empirical loss function fj is strongly convex in a neighborhood of its
minimizer θ̃ j , the Lipschitz penalty function does make much difference. The unsquared �2
penalty is crucial. In Lemma 2.1, we showed this phenomenon for mean estimation in one
dimension, where the �2 penalty becomes the absolute value. Theorem 4.1 guarantees the
fidelity of ARMUL outputs to their associated data sets for general M-estimation.

By Assumptions 4.1 and 4.2, we have σ,ρ−1 � 1. Theorem 4.1 implies that when λ �√
d+logm

n
, the bound ‖θ̂ j − θ�

j‖2 �
√

d+logm
n

simultaneously holds for all j ∈ [m] with high

probability. In that case, the ARMUL achieves the same parametric error rate O(

√
d+logm

n
)

of independent task learning. The logm term results from the simultaneous control over m

tasks.
The above results on personalization hold for general ARMUL with arbitrary constraint set

�. In the subsections to follow, we will investigate three important cases of ARMUL (vanilla,
clustered and low-rank) to study the adaptivity and robustness.

4.3. Vanilla ARMUL. In this subsection, we analyze the vanilla ARMUL estimators
{̂θ j }mj=1 returned by

(�̂, β̂) ∈ arg min
�∈Rd×m,β∈Rd

{
m∑

j=1

[
fj (θ j ) + λ‖θ j − β‖2

]
}
.(4.1)

We introduce an assumption on task relatedness. It is a multivariate extension of Assump-
tion 2.1.

ASSUMPTION 4.3 (Task relatedness). For any ε ∈ [0,1] and δ ≥ 0, define

�(ε, δ) =
{
� ∈ R

d×m : min
θ∈Rd

max
j∈S

|θ j − θ | ≤ δ and
∣∣Sc
∣∣/m ≤ ε for some S ⊆ [m]

}
.

Assume that �� ∈ �(ε, δ) holds for some ε, δ ≥ 0. Let S be a subset of [m] that satisfies the
requirements in the definition.



2030 Y. DUAN AND K. WANG

When Assumption 4.3 holds, we say the m tasks are (ε, δ)-related. It is worth pointing out
that any m tasks are (0,maxj∈[m] ‖θ�

j‖2)-related. Smaller ε and δ imply stronger similarity
among the tasks. The theorem below presents upper bounds on estimation errors of vanilla
ARMUL (4.1); see Appendix D.2 for stronger results for general {nj }mj=1 and their proof.

THEOREM 4.2 (Vanilla ARMUL). Let Assumptions 4.1, 4.2 and 4.3 hold. There exist

positive constants {Ci}5
i=0 such that under the conditions n > C1d(logn)(logm), 0 ≤ t <

C2n/(d logn), C3σ

√
d+logm+t

n
< λ < C4σ and 0 ≤ ε < C5, the following bounds hold with

probability at least 1 − e−t :

max
j∈S

∥∥θ̂ j − θ�
j

∥∥
2 ≤ C0

(
σ

√
d + t

mn
+ min{δ, λ} + ελ

)
,

max
j∈Sc

∥∥θ̂ j − θ�
j

∥∥
2 ≤ C0λ,

1

m

m∑

j=1

[
Fj (̂θ j ) − Fj

(
θ�

j

)]
≤

L

m

m∑

j=1

∥∥θ̂ j − θ�
j

∥∥2
2 ≤ C0L

(
σ 2 d + t

mn
+ min

{
δ2, λ2}+ ελ2

)
.

Moreover, there exists a constant C6 such that under the conditions ε = 0 and δ <

C6σ

√
d+logm

n
, we have θ̂1 = · · · = θ̂m = arg minθ∈Rd {

∑m
j=1 fj (θ)} with probability at least

1 − e−t .

Theorem 4.2 simultaneously controls the estimation errors for all individual tasks.
This implies the bounds on the MSE 1

m

∑m
j=1 ‖θ̂ j − θ�

j‖2
2 and the average excess risk

1
m

∑m
j=1[Fj (̂θ j ) − Fj (θ

�
j )]. The results suggest choosing λ = C

√
d+logm

n
for some constant

C. In practice, C can be selected by cross-validation to optimize the performance. When

λ �
√

d+logm
n

, the MSE bound reads

1

m

m∑

j=1

∥∥θ̂ j − θ�
j

∥∥2
2 �

d

mn
+ min

{
δ2,

d

n

}
+

εd

n
,(4.2)

where � hides logarithmic factors.
For any ε and δ, a simple bound ‖θ̂ j −θ�

j‖2 � λ always holds for all j ∈ [m], which echoes
Theorem 4.1. Theorem 4.2 implies more refined results.

• (Reduction to data pooling) When ε = δ = 0, all target parameters are the same. The pa-
rameter space becomes �(0,0) = {β1�

m : β ∈ R
d}. Data pooling is a natural approach,

whose MSE is O(d/mn). According to (4.2), the vanilla ARMUL has the same error rate.
In fact, it coincides with data pooling with high probability, thanks to the cusp of the un-
squared �2 penalty at zero.

• (Adaptivity) The relatedness parameters ε and δ quantify the amount of model misspecifi-
cation incurred in data pooling. As ε and δ increase, the MSE upper bound (4.2) smoothly
transits from that for data pooling to that for independent task learning. We will see in
Theorem 4.3 below that for every (ε, δ), the error bound is minimax optimal over �(ε, δ).
Therefore, vanilla ARMUL automatically adapts to the unknown relatedness (ε, δ) of the
tasks. Meanwhile, we need an estimate on the noise level σ . Since σ is determined by
individual tasks rather than their relatedness, it is easy to estimate using traditional in-
dependent task learning methods. We also note that knowledge about the noise level is
commonly assumed in adaptive statistical estimation, including adaptation to smoothness
in nonparametric regression [44] and adaptation to sparsity in high-dimensional estimation
[22].
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• (Robustness) Vanilla ARMUL only pays a limited price εd
n

for the outlier tasks with un-
known index set Sc and arbitrary difference from the others. For the Gaussian mean prob-
lem (Example 4.1) with δ = 0, our bounds on maxj∈S ‖θ̂ j − θ�

j‖2 and 1
m

∑m
j=1 ‖θ̂ j − θ�

j‖2
2

recover Theorem 6 in [18]. In addition, we can allow the data sets {Dj }Sc to be arbitrarily
contaminated, in which case the bound on maxj∈S ‖θ̂ j − θ�

j‖2 in Theorem 4.2 continues
to hold.

To close this subsection, we use multitask Gaussian mean estimation to get minimax lower
bounds on the MSE. The proof can be found in Appendix E.1 [24].

THEOREM 4.3 (Minimax lower bound). Consider the setup in Example 4.1 and let As-

sumption 4.3 hold. There exist universal constants C,c > 0 such that for any (ε, δ),

inf
�̂

sup
��∈�(ε,δ)

P��

[
1

m

m∑

j=1

∥∥θ̂ j − θ�
j

∥∥2
2 ≥ C

(
d

mn
+ min

{
δ2,

d

n

}
+

εd

n

)]
≥ c.

4.4. Clustered ARMUL. In this subsection, we study clustered ARMUL

(�̂, B̂, ẑ) ∈ arg min
�∈Rd×m,B∈Rd×K ,z∈[K]m

{
m∑

j=1

[
fj (θ j ) + λ‖θ j − βzj

‖2
]
}
.(4.3)

Here, K ≥ 2 is the target number of clusters. Clustered multitask learning works the best
when {θ�

j }mj=1 concentrate around K well-separated centers. Yet, such regularity conditions
are difficult to verify and may not hold in practice. We introduce a relaxed version of that as
our technical assumption.

ASSUMPTION 4.4 (Task relatedness). There exist ε, δ ≥ 0, K ≥ 2, {β�
k}Kk=1 ⊆ R

d ,
{z�

j }
m
j=1 ⊆ [K], S ⊆ [m] and absolute constants c1, c2 > 0 such that the following hold:

• (Similarity) maxj∈S ‖θ�
j − β�

z�
j
‖2 ≤ δ and |Sc| ≤ εm;

• (Separation) mink �=� ‖β�
k − β�

�‖2 ≥ c1;
• (Balancedness) mink∈[K] |{j ∈ [m] : z�

j = k}| ≥ c2m/K .

When ε = δ = 0, the target parameters {θ�
j }mj=1 consist of only K distinct points {β�

k}Kk=1
with constant separations. Also, there is no vanishingly small cluster. Assumption 4.4 allow
for any possible tasks as long as we use large enough δ. For instance, we can take β�

k =
ke1 for all k, z�

j = (j mod K) + 1 for all j , ε = 0 and δ = K + maxj∈[m] ‖θ�
j‖2 to make

Assumption 4.4 hold.
The theorem below presents upper bounds on estimation errors of clustered ARMUL (4.3)

when δ = 0, whose proof is in Appendix E.2 [24].

THEOREM 4.4 (Clustered ARMUL). Let Assumptions 4.1, 4.2 and 4.4 hold with ε = 0.
There exist positive constants {Ci}5

i=0 such that under the conditions n > C1Kd(logn)(logm),

0 ≤ t < C2n/(d logn), C3Kσ

√
d+logm+t

n
< λ < C4σ and 0 ≤ ε < C5/K

2, the following

bound holds for the estimator �̂ in (4.3) with probability at least 1 − e−t :

1

m

m∑

j=1

[
Fj (̂θ j ) − Fj

(
θ�

j

)]
≤ L · max

j∈[m]

∥∥θ̂ j − θ�
j

∥∥2
2 ≤ C0L

(
σ 2K(d + t)

mn
+ min

{
K2δ2, λ2}

)
.

In addition, there exists a positive constant C6 that makes the following holds: when δ ≤
C6σ
K

√
d+logm

n
, with probability at least 1 − e−t there is a permutation τ of [K] such that
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• θ̂ j = β̂ ẑj
and ẑj = τ(z�

j ) hold for all j ∈ [m];
• β̂k = arg minβ∈Rd {

∑
j :z�

j=τ−1(k) fj (β)} hold for all k ∈ [K].

Take λ = CKσ

√
d+logm

n
for some large constant C. By Theorem 4.4, clustered ARMUL

satisfies

max
j∈[m]

∥∥θ̂ j − θ�
j

∥∥
2 � min

{
σ

√
Kd

mn
+ Kδ,Kσ

√
d + logm

n

}
.

If δ = 0 and {z�
j }

m
j=1 are known, then we should pool all the data in each cluster. Since each

cluster has O(m/K) tasks and O(mn/K) samples, the estimation error has order O(σ
√

Kd
mn

).
Clustered ARMUL achieves the same rate without knowing {z�

j }
m
j=1. As δ grows from 0 to

+∞, the error bound gradually become O(Kσ

√
d+logm

n
). This is the error rate of indepen-

dent task learning up to a factor of K and an additive term logm. The theorem also states
that when the discrepancy δ is small, all cluster labels {z�

j }
m
j=1 are perfectly recovered up to a

global permutation. The estimated centers {β̂k}Kk=1 minimize empirical losses on pooled data
in the corresponding clusters. The final estimates {̂θ j }mj=1 coincide with their cluster centers.

When ε > 0, there can be tasks that are arbitrarily different from the others. We can prove
that clustered ARMUL with cardinality constraints manages to utilize the task relatedness in
a robust way; see Appendix E.3 for formal results including a minimax lower bound.

4.5. Low-rank ARMUL. In this subsection, we study the estimators {̂θ j }mj=1 returned by
low-rank ARMUL

(�̂, B̂, ẑ) ∈ arg min
�∈Rd×m,B∈Rd×K ,Z∈RK×m

{
m∑

j=1

[
fj (θ j ) + λ‖θ j − Bzj‖2

]
}
.(4.4)

Here, K ≥ 1 is the target rank. Ideally, we would adopt low-rank multitask learning when
{θ�

j }mj=1 span a K-dimensional linear subspace and K is much less than d . In other words,

�� = B�Z� holds for some B� ∈ R
d×K and Z� ∈R

K×m. To handle possible misspecification
of the low-rank model, we introduce the following notion of task relatedness. Here, we denote
by Od,K the set of all d × K matrices with orthonormal columns.

ASSUMPTION 4.5 (Task relatedness). There exist ε, δ ≥ 0, K ∈ Z+, B� ∈ Od,K ,
{z�

j }
m
j=1 ⊆ R

K , S ⊆ [m] and absolute constants c1, c2 > 0 such that the followings hold:

• (Similarity) maxj∈S ‖θ�
j − B�z�

j‖2 ≤ δ and |Sc| ≤ εm;

• (Balancedness and signal strength) maxj∈[m] ‖z�
j‖2 ≤ c1 and K

m

∑m
j=1 z�

jz
��
j � c2IK .

Note that B�Z� = (B�R)(R−1Z�) holds for any nonsingular R ∈ R
K×K . Without loss

of generality, in Assumption 4.5 we let B� have orthonormal columns. The parameters
{θ�

j }j∈S are approximated by vectors {B�z�
j }j∈S living in a K-dimensional linear subspace

Range(B�). The approximation errors are bounded by δ/
√

n, which can be arbitrarily large.
The coefficient vectors {z�

j }
m
j=1 are assumed to be uniformly bounded and spread out in all di-

rections. The upper bound maxj∈[m] ‖z�
j‖2 ≤ c1 and the lower bound K

m

∑m
j=1 z�

jz
��
j � c2IK

imply that at least a constant fraction of z�
j ’s are bounded away from 0.

The following theorem depicts the adaptivity of low-rank ARMUL to the unknown task
relatedness; see Appendix E.4 for its proof. Here, we only consider the case ε = 0 and focus
on the impact of dissimilarity δ. The general case (ε > 0) is left for future work.
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THEOREM 4.5 (Low-rank ARMUL). Let Assumptions 4.1, 4.2 and 4.5 hold, with ε = 0.
There exist positive constants {Ci}5

i=0 such that under the conditions n > C1Kd(logn)(logm),

0 ≤ t < C2n/(d logn) and C3Kσ

√
d+logm+t

n
< λ < C4σ , the following bound holds for the

estimator �̂ in (4.3) with probability at least 1 − e−t :

1

m

m∑

j=1

[
Fj (̂θ j ) − Fj

(
θ�

j

)]
≤ L max

j∈[m]

∥∥θ̂ j − θ�
j

∥∥2
2

≤ C0K
2
(

σ 2d

mn
+

σ 2(1 + logm + t)

n
+ min

{
δ2, λ2/K2}

)
.

In addition, there exists a positive constant C6 such that when δ ≤ C6σ
K

√
d+logm

n
, �̂ = B̂Ẑ

holds with probability at least 1 − e−t .

Suppose that K is bounded and take λ = Cσ

√
d+logm

n
for some large constant C. By

Theorem 4.5, low-rank ARMUL satisfies

max
j∈[m]

∥∥θ̂ j − θ�
j

∥∥
2 � min

{
σ

√
d

mn
+ σ

√
1

n
+ δ, σ

√
d

n

}
(4.5)

with high probability. We provide a matching minimax lower bound in Appendix E.4 [24].
Again, the error rate never exceeds that for independent task learning. When δ is small, low-

rank ARMUL adapts to the task relatedness. Note that O(σ
√

d
mn

+ σ√
n
) is the best rate one

can achieve when the low-rank model is true (δ = 0). In that case, the unknown matrix
�� = B�Z� has O(d + m) unknown parameters. The mn samples imply an error bound

O(σ
√

d+m
mn

) = O(σ
√

d
mn

+ σ√
n
). The two terms can be viewed as estimation errors of bases

B� and coefficients Z�, respectively.

5. Numerical experiments. We conduct simulations to verify our theories and real data
experiments to test the efficacy our proposed approaches. Our implementations of ARMUL
follow the description in Section 3.2. The code and all numerical results are available at
https://github.com/kw2934/ARMUL/.

5.1. Simulations. We generate synthetic data for multitask linear regression. Throughout
our simulations, the number of tasks is m = 30. For any j ∈ [m], the data set Dj consists of
n = 200 samples {(xji, yji)}ni=1. The covariate vectors {xji}(i,j)∈[n]×[m] are i.i.d. N(0, I d)

with d = 50, given which we sample each response yji = x�
jiθ

�
j + εji from a linear model

with noise term εji ∼ N(0,1) being independent of the covariates. To study vanilla, clustered
and low-rank ARMUL, we determine the coefficient vectors {θ�

j }mj=1 in three different ways.
The parameters ε and δ below characterize task relatedness, similar to those in Assumptions
4.3, 4.4 and 4.5. Below we write rSd−1 as a shorthand notation for the sphere {x ∈ R

d :
‖x‖2 = r}:

1. Vanilla case

• Data generation: Set β� = 2e1, sample i.i.d. random vectors {δj }mj=1 uniformly from

the sphere δSd−1 and set θ�
j = β� + δj for all j ∈ [m]. Next, draw �εm� elements

{js}�εm�
s=1 uniformly at random from [m] without replacement. Replace {θ�

js
}�εm�
s=1 with

i.i.d. random vectors from 2Sd−1. Denote by S = [m]\{j1, . . . , j�εm�}.
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• Methods for comparison: vanilla ARMUL (4.1), independent task learning (Exam-
ple 3.1) and data pooling (Example 3.2).

2. Clustered case

• Set K = 3, β�
k = 2ek for k ∈ [K] and z�

j = (j mod K) + 1 for j ∈ [m]. Sample i.i.d.

random vectors {δj }mj=1 uniformly from the sphere δSd−1 and set θ�
j = β�

z�
j
+ δj for all

j ∈ [m]. Replace an ε-fraction of the coefficient vectors by the corresponding procedure
in the vanilla case.

• Methods for comparison: clustered ARMUL (4.3), clustered MTL (Example 3.3), in-
dependent task learning (Example 3.1) and data pooling (Example 3.2).

3. Low-rank case

• Set K = 3 and B� = (e1, e2, e3) ∈ R
m×K . Samples {z�

j }
m
j=1 independently from

N(0, IK) and another set of i.i.d. vectors {δj }mj=1 uniformly from the sphere δSd−1.
Let θ�

j = B�z�
j + δj for all j ∈ [m]. Replace an ε-fraction of the coefficient vectors by

the corresponding procedure in the vanilla case.
• Methods for comparison: low-rank ARMUL (4.4), low-rank MTL (Example 3.4), inde-

pendent task learning (Example 3.1) and data pooling (Example 3.2).

Guided by the theories in Section 4, we set the regularization parameter λ in AR-
MUL algorithms (4.1), (4.3), (4.4) to be c

√
d/n and select the optimal preconstant c from

{0.2,0.4,0.6, . . . ,2} by 5-fold cross-validation. Below is how we evaluate the quality of each
c:

• Step 1: Randomly partition each data set Dj into 5 (approximately) equally-sized subsets
{Dj�}5

�=1.

• Step 2: For � = 1, . . . ,5, define D̃
(�)
j =

⋃
s �=�Ds , conduct ARMUL on {D̃(�)

j }mj=1 with

λ = c
√

d/n, test the obtained models on {D̃j�}mj=1.
• Step 3: Get the average of mean squared prediction errors over all tasks.

We vary ε in {0,0.2} and δ in {0,0.1,0.2, . . . ,1} to obtain tasks with different degrees of
relatedness. When ε = 0, we measure the maximum estimation error maxj∈[m] ‖θ̂ j − θ�

j‖2.

For ε = 0, we measure the maximum estimation error maxj∈[m] ‖θ̂ j − θ�
j‖2 and its restricted

version maxj∈S ‖θ̂ j − θ�
j‖2 on the set S of similar tasks. Figures 1 and 2 demonstrate how

the estimation errors grow with the heterogeneity parameter δ. The curves and error bands
show the means and standard deviations over 100 independent runs, respectively.

FIG. 1. Impact of task relatedness when ε = 0. From left to right: vanilla, clustered and low-rank cases.
x-axis: δ. y-axis: maxj∈[m] ‖θ̂j − θ�

j‖2. Red solid lines: ARMUL. Blue triangles: data pooling. Black dashed

lines: independent task learning. Cyan circles: clustered MTL (middle) or low-rank MTL (right).
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FIG. 2. Impact of task relatedness when ε = 0.2. From left to right: vanilla, clustered and low-rank cases.
x-axis: δ. y-axis: maxj∈S ‖θ̂j − θ�

j‖2 (top) or maxj∈[m] ‖θ̂j − θ�
j‖2 (bottom). Red solid lines: ARMUL. Blue

triangles: data pooling. Black dashed lines: independent task learning. Cyan circles: clustered MTL (middle) or

low-rank MTL (right).

The simulations confirm the adaptivity and robustness of ARMUL methods, as stated in
Theorems 4.1, 4.2, 4.4 and 4.5. When ε = 0 and δ is small, the vanilla, clustered and low-
rank ARMUL coincide with data pooling, clustered MTL and low-rank MTL, respectively.
However, the latter are too rigid and, therefore, deteriorate quickly as δ grows. ARMUL
methods, on the other hand, nicely handle model misspecifications and never underperform
independent task learning. When ε becomes 0.2, ARMUL methods continue to work well
on the set S of similar tasks while data pooling and clustered MTL are badly affected. For
the exceptional tasks in Sc, the error curves for maxj∈[m] ‖θ̂ j − θ�

j‖2 in Figure 2 implies
that ARMUL methods are still comparable to independent task learning. As we have studied
in Theorem 4.1, ARMUL estimators always stay close to the loss minimizers associated to
individual tasks. They are generalizations of limited translation estimators [26, 60] to multi-
variate M-estimation. In contrast, data pooling, clustered MTL and low-rank MTL perform
poorly on Sc.

5.2. Real data. We evaluate the proposed ARMUL methods on a real-world data set. The
Human Activity Recognition (HAR) database is built by [2] from the recordings of 30 vol-
unteers performing activities of daily living while carrying a waist-mounted smartphone with
embedded inertial sensors. On average, each volunteer has 343.3 samples (min: 281, max:
409). Each sample corresponds to one of six activities (walking, walking upstairs, walking
downstairs, sitting, standing and laying) and has a 561-dimensional feature vector with time
and frequency domain variables.

We model each volunteer as a task and aim to distinguish between sitting and the other
activities. The problem is therefore formulated as multitask logistic regression with m = 30
tasks. We conduct principal component analysis to reduce the dimension to 100. Together
with the intercept term, the preprocessed data have d = 101 variables in total. We randomly
select 20% of the data from each task for testing, and train logistic models on the rest of the
data. The sample sizes {nj }mj=1 for training range from 225 to 328. We apply three ARMUL
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TABLE 1
Test error rates (in percentage) on the HAR data set

ARMUL Benchmarks

Vanilla Clustered Low-rank ITL Data pooling Clustered Low-rank

1.12 (0.25) 0.84 (0.22) 0.80 (0.19) 1.95 (0.32) 3.48 (0.39) 2.15 (0.33) 1.30 (0.23)

methods (vanilla, clustered and low-rank) and four benchmark approaches (independent task
learning, data pooling, clustered MTL and low-rank MTL) to standardized data. For each
ARMUL method, we set wj = nj and λj = c

√
d/nj in (3.4), as is suggested by our re-

sults for general sample sizes (Theorems D.1 and D.2). The constant factor c is chosen from
{0.05,0.1,0.15, . . . ,0.5} using 5-fold cross-validation. We use the same procedure to select
the number of clusters K in clustered methods from {2,3,4,5} and the rank K in low-rank
methods from {1,2,3,4,5}. Finally, we compute the misclassification error on testing data
for each method.

Table 1 summarizes the means and standard deviations (in parentheses) of test error rates
(in percentage) over 100 independent runs, where ITL stands for independent task learn-
ing. The randomness comes from train/test splits and cross-validation. We see that ARMUL
methods significantly outperform benchmarks. In addition, we observe several interesting
phenomena.

• The tasks are rather heterogeneous, since data pooling and clustered MTL are even worse
than independent task learning. As the method becomes more flexible (from data pooling
to clustered MTL and then low-rank MTL), the performance gets better. The same trend
appears in ARMUL methods as well.

• An ARMUL method augments a basic multitask learning method with models for indi-
vidual tasks. Such augmentation brings great benefits: even the augmented version of data
pooling (i.e., vanilla ARMUL) works better than the raw version of low-rank MTL.

6. Discussions. We introduced a framework for multitask learning named ARMUL that
can be used as a wrapper around any multitask learning algorithm of the form (3.1). We
analyzed its adaptivity to unknown task relatedness, where the unsquared �2 penalty func-
tion plays a crucial role. We also verified the theories by extensive numerical experiments.
We hope that our framework can spur further research in related fields. It would be interest-
ing to develop methods for high-dimensional problems with sparsity or other structures, and
build inferential tools for uncertainty quantification. Since heterogeneous data sets are often
collected and stored at multiple sites, communication-efficient procedures for distributed sta-
tistical inference are desirable. Another direction is to extend our methods to meta-learning,
also known as learning to learn [62]. The goal is to extract from existing tasks useful knowl-
edge (e.g., common representation) that facilitates learning future tasks of similar type. Our
framework could provide a principled way of dealing with misspecified similarity structure.
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