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a b s t r a c t 

In this paper, we study a safe control design for dynamical systems in the presence of uncertainty in a 

dynamical environment. The worst-case error approach is considered to formulate robust Control Barrier 

Functions (CBFs) in an optimization-based control synthesis framework. It is first shown that environ- 

mentally robust CBF formulations result in second-order cone programs (SOCPs). Then, a novel scheme is 

presented to formulate robust CBFs which takes the nominally safe control as its desired control input in 

optimization-based control design and then tries to minimally modify it whenever the robust CBF con- 

straint is violated. This proposed scheme leads to quadratic programs (QPs) which can be easily solved. 

Finally, the effectiveness of the proposed approach is demonstrated on an adaptive cruise control exam- 

ple. 

© 2023 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Control Barrier Functions (CBFs) have emerged as a powerful 

eans for guaranteeing control system safety in the form of set in- 

ariance [3] . CBFs are often used with Control Lyapunov Functions 

CLFs) to simultaneously ensure stability and safety of the system 

long with state and input constraints [4] . This approach has been 

uccessfully implemented in numerous applications such as mobile 

obots [20] , robotic manipulators [15] , robotic swarms [33] , aerial 

ehicles, racing drones [30] , and spacecraft docking [7] . CBFs have 

lso been extensively used in the realm of the autonomous vehi- 

les to generate a safe control input in problems such as cruise 

ontrol, on-ramp merging [3,35] , signal free intersections [37] , and 

he lane change [12] , to name a few. 

One of the challenges in designing a control input using CBFs is 

hat controllers rely on models or measurements that are assumed 

o be perfect and free of uncertainty. However, models or mea- 

urements are usually uncertain or imperfect and this can result 
� This work was supported in part by NSF under grants ECCS-1931600 , DMS- 

664644 , CNS-16456 81 , CNS-214 9511 , by AFOSR under grant FA9550-19-1-0158, by 
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n an unsafe behaviour if not accounted for properly. This prob- 

em has been mainly addressed through the development of ro- 

ust CBFs. However, there exist different perspectives in consider- 

ng robustness in safety-critical control using CBFs. Generally, the 

roposed approaches in the literature consider either input distur- 

ances [2,8,13,17,22,23,28,31,32] , dynamic model mismatch [25,27] , 

r measurement errors [14,16,18,19,38] . While the aforementioned 

orks study robustness of CBF-based controllers, they do not take 

nto account that the environment is dynamically changing and 

nly consider a quasi-static environment. A good example of “envi- 

onment” is the other agents’ in a multi-agent system with which 

he ego-agent is interacting, e.g., in the cruise control problem 

3] the lead vehicle can be considered as the environment. 

There exist limited works that consider the effect of a dy- 

amic environment in the design of a safe control input via CBFs 

11,21,24,26,34] . In [21,34] , the effect of a dynamic environment is 

onsidered through the notion of time-varying CBFs in which the 

ime-derivative of the CBF is also added to the CBF constraint. Even 

hough the authors in Chalaki and Malikopoulos [11] , He et al. [21] ,

u and Sreenath [34] have taken a dynamic environment into 

onsideration, they do not study robustness and assume that per- 

ect information on the environment is available. In [24] , safe navi- 

ation in unknown environments is studied, where on-board range 

ensing is utilized to construct CBFs online. In the recent work 

26] , the notion of Environmental Control Barrier Functions (ECBFs) 

as been introduced and robust ECBFs against errors in the en- 

ironment, in particular a time-delay, are investigated. In this pa- 

er, inspired by [26] , we study the notion of Environmentally Robust 
rved. 

https://doi.org/10.1016/j.ejcon.2023.100840
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2023.100840&domain=pdf
https://doi.org/10.13039/100000001
mailto:nader.meskin@qu.edu.qa
mailto:cgc@bu.edu
https://doi.org/10.1016/j.ejcon.2023.100840
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1 An extended class K ∞ function is a function α : R → R that is strictly increasing 

and α(0) = 0 . 
ontrol Barrier Function ( ER-CBFs ). Similar to [26] , worst-case error- 

ased ER-CBFs are considered, however, unlike [26] ( i ) the Lipschitz 

onstant is not used to define the worst-case error in an ER-CBF 

onstraint and ( ii ) it is not assumed that the dynamics of the envi-

onment are known. Moreover, the original quadratic program (QP) 

or the control synthesis is converted to a second-order cone pro- 

ram (SOCP). Finally, we propose our main robust control scheme, 

y exploiting the closed-form solution of the original QP. 

In summary, the contributions of this paper are as follows. An 

R-CBF is introduced based on errors in the nominal CBF resulting 

rom errors in a dynamically changing environment. This ER-CBF 

ontains the norm control input (which is the optimization deci- 

ion variable) and leads to the formulation of a control synthesis 

roblem as a SOCP. Secondly, the nominally safe input obtained 

rom a nominal CBF is considered as the desired input for the SOCP 

nd a new ER-CBF is introduced which does not depend on the 

orm of the control input, hence the control synthesis problem 

eads to solving a QP. Then, the explicit solution to this QP is ob- 

ained. Finally, the effectiveness of the presented results is demon- 

trated in an adaptive cruise control example. 

The rest of the paper is organized as follows. Preliminaries on 

BFs and CLFs are reviewed in Section 2 . The problem formulation 

s discussed in Section 3 . Main results are presented in Section 4 .

n adaptive cruise control example is visited in Section 5 . Numer- 

cal simulations on the cruise control example are presented in 

ection 6 . Finally, concluding remarks are provided in the last sec- 

ion. 

. Preliminaries 

Consider a nonlinear control affine system 

˙  = f (x ) + g(x ) u, (1) 

here x ∈ X ⊂ R 
n , u ∈ R 

m are state and control input, respectively,

nd f : R 
n → R 

n and g : R 
n → R 

n ×m are locally Lipschitz continu-

us functions. To establish exponential stability of system (1) with- 

ut having to define an explicit feedback controller, the notion of 

 Control Lyapunov Function (CLF) is introduced. 

efinition 1 (Control Lyapunov Function (CLF) [5] ) . A continuously 

ifferentiable function V : R 
n → R is called a Control Lyapunov 

unction (CLF) for system (1) if there exist positive constants c 1 , 

 2 , and c 3 such that for ∀ x ∈ X , 

 1 ‖ x ‖ 
2 ≤ V (x ) ≤ c 2 ‖ x ‖ 

2 , (2) 

nf 
u 
[ L f V (x ) + L g V (x ) u + c 3 V (x )] ≤ 0 , (3)

here L f V (x ) � ∇ x V (x ) f (x ) and L g V (x ) � ∇ x V (x ) g(x ) are Lie

erivatives of V (x ) along the vector fields f and g, respectively. 

Given a stabilizing CLF V (x ) as in Definition 1 , any Lipschitz

ontinuous controller u (t) ∈ R 
m that satisfies (3) , ∀ t ≥ 0 exponen-

ially stabilizes system (1) to the origin. 

For the safe operation of system (1) , a safe set C ⊂ X ⊂ R 
n is

efined as a superlevel set of a differentiable function h : R 
n ×

0 , + ∞ ) → R , i.e. 

 = { x ∈ R 
n : h (x, t) ≥ 0 } . (4)

o ensure that system (1) remains in the safety set C, the notion of
ontrol Barrier Function (CBF) can be defined as follows, in a similar 

anner as the concept of CLF: 

efinition 2 (Control Barrier Function (CBF) [21] ) . Given the set 

defined in (4) , a continuously differentiable function h : R 
n ×
2 
0 , + ∞ ) → R is called as a control barrier function (CBF) for sys-

em (1) , if there exists an extended class K ∞ function 
1 α for all 

 ∈ X such that 

up 
u 

[
∂h (x, t) 

∂t 
+ L f h (x, t) + L g h (x, t) u + α(h (x, t)) 

]
≥ 0 (5) 

here L f h (x, t) � ∇ x h (x, t) f (x ) and L g h (x, t) � ∇ x h (x, t) g(x ) are

ie derivatives of h (x, t) along the vector fields f and g, respec- 

ively. 

Notice that CBFs used in this paper are time-varying functions. 

hen h (x, t) is time-invariant, it is denoted as h (x ) and the condi-

ion (5) is simplified [5] as follows: 

up 
u 

[
L f h (x ) + L g h (x ) u + α(h (x )) 

]
≥ 0 . (6) 

n this study, a particular choice of extended class K ∞ function 

aving the form of α(h (x, t)) = νh (x, t) is considered where ν ≥ 0

s a CBF design parameter which controls the system behaviours 

ear the boundary of h (x, t) = 0 . Safety of a set for a specific dy-

amical system is often stated in terms of the forward invariance 

roperty of that set with respect to the dynamical system: 

efinition 3. A set C ⊂ R 
n is forward invariant for system (1) if its

olution starting at x (0) ∈ C satisfies x (t) ∈ C, ∀ t ≥ 0 . 

efinition 4. System (1) is safe with respect to set C defined in 

4) , if the set C is forward invariant. 

heorem 1 ( [5] ) . Given a CBF h (x, t) as in Definition ( 2 ) with the

ssociated set C, any Lipschitz continuous controller u (t) that satisfies 
5) , ∀ t ≥ 0 renders C forward invariant for system (1) . 

The advantage of CLF and CBF formulations is that they allow 

he unification of control objectives (represented by CLFs) that are 

egulated to yield trajectories within desired sets (as enforced by 

BFs). Given a CLF V (x ) and a CBF h (x, t) , they can be combined

nto a single controller by using a sequence of Quadratic Programs 

QPs). 

. Problem statement 

Most of the works to date on designing robust CBFs that 

ccount for uncertainty consider a quasi-static environment for 

hich it is assumed that a perfect knowledge of the environment 

s available. Unlike previous studies, in this paper, similar to Mol- 

ar et al. [26] , we consider a robust safety-critical control prob- 

em with regard to existing uncertainty in the state of the dynamic 

nvironment. If x s ∈ R 
p represents the state of the dynamic envi- 

onment, we redefine the safety set C and the time-varying CBF 

 (x, x s ) as 

 s = { x ∈ R 
n , x s ∈ R 

p : h (x, x s ) ≥ 0 } , (7)

nd h : R 
n × R 

p → R . Consider x s = ˆ x s + e s and ˙ x s = 
˙ ˆ x s + ˙ e s where ˆ x s 

enotes the measured state of the environment and e s corresponds 

o the uncertainty in the measured state. We assume that e s and 

˙  s are bounded, i.e., || e s || < E s and || ̇ e s || < ˙ E s . Our goal is to de-
ign a feedback controller u (x, ̂  x s ) for a given system (1) , such that

he trajectories of the closed-loop system remain inside the safety 

et defined in (7) . Note that since the dependence of h on time

omes only through x s (t) , we wil henceforth write h (x, x s ) instead

f h (x, t) and drop t from x s (t) in order to ease notation. Next, an

nvironmentally Robust CBF (ER-CBF) is defined. 
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efinition 5. A function h (x, x s ) is an Environmentally Robust Con- 

rol Barrier Function (ER-CBF) for system (1) if there exists an ex- 

ended class K function α such that for all x ∈ X and ˆ x s ∈ X s 

up 
u 

[ 
∂h (x, ̂  x s ) 

∂t 
+ L f h (x, ̂  x s ) + L g h (x, ̂  x s ) u (8) 

+ α(h (x, ̂  x s )) + �(x, x s , ̂  x s , u ) 
] 

≥ 0 , 

here �(x, x s , ̂  x s , u ) ∈ R is the residual term which appears due

o the difference between x s and ˆ x s , and L f h (x, ̂  x s ) � ∇ x h (x, ̂  x s ) f (x )

nd L g h (x, ̂  x s ) � ∇ x h (x, ̂  x s ) g(x ) . 

roblem 1 (Safety under worst-case uncertainty in environ- 

ent) . Given a surrounding dynamical system estimate ˆ x s with the 

rror bounds of || e s || < E s and || ̇ e s || < ˙ E s , design a feedback con-
roller u for system (1) such that the set C s is rendered forward 

nvariant for system (1) for all x ∈ X and x s ∈ X s . 

roblem 2 (Robust safety of nominally safe controller) . Given a 

urrounding dynamical system estimate ˆ x s with the error bounds 

f || e s || < E s and || ̇ e s || < ˙ E s and a nominal safe control u for sys-

em (1) which satisfies (5) , design a robust feedback control u rob 
y minimally modifying u , such that the set C s is rendered forward 

nvariant for system (1) for all x ∈ X and x s ∈ X s . 

Problem 1 seeks to find a robust safe control input based on 

 given desired control and error in the state of the environment, 

hile Problem 2 only tries to robustify a given nominal safe con- 

rol with respect to error in the surrounding environment. In the 

ext section, we present our main results regarding the problems 

escribed in this section. 

. Results 

First, the CBF error is quantified due to estimating the state 

f the surrounding dynamical system, its gradient, and its time- 

erivative. Let 

e h (x, x s , ̂  x s ) � h (x, x s ) − h (x, ̂  x s ) , 

 ∇h (x, x s , ̂  x s ) � ∇h (x, x s ) − ∇h (x, ̂  x s ) , 

e ∂h 
∂t 

(x, x s , ̂  x s ) � 

∂h (x, x s ) 

∂t 
− ∂h (x, ̂  x s ) 

∂t 
. 

ince e s and ˙ e s are bounded, it follows that e h , e ∇h , and e ∂h 
∂t 

are

ounded as well. In this study, it is intended to design a control 

nput for (1) based on the worst-case bounds of e h , e ∇h , and e ∂h 
∂t 

nd the worst-case uncertainties for the above errors are consid- 

red as follows: 

e ∗h (x, x s , ̂  x s ) = min 
|| e s || < E s , || ̇ e s || < ̇ E s 

e h (x, x s , ̂  x s ) , 

 
∗
∇h (x, x s , ̂  x s ) = max 

|| e s || < E s , || ̇ e s || < ̇ E s 
‖ e ∇h (x, x s , ̂  x s ) ‖ , (9) 

e ∗∂h 
∂t 

(x, x s , ̂  x s ) = min 
|| e s || < E s , || ̇ e s || < ̇ E s 

e ∂h 
∂t 

(x, x s , ̂  x s ) . 

here it should be noted that e ∗
h 
and e ∗∂h 

∂t 

is obtained by minimiz- 

ng, while e ∗∇h 
is obtained by maximization. The reason for this is 

hat (as shown in the next result) e ∗
h 
and e ∗∂h 

∂t 

appear as additive 

rror terms in the residual term of the ER-CBF constraint, while 

 
∗∇h 

appears as a multiplicative error term. From now on, in or- 

er to ease notation, the arguments (x, x s , ̂  x s ) are omitted from e ∗
h 
,

 
∗∇h 

and e ∗∂h 
∂t 

. The next theorem provides a solution for Problem 1 

nd presents a sufficient condition in which an ER-CBF preserves 

ystem (1) forward invariance in the presence of bounded uncer- 

ainties in the state of the surrounding dynamical environment. 
3 
heorem 2. If h (x, x s ) is an ER-CBF for system (1) with the residual

erm 

(x, x s , ̂  x s , u ) = e ∗∂h 
∂t 

+ α(e ∗h ) − e ∗∇h || f (x ) + g(x ) u || , (10)

here e ∗
h 
, e ∗∇h 

, and e ∗∂h 
∂t 

are defined in (9) , then any Lipschitz con-

inuous controller u that satisfies (8) will render system (1) forward 

nvariant with respect to C s . 

roof. According to Theorem 1 , if there exists a control input u ∈
 
m such that 

∂h (x, x s ) 

∂t 
+ ∇ x h (x, x s )( f (x ) + g(x ) u ) + α(h (x, x s )) ≥ 0 , (11)

hen, the set C s is forward invaraint. By rewriting h (x, x s ) =
 (x, ̂  x s ) + e h (x, x s , ̂  x s ) , ∇ x h (x, x s ) = ∇ x h (x, ̂  x s ) + e ∇h (x, x s , ̂  x s ) , and

∂h (x,x s ) 
∂t 

= 
∂h (x, ̂ x s ) 

∂t 
+ e ∂h 

∂t 
(x, x s , ̂  x s ) in (11) , it is needed that a lower

ound of the left-hand side expression which is still positive in 

he presence of the worst-case error in the state of the surround- 

ng dynamical system, i.e., 

min 
|| e s || < E s , || ̇ e s || < ̇ E s 

[ 
∂h (x, ̂  x s ) 

∂t 
+ e ∂h 

∂t 
(x, x s , ̂  x s )+ (12) 

 x h (x, ̂  x s )( f (x ) + g(x ) u ) + e ∇h (x, x s , ̂  x s )( f (x ) + g(x ) u ) 

+ α(h (x, ̂  x s ) + e h (x, x s , ̂  x s )) 
] 

≥ 0 . 

ecalling that we consider α(h (x, t)) = νh (x, t) , the extended class
function α can be selected such that α(h (x, ̂  x s ) + e h (x, x s , ̂  x s )) = 

(h (x, ̂  x s )) + α(e h (x, x s , ̂  x s )) . Moreover, due to the Cauchy–Shwarz

nequality, −‖ e ∇h (x, x s , ̂  x s ) ‖‖ f (x ) + g(x ) u ‖ ≤ e ∇h (x, x s , ̂  x s )( f (x ) +
(x ) u ) . By minimizing each term individually in (12) , it follows

hat 

∂h (x, ̂  x s ) 

∂t 
+ ∇ x h (x, ̂  x s )( f (x ) + g(x ) u ) + α(h (x, ̂  x s )) 

−e ∗∇h ‖ f (x ) + g(x ) u ‖ + e ∗∂h 
∂t 

+ α(e ∗h ) ︸ ︷︷ ︸ 
�(x,x s , ̂ x s ,u ) 

≥ 0 , 

hich, based on Definition 5 , implies that h (x, x s ) is an ER-CBF for

ystem (1) . �

To obtain the safe input u with respect to a desired control 

nput u des , the following optimization problem is required to be 

olved at each time step to determine a value u kept constant over 

his time step: 

 
∗ = arg min 

u 

1 

2 
‖ u − u des ‖ 

2 

.t. 
∂h (x, ̂  x s ) 

∂t 
+ L f h (x, ̂  x s ) + L g h (x, ̂  x s ) u (13) 

+ α(h (x, ̂  x s )) − e ∗∇h ‖ f (x ) + g(x ) u ‖ + e ∗∂h 
∂t 

+ α(e ∗h ) ≥ 0 

ince the optimization variable u appears in ‖ f (x ) + g(x ) u ‖ above,
his problem is no longer a QP. By writing 1 

2 ‖ u − u des ‖ 2 =
1 
2 (u − u des ) 

T (u − u des ) = 
1 
2 ‖ u ‖ 2 + u T 

des 
u + 

1 
2 ‖ u des ‖ 2 and removing

he term 
1 
2 ‖ u des ‖ 2 from the objective function as it is a constant, 

 slack variable q can be used to restate the optimization problem 

s follows: 

 u ∗, q ∗] T = arg min 
u,q 

q − u T des u 

s.t. (13) , 
1 

2 
‖ u ‖ 

2 ≤ q, 

ith the decision variables u and q ≥ 0 . This problem is a second- 

rder cone program (SOCP). The second constraint above can be 
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u  
ritten as a rotated second-order cone condition [9] , which leads 

o the following SOCP: 

 u ∗, q ∗] T = arg min 
u,q 

q − u T des u 

s.t. (13) , 

∥∥∥∥
[√ 

2 u 
q − 1 

]∥∥∥∥ ≤ q + 1 . 

he difficulty with SOCPs is that, unlike QPs, SOCPs tend to be in- 

easible very easily [10] and, therefore, sometimes another slack 

ariable is added to the constraint (13) to ensure the feasibility of 

he SOCP [18] , which can deteriorate the safe input. Another prob- 

em with SOCPs, as reported in Long et al. [25] , is that the com-

utation time to solve them is higher than that of QPs, which can 

ffect the real-time control synthesis as well. In [8] , it is assumed 

hat the control input u is not overly restrictive, thus permitting 

ufficient control authority to preserve safety in the presence of 

ncertainty. 

To circumvent solving a SOCP for ER-CBFs at each time step, 

e propose a novel ER-CBF which is based on computing the con- 

rol input using the nominal CBF and modifying it whenever the 

R-CBF constraint in (13) is violated. In this way, the control input 

roduced by the nominal CBF is considered as the desired input 

nd it is modified minimally so as to robustly guarantee safety. 

irst, we denote the control input u in the optimization problem 

ith nominal CBFs and ER-CBFs as u nom and u rob , respectively. To 

egin with, we present the closed-form solution for the nominal 

afe input framed as the following QP (solved at each time step): 

u ∗nom 
= arg min 

u nom 
‖ u nom − u des ‖ 

2 (CBF − QP) 

.t. 
∂h (x, x s ) 

∂t 
+ L f h (x, x s ) 

+ L g h (x, x s ) u nom + α(h (x, x s )) ≥ 0 

or this QP, the closed-form solution can be obtained using the fol- 

owing Lemma. 

emma 1 ( [29,36] ) . Consider h (x, x s ) as a CBF for system (1) with

 g h (x, x s ) 
 = 0 . The explicit solution to (CBF-QP) is given by u ∗nom 
=

 des + u s where 

 s = 

⎧ ⎨ 

⎩ 

− L g h (x,x s ) 
T 

‖ L g h (x,x s ) ‖ 2 �nom (x, x s , u des ) if 

�nom (x, x s , u des ) < 0 , 
0 if �nom (x, x s , u des ) ≥ 0 

ith �nom (x, x s , u ) = 
∂h (x,x s ) 

∂t 
+ L f h (x, x s ) + L g h (x, x s ) u + α(h (x, x s )) . 

Our method to synthesize the control input using ER-CBFs is 

nspired by Lemma 1 , where we intend to use u ∗nom 
as the desired

nput and find an extra control effort such that the resulting input 

nsures robustness in the presence of environmental errors. First, 

et 

rob (x, ̂  x s , u ) = 

∂h (x, ̂  x s ) 

∂t 
+ L f h (x, ̂  x s ) + L g h (x, ̂  x s ) u + 

(h (x, ̂  x s )) − e ∗∇h ‖ f (x ) + g(x ) u ‖ + e ∗∂h 
∂t 

+ α(e ∗h ) . 

hen, in order to design an environmentally safe controller with 

R-CBFs, one needs to consider the following SOCP: 

 
∗
rob = arg min 

u rob 
‖ u rob − u des ‖ 

2 (ER-CBF-SOCP) 

.t. �rob (x, ̂  x s , u rob ) ≥ 0 

Since u ∗nom 
which is the solution of (CBF-QP), will be taken as 

he desired input for (ER-CBF-SOCP) , from now on, the desired in- 

ut for (ER-CBF-SOCP) is denoted by u (s ) 
des 

to distinguish it with 

 des in (CBF-QP). Let us define u δ � u ∗
rob 

− u ∗nom 
as the amount of

hange in the control input u ∗nom 
such that robustness to the en- 

ironmental uncertainties is guaranteed. Next, based on Lemma 1 , 
4 
n upper bound on u δ is obtained. Note that u s in Lemma 1 for the

ase where u ∈ R reduces to 

 s = 

{
−�nom (x,x s ,u des ) 

L g h (x,x s ) 
if �nom (x, x s , u des ) < 0 , 

0 if �nom (x, x s , u des ) ≥ 0 . 

heorem 3. Consider u ∗nom 
to be the solution to (CBF-QP) for system 

1) with u ∈ R and let it be the desired control input for (ER-CBF- 

OCP) , i.e., u (s ) 
des 

= u ∗nom 
. Define u δ � u ∗

rob 
− u ∗nom 

, with u ∗
rob 

being the

olution for (ER-CBF-SOCP) , and let e ∗∂h 
∂t 

, e ∗
h 
, and e ∗∇h 

be obtained from

9) at ‖ e s ‖ = E s and ‖ ̇ e s ‖ = ˙ E s . Assuming that L g h (x, ̂  x s ) 
 = e ∗∇ 
‖ g(x ) ‖ ,

hen 

 u δ| ≤ max 

{∣∣∣∣ −�rob (x, ̂  x s , u 
∗
nom 

) 

L g h (x, ̂  x s ) + e ∗∇h 
‖ g(x ) ‖ 

∣∣∣∣, 
∣∣∣∣ −�rob (x, ̂  x s , u 

∗
nom 

) 

L g h (x, ̂  x s ) − e ∗∇h 
‖ g(x ) ‖ 

∣∣∣∣
}

.

roof. Since e ∗∂h 
∂t 

, e ∗
h 
, and e ∗∇h 

are obtained at ‖ e s ‖ = E s and ‖ ̇ e s ‖ =
˙  s , there exits δh ∈ R such that for ER-CBF h (x, x s ) in (ER-CBF-

OCP) , it follows: 

∂(h (x, ̂  x s ) + δh ) 

∂t 
+ L f 

(
h (x, ̂  x s 

)
+ δh ) + L g (h (x, ̂  x s ) 

+ δh ) u + α(h (x, ̂  x s ) + δh ) = �rob (x, ̂  x s , u ) . (14) 

hen, by considering the left-hand side of (14) and using 

emma 1 with u (s ) 
des 

= u ∗nom 
and noticing the fact that u ∈ R , it fol-

ows that: 

u ∗
rob 

= u ∗nom 
if �rob (x, ̂  x s , u 

∗
nom 

) ≥ 0 

u ∗
rob 

= u ∗nom 
− �rob (x, ̂ x s ,u 

∗
nom ) 

L g (h (x, ̂ x s )+ δh ) if �rob (x, ̂  x s , u 
∗
nom 

) < 0 
(15) 

hus, for the case �rob (x, ̂  x s , u 
∗
nom 

) ≥ 0 , u δ is zero, and for the case

here �rob (x, ̂  x s , u 
∗
nom 

) < 0 , it follows: 

 δ = −�rob (x, ̂  x s , u 
∗
nom 

) 

L g (h (x, ̂  x s ) + δh ) 
= −�rob (x, ̂  x s , u 

∗
nom 

) 

L g h (x, ̂  x s ) + L g δh 
. (16) 

ote that L g δh = ∇ x δhg(x ) . Although, the exact value for L g δh is
ot known, recall that ‖∇ x δh ‖ = e ∗∇ 

in Theorem 2 . Since u ∈ R , it

lso follows that L g h (x, ̂  x s ) ∈ R and L g δh ∈ R . Therefore, 

 L g δh | = |∇ x δhg(x ) | = e ∗∇ 
‖ g(x ) ‖ . (17)

y replacing possible values of L g δh in (16) , i.e., L g δh = ±e ∗∇ 
‖ g(x ) ‖ ,

t follows that: 

 u δ| ≤ max 

{∣∣∣∣ −�rob (x, ̂  x s , u 
∗
nom 

) 

L g h (x, ̂  x s ) + e ∗∇h 
‖ g(x ) ‖ 

∣∣∣∣, 
∣∣∣∣ −�rob (x, ̂  x s , u 

∗
nom 

) 

L g h (x, ̂  x s ) − e ∗∇h 
‖ g(x ) ‖ 

∣∣∣∣
}

.

�

emark 1. If the lower bound considered for (12) in the proof 

f Theorem 2 is tight, we can always find such δh in (14) . In
ther words, if e ∗∂h 

∂t 

, e ∗
h 
, and e ∗∇h 

which are obtained by mini-

izing each term individually in (12) , have a common optimizer, 

uch δh can always be found. That is the reason it is assumed 

n Theorem 3 that e ∗∂h 
∂t 

, e ∗
h 
, and e ∗∇h 

are obtained at ‖ e s ‖ = E s and

 ̇ e s ‖ = ˙ E s . Note that this is not a strong assumption and e ∗∂h 
∂t 

, e ∗
h 
,

nd e ∗∇h 
most of the time are obtained in extreme situations. 

Theorem 3 finds an upper bound on the size of the necessary 

odification in the nominal safe input to meet the robustness con- 

ition. Using the results of Theorem 3 , a new constraint is estab- 

ished for the ER-CBF which is no longer dependent on the norm 

f the control input, hence the control design problem can be for- 

ulated as a QP rather than a SOCP. 

heorem 4. Let e ∗∂h 
∂t 

, e ∗
h 
, and e ∗∇h 

be defined as in (9) . If

 (x, x s ) is an ER-CBF for system (1) with u ∈ R and the resid-

al term �(x, x s , ̂  x s , u ) = e ∗∂h + α(e ∗
h 
) − e ∗∇h 

(|| f (x ) + g(x ) u ∗nom 
|| +
∂t 
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Fig. 1. Adaptive cruise control example for mixed traffic where ego vehicle is AV 

following the lead vehicle which is an HDV. 

Fig. 2. CBF and its uncertainty bound for keeping safe distance in cruise control 

using nominal CBF (top), robust CBF with SOCP (middle), and robust CBF with QP 

(bottom). 
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2 In MATLAB, the interior point method (which has a polynomial time complex- 

ity) is utilized to solve both QP and SOCP (though with different algorithms). How- 

ever, computing QP i.e. (ER-CBF-QP) is more time-consuming than computing SOCP, 

i.e., (ER-CBF-SOCP) . This is also has been observed in Long et al. [25] . 
 g(x ) ‖ ̄u δ ) , where u ∗nom 
is the nominal safe input obtained by solving

CBF-QP) and 

¯ δ � max 

{∣∣∣∣ −�rob (x, ̂  x s , u 
∗
nom 

) 

L g h (x, ̂  x s ) + e ∗∇h 
‖ g(x ) ‖ 

∣∣∣∣, 
∣∣∣∣ −�rob (x, ̂  x s , u 

∗
nom 

) 

L g h (x, ̂  x s ) − e ∗∇h 
‖ g(x ) ‖ 

∣∣∣∣
}

, 

hen any Lipschitz continuous controller u that satisfies (8) will render 

ystem (1) forward invariant with respect to C s . 

roof. According to Theorem 2 , if �(x, x s , ̂  x s , u ) = e ∗∂h 
∂t 

+ α(e ∗
h 
) −

 
∗∇h 

(|| f (x ) + g(x ) u || ) , then any Lipschitz continuous controller u ∈
 that satisfies (8) will render system (1) forward invariant with 

espect to C s . Next, we want to get rid of u in this residual term by

xploiting the result of Theorem 3 . Considering u ∗
rob 

= u ∗nom 
+ u δ , it

ollows that: 

 
∗
∂h 
∂t 

+ α(e ∗h ) − e ∗∇h (|| f (x ) + g(x )(u ∗nom 
+ u δ ) || ) ≥

 
∗
∂h 
∂t 

+ α(e ∗h ) − e ∗∇h (|| f (x ) + g(x ) u ∗nom 
‖ + | u δ|‖ g(x ) ‖ ) . 

ue to Theorem 3 , | u δ| ≤ ū δ = max {| − �rob (x, ̂ x s ,u 
∗
nom ) 

L g h (x, ̂ x s )+ e ∗∇h 
‖ g‖ | , | −

�rob (x, ̂ x s ,u 
∗
nom ) 

L g h (x, ̂ x s ) −e ∗∇h 
‖ g‖ |} , thus, 

 
∗
∂h 
∂t 

+ α(e ∗h ) − e ∗∇h (|| f (x ) + g(x ) u ∗nom 
‖ + | u δ|‖ g(x ) ‖ ) ≥

 
∗
∂h 
∂t 

+ α(e ∗h ) − e ∗∇h (|| f (x ) + g(x ) u ∗nom 
‖ + ū δ‖ g(x ) ‖ ) . 

his completes the proof. �

Notice that the residual term in Theorem 4 , unlike the one in 

heorem 2 , does not depend on the control input, which is the de- 

ision variable in the optimization-based control design. In fact, in 

he residual term of Theorem 4 , we have u ∗nom 
and ū δ which are 

ot decision variables and hence they are available before solving 

he optimization problem. Hence, one can utilize a QP to compute 

he control input instead of a SOCP. Thus, to design an environ- 

entally safe controller with ER-CBFs, the following QP is consid- 

red: 

 
∗
rob = arg min 

u rob 
‖ u rob − u ∗nom 

‖ 
2 (ER-CBF-QP) 

.t. 
∂h (x, ̂  x s ) 

∂t 
+ L f h (x, ̂  x s ) + L g h (x, ̂  x s ) u rob 

+ α(h (x, ̂  x s )) − e ∗∇h (‖ f (x ) + g(x ) u ∗nom 
‖ + ū δ‖ g(x ) ‖ ) 

+ e ∗∂h 
∂t 

+ α(e ∗h ) ≥ 0 . 

n the sequel, the closed-form solution of (ER-CBF-QP) tackling 

roblem 2 is presented. 

heorem 5. Consider h (x, x s ) as an ER-CBF for system (1) with u ∈
 and L g h (x, ̂  x s ) 
 = 0 . The solution to (ER-CBF-QP) is given by u ∗

rob 
=

 
∗
nom 

+ u ˆ δ where 

 ˆ δ
= 

{
0 if ̂ �rob (x, x s , u 

∗
nom 

) ≥ 0 

− ̂ �rob (x, ̂ x s ,u 
∗
nom ) 

L g h (x, ̂ x s ) 
if ̂ �rob (x, x s , u 

∗
nom 

) < 0 
(18) 

ith ̂ �rob (x, ̂  x s , u ) = 
∂h (x, ̂ x s ) 

∂t 
+ L f h (x, ̂  x s ) + L g h (x, ̂  x s ) u +

(h (x, ̂  x s )) − e ∗∇h 
(‖ f (x ) + g(x ) u ∗nom 

‖ + ū δ‖ g(x ) ‖ ) + e ∗∂h 
∂t 

+ α(e ∗
h 
) . 

roof. Notice that in (ER-CBF-QP) both objective function and con- 

traint are convex and continuously differentiable with respect to 

 rob . Hence, one can apply KKT (Karush–Kuhn–Tucker) conditions 

o provide necessary and sufficient conditions for optimality [6] . 

he rest of the proof is similar to the proof of Lemma 1 . �

emark 2. Note that (ER-CBF-SOCP) presents our solution for 

roblem 1, and (ER-CBF-QP) presents our solution for Problem 2. 

n (ER-CBF-SOCP) the optimization constraint ( �rob (x, ̂  x s , u ) ) is im- 

osing safety and environmental robustness simultaneously, so it 
5 
an be considered as a robust safe filter that modifies the nomi- 

al (and possibly unsafe) control input u des . On the other hand, in 

ER-CBF-QP) the optimization constraint ( ̂  �rob (x, ̂  x s , u ) ) is only im- 

osing robustness to the nominally safe control input, so it can be 

egarded as robustness filter of nominally safe input u ∗nom 
. In addi- 

ion to that, computing the control input via (ER-CBF-QP) is faster 

nd less prone to infeasiblity than (ER-CBF-SOCP) . 2 Furthermore, 

ER-CBF-QP) (as we shall see in Figs. 3 and 4 ) is slightly more con-

ervative than (ER-CBF-SOCP) . Moreover, it should be noted that, 

ER-CBF-SOCP) is applicable to the cases where u ∈ R 
m , while (ER- 

BF-QP) is only used for u ∈ R . 

. Adaptive cruise control example 

In this section, the proposed robust safe controller is applied 

o the adaptive cruise control problem where the lead vehicle is a 

uman-driven vehicle (HDV) and the ego vehicle (see Fig. 1 ) which 

e intend to design control actions for, is an Automated Vehicle 

AV). The following longitudinal dynamics is considered for AVs: 

˙ p = v , 
˙ v = 

u − F r (v ) , 
(19) 
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Fig. 3. Velocity and distance of ego and lead vehicles in the adaptive cruise control 

along with the control input for ego vehicle using nominal CBF, robust CBF with 

SOCP, and robust CBF with QP. 
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Table 1 

Vehicles parameters used in the simulations. 

AV HDV 

Parameter Value Parameter Value 

m 1650 kg λ 0.309 

c 0 0.1 N σ 1.13 

c 1 5 Ns/m v (d) 100 km/h 

c 2 0.25 Ns 2 /m τ 0 
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here p, v , and u denote the position, the velocity and the control
nput for the AV, respectively. The mass of the AV is denoted by m

nd F r (v ) is the rolling force which is approximated as 

 r (v ) = c 0 + c 1 v + c 2 v 2 , (20) 

ith the constants c 0 , c 1 , and c 2 that can be determined empiri-

ally. Equation (19) can be written in a state-space form as 

˙  = 

[
v 

− 1 
m 
F r 

]
︸ ︷︷ ︸ 

f (x ) 

+ 

[
0 
1 
m 

]
︸ ︷︷ ︸ 
g(x ) 

u. (21) 

here x = [ p, v ] T represents the state of the AV. It is assumed that

he dynamics of the HDV (the lead vehicle) are unknown and only 

ome uncertain measurements of its state are available. Let the 

tate of the HDV be given by p s and v s , denoting the HDV’s po-
ition and velocity, respectively. To ensure the rear-end safety be- 

ween AV and HDV, the following constraint should be imposed: 

p s − p ≥ T h v , (22) 

here T h is a look ahead (reaction) time. To enforce this constraint 

n the synthesis of the control input of the AV, the following CBF 

s considered: 

 (x, x s ) = p s − p − T h v −
1 

2 

(v s − v ) 2 

c d g 
, (23) 

ith x s = [ p s , v s ] T , and c d g is the maximum deceleration with g

nd c d being the gravity acceleration and deceleration factor, re- 

pectively. It is assumed that, instead of the exact value of x s , an

stimate of it, ˆ x s , is available to the AV through its onboard sensors 

r a road-side coordinator. Therefore, it follows that p s = ˆ p s + e p , 

 s = ̂  v s + e v and ˙ v s = 
˙ ˆ v s + e ˙ v . Then, by assuming known uncertainty

ounds between x h and ˆ x s , it follows that 

 p s − ˆ p s | ≤ E p , | v s − ˆ v s | ≤ E v , | ̇ v s − ˙ ˆ v s | ≤ E ˙ v . (24)
6 
nowing the worst-case bounds on the errors of state of HDV, we 

eed to quantify the error in the designed CBF (23) , its gradient, 

nd its time-derivative as follows: 

e h (x, x s , ̂  x s ) = h (x, x s ) − h (x, ̂  x s ) 

= e p + 

2 e v ( ̂ v s − v ) + e 2 v 
2 c d g 

, 

e ∇h (x, x s , ̂  x s ) = ‖∇h (x, x s ) − ∇h (x, ̂  x s ) ‖ 

= ‖ [0 , 
e v 

c d g 
] T ‖ = | e v 

c d g 
| , 

e ∂h 
∂t 

(x, x s , ̂  x s ) = 

∂h (x, x s ) 

∂t 
− ∂h (x, ̂  x s ) 

∂t 

= v s − ˙ v s (v s − v ) 
c d g 

− ˆ v s + 

ˆ ˙ v s ( ̂ v s − v ) 
c d g 

= e v − ˙ v s e v + e ˙ v ( ̂ v s − v ) + e v e ˙ v 
c d g 

. 

ow e ∗∂h 
∂t 

, e ∗
h 
, and e ∗∇h 

can be obtained via (9) . They will be utilized

o synthesize the environmentally safe control input for the adap- 

ive cruise control. To compute the desired control input to achieve 

he control objective, the following CLF is defined: 

 (x ) = (v − v d ) 2 , 

here v d is the desired velocity on the road. To apply maximum 

nd minimum permissible velocity on the road ( v max and v min ), the 

ollowing CBFs are defined. 

 2 (x ) = v max − v , 
 3 (x ) = v − v min . 

ote that these CBFs only depend on the state of the AV, thus, they 

ill not be used as ER-CBF constraints while implementing them 

n a QP or SOCP and are considered as a regular CBF constraint. 

n the next section, the control input is designed for this example 

sing (CBF-QP), (ER-CBF-SOCP) and (ER-CBF-QP) and the obtained 

esults are compared. 

. Simulation results 

To demonstrate the efficacy of the proposed methods, several 

imulations are carried out in MATLAB on the adaptive cruise con- 

rol example presented in the previous section. MATLAB QUAD- 

ROG and CONEPROG commands are used for solving QPs and 

OCPs and ODE45 is used for integrating AV dynamics. To gener- 

te the HDV’s motion, the so-called linear free-flow model is used 

1] : 

˙  s (t) = λ[ v (d) (t) − v s (t − τ )] + ε(t) , (25) 

here v (d) is the desired road velocity, τ is the HDV driver’s re- 

ction time, λ is a constant, and ε is a zero-mean Gaussian noise 

ith the variance of σ . For the simulations the parameters pre- 

ented in Table 1 are for the vehicle dynamics for AV and HDV, 

nd g = 9 . 81 m/s 
2 
, c d = 0 . 3 . To solve the QP and SOCP, CLF and CBF

ates are selected equal as γ = ν = 5 . In addition, the maximum 
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Fig. 4. CBF for keeping safe distance with lead vehicle and CLF for achieving desired 

distance with lead vehicle in cruise control using nominal CBF, robust CBF with 

SOCP, and robust CBF with QP. 
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Fig. 5. Obtaining robust control input via closed form solution of robust QP. 

i

C

c

r

s

D

c

i

R

 

[

nd minimum admissible road speed are considered as v max = 

20 km/h and v min = 60 km/h . 

To begin the simulation, it is assumed that initial distance 

etween the ego and lead vehicles is �p = 80 m and v = v s =
7 . 8 m/s = 100 km/s . Moreover, the worst-case errors for HDV state 

re considered as E p = 1 m , E v = 1 m/s and E ˙ v = 0 . In Fig. 2 , the

ncertainty bound for CBF defined in (23) is shown using (CBF- 

P), (ER-CBF-SOCP) and (ER-CBF-QP) . It can be observed from the 

gure that in the case of (CBF-QP) (the top plot with red color), 

ven though the nominal CBF remains non-negative, the uncer- 

ainty bound crosses the x -axis and the CBF becomes negative; this 

s clearly not a safe behavior and the forward invariance property 

s no longer guaranteed. On the other hand, CBFs obtained via (ER- 

BF-SOCP) and (ER-CBF-QP) remain non-negative in the presence 

f the uncertainties. It is worth noting that the nominal CBF for 

ER-CBF-SOCP) and (ER-CBF-QP) is more conservative 3 than (CBF- 

P) which is indeed expected. 

In Fig. 3 , the velocity of AV and HDV, their distance ( �p =
p s − p) and the control input for AV are shown using three differ- 

nt methods. As it can be seen from the figure, the results of (ER-

BF-SOCP) and (ER-CBF-QP) almost coincide, and as it is shown in 

he magnified cross-section of distance plot, (ER-CBF-QP) is slightly 

ore conservative. 

Figure 4 also shows the CBF and CLF plot for the case of Fig. 3 .

imilar to Fig. 3 , the results of (ER-CBF-SOCP) and (ER-CBF-QP) are 

oinciding, and the results of (ER-CBF-QP) are slightly more con- 

ervative. In Fig. 5 the plot for the control input resulting from the 

losed form solution (ER-CBF-QP) using Theorem 5 is presented. 

s it can be seen from the figure, at each time instant, u ∗nom 
and

 ˆ δ
are computed and then u ∗

rob 
is computed via u ∗

rob 
= u ∗nom 

+ u ˆ δ
here u ˆ δ is defined in (18) in Theorem 5 . 

. Conclusion 

The control synthesis problem using environmentally robust 

ontrol barrier functions is considered in this paper and it is shown 

hat accounting for the worst-case error in a dynamical environ- 

ent results in the ER-CBF-SOCP formulation. Then, we present the 

R-CBF-QP alternative which minimally modifies the nominal safe 
3 When a CBF has farther distance from x -axis (zero) it is considered to be more 

onservative. 

7 
nput resulting from the solution of CBF-QP. ER-CBF-SOCP and ER- 

BF-QP results are almost similar. However, ER-CBF-QP has a better 

omputational time and is less prone to infeasibility. A future di- 

ection would be extending ER-CBF-QP for multi-input dynamical 

ystems. 
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