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In this paper, we study a safe control design for dynamical systems in the presence of uncertainty in a
dynamical environment. The worst-case error approach is considered to formulate robust Control Barrier
Functions (CBFs) in an optimization-based control synthesis framework. It is first shown that environ-
mentally robust CBF formulations result in second-order cone programs (SOCPs). Then, a novel scheme is
presented to formulate robust CBFs which takes the nominally safe control as its desired control input in
optimization-based control design and then tries to minimally modify it whenever the robust CBF con-
straint is violated. This proposed scheme leads to quadratic programs (QPs) which can be easily solved.
Finally, the effectiveness of the proposed approach is demonstrated on an adaptive cruise control exam-
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1. Introduction

Control Barrier Functions (CBFs) have emerged as a powerful
means for guaranteeing control system safety in the form of set in-
variance [3]. CBFs are often used with Control Lyapunov Functions
(CLFs) to simultaneously ensure stability and safety of the system
along with state and input constraints [4]. This approach has been
successfully implemented in numerous applications such as mobile
robots [20], robotic manipulators [15], robotic swarms [33], aerial
vehicles, racing drones [30], and spacecraft docking [7]. CBFs have
also been extensively used in the realm of the autonomous vehi-
cles to generate a safe control input in problems such as cruise
control, on-ramp merging [3,35], signal free intersections [37], and
the lane change [12], to name a few.

One of the challenges in designing a control input using CBFs is
that controllers rely on models or measurements that are assumed
to be perfect and free of uncertainty. However, models or mea-
surements are usually uncertain or imperfect and this can result
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in an unsafe behaviour if not accounted for properly. This prob-
lem has been mainly addressed through the development of ro-
bust CBFs. However, there exist different perspectives in consider-
ing robustness in safety-critical control using CBFs. Generally, the
proposed approaches in the literature consider either input distur-
bances [2,8,13,17,22,23,28,31,32], dynamic model mismatch [25,27],
or measurement errors [14,16,18,19,38]. While the aforementioned
works study robustness of CBF-based controllers, they do not take
into account that the environment is dynamically changing and
only consider a quasi-static environment. A good example of “envi-
ronment” is the other agents’ in a multi-agent system with which
the ego-agent is interacting, e.g., in the cruise control problem
[3] the lead vehicle can be considered as the environment.

There exist limited works that consider the effect of a dy-
namic environment in the design of a safe control input via CBFs
[11,21,24,26,34]. In [21,34], the effect of a dynamic environment is
considered through the notion of time-varying CBFs in which the
time-derivative of the CBF is also added to the CBF constraint. Even
though the authors in Chalaki and Malikopoulos [11], He et al. [21],
Wu and Sreenath [34] have taken a dynamic environment into
consideration, they do not study robustness and assume that per-
fect information on the environment is available. In [24], safe navi-
gation in unknown environments is studied, where on-board range
sensing is utilized to construct CBFs online. In the recent work
[26], the notion of Environmental Control Barrier Functions (ECBFs)
has been introduced and robust ECBFs against errors in the en-
vironment, in particular a time-delay, are investigated. In this pa-
per, inspired by [26], we study the notion of Environmentally Robust
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Control Barrier Function (ER-CBFs). Similar to [26], worst-case error-
based ER-CBFs are considered, however, unlike [26] (i) the Lipschitz
constant is not used to define the worst-case error in an ER-CBF
constraint and (ii) it is not assumed that the dynamics of the envi-
ronment are known. Moreover, the original quadratic program (QP)
for the control synthesis is converted to a second-order cone pro-
gram (SOCP). Finally, we propose our main robust control scheme,
by exploiting the closed-form solution of the original QP.

In summary, the contributions of this paper are as follows. An
ER-CBF is introduced based on errors in the nominal CBF resulting
from errors in a dynamically changing environment. This ER-CBF
contains the norm control input (which is the optimization deci-
sion variable) and leads to the formulation of a control synthesis
problem as a SOCP. Secondly, the nominally safe input obtained
from a nominal CBF is considered as the desired input for the SOCP
and a new ER-CBF is introduced which does not depend on the
norm of the control input, hence the control synthesis problem
leads to solving a QP. Then, the explicit solution to this QP is ob-
tained. Finally, the effectiveness of the presented results is demon-
strated in an adaptive cruise control example.

The rest of the paper is organized as follows. Preliminaries on
CBFs and CLFs are reviewed in Section 2. The problem formulation
is discussed in Section 3. Main results are presented in Section 4.
An adaptive cruise control example is visited in Section 5. Numer-
ical simulations on the cruise control example are presented in
Section 6. Finally, concluding remarks are provided in the last sec-
tion.

2. Preliminaries

Consider a nonlinear control affine system

x=f(x)+gx®)u, (1)

where x € X ¢ R", u € R™ are state and control input, respectively,
and f:R" — R" and g:R"™ — R™™M are locally Lipschitz continu-
ous functions. To establish exponential stability of system (1) with-
out having to define an explicit feedback controller, the notion of
a Control Lyapunov Function (CLF) is introduced.

Definition 1 (Control Lyapunov Function (CLF) [5]). A continuously
differentiable function V : R" — R is called a Control Lyapunov
Function (CLF) for system (1) if there exist positive constants cq,
¢y, and c3 such that for Vx € x,

crllxll? < V() < calxl|?, (2)

irulf[LfV(x) +LVx)u+cVx)] <0, (3)

where LV (x) £ ViV (x)f(x) and LgV(x) £ ViV (x)g(x) are Lie
derivatives of V(x) along the vector fields f and g, respectively.

Given a stabilizing CLF V(x) as in Definition 1, any Lipschitz
continuous controller u(t) € R™ that satisfies (3), Vt > 0 exponen-
tially stabilizes system (1) to the origin.

For the safe operation of system (1), a safe set Cc X c R" is
defined as a superlevel set of a differentiable function h: R" x
[0, +0) — R, i.e.

C={xeR":h(xt)>0}. (4)

To ensure that system (1) remains in the safety set C, the notion of
Control Barrier Function (CBF) can be defined as follows, in a similar
manner as the concept of CLF:

Definition 2 (Control Barrier Function (CBF) [21]). Given the set
C defined in (4), a continuously differentiable function h:R" x
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[0, +00) — R is called as a control barrier function (CBF) for sys-
tem (1), if there exists an extended class K., function' « for all
X € X such that

sup [ah(x,t)

i +Lih(x,t) + Lsh(x, t)u + a(h(x, t))i| >0 (5)
where Leh(x,t) £ Vih(x,t)f(x) and Lgh(x,t) £ Vxh(x, t)g(x) are
Lie derivatives of h(x,t) along the vector fields f and g, respec-
tively.

Notice that CBFs used in this paper are time-varying functions.
When h(x, t) is time-invariant, it is denoted as h(x) and the condi-
tion (5) is simplified [5] as follows:

sup [Lh(x) + Lgh(Ou + a (h(x))] = 0. (6)

In this study, a particular choice of extended class K function
having the form of o (h(x,t)) = vh(x,t) is considered where v > 0
is a CBF design parameter which controls the system behaviours
near the boundary of h(x,t) = 0. Safety of a set for a specific dy-
namical system is often stated in terms of the forward invariance
property of that set with respect to the dynamical system:

Definition 3. A set C ¢ R" is forward invariant for system (1) if its
solution starting at x(0) e C satisfies x(t) € C, Vt > 0.

Definition 4. System (1) is safe with respect to set C defined in
(4), if the set C is forward invariant.

Theorem 1 ([5]). Given a CBF h(x,t) as in Definition (2) with the
associated set C, any Lipschitz continuous controller u(t) that satisfies
(5), Vt > 0 renders C forward invariant for system (1).

The advantage of CLF and CBF formulations is that they allow
the unification of control objectives (represented by CLFs) that are
regulated to yield trajectories within desired sets (as enforced by
CBFs). Given a CLF V(x) and a CBF h(x,t), they can be combined
into a single controller by using a sequence of Quadratic Programs

(QPs).

3. Problem statement

Most of the works to date on designing robust CBFs that
account for uncertainty consider a quasi-static environment for
which it is assumed that a perfect knowledge of the environment
is available. Unlike previous studies, in this paper, similar to Mol-
nar et al. [26], we consider a robust safety-critical control prob-
lem with regard to existing uncertainty in the state of the dynamic
environment. If x; € RP represents the state of the dynamic envi-
ronment, we redefine the safety set C and the time-varying CBF
h(x, xs) as

Cs ={x e R", x; € RP : h(x,xs) > 0}, (7)

and h: R" x RP — R. Consider x; = % + e5 and X; = X + é; where ;
denotes the measured state of the environment and es corresponds
to the uncertainty in the measured state. We assume that es and
és are bounded, i.e., ||es|| <& and ||és|| < &. Our goal is to de-
sign a feedback controller u(x, X5) for a given system (1), such that
the trajectories of the closed-loop system remain inside the safety
set defined in (7). Note that since the dependence of h on time
comes only through x;(t), we wil henceforth write h(x, xs) instead
of h(x,t) and drop t from x(t) in order to ease notation. Next, an
Environmentally Robust CBF (ER-CBF) is defined.

T An extended class K., function is a function « : R — R that is strictly increasing
and «(0) = 0.



V. Hamdipoor, N. Meskin and C.G. Cassandras

Definition 5. A function h(x, xs) is an Environmentally Robust Con-

trol Barrier Function (ER-CBF) for system (1) if there exists an ex-

tended class K function « such that for all x € X and X € A
dh(x, X;)

SUP[T +Leh(x, %) + Lgh(x, Xs)u (8)
u

+a(h(x %)) + AKX . u)] >0,

where A(x,xs,%s,u) € R is the residual term which appears due
to the difference between x; and X;, and L rhix, Rs) £ Vih(x, %) f(%)
and Lgh(x, &) £ Vxh(x, Xs)g(x).

Problem 1 (Safety under worst-case uncertainty in environ-
ment). Given a surrounding dynamical system estimate X; with the
error bounds of ||es|| < & and ||és|| < &, design a feedback con-
troller u for system (1) such that the set Cs is rendered forward
invariant for system (1) for all x € X and x; € As.

Problem 2 (Robust safety of nominally safe controller). Given a
surrounding dynamical system estimate X; with the error bounds
of ||es|| <& and ||és|| < & and a nominal safe control u for sys-
tem (1) which satisfies (5), design a robust feedback control u,
by minimally modifying u, such that the set C; is rendered forward
invariant for system (1) for all x € X and xs € As.

Problem 1 seeks to find a robust safe control input based on
a given desired control and error in the state of the environment,
while Problem 2 only tries to robustify a given nominal safe con-
trol with respect to error in the surrounding environment. In the
next section, we present our main results regarding the problems
described in this section.

4. Results

First, the CBF error is quantified due to estimating the state
of the surrounding dynamical system, its gradient, and its time-
derivative. Let

ep(x, Xs, Xs) 2 h(x, %) — h(x, %),
evp (X, X5, %) 2 Vh(x,x5) — Vh(x, Xs),
dh(x,xs)  dh(x, %)
ot at -

Since es and és are bounded, it follows that e, ey, and ey, are
a

bounded as well. In this study, it is intended to design a control
input for (1) based on the worst-case bounds of ey, ey, and ey,

at
and the worst-case uncertainties for the above errors are consid-
ered as follows:

e (X, X5, Rs) £
t

ey (X, Xs, Xs) = min ep(X, X5, Xs),
[lesll<&sllés||<&s
evp (X, X5, &) = max |leyp(X, X5, %) ||, 9)
[lesl<&s.llés||<&s
ey (X, X5, Xs) = min e (X, Xs, Xs).
a [lesl|<&s.|lés||<& ot

where it should be noted that ej and e, is obtained by minimiz-

t
Y, 1s obtained by maximization. The reason for this is
that (as shown in the next result) e; and e%, appear as additive

ing, while et

at
error terms in the residual term of the ER-CBF constraint, while
ey, appears as a multiplicative error term. From now on, in or-
der to ease notation, the arguments (x, X5, Xs) are omitted from e,

ey, and e, . The next theorem provides a solution for Problem 1
at

and presents a sufficient condition in which an ER-CBF preserves

system (1) forward invariance in the presence of bounded uncer-

tainties in the state of the surrounding dynamical environment.
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Theorem 2. If h(x, xs) is an ER-CBF for system (1) with the residual
term

A, X5, R, u) = e*% +a(ef) — eyl f(x) +gull, (10)

where e}, ey, and e}, are defined in (9), then any Lipschitz con-

at
tinuous controller u that satisfies (8) will render system (1) forward
invariant with respect to Cs.

Proof. According to Theorem 1, if there exists a control input u €
R™ such that
dh(x, xs)

5+ Veh(xx) (F(0) +gX)u) +a(h(x. X)) = 0, (11)

then, the set Cs; is forward invaraint. By rewriting h(x,xs) =
h(x, %) +ep(x, X5, 8s), Vxh(x,x5) = Vxh(x, Xs) + ey (X, x5, %), and

% = % +egn (X, Xs, Xs) in (11), it is needed that a lower

bound of the left-hand side expression which is still positive in
the presence of the worst-case error in the state of the surround-
ing dynamical system, i.e.,
. oh(x, X,
min [M

[esl|<&s.|1és||<&s at
Vih(x, &) (f (%) + 2(x)U) + evy (x, X5, &) (F(x) + g(X)u)

Fa(h(xR) + ey (x, xs,&))] > 0.

+en (X, X5, Xs )+ (12)

Recalling that we consider o (h(x,t)) = vh(x,t), the extended class
K function « can be selected such that a(h(x, Xs) + ej (X, X5, X5)) =
a(h(x, %)) + a (e, (X, X5, Xs)). Moreover, due to the Cauchy-Shwarz
inequality, —Iley,(x, s, X) ||| f(x) + gx)ull < eyp(x, X5, Xs) (f(x) +
g(x)u). By minimizing each term individually in (12), it follows
that

dh(x, X;)

5+ Vih(x, %) (f (x) + g()u) + a(h(x, X))

-l f(x) +gxull + el + a(er) =0,

A(X,X5,%5,1)

which, based on Definition 5, implies that h(x, xs) is an ER-CBF for
system (1). O

To obtain the safe input u with respect to a desired control
input uge, the following optimization problem is required to be
solved at each time step to determine a value u kept constant over
this time step:

1
*||U*Udes||2
2

u* = argmuin
dh(x, Xs)

at
+ o (h(x %)) — egyll FC0) +gCull + e +a(ef) = 0

+ Leh(x, Xs) + Lgh(x, Xs)u (13)

Since the optimization variable u appears in || f(x) +g(x)u|| above,
this problem is no longer a QP. By writing %Hu — Uges||® =
1 (U — Uges)T (U — Uges) = 3 [1ull? +uT o+ Lluges|? and removing
the term %lludeSH2 from the objective function as it is a constant,
a slack variable g can be used to restate the optimization problem
as follows:

[, q']" = argmin g —uge,u
1
st (13), j||u||2 =q,

with the decision variables u and q > 0. This problem is a second-
order cone program (SOCP). The second constraint above can be
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written as a rotated second-order cone condition [9], which leads
to the following SOCP:

T H T
[w'.q"]" = argmin g — ugesu

] B
The difficulty with SOCPs is that, unlike QPs, SOCPs tend to be in-
feasible very easily [10] and, therefore, sometimes another slack
variable is added to the constraint (13) to ensure the feasibility of
the SOCP [18], which can deteriorate the safe input. Another prob-
lem with SOCPs, as reported in Long et al. [25], is that the com-
putation time to solve them is higher than that of QPs, which can
affect the real-time control synthesis as well. In [8], it is assumed
that the control input u is not overly restrictive, thus permitting
sufficient control authority to preserve safety in the presence of
uncertainty.

To circumvent solving a SOCP for ER-CBFs at each time step,
we propose a novel ER-CBF which is based on computing the con-
trol input using the nominal CBF and modifying it whenever the
ER-CBF constraint in (13) is violated. In this way, the control input
produced by the nominal CBF is considered as the desired input
and it is modified minimally so as to robustly guarantee safety.
First, we denote the control input u in the optimization problem
with nominal CBFs and ER-CBFs as upom and u,,, respectively. To
begin with, we present the closed-form solution for the nominal
safe input framed as the following QP (solved at each time step):

s.t. <q+1

Upom = arg runin [|tnom — Uges ||2 (CBF — QP)
oh(x, x
s.t. % + Leh(x. xs)

+ Lgh(x, Xs)tnom + & (h(x, X5)) = 0
For this QP, the closed-form solution can be obtained using the fol-
lowing Lemma.

Lemma 1 ([29,36]). Consider h(x,xs) as a CBF for system (1) with
Lgh(x, xs) # 0. The explicit solution to (CBF-QP) is given by uj,, =
Uges + Us Where

Loh(x,xs) i
mq)nom(x Xs, Udes) if
Us = Dpom (X, Xs, Uges) < 0,
0 if Dpom (X, X5, Uges) = 0

with ®pom (X, X5, 1) = 265D 4 [ h(x, x5) + Lgh(x, x5)u + et (h(x, X5)).

Our method to synthesize the control input using ER-CBFs is
inspired by Lemma 1, where we intend to use uj,, as the desired
input and find an extra control effort such that the resulting input
ensures robustness in the presence of environmental errors. First,
let

o oh(x, %
Dop (X, X5, U) = %

a(h(x. %)) — egll f(X) +gX)ull + €3 +a(ep).

+ Leh(x, %) + Lgh(x, Xs)u +

Then, in order to design an environmentally safe controller with
ER-CBFs, one needs to consider the following SOCP:

(ER-CBF-SOCP)

uﬁob = arg l‘ul‘lil‘l ”urob - udesuz
rob

sit. Dop (X, Xs, Upgp) >0

Since u},, which is the solution of (CBF-QP), will be taken as
the desired input for (ER-CBF-SOCP), from now on, the desired in-
put for (ER-CBF-SOCP) is denoted by u(s)s to distinguish it with
Uges in (CBF-QP). Let us define us £ u¥, — ufoy as the amount of
change in the control input u},, such that robustness to the en-
vironmental uncertainties is guaranteed. Next, based on Lemma 1,
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an upper bound on ug is obtained. Note that us; in Lemma 1 for the
case where u € R reduces to

usz{o

Theorem 3. Consider u},, to be the solution to (CBF-QP) for system
(1) with u e R and let it be the desired control input for (ER-CBF-
SOCP), i.e., uése)s = Upom. Define us = uk, — s, with u?, being the
solution for (ER-CBF-SOCP), and let edh, ey, and ey, be obtained from

Dnom (X.Xs,Udes)

o) if ®pom (X, Xs, Uges) < O,

if q)nom(xs Xs, udes) = 0.

(9) at |les|| = & and ||és|| = &s. Assummg that Lgh(x, &) # % |8,
then

q>rob (X’ )257 uj;om)
Lgh(x, %s) + €%, 12|

" Lgh(x, &) — e, [IgCo) |

— D, (X, X, U*
|u5|§max{ rob( S nom) }

Proof. Since e%,, e}, and e}, are obtained at |les|| = & and [|é&]| =

zi[
&, there exits 8h e R such that for ER-CBF h(x,xs) in (ER-CBF-
SOCP), it follows:

W Ly (R %) + ) + Lg(h(x, %)

+8hu+a(h(x,Xs) +8h) = O (x, X5, U). (14)

Then, by considering the left-hand side of (14) and using
Lemma 1 with u(s) = U}y, and noticing the fact that u € R, it fol-
lows that:

{u:ob Ufom if Drop (%, s, uﬁom) >0

if By (X, &5, Ur) < O (15)

u* . = u* _ Drop (X Rs. Upom)
rob — “'nom Lg(h(x,Xs)+8h)

Thus, for the case @ (X, X5, Ulipy) > 0, ug is zero, and for the case
where @, (X, &5, Ufiom) < 0, it follows:

Us = — q>l‘0b (Xv )?Sv u;om) - _ ch—ob (Xv )?Sv u;om) (16)

87 TLg(h(x. %) +6h) —  Lgh(x. Rs) + LgSh'

Note that Lgdh = Vx8hg(x). Although, the exact value for Lgéh is
not known, recall that ||Vxdh|| = ey, in Theorem 2. Since u € R, it
also follows that Lgh(x, %) € R and Lgh € R. Therefore,

|Lgdh| = [Vxdhg(x)| = eg [IgC) . (17)

By replacing possible values of Lyéh in (16), i.e., Lgdh = +ey [|g(x) |,
it follows that:

l'Ob(x 25: ;k]om)
Leh(x. %) + et lg@)|| |

lus| < max{

ch'Ob (X, )?Sr u;om)
Leh(x. %5) — ey, 8GOl
O

Remark 1. If the lower bound considered for (12) in the proof
of Theorem 2 is tight, we can always find such §h in (14). In
other words, if e%,, e, and ey, which are obtained by mini-

a
mizing each term individually in (12), have a common optimizer,
such §h can always be found. That is the reason it is assumed
in Theorem 3 that e*ah, ey, and ey, are obtained at |les|| = & and

|lés]| = &. Note that thls is not a strong assumption and edh, e,

and ey, most of the time are obtained in extreme 51tuat10ns

Theorem 3 finds an upper bound on the size of the necessary
modification in the nominal safe input to meet the robustness con-
dition. Using the results of Theorem 3, a new constraint is estab-
lished for the ER-CBF which is no longer dependent on the norm
of the control input, hence the control design problem can be for-
mulated as a QP rather than a SOCP.

Theorem 4. Let e’;h, ey, and ey, be defined as in (9). If

h(x,xs) is an ER- CBF for system (1) with ueR and the resid-
ual term  A(x, X5, Rs, U) = e*ah +a(er) —eg, (|1f () + g uhoml| +
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llg(x)||ts), where u},y, is the nominal safe input obtained by solving
(CBE-QP) and
—Dpop (X, K, Upom) —Dpop (%, X, Ulom)
Leh(x, %) +eg, g ||| | Leh(x, %) — e, gl | |

then any Lipschitz continuous controller u that satisfies (8) will render
system (1) forward invariant with respect to Cs.

)

g £ max{

Proof. According to Theorem 2, if A(x,Xs,%s,u) = e’;_,h +o¢(ez) —

ey, ([1f () +g(x)ul]), then any Lipschitz continuous cgtntroller ue
R that satisfies (8) will render system (1) forward invariant with
respect to Cs. Next, we want to get rid of u in this residual term by
exploiting the result of Theorem 3. Considering u’ | = ufom + Us, it
follows that:

el +a(en) — ey, ([1F(0) +8() Unom +us)l]) =

e +aen) — ey, ([1F () + 8@ Upom [l + [us[ 11D

Theorem 3,

@ ,A, *
Due to rob (X.Xs ”nom)l |’ | _

lus| < iy = max{| — L& 5 el

LRy ). thus,

el +a(en) — ey, (|LF () + @)U | + [us gD =
el +a(eq) — g, (I1FC0) + 8Uom | + TsllgCO 1D
This completes the proof. O

Notice that the residual term in Theorem 4, unlike the one in
Theorem 2, does not depend on the control input, which is the de-
cision variable in the optimization-based control design. In fact, in
the residual term of Theorem 4, we have u},,,, and s which are
not decision variables and hence they are available before solving
the optimization problem. Hence, one can utilize a QP to compute
the control input instead of a SOCP. Thus, to design an environ-
mentally safe controller with ER-CBFs, the following QP is consid-
ered:

Uop = argmin usop — Upom 1* (ER-CBF-QP)

doh(x, X;)
at

+ o (h(x, %)) — €5, (| f(x) + 8X) Upom | + Us I8 1)

+e’§3Th +a(e;) =0.

s.t. + Leh(x, Rs) + Lgh(x, R5)uqp

In the sequel, the closed-form solution of (ER-CBF-QP) tackling
Problem 2 is presented.

Theorem 5. Consider h(x,xs) as an ER-CBF for system (1) with u e
R and Lgh(x, &) # 0. The solution to (ER-CBF-QP) is given by u¥ =
Upom + Ug where

{0 if &\)rob(x’ Xs, uﬁom) >0 (18)

<)]Sm s Upom 1 o *
—% if @y (X, X5, Up) < 0
with Brop (X, s, 1) = BEI) ] R(x, R6) + Leh(x, R)u +
a(h(x. %)) — eg;, (1 F(X) + g uzom | + Usllgx) ) + €, + e (ep)-

ot
Proof. Notice that in (ER-CBF-QP) both objective function and con-
straint are convex and continuously differentiable with respect to
U, Hence, one can apply KKT (Karush-Kuhn-Tucker) conditions
to provide necessary and sufficient conditions for optimality [6].
The rest of the proof is similar to the proof of Lemma 1. O

Remark 2. Note that (ER-CBF-SOCP) presents our solution for
Problem 1, and (ER-CBF-QP) presents our solution for Problem 2.
In (ER-CBF-SOCP) the optimization constraint (® (X, Xs, 1)) is im-
posing safety and environmental robustness simultaneously, so it
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Ego vehicle Lead vehicle
(AV) (HDV)
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Fig. 1. Adaptive cruise control example for mixed traffic where ego vehicle is AV
following the lead vehicle which is an HDV.
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Fig. 2. CBF and its uncertainty bound for keeping safe distance in cruise control
using nominal CBF (top), robust CBF with SOCP (middle), and robust CBF with QP
(bottom).

can be considered as a robust safe filter that modifies the nomi-
nal (and possibly unsafe) control input uge. On the other hand, in
(ER-CBF-QP) the optimization constraint (® ., (x, &, u)) is only im-
posing robustness to the nominally safe control input, so it can be
regarded as robustness filter of nominally safe input u},,,. In addi-
tion to that, computing the control input via (ER-CBF-QP) is faster
and less prone to infeasiblity than (ER-CBF-SOCP).> Furthermore,
(ER-CBF-QP) (as we shall see in Figs. 3 and 4) is slightly more con-
servative than (ER-CBF-SOCP). Moreover, it should be noted that,
(ER-CBF-SOCP) is applicable to the cases where u € R™, while (ER-
CBF-QP) is only used for u € R.

5. Adaptive cruise control example

In this section, the proposed robust safe controller is applied
to the adaptive cruise control problem where the lead vehicle is a
human-driven vehicle (HDV) and the ego vehicle (see Fig. 1) which
we intend to design control actions for, is an Automated Vehicle
(AV). The following longitudinal dynamics is considered for AVs:

p =,
b _u_ Ew (19)
m m

2 In MATLAB, the interior point method (which has a polynomial time complex-
ity) is utilized to solve both QP and SOCP (though with different algorithms). How-
ever, computing QP i.e. (ER-CBF-QP) is more time-consuming than computing SOCP,
i.e., (ER-CBF-SOCP). This is also has been observed in Long et al. [25].
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Fig. 3. Velocity and distance of ego and lead vehicles in the adaptive cruise control
along with the control input for ego vehicle using nominal CBF, robust CBF with
SOCP, and robust CBF with QP.

where p, v, and u denote the position, the velocity and the control
input for the AV, respectively. The mass of the AV is denoted by m
and F:(v) is the rolling force which is approximated as

E@W) = co+ v + o172, (20)

with the constants cgy, ¢1, and ¢, that can be determined empiri-
cally. Equation (19) can be written in a state-space form as

. v 0
x=|: 1F]+|:1:|u. (21)
“mr m
~—— S
fo 8(x)

where x = [p, v]T represents the state of the AV. It is assumed that
the dynamics of the HDV (the lead vehicle) are unknown and only
some uncertain measurements of its state are available. Let the
state of the HDV be given by ps and v, denoting the HDV’s po-
sition and velocity, respectively. To ensure the rear-end safety be-
tween AV and HDV, the following constraint should be imposed:

ps—p=Ty, (22)

where T, is a look ahead (reaction) time. To enforce this constraint
in the synthesis of the control input of the AV, the following CBF
is considered:

1 (s —v)?

h(x,xs) = ps—p—Thv — 7 g

(23)
with X = [ps, Us]T, and c,g is the maximum deceleration with g
and c; being the gravity acceleration and deceleration factor, re-
spectively. It is assumed that, instead of the exact value of x;, an
estimate of it, X;, is available to the AV through its onboard sensors
or a road-side coordinator. Therefore, it follows that ps = ps + e,
Vs = s+ ey and s = 155 + e;. Then, by assuming known uncertainty
bounds between x; and X;, it follows that

|ps — Bs| < &p, |Us — Ts| < v, |Ds—i75| <& (24)

European Journal of Control 74 (2023) 100840

Table 1
Vehicles parameters used in the simulations.

AV HDV

Parameter  Value Parameter  Value

m 1650 kg hy 0.309

Co 0.1N o 1.13

c 5 Ns/m p@ 100 km/h
I 025Ns’/m t 0

Knowing the worst-case bounds on the errors of state of HDV, we
need to quantify the error in the designed CBF (23), its gradient,
and its time-derivative as follows:

en (X, X5, &s) = h(x, xs) — h(x, %)
2e,(Ds—v) + €3

- 2¢,8
evn (X, Xs, Xs) = IVh(x,xs) — Vh(x, )25)”
ey .1 ey
=I[0, X717 = | =21,
Il cdg] l chg
oy oh(x,xs) dh(x,Xs)
en (XX Xs) = —5— — ¢
—v Us(Us —v) B+ Vs (D5 — v)
Ci8 Ca8
o Usey+e(Us —v) +evey
Y Ca8 '

Now e, , e, and e3,, can be obtained via (9). They will be utilized

at
to synthesize the environmentally safe control input for the adap-
tive cruise control. To compute the desired control input to achieve
the control objective, the following CLF is defined:

V(x) = v -va)?,

where v, is the desired velocity on the road. To apply maximum
and minimum permissible velocity on the road (vmax and vyy;,), the
following CBFs are defined.

hy (%) = Vmax — v,
h3 (X) =V = Unin-

Note that these CBFs only depend on the state of the AV, thus, they
will not be used as ER-CBF constraints while implementing them
in a QP or SOCP and are considered as a regular CBF constraint.
In the next section, the control input is designed for this example
using (CBF-QP), (ER-CBF-SOCP) and (ER-CBF-QP) and the obtained
results are compared.

6. Simulation results

To demonstrate the efficacy of the proposed methods, several
simulations are carried out in MATLAB on the adaptive cruise con-
trol example presented in the previous section. MATLAB QUAD-
PROG and CONEPROG commands are used for solving QPs and
SOCPs and ODE45 is used for integrating AV dynamics. To gener-
ate the HDV’s motion, the so-called linear free-flow model is used

[1]:
Us(t) = A D (1) — vs(t — T)] + €(0). (25)

where v@ is the desired road velocity, T is the HDV driver’s re-
action time, A is a constant, and € is a zero-mean Gaussian noise
with the variance of o. For the simulations the parameters pre-
sented in Table 1 are for the vehicle dynamics for AV and HDV,
and g =9.81 m/sz, ¢y = 0.3. To solve the QP and SOCP, CLF and CBF
rates are selected equal as y = v = 5. In addition, the maximum
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Fig. 4. CBF for keeping safe distance with lead vehicle and CLF for achieving desired
distance with lead vehicle in cruise control using nominal CBF, robust CBF with
SOCP, and robust CBF with QP.

and minimum admissible road speed are considered as Vmax =
120 km/h and v,;, = 60 km/h.

To begin the simulation, it is assumed that initial distance
between the ego and lead vehicles is Ap=80 m and v=1vs =
27.8 m/s = 100 km/s. Moreover, the worst-case errors for HDV state
are considered as &, =1 m, & =1m/s and &, =0. In Fig. 2, the
uncertainty bound for CBF defined in (23) is shown using (CBF-
QP), (ER-CBF-SOCP) and (ER-CBF-QP). It can be observed from the
figure that in the case of (CBF-QP) (the top plot with red color),
even though the nominal CBF remains non-negative, the uncer-
tainty bound crosses the x-axis and the CBF becomes negative; this
is clearly not a safe behavior and the forward invariance property
is no longer guaranteed. On the other hand, CBFs obtained via (ER-
CBF-SOCP) and (ER-CBF-QP) remain non-negative in the presence
of the uncertainties. It is worth noting that the nominal CBF for
(ER-CBF-SOCP) and (ER-CBF-QP) is more conservative’> than (CBF-
QP) which is indeed expected.

In Fig. 3, the velocity of AV and HDV, their distance (Ap =
ps — p) and the control input for AV are shown using three differ-
ent methods. As it can be seen from the figure, the results of (ER-
CBF-SOCP) and (ER-CBF-QP) almost coincide, and as it is shown in
the magnified cross-section of distance plot, (ER-CBF-QP) is slightly
more conservative.

Figure 4 also shows the CBF and CLF plot for the case of Fig. 3.
Similar to Fig. 3, the results of (ER-CBF-SOCP) and (ER-CBF-QP) are
coinciding, and the results of (ER-CBF-QP) are slightly more con-
servative. In Fig. 5 the plot for the control input resulting from the
closed form solution (ER-CBF-QP) using Theorem 5 is presented.
As it can be seen from the figure, at each time instant, u},,, and
us are computed and then uj, is computed via uf | = ufiom + Us
where ug is defined in (18) in Theorem 5.

7. Conclusion

The control synthesis problem using environmentally robust
control barrier functions is considered in this paper and it is shown
that accounting for the worst-case error in a dynamical environ-
ment results in the ER-CBF-SOCP formulation. Then, we present the
ER-CBF-QP alternative which minimally modifies the nominal safe

3 When a CBF has farther distance from x-axis (zero) it is considered to be more
conservative.
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Fig. 5. Obtaining robust control input via closed form solution of robust QP.

input resulting from the solution of CBF-QP. ER-CBF-SOCP and ER-
CBF-QP results are almost similar. However, ER-CBF-QP has a better
computational time and is less prone to infeasibility. A future di-
rection would be extending ER-CBF-QP for multi-input dynamical
systems.
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