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ABSTRACT

This paper unifies commonly used accelerated stochastic gradient
methods (Polyak’s Heavy Ball, Nesterov’s Accelerated Gradient and
Adaptive Moment Estimation (Adam)) as specific cases of a general
lowpass regularized learning framework, the Automatic Stochastic
Gradient Method (AutoSGM). For AutoSGM, we derive an optimal
iteration-dependent learning rate function and realize an approxima-
tion. Adam is also an approximation of this optimal approach that
replaces the iteration-dependent learning-rate with a constant. Empir-
ical results on deep neural networks comparing the learning behavior
of AutoSGM equipped with this iteration-dependent learning-rate
algorithm demonstrate fast learning behavior, robustness to the initial
choice of the learning rate, and can tune an initial constant learning-
rate in applications where a good constant learning rate approximation
is unknown.

Index Terms— stochastic gradient method, accelerated learning,
learning algorithms, optimization, deep learning.

1. INTRODUCTION

Learning of parameters in the practice of deep learning is mostly
driven by stochastic gradient methods (SGMs) [1, 2, 3]. Generally,
the SGM updates the parameter w; using the state equation

Wi = W1 — Q¢ g, . (1)

It performs an iterative optimization (typically minimization)
of some differentiable scalar objective function f(w), where
t =0,1,2,...,k,...,k € Nis the current iteration index, w;
is the new state value of the parameter, its input g, is a first-order
gradient of the objective function with respect to the current state of
the parameter w¢—1, and o is a possibly iteration-varying step-size.
Several authors have provided convergence analyses for the SGM
and explanations of its effectiveness in large-scale learning [4, 5].
Despite this, fine-tuning o in SGMs is still an art [6, 7, 8]. Con-
sequently, researchers continue to search for variants or alternative
algorithms with better learning characteristics or ease of tuning [9, 10].
Although the question of optimal learning algorithms was treated in
[11], relatively recent works have continued to posit that stochastic
gradient learning theory and practice needs more explanation and uni-
fication, especially for large-scale non-convex optimization [12, 13].
Properly tuned momentum-based learning algorithms, also known as
accelerated SGMs, often exhibit faster convergence than the baseline
algorithm in (1) [14, 15, 16, 17]. Relevant to this work are three clas-
sic and mainstream accelerated methods: Polyak’s Heavy Ball (PHB)
[18, 19], Nesterov’s Accelerated Gradient (NAG) [20], and Adaptive
Moment Estimation (Adam) [21]. These algorithms are typically
treated as distinctly separate methods. For example, popular deep
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Fig. 1: A block diagram for the AutoSGM framework. The block
denoted P(-) is a first-order gradient generating system (blue lines)
and 2! represents a one-step delay operator. The dash-dotted area
is the AutoSGM function C(-) which contains a digital integrator
I; and a step-size o, . The input to I; is a gradient g, processed
by a first-order lowpass filter E; g, and a digital proportional plus
differentiator Dy g, in series. 0 < 3;, 8o < 1,84 > 0 are digital
filter parameters.

learning frameworks like Torch, provide separate implementations
for each of these methods.

In this paper, we show that these accelerated algorithms, despite
having different implementations, can be characterized as special
cases of a general structure, the automatic stochastic gradient method
(AutoSGM) displayed in Fig. 1. The descriptor "automatic" in the
name will be made clearer later in the paper, when we derive an
optimal step-size that mitigates the need for manually tuning the
learning algorithm.

Let m; = E; g{b:} represent a first-order digital lowpass filter,
commonly implemented as m; = 8 m¢_; + nb;, where m; is the
lowpass system’s output when by is its input, with stability and be-
haviour controlled by the pole location 0 < 5 < 1, and the gain 7 of
the system. Further, let m; = Dy g, {b: } represent a first-order digital
proportional plus differentiator system, commonly implemented as
m; = by + Bq (be —bi—1) [22], where m; is the system’s output when
b is its input, with a filter constant 84 > 0. Then the AutoSGM
weight update function is

Wi = W1 — Qi Ut 2

where v; represents a smoothed gradient signal. v; is obtained as
D; g, {E: 5, {g,}} with input g,. Without any loss of generality, the
order of the cascade combination of E; s, and D¢, g, can be reversed.
Finally, AutoSGM’s output w; is optionally further smoothed by a
lowpass filter to obtain W, = E; g {w:} [23]. All vector operations
with (2) are performed on a sample-by-sample basis.

The AutoSGM algorithm along with PHB, NAG and Adam are
summarized in Table 1 below. We observe that AutoSGM with
Ba = 0,m; = 1, and constant o is PHB. AutoSGM becomes NAG
for 84 = Bi, mi = 1, and a constant a;. Using an unbiased lowpass



Table 1: Three popular accelerated learning algorithms as special cases of AutoSGM.

Algorithm Name  Parameter update (one-line difference equation)
AutoSGM Wip1 = Wi + Bi (We — Weo1) — a1 (gt + Balg, — gt_l))
PHB Wip1 = Wi + Bi (We — Weo1) —ag,
NAG Wir1 = Wi + Bi (We — Wee1) — a(gt + Bi(g, — gt—l))
Adam Wer1 = We + Bi (We — We1) — s g, Where oy = Go//Eq . {22}

Notes: &g is a constant learning rate, 3. is the lowpass parameter used for moment estimation.

filter implementation 84 = 0, with n; = 1 — 3;, and a moment-
estimation step-size algorithm for o, AutoSGM becomes Adam.
When 7; is set as 1, independent of /3;, as in common implementations
of PHB and NAG, instability in the form of limit-cycle convergence
has been demonstrated in [24] for certain strongly-convex functions.
This implies that the lowpass filter implementation matters.

The main contributions of this paper are as follows: (1) PHB,
NAG, and Adam are special cases of AutoSGM. (2) We derive an
iteration-dependent optimal learning-rate function for AutoSGM and
realize an approximate implementation. This approach is robust to
the choice of initial learning rate. (3) We show that the lowpass
filtering of the gradient function is approximately equivalent to a
lowpass regularization of the objective function f during learning.
This improves the odds that parameters of the learning algorithm
will converge to a better local optimum of the objective function’s
surface. (4) We empirically compare the performance of Adam with
a constant learning-rate and AutoSGM equipped with the iteration-
dependent learning-rate algorithm on some commonly used neural
network architectures. Our findings show that without compromising
performance, the iteration-dependent learning-rate algorithm auto-
matically tunes an initial constant learning rate. This is a desirable
property in many applications where good, constant learning-rates
are difficult to find.

2. REFINEMENTS AND ANALYSIS OF AUTOSGM

We derive an iteration-dependent learning rate function and introduce
several properties of the AutoSGM in this section. Because of page
limitation, only outlines of proofs of theorems are provided.

In the gradient generating system P, we consider the empirical
minimization of a scalar-valued function f (w) given by

1 n
min f(w) = = >~ 4i(w) + [l 3)
=1

We assume that f has a log-likelihood interpretation and is a composi-
tion of one or more smooth (differentiable) functions, denoted ¢; (w),
averaged over a training set of n examples from a data generating
function S, = {(xs,¥:);¢ = 1,2,...,n}. Itis common to impose a
weight constraint that forces the weights to be as small as possible.
The regularization constant 4 in (3) attempts to achieve this objective.

2.1. An Iteration-Dependent Learning Rate Function

Let H, be the Hilbert space of random variables defined on a probabil-
ity space with an unknown probability measure P. For any u, z € H,
we define inner-product (u, z) := E[uz], where E[] is the statistical
expectation. For each w, g € H,., the gradient of a log-likelihood
objective function f has an expected value of zero at all locations

on its surface [25]. Since E[g,] = 0, it follows immediately that
]E[Ut] =0.

We assume that AutoSGM minimizes the mean-squared error risk
function R; := E[e2,], where €q, is the per-parameter estimation
error given by 4, = w; — w*, and w* is the unknown optimum
solution to w;. The optimization problem is then to discover the value
of o that minimizes the risk R¢.

By differentiating R with respect to ax and setting it to zero, we
get: Eleq,ve] = E[(sat_l — atvt) v¢] = 0. Solving for a; gives

E[gat—l Ui]

E[u7] “@

ay =

2.2. Stability

We now show, under certain conditions, that the AutoSGM system
equipped with (4) is uniformly stable.

Theorem 1. Fort > 0, oy in (4), and risk R for each tuple (w, g),
the system is uniformly stable.

Theorem 1 can be obtained by noting that the error state equa-
tion is €0, = €a,_; — v Substitute in (4) for oy and ex-
pand R; = E[e2,] to get, Rt = Ri—1(1 — >) where ¢; =
Elea,_; vi]//Ele2,_,]E[v}], satsifies the bound |¢;| < 1. Tter-
ating the state transition for the risk ¢ times and bounding each ¢
with a finite constant ¢ € [0, 1), we obtain the bound R: < A Ro,
where A = 1 — ¢2. For all ¢, if ¢ = 0, then A = 1, the system has
converged to a local minima. Therefore, the system is uniformly
stable.

2.3. A Realizable Approximation for the Optimal Learning Rate

In practice, we do not have access to the optimal «; in (4) and w* in
€a,_, 18 not known a priori. Without any loss of generality, we can
rewrite (4) in normalized form:

ot = dt/ ]E[’Uf] (5)

where &; := E[eq,_, U4] is an iteration-dependent correlation func-
tion that defines the optimal learning-rate, and ¥ = v:/+/E[v?]
is a normalized gradient. To obtain a practical iteration-dependent
realization for (5), we approximate the output of the two statistical
expectations E[ - | in (5), E[v?] and E[ea,_, ©¢] with outputs of
an appropriate lowpass filters of the form E; g{ - }. We can use
Chernoff inequality [26] and ergodic assumptions on the input to
an exponentially-weighted lowpass filter to provide a probably ap-
proximately correct bound on how close we expect the output of the
lowpass filter E; g{u} to deviate from E[u].



Algorithm 1 An  AutoSGM implementation with iteration-

dependent learning-rate function.

State: w, Input: g, Output: w
Params: 0 < & < 1 (need this for initialization only),0 < §; <
1,8,=0,8q 20,09 < e <1, >0.

1 t+<0,k>0

2 fort=1:kdo

3 vy < Dy g, {EBr s, {g,}} (smoothing)
4 st < Ee,, {Des,{g,}°} (averaging)
5 O v/ (\/s¢ + €)
6

7

8

(normalization)
bt |Ev g {wi10:}| (averaging)
Wi 4= W1 — Gy Ut (integration)

Wi+ Ey g, {we} (smoothing)

Theorem 2. For 0 < B < 1, the steady-state value of the probability
that By g{-} deviates within a small error € > 0 from the true function
E[]is

2
meezazen(5)  ©

where & = By g{u} — E{u}, B == E[(u — E{u})?], and cs =
(L+8)/(1=B).

Remark 1. Since c is a function of [, then this result intuitively
suggests that for averaging with E; g{ - }, we should choose 3 close
to 1 to keep the probability of deviation low. A common setting in
practice is to choose 0.9 < 3 < 1.

To avoid singularities in the update equation, we approximate the
smooth normalized gradient as 0y = vt/ (v/Ex,5, {v:2} + €) where
€ > 0 is areal valued constant.

We still need to find a realizable iteration-dependent approxima-
tion for & = Elea,_, U¢] which contains w* in £4, ,. The final
step to acheive this, is to ignore the w*. That is, we replace €q,_,
with w¢_; leading to E [wt_l @t].This approximation becomes more
accurate as ¢ — 0o, since in the steady state, we have E [w* 0] = 0.
The correlation function & := E[eq,_, U¢] is non-negative, but its
approximation as E; g_{w;_1 U} may not be. When this approxi-
mation becomes negative, we may set it to zero and not update the
parameters. Empirically, we have found that replacing the negative
estimates of the approximation & = E; g {w;_1 U; } with absolute
values, and restarting the filter when ¢&; drops below a small threshold
provided better overall learning behavior. Experimental results re-
ported in Section 3 were obtained using this approach (we used 10°
in our experiments). The AutoSGM equipped with this iteration-
dependent learning-rate algorithm is described by the pseudo-code in
Algorithm 1.

2.4. Connection to Adam

AutoSGM becomes Adam if in (5) the gradient g, is not smoothed,
Ba = 0, and the correlation function & is approximated as a single
constant &g. Thus we get Adam, if (5) is replaced by

o = do/ (\/Ees{et} +¢) ™

2.5. Lowpass Regularization

Assuming slow evolution of w:, we can prove the following.

Theorem 3. Lowpass filtering the gradient g is approximately equiv-
alent to lowpass smoothing the surface of the objective function f.

Theorem 3 can be proved by recognizing that lowpass filtering in-
volves convolution of the input with the filter’s unit impulse response
signal h. As t — oo, for slowly varying w;, we have:

Zhafwtlj)
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Remark 2. Theorem 3 suggests that AutoSGM algorithms are low-
pass regularizers of the objective function in the gradient generating
system. This implies that, at each learning iteration, an AutoSGM
algorithm with an appropriate 8; > 0 implicity solves a smoother, un-
biased and bounded local approximation of f, enabling convergence
of the optimizer to better local minima of the loss surface [17].

2.6. Local Convergence Behavior

Assume that f is smooth with a Lipschitz constant L, i.e., ||g, —
g*|| < L|lw¢ — w*||, and that it satisfies the Polyak-Lojasiewicz
(PL) inequality ||g,||* > 2.(f: — f*) [27]. In this case, we say f is
L—smooth and :—PL where 0 < ¢+ < L. Define £; := w; — w* and
note that e, —e;—1 = w¢—w:_1. The behavior of f near the optimum
point w* can be locally approximated with a candidate Lyapunov
function f [28, 291, such as f; = el Ze;, where & € R4
is a matrix dependent on the finite training data distribution S,, of
the gradient-generating system P such that I < 3 < LT and
k = L/uv > 1is the condition number of f. For this approximation,
the gradient becomes g, := X ey, and (g, — g,_1) = X (W¢ —We—1).
For 0 < f8; < 1, subtract w* from both sides of the parameter update
for AutoSGM in Table 1 to obtain €141 = (I — @i X) er + (Bi —
a1 BaX) (et —et—1). With this, we can state the following theorem.

Theorem 4. For any small € > 0, the worst-case number of iterations
Sor an AutoSGM sequence {w.} to converge to a local optimum w*

is T~ O(yklog(e™)).

To prove Theorem 4, let ®+(X) be a polynomial function of
degree ¢ dependent on X, o, 3, B4, 1;, with ®o(3) = I. Now as-
sume e, = P,(X)egp for 0 < s < ¢t. It follows immediately that
Et4+1 — ¢t+1(2) €0, where (I)t+1(2) = [(I — atmE) <I>t(2) +
(P(2) — @1-1(%))(Bi — auniBaX)]. Then, it follows by in-
duction that e = ®+(X)eo,Vt. Next, take the norm of e¢ =
®,(X) 0. Bound with the Cauchy-Schwarz inequality to obtain
lletd]l < ||[®e(X2)|| leoll- By eigendecomposition, ¥ = QAQT,
where Q is an orthonormal matrix and A is a diagonal matrix with
diagonal elements on the interval o € [¢, L]. Using this, the error
bound becomes ||e¢|| < maxq|P:(c)|||eo]|- The worst-case conver-
gence rate bound problem then becomes a min-max problem: ||e;|| <
ming, maxq|®: (o) ||eol|, i.e., finding a ®(c) with the smallest
maximum absolute value over the ¢ € [¢, L] interval. This problem is
known to be minimized by a Chebyshev polynomial [30 31]. Using
this Chebyshev polynomial leads to ||e;]| < (f+1) lleol]. Then

for any small ¢ > 0, such that (ﬁ ﬁ) < ¢, as t increases, the

worst-case number of iterations 7 can be found.

3. EXPERIMENTS

Most empirical comparisons among the special cases of AutoSGM
are biased, probably because many aspects of the neural network



architectures being used were evolved to be well suited to Adam.
Also, the choice of hyperparameters (i, 35, 84, Bo, Be) and the filter
implementations used in these special cases might differ. Effort
required to scan through the search space of all hyperparameters can
be costly and mostly unjustified, especially if they can be turned off or
manually set to some known good fixed value [6, 17]. In this section,
while keeping all other hyperparameters in AutoSGM constant, with
Bo = 0, B4 = 0, we compare the learning behavior of Algorithm 1
and Adam (7).

We consider a common image classification task on the CIFAR-
10 dataset [32], with two different deep learning models: LeNet (a
convolutional neural network without normalization layers), and
ResNet50 (a residually connected convolutional neural network
(CNN) with 50 layers), trained on four Nvidia Quadro RTX GPUs
on a shared HPC cluster. Training for 200 epochs, and averaging
over five runs with a weight-decay constant of 107°, we com-
pare training loss and test accuracy performance across different
batch-sizes {128,256,1024} and initial constant learning-rates
{3 x 1073,1073,107*}. Due to page constraints, other perfor-
mance plots are reported in our code repository'. Training loss
distribution is shown and discussed for LeNet in Figure 2 and cor-
responding training curves are shown in Figure 3. For ResNet50,
the test-accuracy distribution is shown and discussed in Figure 4
and corresponding training curves are shown in Figure 5. Generally,
we find that AutoSGM with the iteration-dependent learning rate,
appears to be on par with Adam, and can help tune initial constant
learning rates without compromising performance as illustrated in
Figure 6.
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Fig. 2: AutoSGM, with &;, (blue box) and Adam, &o, (orange
box). A summary of the training loss distributions for the three
different initial learning rates {3 x 1073,1073, 10_4} for batch-
size of {128,256, and 1024} for 5 training runs. Here, while the
spread is generally comparable, average performance of the iteration-
dependent & appears to be better for the smaller batch-sizes, while,
Adam appears to provide a slightly better average for the larger batch-
size of 1024. Model: LeNet.
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Fig. 3: Average training loss (left) and test accuracy (right) over 5
training runs for LeNet on CIFAR10, with a batch-size of 128 and
initial learning-rate of & = 3 X 1073, AutoSGM, with &y, (blue
line) and Adam, &, (orange line).

Uhttps://github.com/somefunAgba/autosgm

4. CONCLUSIONS

AutoSGM is a general framework for learning algorithms that have a
lowpass regularized structure as illustrated in Figure 1. Commonly
used accelerated SGMs such as PHB, NAG, and Adam are special
cases. Choosing the filter parameters f3;, 5o, Bq in the range [0,1)
guarantees stability of the algorithm. AutoSGM may lead to the
development of new learning rate algorithms for setting a;. The
iteration-dependent learning rate algoirthm tunes an initial constant
learning-rate using the current state of the gradient-generating system,
and leads to acceptably good solutions. In some applications, the
process of fine-tuning a constant learning-rate might be difficult,
costly or unsafe and involve much trial and error. The AutoSGM
algorithm framework with the iteration-dependent learning-rate may
simplify the tuning process in such cases. Improving on this iteration-
dependent learning rate realization is a potential topic for future work.
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Fig. 4: AutoSGM, with &, (blue box) and Adam, &g, (orange box).
A summary of the test accuracy distributions for the learning rates
{1073,107*} over 5 training runs for batch-size of {256,1024}.
Training for 200 epochs, the spread of both algorithms appears to be
similar, with Adam providing slightly better average test-accuracies.
Model: ResNet50, a 50-layer CNN.
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Fig. 5: Average Training loss (left), Test accuracy (right) over 5
training runs for ResNet50 on CIFAR10, with a batch-size of 256
and initial learning-rate of 1073, AutoSGM, with &y, (blue line) and
Adam, &, (orange line).
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Fig. 6: Evolution of &; for a batch-size of 256 (left plot), and 1024
(right plot) and an initial learning rate of 10~ for a ResNet50 weight
layer trained on the CIFAR10 dataset. &; depends on the gradient
which depends on the batch-size. Due to the restarts discussed in
section 2.3, it evolves cyclically.
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