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A design paradigm for the future of intelligent sensors.

HE LAST DECADE has seen

a surge in commercial ap-

plications using machine

learning (ML). Similarly,

marked improvements in
latency and bandwidth of wireless
communication have led to the rapid
adoption of cloud-connected devices,
which gained the moniker Internet of
Things (IoT). With such technology, it
became possible to add intelligence to
sensor systems and devices, enabling
new technologies such as Amazon
Echo, Google Nest, and other so-called
“smart devices.” However, these devic-
es offer only the illusion of intelligence
and are merely vessels for submitting
and receiving queries from a central-
ized cloud infrastructure. This cloud
processing leads to concerns about
where user data is being stored, what
other services it might be used for, and
who has access to it.”

More recently, efforts have pro-
gressed in dovetailing the domains
of IoT and machine learning to em-
bed intelligence directly on the de-
vice, known as tiny machine learn-
ing (TinyML)." TinyML has several
benefits over traditional cloud-based
IoT architectures as the performance
of these devices is both latency- and
bandwidth-dependent. For example,
wireless communication is associated
with high power consumption due to
the electric currentrequired to amplify
an antenna’s signal. Furthermore, po-
tentially sensitive data is being broad-
cast over large distances, opening up
the opportunity for interception by

malicious actors. In contrast, TinyML
can process data on-device, meaning
wireless communication is unneces-
sary. Such offline devices can improve
security, reduce power consumption,
and reserve communication solely for
firmware updates or communicating
anomalies."® However, this new ML
paradigm is met with similar chal-
lenges to the IoT workflow, most nota-
bly data privacy and the need for more
transparency. For more on TinyML,
see Prakash et al. on p. 68.

These challenges are best illustrat-
ed through example; consider an every-
day use case of TinyML known as per-
son detection—determining whether a
person is present within an image. One
could imagine having “person detec-
tors” spread about their home to con-
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trol lighting or other domestic systems.
The key data-generating device for a
person detector is a camera, the data
from which is then submitted to the
application processor and run through
a neural network stored in flash mem-
ory. The output from the network then
provides a simple binary label denot-
ing whether a person is present.

With current cloud-based IoT
deployments, while the binary out-
put of such a device likely does not
contain large amounts of sensitive
information, there is no way to guar-
antee that the raw images collected
by these devices are not being har-
vested and used for other purposes,
perhaps unsavory. One could imag-
ine that such images might be used
to determine how many people live
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in a house, their ethnicities, genders,
habits, and so forth, all based on data
obtained under the guise of person
detection. Such factors have evoked
concern from privacy advocates, end
users, and workers’ unions. Unfortu-
nately, this is not an isolated issue,
with many newer devices containing
microphones or cameras without the
user’s knowledge.? This trend under-
scores the need for improved trans-
parency and the introduction of regu-
lations or mechanisms to protect user
privacy and inform users of what data
their devices are collecting.

To this end, we propose the ML
sensor, a logical framework for devel-
oping ML-enabled embedded systems
that empowers end users through its
privacy-by-design approach. By limit-
ing the data interface, the ML sensor
paradigm helps ensure no user infor-
mation can be extracted beyond the
scope of the sensor’s functionality.
Our proposed definition is: “An ML
sensor is a self-contained, embedded
system that utilizes machine learning
to process sensor data on-device—
logically decoupling data computa-
tion from the main application pro-
cessor and limiting the data access
of the wider system to high-level ML
model outputs.”

The underlying idea behind a ML
sensor is that an ML processor is
coupled to a sensor as part of a single
physical entity, separate from the cen-
tral processor (see Figure 1). Similar to
the distinction between user and ker-
nel space in computer science, these
two processors would live in funda-
mentally different worlds. Instead of
the central processor having access

]
This new ML
paradigm is met with
similar challenges

to the loT workflow,
most notably data
privacy and the

need for more
transparency.

to all the data, it would only receive
the output from the ML sensor. On
the other hand, the ML sensor has ac-
cess to the data but only contains the
functionality and peripherals to per-
form its essential operation, no other
auxiliary computations. This way, the
raw sensor data would never leave the
ML sensor, promoting privacy while en-
abling intelligence.

For our motivating person-detec-
tion example, this could be imple-
mented by passing a binary label de-
noting whether a person is present in
animage. This approach would enable
a simple hardware design containing
only three communication pins: one
for ground, one for power, and one for
the binary output of the neural net-
work. Sensors thatrequire more than a
single bit for output variables, such as
for multiclass classification, would re-
quire more channels but only enough
to cover the co-domain of the machine
learning output. Thus, while the ML

Figure 1. The ML sensor paradigm. The ML model is tightly coupled with the physical
sensor, separate from the application processor in the ML sensor. This paradigm provides

isolation of data-level computation from the wider system, precluding system-level

accessibility to sensitive user data.

High-level
features

ML Sensor
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sensor is best suited for applications
with a finite set of model outputs, this
still admits a wide variety of possible
commercial applications, from voice
command interfaces to analog display
monitoring.’ Useful Sensors recently
developed a person detection ML sen-
sor module” that operates similarly to
our motivating example.

To further promote privacy, the ML
learning model could be loaded onto
the ML sensor during production with-
out hardware capabilities to enable
model updates. Alternatively, secure
networking capabilities could be in-
cluded to ensure the device’s firmware
and model would still be updateable
but would be performed over-the-air
and under rare circumstances. Fur-
thermore, the ML Sensor could also in-
corporate existing privacy-preserving
technologies (for example, SGX and
TrustZone®). However, most current
devices within the scope of tinyML are
too resource-constrained to imple-
ment such technologies.

The ML sensor also has additional
desirable features. The device would be
self-contained and modular, allowing it
to interface easily with embedded sys-
tems. This approach makes the tech-
nology more accessible to non-experts
by removing the need for hardware,
software, and ML expertise to develop
ML-enabled embedded devices. These
devices could also be integrated into
larger, more complex systems to enable
advanced functionality while provid-
ing users assurance that their sensitive
data is protected.

An ML sensor would need to be pro-
vided alongside a datasheet that com-
municates its coree sign to ensure ease
of use. This datasheet should include
sections seen in traditional sensor
datasheets (for example, electrical
characteristics), as well as additional
sections to outline ML model perfor-
mance, end-to-end performance anal-
ysis, and articulate features regarding
privacy, ethical, and environmental
considerations, including the dataset
used for training, inspired by Gebru et
al.* Such a datasheet could be audited
to ensure it meets specific require-
ments regarding algorithmic bias,
device reliability, and performance
verification. It would not only provide
relevant information to device design-
ers but also help to promote trust
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Figure 2. An illustrative example of an ML sensor datasheet.

On the top are the items found in standard datasheets: the description, features, use cases, diagrams and form factor,
hardware characteristics, communication specification, and pinout. The bottom includes the new items that must be
included in an ML sensor datasheet: the ML model characteristics, dataset nutrition label, environmental impact analysis,
and end-to-end performance analysis. While this datasheet is compressed into one page, in a veritable datasheet, sections
might be substantially longer and differ significantly based on the device specification and real-world application.
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between corporations and end users
based on added transparency and vali-
dation by a third-party entity.

Figure 2 is an example of what such
an ML sensor datasheet might look
like for our example person detector
module. Designing such datasheets
requires community involvement and
engagement since it affects stakehold-
ers at all levels, including end users,
manufacturers, technical experts, pri-
vacy advocates, auditing bodies, and
policymakers. The ML sensor ecosys-
tem will need to decide:

» What high-level information needs
to be communicated to the end user
when purchasing a device utilizing ML
sensors, such as what sensors a device
contains and what the data it collects is
used for (that is, data nutrition label?).

» What ethical or compliance stan-
dards (for example, GDPR, RoHS) must
be met by manufacturers and corpora-
tions utilizing ML sensors.

» What categories and information
must be communicated in a datasheet,
and how it should be communicated.

We believe the net impact afforded
by increasing the usability of ML in
hardware applications and its pos-
sible positive downstream effects on
privacy, security, and transparency
will be positive. However, as with any
approach, this paradigm has chal-
lenges, and the net positive impact
relies on developers applying appro-
priate ethical considerations when
designing and developing ML sen-
sors. For example, traditional ML con-
cerns remain, such as model bias, the
potential for adversarial attacks, and
reduced explainability of the device’s
functionality. There is also the poten-
tial for ML sensors to be exploited for
malicious purposes, such as within
weaponry or suppressing freedom
of speech. Based on these shortcom-
ings, we envisage these devices being
used to augment existing systems and
not to replace them, especially for
safety-critical applications. And per-
haps someday, it might be possible
to walk into a hardware store and pur-
chase a person detection sensor like
one might purchase a temperature
sensor today.

A Call to Action
The rapid development of intelli-

gent sensors means the challenges
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described here will occur faster than
most anticipate. A privacy-by-design
approach is necessary to tackle these
issues proactively and promptly. Si-
multaneously, a dialogue is needed
between the general public, corpora-
tions, manufacturers, and policymak-
ers, to discern the appropriate level
of privacy, security, and transparency
to meet the needs of all parties and
how these needs might be achieved.
The solution may involve developing
an auditing system, certification pro-
cess, regulatory body, or a mixture of
these alongside other mechanisms.
Care must be taken to ensure user pri-
vacy and security are protected while
avoiding stifling innovation. There
may be lessons that can be learned
from similar ethical issues within
cloud-based ML, as well as solutions
made for embedded ML that may
transfer over to the domain of cloud-
based ML.
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