
AUTOSGM: A UNIFIED LOWPASS REGULARIZATION FRAMEWORK FOR ACCELERATED
LEARNING

Oluwasegun A. Somefun, Stefan Lee, V John Mathews

School of Electrical Engineering and Computer Science, Oregon State University. Corvallis, OR 97331 USA.

ABSTRACT

This paper unifies commonly used accelerated stochastic gradient
methods (Polyak’s Heavy Ball, Nesterov’s Accelerated Gradient and
Adaptive Moment Estimation (Adam)) as specific cases of a general
lowpass regularized learning framework, the Automatic Stochastic
Gradient Method (AutoSGM). For AutoSGM, we derive an optimal
iteration-dependent learning rate function and realize an approxima-
tion. Adam is also an approximation of this optimal approach that
replaces the iteration-dependent learning-rate with a constant. Empir-
ical results on deep neural networks comparing the learning behavior
of AutoSGM equipped with this iteration-dependent learning-rate
algorithm demonstrate fast learning behavior, robustness to the initial
choice of the learning rate, and can tune an initial constant learning-
rate in applications where a good constant learning rate approximation
is unknown.

Index Terms— stochastic gradient method, accelerated learning,
learning algorithms, optimization, deep learning.

1. INTRODUCTION

Learning of parameters in the practice of deep learning is mostly
driven by stochastic gradient methods (SGMs) [1, 2, 3]. Generally,
the SGM updates the parameter wt using the state equation

wt = wt−1 − αt gt . (1)

It performs an iterative optimization (typically minimization)
of some differentiable scalar objective function f(w), where
t = 0, 1, 2, . . . , k, . . . , k ∈ N is the current iteration index, wt

is the new state value of the parameter, its input gt is a first-order
gradient of the objective function with respect to the current state of
the parameter wt−1, and αt is a possibly iteration-varying step-size.

Several authors have provided convergence analyses for the SGM
and explanations of its effectiveness in large-scale learning [4, 5].
Despite this, fine-tuning αt in SGMs is still an art [6, 7, 8]. Con-
sequently, researchers continue to search for variants or alternative
algorithms with better learning characteristics or ease of tuning [9, 10].
Although the question of optimal learning algorithms was treated in
[11], relatively recent works have continued to posit that stochastic
gradient learning theory and practice needs more explanation and uni-
fication, especially for large-scale non-convex optimization [12, 13].
Properly tuned momentum-based learning algorithms, also known as
accelerated SGMs, often exhibit faster convergence than the baseline
algorithm in (1) [14, 15, 16, 17]. Relevant to this work are three clas-
sic and mainstream accelerated methods: Polyak’s Heavy Ball (PHB)
[18, 19], Nesterov’s Accelerated Gradient (NAG) [20], and Adaptive
Moment Estimation (Adam) [21]. These algorithms are typically
treated as distinctly separate methods. For example, popular deep

This work was funded in part by NSF grants 1901492 and 1901236.

Fig. 1: A block diagram for the AutoSGM framework. The block
denoted P(·) is a first-order gradient generating system (blue lines)
and z−1 represents a one-step delay operator. The dash-dotted area
is the AutoSGM function C(·) which contains a digital integrator
It and a step-size αt, . The input to It is a gradient gt processed
by a first-order lowpass filter Et,βi and a digital proportional plus
differentiator Dt,βd in series. 0 ≤ βi, βo < 1, βd ≥ 0 are digital
filter parameters.

learning frameworks like Torch, provide separate implementations
for each of these methods.

In this paper, we show that these accelerated algorithms, despite
having different implementations, can be characterized as special
cases of a general structure, the automatic stochastic gradient method
(AutoSGM) displayed in Fig. 1. The descriptor "automatic" in the
name will be made clearer later in the paper, when we derive an
optimal step-size that mitigates the need for manually tuning the
learning algorithm.

Let mt = Et,β{bt} represent a first-order digital lowpass filter,
commonly implemented as mt = β mt−1 + η bt, where mt is the
lowpass system’s output when bt is its input, with stability and be-
haviour controlled by the pole location 0 ≤ β < 1, and the gain η of
the system. Further, let mt = Dt,βd{bt} represent a first-order digital
proportional plus differentiator system, commonly implemented as
mt = bt+βd (bt−bt−1) [22], where mt is the system’s output when
bt is its input, with a filter constant βd ≥ 0. Then the AutoSGM
weight update function is

wt = wt−1 − αt υt (2)

where υt represents a smoothed gradient signal. υt is obtained as
Dt,βd{Et,βi{gt}} with input gt. Without any loss of generality, the
order of the cascade combination of Et,βi and Dt,βd

can be reversed.
Finally, AutoSGM’s output wt is optionally further smoothed by a
lowpass filter to obtain ŵt = Et,βo{wt} [23]. All vector operations
with (2) are performed on a sample-by-sample basis.

The AutoSGM algorithm along with PHB, NAG and Adam are
summarized in Table 1 below. We observe that AutoSGM with
βd = 0, ηi = 1, and constant αt is PHB. AutoSGM becomes NAG
for βd = βi, ηi = 1, and a constant αt. Using an unbiased lowpass

Table 1: Three popular accelerated learning algorithms as special cases of AutoSGM.

Algorithm Name Parameter update (one-line difference equation)

AutoSGM wt+1 = wt + βi (wt − wt−1)− αt ηi
(

gt + βd(gt − gt−1)
)

PHB wt+1 = wt + βi (wt − wt−1)− α gt

NAG wt+1 = wt + βi (wt − wt−1)− α
(

gt + βi(gt − gt−1)
)

Adam wt+1 = wt + βi (wt − wt−1)− αtηi gt,where αt := α̂0/
√

Et,βe{g2
t}

Notes: α̂0 is a constant learning rate, βe is the lowpass parameter used for moment estimation.

filter implementation βd = 0, with ηi = 1 − βi, and a moment-
estimation step-size algorithm for αt, AutoSGM becomes Adam.
When ηi is set as 1, independent of βi, as in common implementations
of PHB and NAG, instability in the form of limit-cycle convergence
has been demonstrated in [24] for certain strongly-convex functions.
This implies that the lowpass filter implementation matters.

The main contributions of this paper are as follows: (1) PHB,
NAG, and Adam are special cases of AutoSGM. (2) We derive an
iteration-dependent optimal learning-rate function for AutoSGM and
realize an approximate implementation. This approach is robust to
the choice of initial learning rate. (3) We show that the lowpass
filtering of the gradient function is approximately equivalent to a
lowpass regularization of the objective function f during learning.
This improves the odds that parameters of the learning algorithm
will converge to a better local optimum of the objective function’s
surface. (4) We empirically compare the performance of Adam with
a constant learning-rate and AutoSGM equipped with the iteration-
dependent learning-rate algorithm on some commonly used neural
network architectures. Our findings show that without compromising
performance, the iteration-dependent learning-rate algorithm auto-
matically tunes an initial constant learning rate. This is a desirable
property in many applications where good, constant learning-rates
are difficult to find.

2. REFINEMENTS AND ANALYSIS OF AUTOSGM

We derive an iteration-dependent learning rate function and introduce
several properties of the AutoSGM in this section. Because of page
limitation, only outlines of proofs of theorems are provided.

In the gradient generating system P , we consider the empirical
minimization of a scalar-valued function f

(
w
)

given by

min
w

f(w) =
1

n

n∑
i=1

ℓi(w) + µ ∥w∥2 (3)

We assume that f has a log-likelihood interpretation and is a composi-
tion of one or more smooth (differentiable) functions, denoted ℓi(w),
averaged over a training set of n examples from a data generating
function Sn = {(xi, yi); i = 1, 2, . . . , n}. It is common to impose a
weight constraint that forces the weights to be as small as possible.
The regularization constant µ in (3) attempts to achieve this objective.

2.1. An Iteration-Dependent Learning Rate Function

LetHr be the Hilbert space of random variables defined on a probabil-
ity space with an unknown probability measure P. For any u, z ∈ Hr

we define inner-product ⟨u, z⟩ := E[uz], where E[·] is the statistical
expectation. For each w, g ∈ Hr , the gradient of a log-likelihood
objective function f has an expected value of zero at all locations

on its surface [25]. Since E[gt] = 0, it follows immediately that
E[υt] = 0.

We assume that AutoSGM minimizes the mean-squared error risk
function Rt := E[ε2αt

], where εαt is the per-parameter estimation
error given by εαt := wt − w⋆, and w⋆ is the unknown optimum
solution to wt. The optimization problem is then to discover the value
of αt that minimizes the riskRt.

By differentiatingRt with respect to αt and setting it to zero, we
get: E[εαtυt] = E[

(
εαt−1 − αtυt

)
υt] = 0. Solving for αt gives

αt =
E[εαt−1 υt]

E[υ2
t]

(4)

2.2. Stability

We now show, under certain conditions, that the AutoSGM system
equipped with (4) is uniformly stable.

Theorem 1. For t ≥ 0, αt in (4), and riskR for each tuple (w, g),
the system is uniformly stable.

Theorem 1 can be obtained by noting that the error state equa-
tion is εαt = εαt−1 − αtυt. Substitute in (4) for αt and ex-
pand Rt := E[ε2αt

] to get, Rt = Rt−1(1 − ςt
2) where ςt =

E[εαt−1 υt]/
√

E[ε2αt−1
]E[υ2

t], satsifies the bound |ςt| ≤ 1. Iter-
ating the state transition for the risk t times and bounding each ςt
with a finite constant ς̂ ∈ [0, 1), we obtain the bound Rt ≤ λtR0,
where λ = 1 − ς̂2. For all t, if ς̂ = 0, then λ = 1, the system has
converged to a local minima. Therefore, the system is uniformly
stable.

2.3. A Realizable Approximation for the Optimal Learning Rate

In practice, we do not have access to the optimal αt in (4) and w∗ in
εαt−1 is not known a priori. Without any loss of generality, we can
rewrite (4) in normalized form:

αt = α̂t/
√

E[υ2
t] (5)

where α̂t := E[εαt−1 ῡt] is an iteration-dependent correlation func-
tion that defines the optimal learning-rate, and ῡt = υt/

√
E[υ2

t]
is a normalized gradient. To obtain a practical iteration-dependent
realization for (5), we approximate the output of the two statistical
expectations E[·] in (5), E[υ2

t] and E[εαt−1 ῡt] with outputs of
an appropriate lowpass filters of the form Et,β{ · }. We can use
Chernoff inequality [26] and ergodic assumptions on the input to
an exponentially-weighted lowpass filter to provide a probably ap-
proximately correct bound on how close we expect the output of the
lowpass filter Et,β{u} to deviate from E[u].

Algorithm 1 An AutoSGM implementation with iteration-
dependent learning-rate function.

State: w, Input: g, Output: ŵ
Params: 0 < α̂0 < 1 (need this for initialization only), 0 ≤ βi <
1, βo ≊ 0, βd ≥ 0, 0.9 < βe < 1, ϵ̂ > 0.

1 t← 0, k > 0
2 for t = 1 : k do
3 υt ← Dt,βd{Et,βi

{
gt

}
} (smoothing)

4 st ← Et,βe

{
Dt,βd{gt}

2
}

(averaging)
5 ῡt ← υt/(

√
st + ϵ̂) (normalization)

6 α̂t ← |Et,βe

{
wt−1 ῡt

}
| (averaging)

7 wt ← wt−1 − α̂t ῡt (integration)
8 ŵt ← Et,βo{wt} (smoothing)

Theorem 2. For 0 ≤ β < 1, the steady-state value of the probability
that Et,β{·} deviates within a small error ϵ > 0 from the true function
E[·] is

lim
t→∞

P
(
ξt ≥ ϵ

)
≤ exp

(
− ϵ2 c∞

2B

)
(6)

where ξt := Et,β{u} − E{u}, B := E[(u − E{u})2], and c∞ :=
(1 + β)/(1− β).

Remark 1. Since c∞ is a function of β, then this result intuitively
suggests that for averaging with Et,β{ · }, we should choose β close
to 1 to keep the probability of deviation low. A common setting in
practice is to choose 0.9 < β < 1.

To avoid singularities in the update equation, we approximate the
smooth normalized gradient as ῡt = υt/

(√
Et,βe{υt

2}+ ϵ̂
)

where
ϵ̂ > 0 is a real valued constant.

We still need to find a realizable iteration-dependent approxima-
tion for α̂t := E[εαt−1 ῡt] which contains w∗ in εαt−1 . The final
step to acheive this, is to ignore the w∗. That is, we replace εαt−1

with wt−1 leading to E[wt−1 ῡt].This approximation becomes more
accurate as t→∞, since in the steady state, we have E

[
w∗ ῡt

]
= 0.

The correlation function α̂t := E[εαt−1 ῡt] is non-negative, but its
approximation as Et,βe{wt−1 ῡt} may not be. When this approxi-
mation becomes negative, we may set it to zero and not update the
parameters. Empirically, we have found that replacing the negative
estimates of the approximation α̂t ≈ Et,βe{wt−1 ῡt} with absolute
values, and restarting the filter when α̂t drops below a small threshold
provided better overall learning behavior. Experimental results re-
ported in Section 3 were obtained using this approach (we used 10−5

in our experiments). The AutoSGM equipped with this iteration-
dependent learning-rate algorithm is described by the pseudo-code in
Algorithm 1.

2.4. Connection to Adam

AutoSGM becomes Adam if in (5) the gradient gt is not smoothed,
βd = 0, and the correlation function α̂t is approximated as a single
constant α̂0. Thus we get Adam, if (5) is replaced by

αt = α̂0/
(√

Et,βe{g2
t}+ ϵ̂

)
(7)

2.5. Lowpass Regularization

Assuming slow evolution of wt, we can prove the following.

Theorem 3. Lowpass filtering the gradient g is approximately equiv-
alent to lowpass smoothing the surface of the objective function f .

Theorem 3 can be proved by recognizing that lowpass filtering in-
volves convolution of the input with the filter’s unit impulse response
signal h. As t→∞, for slowly varying wt, we have:

υt =

t−1∑
j=0

hj
∂f(wt−1−j)

∂wt−1−j
≈ ∂

∂wt−1

t−1∑
j=0

hj f(wt−1−j) (8)

Remark 2. Theorem 3 suggests that AutoSGM algorithms are low-
pass regularizers of the objective function in the gradient generating
system. This implies that, at each learning iteration, an AutoSGM
algorithm with an appropriate βi > 0 implicity solves a smoother, un-
biased and bounded local approximation of f , enabling convergence
of the optimizer to better local minima of the loss surface [17].

2.6. Local Convergence Behavior

Assume that f is smooth with a Lipschitz constant L, i.e., ∥gt −
g∗∥ ≤ L ∥wt − w∗∥, and that it satisfies the Polyak-Lojasiewicz
(PL) inequality ∥gt∥

2 ≥ 2ι
(
ft − f⋆

)
[27]. In this case, we say f is

L−smooth and ι−PL where 0 < ι < L. Define εt := wt − w∗ and
note that εt−εt−1 = wt−wt−1. The behavior of f near the optimum
point w∗ can be locally approximated with a candidate Lyapunov
function f̂ [28, 29], such as f̂t = 1

2
εTt Σ εt, where Σ ∈ Rd×d

is a matrix dependent on the finite training data distribution Sn of
the gradient-generating system P such that ιI ≤ Σ ≤ LI and
κ = L/ι ≥ 1 is the condition number of f̂ . For this approximation,
the gradient becomes gt := Σ εt, and (gt−gt−1) = Σ (wt−wt−1).
For 0 < βi < 1, subtract w∗ from both sides of the parameter update
for AutoSGM in Table 1 to obtain εt+1 = (I− αtηiΣ) εt + (βi −
αtηiβdΣ) (εt−εt−1). With this, we can state the following theorem.

Theorem 4. For any small ϵ > 0, the worst-case number of iterations
for an AutoSGM sequence {wt} to converge to a local optimum w∗

is τ ∼ O
(√

κ log
(
ϵ−1

))
.

To prove Theorem 4, let Φt(Σ) be a polynomial function of
degree t dependent on Σ, αt, βi, βd, ηi, with Φ0(Σ) = I. Now as-
sume εs = Φs(Σ) ε0 for 0 ≤ s ≤ t. It follows immediately that
εt+1 = Φt+1(Σ) ε0, where Φt+1(Σ) =

[
(I − αtηiΣ)Φt(Σ) +(

Φt(Σ) − Φt−1(Σ)
)
(βi − αtηiβdΣ)

]
. Then, it follows by in-

duction that εt = Φt(Σ) ε0, ∀ t. Next, take the norm of εt =
Φt(Σ) ε0. Bound with the Cauchy-Schwarz inequality to obtain
∥εt∥ ≤ ∥Φt(Σ)∥ ∥ε0∥. By eigendecomposition, Σ = QΛQ⊺,
where Q is an orthonormal matrix and Λ is a diagonal matrix with
diagonal elements on the interval σ ∈ [ι, L]. Using this, the error
bound becomes ∥εt∥ ≤ maxσ|Φt(σ)| ∥ε0∥. The worst-case conver-
gence rate bound problem then becomes a min-max problem: ∥εt∥ ≤
minΦt maxσ|Φt(σ)| ∥ε0∥, i.e., finding a Φt(σ) with the smallest
maximum absolute value over the σ ∈ [ι, L] interval. This problem is
known to be minimized by a Chebyshev polynomial [30, 31]. Using
this Chebyshev polynomial leads to ∥εt∥ ≤

(√
κ−1√
κ+1

)t∥ε0∥. Then

for any small ϵ > 0, such that
(√

κ−1√
κ+1

)t ≤ ϵ, as t increases, the
worst-case number of iterations τ can be found.

3. EXPERIMENTS

Most empirical comparisons among the special cases of AutoSGM
are biased, probably because many aspects of the neural network

architectures being used were evolved to be well suited to Adam.
Also, the choice of hyperparameters (αt, βi, βd, βo, βe) and the filter
implementations used in these special cases might differ. Effort
required to scan through the search space of all hyperparameters can
be costly and mostly unjustified, especially if they can be turned off or
manually set to some known good fixed value [6, 17]. In this section,
while keeping all other hyperparameters in AutoSGM constant, with
βo = 0, βd = 0, we compare the learning behavior of Algorithm 1
and Adam (7).

We consider a common image classification task on the CIFAR-
10 dataset [32], with two different deep learning models: LeNet (a
convolutional neural network without normalization layers), and
ResNet50 (a residually connected convolutional neural network
(CNN) with 50 layers), trained on four Nvidia Quadro RTX GPUs
on a shared HPC cluster. Training for 200 epochs, and averaging
over five runs with a weight-decay constant of 10−5, we com-
pare training loss and test accuracy performance across different
batch-sizes {128, 256, 1024} and initial constant learning-rates
{3 × 10−3, 10−3, 10−4}. Due to page constraints, other perfor-
mance plots are reported in our code repository1. Training loss
distribution is shown and discussed for LeNet in Figure 2 and cor-
responding training curves are shown in Figure 3. For ResNet50,
the test-accuracy distribution is shown and discussed in Figure 4
and corresponding training curves are shown in Figure 5. Generally,
we find that AutoSGM with the iteration-dependent learning rate,
appears to be on par with Adam, and can help tune initial constant
learning rates without compromising performance as illustrated in
Figure 6.

Fig. 2: AutoSGM, with α̂t, (blue box) and Adam, α̂0, (orange
box). A summary of the training loss distributions for the three
different initial learning rates {3 × 10−3, 10−3, 10−4} for batch-
size of {128, 256, and 1024} for 5 training runs. Here, while the
spread is generally comparable, average performance of the iteration-
dependent α̂t appears to be better for the smaller batch-sizes, while,
Adam appears to provide a slightly better average for the larger batch-
size of 1024. Model: LeNet.

Fig. 3: Average training loss (left) and test accuracy (right) over 5
training runs for LeNet on CIFAR10, with a batch-size of 128 and
initial learning-rate of α̂0 = 3 × 10−3. AutoSGM, with α̂t, (blue
line) and Adam, α̂0, (orange line).

1https://github.com/somefunAgba/autosgm

4. CONCLUSIONS

AutoSGM is a general framework for learning algorithms that have a
lowpass regularized structure as illustrated in Figure 1. Commonly
used accelerated SGMs such as PHB, NAG, and Adam are special
cases. Choosing the filter parameters βi, βo, βd in the range [0,1)
guarantees stability of the algorithm. AutoSGM may lead to the
development of new learning rate algorithms for setting αt. The
iteration-dependent learning rate algoirthm tunes an initial constant
learning-rate using the current state of the gradient-generating system,
and leads to acceptably good solutions. In some applications, the
process of fine-tuning a constant learning-rate might be difficult,
costly or unsafe and involve much trial and error. The AutoSGM
algorithm framework with the iteration-dependent learning-rate may
simplify the tuning process in such cases. Improving on this iteration-
dependent learning rate realization is a potential topic for future work.

Fig. 4: AutoSGM, with α̂t, (blue box) and Adam, α̂0, (orange box).
A summary of the test accuracy distributions for the learning rates
{10−3, 10−4} over 5 training runs for batch-size of {256, 1024}.
Training for 200 epochs, the spread of both algorithms appears to be
similar, with Adam providing slightly better average test-accuracies.
Model: ResNet50, a 50-layer CNN.

Fig. 5: Average Training loss (left), Test accuracy (right) over 5
training runs for ResNet50 on CIFAR10, with a batch-size of 256
and initial learning-rate of 10−3. AutoSGM, with α̂t, (blue line) and
Adam, α̂0, (orange line).

Fig. 6: Evolution of α̂t for a batch-size of 256 (left plot), and 1024
(right plot) and an initial learning rate of 10−3 for a ResNet50 weight
layer trained on the CIFAR10 dataset. α̂t depends on the gradient
which depends on the batch-size. Due to the restarts discussed in
section 2.3, it evolves cyclically.

5. REFERENCES

[1] H. Robbins and S. Monro, “A stochastic approximation method,”
The Annals of Mathematical Statistics, vol. 22, pp. 400–407,
Sept. 1951.

[2] B. Widrow, “Pattern Recognition and Adaptive Control,” IEEE
Transactions on Applications and Industry, vol. 83, pp. 269–277,
Sept. 1964.

[3] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods
for large-scale machine learning,” SIAM Review, vol. 60, no. 2,
pp. 223–311, 2018.

[4] Y. Lei, T. Hu, G. Li, and K. Tang, “Stochastic gradient descent
for nonconvex learning without bounded gradient assumptions,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, pp. 4394–4400, Oct. 2020.

[5] L. Bottou, “Large-scale machine learning with stochastic gra-
dient descent,” in Proceedings of COMPSTAT, (Paris, France),
pp. 177–186, Springer, 2010.

[6] V. Godbole, G. E. Dahl, J. Gilmer, C. J. Shallue, and Z. Nado,
“Deep learning tuning playbook.” http://github.com/google-
research/tuning_playbook, 2023.

[7] T. S. Prabhu, F. Mai, T. Vogels, M. Jaggi, and F. Fleuret, “Op-
timizer benchmarking needs to account for hyperparameter
tuning,” in Proceedings of the 37th International Conference on
Machine Learning, vol. 119, (Vienna, Austria), pp. 9036–9045,
JMLR.org, July 2020.

[8] K. Nar and S. Sastry, “Step size matters in deep learning,” in
Advances in Neural Information Processing Systems, vol. 31,
(Montréal, Canada), Curran Associates, Inc., 2018.

[9] P. Chiang, R. Ni, D. Y. Miller, A. Bansal, J. Geiping, M. Gold-
blum, and T. Goldstein, “Loss landscapes are all you need:
Neural network generalization can be explained without the
implicit bias of gradient descent,” in The Eleventh International
Conference on Learning Representations, (Kigali, Rwanda),
Feb. 2023.

[10] F. Orabona and T. Tommasi, “Training deep networks without
learning rates through coin betting,” in Advances in Neural In-
formation Processing Systems, vol. 30, (Long Beach, California,
USA.), Curran Associates, Inc., 2017.

[11] Y. Z. Tsypkin, Adaptation and Learning in Automatic Systems.
New York: Academic Press, 1971.

[12] A. Khaled and P. Richtárik, “Better theory for SGD in the non-
convex world,” Transactions on Machine Learning Research,
Mar. 2023.

[13] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning (still) requires rethinking gener-
alization,” Communications of the ACM, vol. 64, pp. 107–115,
Feb. 2021.

[14] B. T. Polyak, “Accelerated gradient methods: History and prop-
erties,” in 7th International Conference on Control and Opti-
mization with Industrial Applications, vol. 1, (Baku, Azerbai-
jan), pp. 23–25, IAM, 2020.

[15] L. Lessard and P. Seiler, “Direct synthesis of iterative algorithms
with bounds on achievable worst-case convergence rate,” in
2020 American Control Conference, (Denver), pp. 119–125,
IEEE, 2020.

[16] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning,” in
Proceedings of the 30th International Conference on Machine
Learning, (Atlanta, Georgia, USA), pp. 1139–1147, May 2013.

[17] Y. Bengio, “Practical Recommendations for Gradient-Based
Training of Deep Architectures,” in Neural Networks: Tricks
of the Trade: Second Edition, pp. 437–478, Berlin, Heidelberg:
Springer, 2012.

[18] B. T. Polyak, “Some methods of speeding up the convergence
of iteration methods,” USSR Computational Mathematics and
Mathematical Physics, vol. 4, pp. 1–17, Jan. 1964.

[19] B. T. Polyak, “The conjugate gradient method in extremal prob-
lems,” USSR Computational Mathematics and Mathematical
Physics, vol. 9, pp. 94–112, Jan. 1969.

[20] Y. Nesterov, “A method for solving the convex programming
problem with convergence rate O(1/k2),” Doklady Akademii
Nauk, vol. 269, pp. 543–547, 1983.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in 3rd International Conference on Learning Repre-
sentations, ICLR (Y. Bengio and Y. LeCun, eds.), (San Diego,
CA, USA,), 2015.

[22] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback
Control of Dynamic Systems. USA: Pearson, 8th ed., 2019.

[23] L. Bottou, “Stochastic gradient descent tricks,” in Neural Net-
works: Tricks of the Trade, pp. 421–436, Springer, 2012.

[24] L. Lessard, B. Recht, and A. Packard, “Analysis and design
of optimization algorithms via integral quadratic constraints,”
SIAM Journal on Optimization, vol. 26, pp. 57–95, Jan. 2016.

[25] H. L. Van Trees, K. L. Bell, and Z. Tian, Detection Estimation
and Modulation Theory, Detection, Estimation, and Filtering
Theory, Part I. New Jersey, USA: Wiley, 2nd ed., 2013.

[26] H. Chernoff, “A note on an inequality involving the normal
distribution,” The Annals of Probability, vol. 9, pp. 533–535,
June 1981.

[27] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence
of gradient and proximal-gradient methods under the Polyak-
Lojasiewicz condition,” in Machine Learning and Knowledge
Discovery in Databases, (Cham), pp. 795–811, Springer, 2016.

[28] K. Najim, E. Ikonen, and A.-K. Daoud, “Analysis of Recursive
Algorithms,” in Stochastic Processes, pp. 223–314, Oxford:
Kogan Page Science, Jan. 2004.

[29] M. S. Fadali and A. Visioli, “Elements of nonlinear digital
control systems,” in Digital Control Engineering (Third Edition)
(M. S. Fadali and A. Visioli, eds.), pp. 507–565, Academic
Press, Jan. 2020.

[30] B. Goujaud, D. Scieur, A. Dieuleveut, A. B. Taylor, and F. Pe-
dregosa, “Super-acceleration with cyclical step-sizes,” in Pro-
ceedings of The 25th International Conference on Artificial
Intelligence and Statistics, (Virtual), pp. 3028–3065, PMLR,
2022.

[31] D. A. Flanders and G. Shortley, “Numerical determination
of fundamental modes,” Journal of Applied Physics, vol. 21,
pp. 1326–1332, Apr. 2004.

[32] A. Krizhevsky, “Learning Multiple Layers of Features
from Tiny Images.” https://www.cs.toronto.edu/~kriz/cifar.html,
2009.

	 Introduction
	 Refinements and Analysis of AutoSGM
	 An Iteration-Dependent Learning Rate Function
	 Stability
	 A Realizable Approximation for the Optimal Learning Rate
	 Connection to Adam
	 Lowpass Regularization
	 Local Convergence Behavior

	 Experiments
	 Conclusions
	 References

