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Abstract. We introduce an informative metric, called morphometric
correlation, as a measure of shared neuroanatomic similarity between
two cognitive traits. Traditional estimates of trait correlations can be
confounded by factors beyond brain morphology. To exclude these con-
founding factors, we adopt a Gaussian kernel to measure the morpho-
logical similarity between individuals and compare pure neuroanatomic
correlations among cognitive traits. In our empirical study, we employ a
multiscale strategy. Given a set of cognitive traits, we first perform mor-
phometric correlation analysis for each pair of traits to reveal their shared
neuroanatomic correlation at the whole brain (or global) level. After that,
we extend our whole brain concept to regional morphometric correla-
tion and estimate shared neuroanatomic similarity between two cognitive
traits at the regional (or local) level. Our results demonstrate that mor-
phometric correlation can provide insights into shared neuroanatomic
architecture between cognitive traits. Furthermore, we also estimate the
morphometricity of each cognitive trait at both global and local levels,
which can be used to better understand how neuroanatomic changes in-
fluence individuals’ cognitive status.
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1 Introduction

To date, magnetic resonance imaging (MRI) scans have been widely used in many
anatomical studies of the human brain.12,13,15 In brain disorder studies, it is an
important research topic to identify pathological changes in the brain. Most neu-
rodegenerative diseases, such as Alzheimer’s Disease (AD), together with cogni-
tive impairments can be detected through brain atrophy patterns captured by
structural MRI (sMRI). Several automated techniques have been developed to
assess brain atrophy. Voxel-based morphometry (VBM)1,20 is one of the widely
used techniques that provide biologically plausible results by voxel-wise statisti-
cal tests to identify brain anatomy differences between different populations.

Recently, substantial attention has been given to mapping associations between
neuroanatomic features and complex behavioral or cognitive traits in the field of
brain image analysis.15–17,21 The concept of “morphometricity”11 was first pro-
posed to measure the proportion of a trait variance explained by neuroanatomic
features in the brain. Grey-matter correlation3 was introduced to capture the
shared morphometricity of two quantitative traits. Both in the morphometric-
ity11 study and the grey-matter correlation3 study, the whole brain morphology
measurements were used and detailed ROI-level signatures were ignored. Thus,
in this work, we propose an informative metric, named “morphometric corre-
lation” and construct the morphological similarity matrix using the Gaussian
kernel to measure and reveal the shared neuroanatomic signatures across cogni-
tive traits. Furthermore, we employ a multiscale strategy and extend the concept
of morphometricity and morphometric correlation from its original definitions at
the whole brain (or global) level to a more focal (or local) level based on a region
of interest (ROI).

Our contributions can be summarized as follows.

1. Traditional estimates of correlations between two cognitive traits are con-
founded by factors beyond the brain morphology. We introduce morphome-
tric correlation, as a measure of shared neuroanatomic similarity between
two cognitive traits.

2. We propose a non-linear (Gaussian) kernel to construct the similarity re-
lationship matrix. The Gaussian kernel can better capture nonlinear and
multivariate associations between genes and traits.9 We demonstrate in our
empirical study that the proposed Gaussian kernel can capture more neu-
roanatomic signatures than the traditional linear kernel used in grey-matter
correlation.3

3. The previous studies2,3, 11 only applied region of interest (ROI) analysis on
the study of morphometricity. In this work, we perform a multiscale mor-
phometric correlation analysis. Specifically, we extend the whole brain mor-
phometric correlation to the local level and estimate shared neuroanatomic
similarity between two cognitive traits at the regional (or local) level.
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4. Our empirical study has yielded multiple interesting findings. We have ob-
served that the estimated morphometric correlations are stronger than the
direct phenotypic correlations between most cognitive trait pairs, except for
the morphometric correlation between MMSE and ADAS13. The ROI-based
morphometric correlation between MMSE and ADAS13 using our multiscale
strategy can identify multiple ROIs that capture more shared morphologi-
cal signatures than the whole brain. At the same time, we also compute
the whole brain and ROI-based morphometricity. It suggests cognitive traits
MMSE and ADAS13 are most associated with the human brain.

Our study can quantify statistical associations between neuroanatomic features
and cognitive phenotypes at the population level. The algorithm we use is com-
putationally efficient in the way that it estimates the (co)variance parameters
without cross-validation. Our study provides new insights to investigate the as-
sociations between the cognition and brain morphology. Whole brain morpho-
metricity and morphometric correlation are biologically interpretable, and could
be used to conduct morphological and cognitive studies in the future. Further-
more, our proposed multiscale strategy can better discover the ROI-level imaging
cognition associations and reveal the correlation between two cognitive measure-
ments captured by ROI-level brain morphology.

2 Methods

We summarize our overall experimental pipeline in Fig. 1. The pipeline is de-
signed to identify brain imaging cognition associations at multiple scales: one
revealed by the whole brain (global) measurements and the other revealed by
the ROI-based (local) measurements. First, we use Statistical Parametric Map-
ping1,20 to automatically process sMRI scans and obtain the volumetric sum-
mary statistics of each voxel. Voxel-based morphometry (VBM) constitutes a
comprehensive measurement of the structural anatomy. Next, we use Gaussian
kernel9 to calculate the pairwise morphological similarity between individuals
and obtain a morphological relationship matrix (MRM). First of all, we construct
the MRM using all the voxels within the whole brain. After that, we construct
the MRM using all the multivariate voxel measures within each ROI. Finally,
based on global MRM (or local MRM), we estimate whole brain (or ROI-based)
morphometricity and morphometric correlation using the average information
restricted maximum likelihood (REML) algorithm. Our simulation experiment
demonstrates that applying the Gaussian kernel can be less confounded by fac-
tors beyond brain morphology. In the real data experiment, 185,405 voxels are
used to analyze the whole-brain morphometricity and morphometric correlation
across seven clinical cognitive assessment scores in ADNI18,19 dataset. Then, we
extend our method to explore morphometric patterns at the ROI level instead
of the global neuroanatomy by estimating the ROI-based morphometricties and
morphometric correlations. Our results demonstrate the promise of our proposed
method in offering a unique perspective to reveal the underlying neuroanatomic
relationship among cognitive traits.
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Fig. 1. Morphometric Correlation Analysis Pipeline. Structural MRI scans are pro-
cessed to obtain voxel-based morphometry (VBM). We first construct a morphological
relationship matrix (MRM) using voxels within whole brain. Then, we use this MRM to
obtain global morphometricity and morphometric correlation via average information
REML algorithm. After that, we construct several morphological relationship matrices
using voxels within each ROI. Then, we obtain ROI-based morphometricity and mor-
phometric correlation based on these MRMs

2.1 Bivariate Linear Mixed Effect Model.

The morphometricity and morphometric correlation are grounded in the follow-
ing bivariate linear mixed effect (LME) model:7

y1 = Xb1 + a1 + ε1,

y2 = Xb2 + a2 + ε2,
(1)

where yi is an n× 1 vector of a quantitative phenotype trait i with n being the
number of subjects, bi is a s × 1 vector of fixed effect, X is an n × s matrix of
confounding variables with s being the number of confounding variables, ai is
an n × 1 vector of random effects with ai ∼ N(0, Aσ2

ai
) and εi ∼ N(0, Iσ2

εi)
is the error term. A is interpreted as the morphological relationship matrix
(MRM). MRM quantifies the morphological similarity between two individu-
als using brain morphology measurements. We use the Gaussian-type similarity
metric to accurately measure the similarity from sMRI scan morphometry. The
(k, j)-th entry of MRM9,11 is defined as

Akj = exp

(
−
∑
l

(zkl − zjl)
2

ms2l

)
, (2)

where zkl is the (k, l)-th elements of imaging measurements matrix Z, refers to
the morphometry of l-th voxel of k-th subjects, sl is the sample standard error
of the l-th voxel and m is the number of voxels.
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The difference between the morphological relationship matrix and brain related-
ness matrix (BRM) used in grey-matter correlation3 is the method to construct
the relationship matrix. Brain relatedness matrix B use linear kernel to quantify
the similarities between individuals, which is defined as B = 1

m Z̃Z̃T , where m

is the number of measurements, in this case, m is the number of voxels and Z̃ is
a standardized brain imaging measurement matrix.

Formally, the morphometricity of a given trait11 is the proportion of its phe-
notypic variation that can be explained by brain morphology, the variation of
which is captured by MRM. The morphometricity for trait i can be defined as

m2
i =

σ2
ai

σ2
ai

+ σ2
εi

, (3)

where σ2
ai

is the phenotypic variance explained by brain morphology, and σ2
ai
+σ2

εi
is the total phenotypic variance.

Morphometric correlation then measures the degree of brain morphology simi-
larity to which two traits have in common, the correlation of which is captured
by MRM. We define the morphometric correlation as

r2 =
ρ√

σ2
a1
σ2
a2

, (4)

where ρ is the covariance between the brain voxels associations with each trait.

We can therefore obtain morphometricity and morphometric correlation by es-
timating variance and covariance parameters θ = (σ2

a1
, σ2

ε1 , σ
2
a2
, σ2

ε2 , ρ). The es-
timators are usually obtained by maximizing a log-likelihood function.

2.2 Efficient Average Information REML Algorithm

The average information restricted maximum likelihood (REML) algorithm has
been widely used in estimating variance and covariance parameters.3,8, 22 The
average information matrix has been proved8,23 much more computationally effi-
cient than the observed information matrix5,10 and Fisher information matrix.5,6
By assuming bivariate normality of two traits y1, y2, the joint distribution of two
traits can be written as

y =

[
y1
y2

]
∼ N

([
X 0
0 X

] [
b1
b2

]
, V(θ)

)
, (5)

The variance matrix V(θ) is defined as

V(θ) =

[
Aσ2

a1
+ Iσ2

ε1 Aρ
Aρ Aσ2

a2
+ Iσ2

ε2

]
, (6)

where A is the morphological relationship matrix defined in Eq. (2), and I is
an n × n identity matrix. σ2

ai
and σ2

εi are morphometric variance and residual
variance of trait i, respectively, and ρ is the morphometric covariance.
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We obtain the estimators by maximizing the restricted log-likelihood function of
Eq. (5) (ignoring the constant), l = − 1

2

(
log |V(θ)|+ log |XTV(θ)−1X|+ yTPy

)
,

where | · | refers to the determinant of the matrices. And the matrix P is defined
as

P = V(θ)−1 −V(θ)−1X(XTV(θ)−1X)−1XTV(θ)−1. (7)

We use restricted maximum likelihood (REML) rather than maximum likelihood
(ML) due to the unbiasedness of REML estimation of (co)variance parameters
θ̂REML = argmaxθ l.

Next, the score function S(θ) is defined as S(θi) = ∂l
∂θi

= − tr(PV̇i)−yTPV̇iPy
2 ,

where tr(·) is the trace of the matrix and the (i, j)-th entry of average information
matrix4 is defined as

AI(θ)ij =
yTPV̇iPV̇jPy

2
, (8)

where V̇i =
∂V(θ)
∂θi

.

The initial guess of parameters is given by arbitrary values. In the first step,
we update the parameters using the expected maximization (EM) algorithm,
θ
(1)
i ← θ

(0)
i + 1

nθ
2(0)
i S(θ

(0)
i ). Then, our method switches to the average infor-

mation REML algorithm, θ(t+1) ← θ(t) + AI(θ(t))
−1

S(θ(t)), updating param-
eters until the log-likelihood function satisfies the criteria l(t+1) − l(t) ≤ 10−4.
In the iteration process, if any parameters σ2

ai
or σ2

εi escape from the param-
eter space, i.e. if σ2

ai
or σ2

εi is less than 0, it will be set to 10−6 × σ2
yi

. For
parameter ρ, if its absolute value |ρ| larger than

√
σ2
a1
σ2
a2
, it will be set to

ρ = sign(Cov (y1, y2))
√
σ2
a1
σ2
a2
, where sign(·) is the signum function.

Significance testing of morphometricity estimates m2
i can be obtained via the

likelihood ratio test (LRT). Under the null hypothesis (σ2
ai

= 0), the LRT statis-
tic follows 1

2χ
2
0 +

1
2χ

2
1, where χ2

1 is one degree of freedom χ2 distribution and χ2
0

is χ2 distribution with all probability mass at zero. Similarly, the significance
testing for correlation coefficient ρ can also be obtained via LRT.

3 Experimental Results

3.1 Materials

The neuroimaging, demographic, and clinical cognitive assessment data used
in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu).18,19 The
ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). Up-to-date information about
the ADNI is available at www.adni-info.org.
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Structural MRI scans were processed with voxel-based morphometry (VBM) us-
ing the Statistical Parametric Mapping (SPM) software tool.1 All scans were
aligned to a T1-weighted template image, segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) maps, normalized to the
standard Montreal Neurological Institute (MNI) space as 2× 2× 2 mm3 voxels.
The GM maps were extracted and smoothed with an 8mm FWHM kernel, and
analyzed in this study. A total of 185,405 non-background voxels, covering corti-
cal, sub-cortical, and cerebellar regions and measuring GM density, were studied
in this work as whole brain morphology measurements. Based on the AAL at-
las,14 116 ROI-based morphology measurements are constructed by selecting the
voxel-level measurements within each ROI.

Age and gender were used as covariates, following a prior study.11 Our analy-
sis included seven clinical cognitive assessment scores from the QT-PAD project
(http://www.pi4cs.org/qt-pad-challenge). These cognitive scores are Alzheimer’s
Disease Assessment Scale (ADAS13), Clinical Dementia Rating Sum of Boxes
(CDRSB), Rey Auditory Verbal Learning Test (RAVLT.learning), Rey Auditory
Verbal Immediate Test (RAVLT.immediate), Rey Auditory Verbal Forgetting
Test (RAVLT.forgetting), Mini-Mental State Exam (MMSE), and Functional
Activities Questionnaire (FAQ). All subjects with no missing cognitive mea-
sures and sMRI measures of the first visit were included in this study. After
data preprocessing, there are 1,451 participants (n = 1, 451) left, including 821
males and 630 females. The average age of participants is 73.9, and the standard
deviation of age is 7.1.

3.2 Simulation Results

To show the superior performance of the Gaussian kernel, we also implement
the linear kernel for comparison on the simulated data. We first generate 100
pairs of synthetic quantitative traits with joint distribution as shown in Eq. (5).
The brain morphometry matrix Z used in the simulation experiment is the left
hippocampus voxel-based morphometry. Then the Gaussian kernel MRM A can
be obtained by Eq. (2), and the linear kernel BRM B can be obtained by doing
the inner product of normalized Z and ZT . To meet the normality assumption
of the model, we first uniformly simulate σ2

ai
from [0, 1], then let σ2

εi = 1− σ2
ai

,
we also uniformly simulate ρ from [0, 1]. Then we could obtain ground truth
morphometricity and morphometric correlation based on Eq. (3) and Eq. (4)
respectively. Next, pair (a1, a2) is simulated from bivariate normal distribution[

a1
a2

]
∼ N

([
0
0

]
,

[
σ2
a1
A ρA

ρA σ2
a2
A

])
,

εi is simulated from normal distribution N(0, (1− σ2
ai
)In×n), where In×n is the

n by n identity matrix. The confounding variables we select are age and gender
variables. Finally, we have the two traits y1 and y2 by Eq. (1). We then estimate
the variance and covariance parameters of synthetic quantitative traits using
the average information REML algorithm. Once we obtain the estimated σ2

ai
,
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Fig. 2. Comparison of true and estimated morphometricities using different similarity
matrix A. MRM and B. BRM. Comparison of true and estimated morphometric cor-
relation using different similarity matrix C. MRM and D. BRM.

σ2
εi and ρ, the estimated morphometricity and morphometric correlation can be

obtained by Eq. (3) and Eq. (4) respectively.

Fig. 2A and Fig. 2B show the comparisons between estimated morphometrici-
ties using MRM and BRM3 respectively. The estimated morphometricity using
our method shows better concordance with the synthetic morphometricity, in
which the correlation between synthetic and estimated morphometricty is 0.99
(Fig. 2A). The correlation between synthetic and estimated morphometricty us-
ing the linear kernel is 0.96 (Fig. 2B), which indicates linear kernel is also reliable
in practice. The simulation comparison of morphometricity estimations suggests
our method is more accurate than the linear kernel method.

Comparisons of estimated morphometric correlations using different relationship
matrices are shown in Fig. 2C (MRM) and Fig. 2D (BRM)3 respectively. Most of
the Gaussian-based estimated morphometric correlations are concordance with
the synthetic morphometric correlations (the correlation is 0.95 in Fig. 2C).
It indicates that the estimated morphometric correlation is approximately the
same as the truth morphometric correlation. However, Fig. 2D reveals the cor-
relation between ground truth and estimated morphometric correlation is only
0.89, which is less accurate. These two figures show that the Gaussian kernel is
more reliable and accurate in the morphometric correlation analysis. Estimated
morphometric correlation also suggests that morphometric correlation between
two traits is not reliable when the morphometricity of either trait is small.

3.3 Whole Brain Morphometric Correlation and Morphometricity

The traditional phenotypic correlation can be confounded by factors beyond
brain morphology. Simulation results indicate that MRM is much more accu-
rate than BRM when estimating the morphometric correlation. Besides, the
grey-matter correlation strategy3 failed to estimate the brain morphometric cor-
relation between two given cognitive traits in our real experiment. Thus, we
present our estimated pairwise morphometric correlations in Fig. 3(a), which
reveal the shared neuroanatomic similarity between two cognitive traits. The
lower triangle shows the phenotypic correlation between two traits, which is the
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Fig. 3. (a) Morphometric correlation among seven cognitive traits. Upper triangle
shows the morphometric correlation between two traits, while lower triangle is the
phenotypic correlation between pairs of traits. An asterisk indicates significance with
p < 0.05, two asterisks indicate significance with p < 0.01, three asterisks indicates
significance with p < 0.001. (b) Morphometricity estimations of seven cognitive traits
using Gaussian and linear kernel. Error bars indicate SE of the estimates.

Pearson correlation between two traits. The upper triangle is our estimated mor-
phometric correlation. The morphometric correlation and phenotypic correlation
among seven cognitive traits have the same direction, except for the correlation
between MMSE and RAVLT.forgetting. Most of the morphometric correlation
and phenotypic correlation are significant (p < 0.005). The largest positive mor-
phometric correlation is r̂2 = 0.98, which is presented between ADAS13 and
CDRSB, as well as between FAQ and CDRSB. Besides, both the morphometric
correlation between ADAS13 and FAQ and the morphometric correlation be-
tween RAVLT.learning and RAVLT.immediate are large (with r̂2 = 0.97). They
are larger than their underlying phenotypic correlation. The largest negative
correlation is founded between FAQ and RAVLT.learning (r̂2 = −0.85), whose
corresponding phenotypic correlation is only −0.44.

The morphometric correlation between ADAS13 and MMSE (−0.4) is not as
strong as their phenotypic correlation (−0.74). First note that, the negative
correlation is reasonable, since the lower scores of MMSE indicating of poorer
performance and greater cognitive impairment, while higher scores of ADAS13
reflect poorer performance. Next, this result indicates that the shared brain
morphology variants of two traits are able to weaker than their shared phenotypic
variants. Finally, we notice that the detailed regional associations can be ignored
when using whole brain morphology. This evidence motivates our ROI-based
morphometric correlation study.

Simulation results indicate the Gaussian kernel is slightly more accurate than
the linear kernel. The results of whole brain morphometricity estimations again
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Fig. 4. ROI-based morphometric correlation between ADAS13 and MMSE. The ROIs
are those most related to AD.

demonstrate that the Gaussian kernel can capture more neuroanatomic signa-
tures than the linear kernel. We compare brain morphometricity of seven cog-
nitive traits using Gaussian kernel or linear kernel in Fig. 3(b). These cognitive
traits are widely used in measuring cognition impairment and memory loss. The
morphometricity results estimated by the Gaussian kernel are much higher than
that used by the linear kernel, especially for traits MMSE and ADAS13. All the
cognitive traits are statistically significantly associated with whole brain mor-
phology (all the p-value are less than 0.005). The Gaussian-based MRM results
reveal that MMSE and ADAS13 are substantially morphometric (with point
estimates of 0.98 and 0.91 respectively), suggesting that these two cognitive
traits are associated with substantial anatomical signatures. However, morpho-
metricity values of CDRSB, RAVLT.immediate, FAQ, and RAVLT.learning are
moderate, all greater than 0.4. Finally, the estimated morphometricity value
of RAVLT.forgetting is only 0.18, which indicates only 18% of variation of
RAVLT.forgetting traits could be explained by brain morphometry.

In practice, the MMSE score is frequently used for Alzheimer’s disease drug
studies and the ADAS13 score evaluates memory, reasoning, and language. Our
method also reveals that these two traits are associated with substantial anatom-
ical signatures.

3.4 Brain ROI-based Morphometric Correlation and
Morphometricity

To reveal ignored morphometric correlations at the regional level, we apply the
multiscale strategy by using the voxels within each ROI instead of the whole
brain as morphology measurements. Then, we calculate the local (regional) MRM
and the variation that could be captured by the local MRM. The extension is
important since the spatial association between brain morphology and cogni-
tive traits can not be revealed when using whole brain morphometry. We choose
and analyze 14 regions that are most related to AD and reveal the ROI-based
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Fig. 5. ROI-based morphometricity of A. ADAS13 and B. MMSE.

morphometric correlation between MMSE and ADAS13. Fig. 4 shows the spa-
tial map and values of ROI level morphometric correlation between MMSE and
ADAS13. The ROI level morphometric correlation can be larger than that using
whole brain morphometry. The shared morphological architectures captured by
all AD related regions (expect region Amygdala_R) are larger than that captured
by the whole brain (-0.40). Especially, regions Lingual_R, Temporal_Inf_R,
Temporal_Inf_L, and Lingual_L show the morphometric correlation between
two traits are even larger than their phenotypic correlation (-0.74). This find-
ing suggests that some regions are stronger to capture the association between
two cognitive traits than the whole brain. Fig. 4 also indicates most regions in
the right brain can capture more similarity of two traits than regions in the
left brain. This evidence is promising and has an important impact on revealing
structure changes within ROIs from an evolutionary morphological perspective.

We have shown in Fig. 3(b), MMSE and ADAS13 have substantial neuroanatomic
signatures associated with brain morphology. Then, we extend our analysis to
the ROI-level morphometricity of ADAS13 and MMSE using multiscale strat-
egy. At this time, we estimate associations between 116 regions and cognitive
traits. The regional level morphometricity of these two cognitive traits is shown
as spatial morphometricity heatmap in Fig. 5. In contrast to the whole brain
morphometricity of ADAS13 cognitive trait (0.91), the top 5 ROIs which are
identified as having substantial association with the ADAS13 are Pallidum_R
(0.67), Hippocampus_L (0.66), Amygdala_L (0.65), ParaHippocampal_L (0.61),
Hippocampus_R (0.55). For MMSE, the top 5 ROIs are Vermis_1_2 (0.93),
Pallidum_R (0.93), Vermis_10 (0.91), Hippocampus_R (0.91), Amygdala_L (0.90).
Both ADAS13 and MMSE are highly associated with regions Hippocampus and
Amygdala, which suggests our multiscale strategy can provide strong evidence
in prioritizing regions that are more related to the given phenotype. Thus, our
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regional morphometricity strategy bridges the gap that regional information is
ignored by whole brain morphometricity.

The spatial morphometricity map also reveals the nonsymmetric distributed
morphometricity, suggesting that the variation of cognitive scores captured by
ROIs are not equal for left and right regions. The ROI level morphometricity
analysis is able to identify relevant neuroimaging biomarkers and to explain brain
structure variants related to cognitive variants.

4 Conclusion and Discussions

In this study, we have introduced a novel concept “morphometric correlation” as
a measure of the morphological signatures shared by complex traits. To exclude
the effect caused by factors other than brain morphology, we have adopted a
Gaussian kernel to construct the relationship matrix and average information
REML algorithm to obtain unbiased estimates of the morphometric correlation.
The estimated morphometric correlation is able to quantify the neuroanatomic
aggregate features of pairs of quantitative traits. The superiority of our method
has been demonstrated by both simulation results and the applications of esti-
mating morphometric correlations among cognitive traits. We then use a multi-
scale strategy to extend the concept to the local level by using the voxels within
each ROI.

We have observed that the estimated morphometric correlations are stronger
than the pure phenotypic correlations between most pairs of cognitive traits.
Both the morphometric correlation of ADAS13 and CDRSB and the morphome-
tric correlation of CDRSB and FAQ are significantly high (r̂2 = 0.97, p < 0.001).
The morphometric correlation of FAQ and RAVLT.learning is significantly low
(r̂2 = −0.85, p < 0.001). Although the whole brain morphometric correlation
between MMSE and ADAS13 is not as strong as the corresponding phenotypic
correlations, the ROI-based morphometric correlation identifies some ROIs that
capture more shared morphological signatures than the whole brain. The priori-
tized ROIs may provide new insights for future brain morphology and cognition
studies.

We have also estimated the morphometricity of cognitive traits, which is the
proportion of the phenotypic variation captured by the brain morphology. In
the application to the whole brain morphometricity analysis, our method was
able to accurately reveal the variation explained by brain morphology. The cog-
nitive traits MMSE and ADAS13 are substantially morphometric. However, the
ROI-based morphometricity of MMSE is moderate, while the ROI-based mor-
phometricity of ADAS13 is modest. The ROI level morphometricity analysis
provides important information for understanding brain structural variation re-
lated to cognitive variation and can potentially help characterize the progression
of AD.



Multiscale Morphometric Correlation Analysis 13

References
1. Ashburner, J., Friston, K.J.: Voxel-based morphometry—the methods. Neuroimage

11(6), 805–821 (2000)
2. Bao, J., Wen, Z., Kim, M., Saykin, A.J., Thompson, P.M., Zhao, Y., Shen, L.,

Alzheimer’s Disease Neuroimaging, I.: Identifying imaging genetic associations via
regional morphometricity estimation. Pac Symp Biocomput 27, 97–108 (2022)

3. Couvy-Duchesne, B., Strike, L.T., Zhang, F., Holtz, Y., Zheng, Z., Kemper, K.E.,
Yengo, L., Colliot, O., Wright, M.J., Wray, N.R., et al.: A unified framework for
association and prediction from vertex-wise grey-matter structure. Human Brain
Mapping 41(14), 4062–4076 (2020)

4. Gilmour, A.R., Thompson, R., Cullis, B.R.: Average information reml: an efficient
algorithm for variance parameter estimation in linear mixed models. Biometrics
pp. 1440–1450 (1995)

5. Harville, D.A.: Maximum likelihood approaches to variance component estimation
and to related problems. Journal of the American statistical association 72(358),
320–338 (1977)

6. Jennrich, R.I., Sampson, P.: Newton-raphson and related algorithms for maximum
likelihood variance component estimation. Technometrics 18(1), 11–17 (1976)

7. Laird, N.M., Ware, J.H.: Random-effects models for longitudinal data. Biometrics
pp. 963–974 (1982)

8. Lee, S.H., Van Der Werf, J.H.: An efficient variance component approach imple-
menting an average information reml suitable for combined ld and linkage mapping
with a general complex pedigree. Genetics Selection Evolution 38(1), 1–19 (2006)

9. Liu, D., Lin, X., Ghosh, D.: Semiparametric regression of multidimensional genetic
pathway data: Least-squares kernel machines and linear mixed models. Biometrics
63(4), 1079–1088 (2007)

10. Meyer, K., Smith, S.: Restricted maximum likelihood estimation for animal models
using derivatives of the likelihood. Genetics Selection Evolution 28(1), 23–49 (1996)

11. Sabuncu, M.R., Ge, T., Holmes, A.J., et al.: Morphometricity as a measure of
the neuroanatomical signature of a trait. Proceedings of the National Academy of
Sciences 113(39), E5749–E5756 (2016)

12. Shen, L., Kim, S., Qi, Y., Inlow, M., Swaminathan, S., Nho, K., Wan, J., Risacher,
S.L., Shaw, L.M., Trojanowski, J.Q., Weiner, M.W., Saykin, A.J., ADNI: Identify-
ing neuroimaging and proteomic biomarkers for MCI and AD via the elastic net.
Multimodal Brain Image Analysis 7012, 27–34 (2011)

13. Shen, L., Thompson, P.M.: Brain imaging genomics: Integrated analysis and ma-
chine learning. Proceedings of the IEEE 108(1), 125–162 (2020)

14. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations
in spm using a macroscopic anatomical parcellation of the mni mri single-subject
brain. Neuroimage 15(1), 273–289 (2002)

15. Wan, J., Zhang, Z., Rao, B.D., Fang, S., Yan, J., Saykin, A.J., Shen, L.: Iden-
tifying the neuroanatomical basis of cognitive impairment in alzheimer’s disease
by correlation- and nonlinearity-aware sparse bayesian learning. IEEE Trans Med
Imaging 33(7), 1475–87 (2014)

16. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L., Adni: Identifying
ad-sensitive and cognition-relevant imaging biomarkers via joint classification and
regression. Med Image Comput Comput Assist Interv 14(Pt 3), 115–23 (2011)

17. Wang, X., Feng, Y., Tong, B., Bao, J., Ritchie, M.D., Saykin, A.J., Moore, J.H.,
Urbanowicz, R., Shen, L.: Exploring automated machine learning for cognitive



14 Z. Wen et al.

outcome prediction from multimodal brain imaging using streamline. AMIA Jt
Summits Transl Sci Proc 2023, 544–553 (2023)

18. Weiner, M.W., Veitch, D.P., Aisen, P.S., et al.: The alzheimer’s disease neuroimag-
ing initiative: a review of papers published since its inception. Alzheimers Dement
9(5), e111–94 (2013)

19. Weiner, M.W., Veitch, D.P., Aisen, P.S., et al.: Recent publications from the
Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved
AD clinical trials. Alzheimer’s & Dementia 13(4), e1–e85 (2017)

20. Wright, I., McGuire, P., Poline, J.B., Travere, J., Murray, R., Frith, C., Frackowiak,
R., Friston, K.: A voxel-based method for the statistical analysis of gray and white
matter density applied to schizophrenia. Neuroimage 2(4), 244–252 (1995)

21. Yan, J., Li, T., Wang, H., Huang, H., Wan, J., Nho, K., Kim, S., Risacher, S.L.,
Saykin, A.J., Shen, L., Alzheimer’s Disease Neuroimaging Initiative: Cortical sur-
face biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiol
Aging 36 Suppl 1, S185–93 (2015)

22. Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M.: Gcta: a tool for genome-wide
complex trait analysis. The American Journal of Human Genetics 88(1), 76–82
(2011)

23. Zhu, S., Wathen, A.J.: Essential formulae for restricted maximum likelihood
and its derivatives associated with the linear mixed models. arXiv preprint
arXiv:1805.05188 (2018)


