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Abstract. Alzheimer’s disease (AD) leads to irreversible cognitive de-
cline, with Mild Cognitive Impairment (MCI) as its prodromal stage.
Early detection of AD and related dementia is crucial for timely treat-
ment and slowing disease progression. However, classifying cognitive nor-
mal (CN), MCI, and AD subjects using machine learning models faces
class imbalance, necessitating the use of balanced accuracy as a suit-
able metric. To enhance model performance and balanced accuracy, we
introduce a novel method called VS-Opt-Net. This approach incorpo-
rates the recently developed vector-scaling (VS) loss into a machine
learning pipeline named STREAMLINE. Moreover, it employs Bayesian
optimization for hyperparameter learning of both the model and loss
function. VS-Opt-Net not only amplifies the contribution of minority
examples in proportion to the imbalance level but also addresses the
challenge of generalization in training deep networks. In our empirical
study, we use MRI-based brain regional measurements as features to
conduct the CN vs MCI and AD vs MCI binary classifications. We com-
pare the balanced accuracy of our model with other machine learning
models and deep neural network loss functions that also employ class-
balanced strategies. Our findings demonstrate that after hyperparameter
optimization, the deep neural network using the VS loss function sub-
stantially improves balanced accuracy. It also surpasses other models in
performance on the AD dataset. Moreover, our feature importance anal-
ysis highlights VS-Opt-Net’s ability to elucidate biomarker differences
across dementia stages.
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Fig. 1. VS-Opt-Net integrates the VS loss [10] into the STREAMLINE [23] pipeline
and employs Bayesian optimization to adaptively learn hyperparameters for both the
model and loss function. In Step 3, the VS enlarges the margin of the minority class
(m1) relative to the majority class’s margin (m2).

1 Introduction

Alzheimer’s disease (AD) is a degenerative neurological disorder, ranked as the
fifth-leading cause of death among Americans aged 65 and older [2]. It leads to
irreversible cognitive decline, characterized by gradual cognitive and behavioral
impairments [24]. Mild Cognitive Impairment (MCI) is a significant precursor to
AD, emphasizing the need for early detection for prompt treatment and disease
management [18]. However, distinguishing MCI from cognitively normal (CN)
or AD subjects is challenging due to subtle brain changes observed in MCI.

Numerous machine learning algorithms excel in detecting MCI [9,11,20].
However, health datasets, including MCI detection, commonly face imbalanced
class distribution [8]. For instance, the MRI data set in Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [26,27] contains approximately twice as many MCI
subjects as CN or AD subjects. Class imbalance can lead to the underrepre-
sentation of minorities, even with highly accurate models. Techniques like data
resampling, data augmentation, and class re-weighting have been used to address
class imbalance in MCI classification tasks [6,8,16,17,19,29]. However, these ap-
proaches may not be as effective for overparameterized models, such as deep
neural networks (DNNs), which can suffer from poor generalization [3,10,14,21].
Consequently, such models may overfit the training data, leading to discrepancies
in performance when applied to unseen test data.

In light of the challenges faced by existing AD-related classification meth-
ods in overparameterized models, we present a novel Bayesian framework that
achieves informative predictions for imbalanced data and minimizes generaliza-
tion error. Our contributions can be summarized as follows:
• A New Method: VS-Opt-Net (Sec. 2). We propose VS-Opt-Net, which
integrates the vector-scaling loss [10] into the STREAMLINE machine learning
pipeline [22,23,25]. Utilizing Bayesian optimization, we adaptively learn hyperpa-
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rameters for both the model and loss function. VS-Opt-Net not only enhances the
contribution of minority examples in proportion to the imbalance level but also
addresses the challenge of generalization in DNNs. For a summarized overview
of VS-Opt-Net, refer to Figure 1.
• Prediction Performance Analysis (Sec. 3). Using MRI-based brain re-
gional measurements, we conduct CN vs MCI and AD vs MCI binary classifi-
cations, comparing the balanced accuracy with other machine learning models
employing class-balanced strategies. The results demonstrate VS-Opt-Net’s su-
periority in the AD dataset after hyperparameter optimization.
• Feature Importance Analysis (Sec. 3). Besides evaluating the models’
classification performance, we conduct a comparative study on the features’ im-
pact on prediction. Our findings showcase VS-Opt-Net’s explanatory ability in
detecting biomarker differences at various dementia stages.

2 Proposed Method

In this section, we cover classification basics, outline the VS loss, explore the
STREAMLINE pipeline, and introduce our method, VS-Opt-Net.

Balanced Accuracy and VS Loss. Let (X,Y ) be a joint random variable
following an underlying distribution P(X,Y ), where X ∈ X ⊂ Rd is the input,
and Y ∈ Y = {1, . . . ,K} is the label. Suppose we have a dataset S = (xi, yi)

n
i=1

sampled i.i.d. from a distribution P with input space X and K classes. Let
f : X → RK be a model that outputs a distribution over classes and let ŷf =
argmaxk∈[K] fk(x) denote the predicted output. The balanced accuracy (BACC)
is the average of the class-conditional classification accuracy:

BACC :=
1

K

K∑
k=1

PPk

[
y = ŷf (x)

]
. (BACC)

Our approach initially focuses on the VS loss, but it can accommodate other
loss functions as well. We provide a detailed description of the VS loss and
refer readers to Table 1 for SOTA re-weighting methods designed for training on
imbalanced data with distribution shifts. The VS loss [10] unifies multiplicative
shift [28], additive shift [14], and loss re-weighting to enhance BACC. For any
(x, y) ∈ X × Y , it has the following form:

ℓVS(y, f(x)) := −wy log

(
elyf(x)y+∆y∑k
j=1 e

ljf(x)j+∆j

)
. (VS)

Here, wj represents the classical weighting term, and lj and ∆j are additive and
multiplicative logit adjustments. We work with K = 2 and aim to find logit pa-
rameters (∆j , lj) that optimize BACC. When variables l and ∆ are completely
unknown and require adaptive optimization based on the model and datasets, we
refer to VS as the VS-Opt loss function. The impact of the VS loss on improving
balanced accuracy is well-studied in [10,12,21].

Li Shen
Highlight
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STREAMLINE. Simple transparent end-to-end automated machine learning
(STREAMLINE) [23] is a pipeline that analyzes datasets with various models
through hyperparameter optimization. It serves the specific purpose of compar-
ing performance across datasets, machine learning algorithms, and other Au-
tomated machine learning (AutoML) tools. It stands out from other AutoML
tools due to its fully transparent and consistent baseline for comparison. This is
achieved through a well-designed series of pipeline elements, encompassing ex-
ploratory analysis, basic data cleaning, cross-validation partitioning, data scal-
ing and imputation, filter-based feature importance estimation, collective feature
selection, ML modeling with hyperparameter optimization over 15 established
algorithms, evaluation across 16 classification metrics, model feature importance
estimation, statistical significance comparisons, and automatic exporting of all
results, plots, a summary report, and models. These features allow for easy ap-
plication to replication data and enable users to make informed decisions based
on the generated results.

VS-Opt-Net: Vector Scaling Loss Optimized for Deep Networks. The
following steps introduce VS-Opt-Net, a Bayesian approach for optimizing (VS)
loss for DNNs. Figure 1 provides a summary of VS-Opt-Net.
• Step 1. We use STREAMLINE for data preprocessing, including train-test
split with stratified sampling for five-fold CV. We also impute missing values
and scale features to the standard normal distribution for each dataset.
• Step 2. We integrate feedforward DNNs and class-balanced DNNs models
into STREAMLINE using skorch, a PyTorch integration tool with sklearn.
For DNNs models, we search for optimal structures by setting hyperparameters,
including the number of layers and units, activation function, dropout rate, batch
normalization usage, as well as optimization configurations such as the function,
learning rate, batch size, and epochs. The hyperparameter ranges remain con-
sistent across different models and classification tasks.
• Step 3. We integrate VS loss into STREAMLINE for DNNs adaptation. We
establish decision boundaries for hyperparameters (l,∆) in VS loss, as well as
for model parameters. We optimize τ ∈ [−1, 2] and γ ∈ [0, 0.5] for SOTA losses
(see, Table 1), and l ∈ [−2, 2] and ∆ ∈ [0, 1.5] for VS-Opt-Net.
• Step 4. We employ Optuna [1], an open-source Python library used for hy-
perparameter optimization and built on top of the TPE (Tree-structured Parzen
Estimator) algorithm, which is a Bayesian optimization method. We conduct a
three-fold CV on the training set, performing a 100-trial Bayesian sweep to op-
timize both model and loss hyperparameters4. For the existing models, we set
‘class_weight’ to ‘None’ and ‘balanced’ to control the use of weights.
• Step 5. We report BACC for evaluating imbalanced classification perfor-
mance. We use SHAP (SHapley Additive exPlanations) [13] with KernelEx-
plainer to assess feature importance across different models, and top features
are visualized by the bar plots and brain region plots.

4 For existing machine learning models, optimized parameters can be found in https:
//github.com/UrbsLab/STREAMLINE

https://github.com/UrbsLab/STREAMLINE
https://github.com/UrbsLab/STREAMLINE
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Table 1. Fixed and tunable hyperparameters for parametric CE losses. Nk denotes
sample numbers for class k, and Nmin and Nmax represent the minimum and maximum
sample numbers across all classes; πk indicates the prior probability of class k.

Loss Additive Multiplicative Optimized
Hyperparameter

LDAM [3] l = − 1
2
(Nmin/Nk)

1/4 - -

LA [14] l = τ log(πk) - τ

CDT [28] - ∆ = (Nk/Nmax)
γ γ

VS [10] l = τ log(πk) ∆ = (Nk/Nmax)
γ τ, γ

l-Opt l - l

∆-Opt - ∆ ∆

VS-Opt l ∆ l,∆

3 Experiments

Datasets. Data for this study were sourced from the ADNI database [26,27],
which aims to comprehensively assess the progression of MCI and AD through
a combination of serial MRI, PET, other biological markers, and clinical eval-
uations. Participants granted written consent, and study protocols gained ap-
proval from respective Institutional Review Boards (IRBs)5. We collected cross-
sectional Freesurfer MRI data from the ADNI site, merging ADNI-1/GO/2
datasets. From the total 1,470 participants (365 CN, 800 MCI, and 305 AD
subjects), we selected 317 regional MRI metrics as features. These encompass
cortical volume (CV), white matter volume (WMV), surface area (SA), aver-
age cortical thickness (TA), and cortical thickness variability (TSD). With these
MRI measures as predictors, we performed two binary classifications with no-
ticeable class imbalance: CN vs MCI and AD vs MCI.

Baselines. In addition to the deep neural network, we have chosen five com-
monly used classification models from STREAMLINE to serve as baseline mod-
els. These include elastic net, logistic regression, decision tree, random forest,
and support vector machine. For all six models, the weight for the k–th class
is calculated as wk = π−1

k = N/(K · Nk), where N is the total number of
samples, K represents the number of classes (2 for binary classification), Nk is
the number of samples for class k, and πk is the prior probability of class k.
We conducted a comparison of DNNs models employing various class-balanced
loss functions. Besides the traditional cross-entropy (CE) and weighted cross-
entropy (wCE) losses, we evaluated our model against state-of-the-art (SOTA)
losses listed in Table 1. These losses incorporate at least one logit adjustment
based on class distributions. For models with LA, CDT, and VS loss, we uti-
lized Bayesian optimization to select optimal τ and γ values, which determined
5 For the latest information, visit www.adni-info.org.

www.adni-info.org
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Table 2. Comparison of BACC (mean ± std) for two binary classification tasks us-
ing wCE losses with optimized weights wy and default weight (wy = 1). The table
emphasizes that re-weighting alone is ineffective for deep neural networks.

CN VS MCI AD VS MCI

Model wy = 1 Optimzied wy wy = 1 Optimzied wy

Elastic Net 0.580±0.011 0.650±0.026 0.652±0.040 0.732±0.019

Logistic Regression 0.592±0.037 0.657±0.042 0.738±0.034 0.742±0.038

Decision Tree 0.569±0.020 0.612±0.027 0.628±0.018 0.679±0.032

Random Forest 0.555±0.018 0.639±0.015 0.657±0.023 0.724±0.024

Support Vector Machine 0.569±0.010 0.650±0.035 0.641±0.014 0.744±0.042

Deep Neural Network 0.606±0.009 0.633±0.032 0.700±0.055 0.709±0.023

Table 3. Balanced accuracy BACC for classification tasks using DNNs models with
different loss functions. Cross-validation results are shown as mean±std in each cell.
We tuned the τ and γ in LA, CDT, and VS losses to find l and ∆, following parameters
in Table 1. For l-Opt, ∆-Opt, and VS-Opt losses, we adaptively optimized l and ∆.

Loss CN vs MCI AD vs MCI

CE 0.606±0.009 0.700±0.055

wCE (wy) 0.633±0.032 0.709±0.023

LDAM (l) 0.625±0.033 0.726±0.046

LA (l) 0.611±0.037 0.733±0.028

CDT (∆) 0.608±0.022 0.715±0.033

VS (l +∆) 0.646±0.035 0.745±0.039

l-Opt 0.641±0.029 0.738±0.037

∆-Opt 0.608±0.017 0.727±0.043

VS-Opt 0.669±0.048 0.754±0.026

l and ∆. Additionally, we introduced two novel approaches: l-Opt and ∆-Opt
loss, where we directly optimized logit adjustments l and ∆ through Bayesian
optimization without class distribution constraints. Furthermore, our proposed
method, VS-Opt-Net, optimizes l and ∆ together in the VS-Opt loss function.

Prediction Performance Results. We evaluated the prediction performance
of various machine learning models for the CN vs MCI and AD vs MCI clas-
sification tasks (Table 2). BACC was used to calculate the mean and standard
deviation. When comparing models with and without class-balanced weights,
we observed that all models showed improvement in BACC after incorporating
the weight. However, it is worth noting that the weighted deep neural network
underperformed compared to the weighted logistic regression in the CN vs MCI
classification, and the weighted SVM in the AD vs MCI classification.

Table 3 compares DNNs models using different class-balanced loss functions.
Our numerical analysis shows that models incorporating both additive and mul-
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(a) (b)

(c) (d)

CN vs MCI

AD vs MCI

DNN with CE Loss

DNN with CE Loss VS-Opt-Net

VS-Opt-Net

Fig. 2. SHAP feature importance for DNNs with cross-entropy loss (a,c) and VS-Opt-
Net (b,d). (a-b) Top regions for CN vs MCI classification. (c-d) Top regions for AD vs
MCI classification. Each figure displays the top 10 features for each case.

tiplicative logit adjustments achieve higher BACC scores than those with only
one adjustment, consistent with previous findings in image recognition [10]. Ad-
ditionally, directly optimizing adjustment parameters with VS-Opt leads to im-
proved prediction performance compared to baselines, enabling our approach to
outperform all baseline models.
Feature Importance and Top-Ranked Regions. We analyze feature con-
tributions and assess model classification performance. Figure 2 depicts SHAP
feature importance for DNNs with CE and VS-Opt-Net, while Fig. 3 reveals
significant brain regions by volume (cortical/white matter), cortical thickness
(average/standard deviation), and surface area for VS-Opt-Net. Notably, top-
ranking brain regions exhibit similarity between the models, with some regions
notably more influential in our model. Cortical/white matter volume and av-
erage cortical thickness hold prominent predictive power. Noteworthy features
distinguishing CN and MCI encompass hippocampus and right entorhinal cor-
tex volumes. Our model emphasizes the volume of the left entorhinal and left
inferior temporal gyri, along with the average thickness of the left middle tem-
poral gyrus—features given less priority by traditional DNNs. For AD vs MCI,
key contributors are average thickness of the left entorhinal and volume of the
left inferior lateral ventricle. Additionally, contributions from the left entorhinal
area and amygdala volumes increase.

The volume reductions of the entorhinal cortex and hippocampus are biomark-
ers of early Alzheimer’s disease. According to prior studies, CN and MCI can be
differentiated more accurately using hippocampal volume than lateral neocorti-
cal measures [4], which aligns with our feature importance analysis. Additionally,
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(a)  Volume (b)  Thickness 

(c)  Surface Area (d) All Measurements

CN vs MCI

AD vs MCI
(e)  Volume (f)  Thickness 

(g)  Surface Area (h) All Measurements

Fig. 3. Brain visualization of the leading 40 features for VS-Opt-Net. Colormap indi-
cates SHAP feature importance; darker shades signify higher significance. Panels (a-d)
reveal top features for CN vs MCI classification, while panels (e-h) showcase prime
features for AD vs MCI classification. Notably, (a-c) and (e-g) spotlight regions of
heightened importance in terms of volume, thickness, and surface area measures for
both prediction categories. Panel (d) consolidates (a-c), while panel (h) amalgamates
(e-g), displaying the highest importance value when a region encompasses multiple
measurements.

studies have found a significant brain atrophy and thickness decrease in the in-
ferior and middle temporal gyri for MCI patients compared with healthy control
[7]. Other studies have reported that AD vs MCI identification is improved by
using the entorhinal cortex rather than the hippocampus [5] and the outward
deformation of the lateral ventricles. Besides, there is a significant atrophy for
the left amygdala when comparing MCI and AD subjects, which is related to
the AD severity [15]. The above findings demonstrate the explanatory ability for
our model to differentiate between different stages of dementia.

4 Conclusion

We introduced VS-Opt-Net, a novel model integrating the VS loss into STREAM-
LINE with Bayesian optimization for hyperparameter tuning. It effectively ad-
dressed class imbalance and generalization challenges by enhancing the contri-
bution of minority examples. In binary classifications of CN vs MCI and AD vs
MCI using MRI-based brain regional measurements, VS-Opt-Net significantly
improved BACC, outperforming other models in the AD dataset. Our feature
importance analysis revealed successful biomarker explanation at different de-
mentia stages.
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