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a b s t r a c t

We address the problem of controlling Connected and Automated Vehicles (CAVs) in conflict areas of a
traffic network subject to hard safety constraints. It has been shown that such problems can be solved
through a combination of tractable optimal control problem formulations and the use of Control Barrier
Functions (CBFs) that guarantee the satisfaction of all constraints. These solutions can be reduced to
a sequence of Quadratic Programs (QPs) which are efficiently solved on-line over discrete time steps.
However, the feasibility of each such QP cannot be guaranteed over every time step. To overcome this
limitation, we develop both an event-triggered approach and a self-triggered approach such that the
next QP is triggered by properly defined events. We show that both approaches, each in a different
way, eliminate infeasible cases due to time-driven inter-sampling effects, thus also eliminating the
need for selecting the size of time steps. Simulation examples are included to compare the two new
schemes and to illustrate how overall infeasibilities can be significantly reduced while at the same
time reducing the need for communication among CAVs without compromising performance.

© 2024 Elsevier Ltd. All rights reserved.
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1. Introduction

The emergence of Connected and Automated Vehicles (CAVs)
long with new traffic infrastructure technologies (Fagnant &
ockelman, 2015; Li, Wen, & Yao, 2014) over the past decade

have brought the promise of resolving long-lasting problems in
transportation networks such as accidents, congestion, and un-
sustainable energy consumption along with environmental pol-
lution (de Waard, Dijksterhuis, & Brookhuis, 2009; Kavalchuk,
Kolbasov, Karpukhin, Terenchenko, et al., 2020; Schrank, Eisele,
Lomax, & Bak, 2015). Meeting this goal heavily depends on effec-
tive traffic management, specifically at the bottleneck points of
a transportation network such as intersections, roundabouts, and
merging roadways (Berg & Verhoef, 2016).

To date, both centralized and decentralized methods have
been proposed to tackle the control and coordination problem
of CAVs in conflict areas; an overview of such methods may be

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Antonella
Ferrara under the direction of Editor Thomas Parisini.
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ound in Rios-Torres and Malikopoulos (2017). Platoon forma-
ion (Rajamani, Tan, Law, & Zhang, 2000; Wu, Yan, & Abbas-
urki, 2013; Xu, Feng, Zhang, & Li, 2019) and reservation-based
ethods (Au & Stone, 2010; Dresner & Stone, 2004; Zhang,
e La Fortelle, Zhang, & Wu, 2013) are among the centralized
pproaches, which are limited by the need for powerful central
omputation resources and are typically prone to disturbances
nd security threats. In contrast, in decentralized methods each
AV is responsible for its own on-board computation with infor-
ation from other vehicles limited to a set of neighbors (Rios-
orres, Malikopoulos, & Pisu, 2015). Constrained optimal control
roblems can then be formulated with objectives usually involv-
ng minimizing acceleration or maximizing passenger comfort
measured as the acceleration derivative or jerk), or jointly min-
mizing travel time through conflict areas and energy consump-
ion. These problems can be analytically solved in some cases,
.g., for optimal merging (Xiao & Cassandras, 2021) or crossing
signal-free intersection (Zhang & Cassandras, 2019). However,
btaining such solutions becomes computationally prohibitive for
eal-time applications when an optimal trajectory involves mul-
iple constraints becoming active. Thus, on-line control methods
uch as Model Predictive Control (MPC) (Holkar & Waghmare,
010) techniques or Control Barrier Functions (CBFs) (Ames et al.,
019; Ames, Xu, Grizzle, & Tabuada, 2017; Xiao & Belta, 2019) are
ften adopted for the handling of additional constraints.
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In the MPC approach proposed in Garcia, Prett, and Morari
(1989), the time is normally discretized and an optimization
problem is solved at each time instant with the addition of
appropriate inequality constraints; then, the system dynamics are
updated. Since both control and state are considered as decision
variables in the optimization problem, MPC is very effective for
problems with simple (usually linear or linearized) dynamics,
objectives, and constraints (Cao, Mukai, Kawabe, Nishira, & Fujiki,
2015). Alternatively, CBFs can overcome some shortcomings of
the MPC method (Holkar & Waghmare, 2010) as they do not need
states as decision variables, instead mapping state constraints
onto new ones that only involve the decision variables in a linear
fashion. Moreover, CBFs can be used with nonlinear (affine in con-
trol) system dynamics and they have a crucial forward invariance
property which guarantees the satisfaction of safety constraints
over all time as long as these constraints are initially satisfied.

An approach combining optimal control solutions with CBFs
was recently presented in Xiao, Cassandras, and Belta (2021).
n this combined approach (termed OCBF), the solution of an
nconstrained optimal control problem is first derived and used
s a reference control. Then, the resulting control reference tra-
ectory is optimally tracked subject to a set of CBF constraints
hich ensure the satisfaction of all constraints of the original
ptimal control problem. Finally, this optimal tracking problem
s efficiently solved by discretizing time and solving a simple
uadratic Problem (QP) at each discrete time step over which
he control input is held constant (Ames et al., 2017). The use of
BFs in this approach exploits their forward invariance property
o guarantee that all constraints they enforce are satisfied at all
imes if they are initially satisfied. In addition, CBFs are designed
o impose linear constraints on the control which is what enables
he efficient solution of the tracking problem through a sequence
f QPs. This approach can also be shown to provide additional
lexibility in terms of using nonlinear vehicle dynamics (as long
s they are affine in the control), complex objective functions, and
olerating process and measurement noise (Xiao, Cassandras, &
elta, 2021).
However, in solving a sequence of QPs the control update

nterval in the time discretization process must be sufficiently
mall in order to always guarantee that every QP is feasible. In
ractice, such feasibility can often be seen to be violated due to
he fact that it is extremely difficult to pick a proper discretization
ime which can be guaranteed to always work. An additional
ssue is that small control update intervals result in excessive
ommunication resource consumption and computational costs.
The contribution of this paper is to resolve this problem for the

ecentralized constrained optimal control of CAVs since it limits
he use of CBFs if the feasibility of the resulting controllers cannot
lways be guaranteed. We accomplish this by replacing the time-
riven nature of the discretization process to solve a sequence of
Ps in the OCBF approach by an event-driven mechanism. This
llows us to achieve QP feasibility independent of a time step
hoice.
Such schemes, either event-triggered or self-triggered, have

een considered in recent literature. For example, to avoid un-
ecessary communication in cooperative adaptive cruise con-
rol, Dolk, Ploeg, and Heemels (2017) employ an event-triggered
pproach while ensuring string stability. In Hu (2021), a self-
riggered approach is proposed that ensures the stochastic
tability of the vehicular network while efficiently utilizing com-
unication resources. Event-triggered schemes used with CBFs
ave also been considered in Ong and Cortés (2018) where a Lya-
unov function is combined with an event-triggered scheme with
he goal of improving stability. In Taylor, Ong, Cortés, and Ames
2020), an input-to-state barrier function is proposed in an event-

riggered scheme to impose safety under an input disturbance,

2

hile in Yang, Belta, and Tron (2019) a QP-based self-triggered
cheme with minimum inter-event time is developed. However,
hese schemes have only been applied to single-agent systems,
o that any consideration of communication in multi-agent sys-
ems has not been addressed and it is unclear how they can be
xtended to multi-agent environments. In contrast, our setting
learly involves multiple agents (CAVs). Thus, we extend the
pproach introduced in Xiao, Belta, and Cassandras (2021) for a
ulti-agent system and adapt it to the specifics of cooperating
AVs in conflict areas by defining events associated with the
tates of CAVs reaching a certain bound, at which point the next
P instance is triggered. On the other hand, in the self-triggering
cheme, we provide a minimum inter-event time guarantee by
redicting the first time instant that any of the CBF constraints
n the QP problem is violated, hence we can determine the
riggering time for the next QP instance. Both methods provide
guarantee for the forward invariance property of CBFs and

liminate infeasible cases due to time-driven inter-sampling ef-
ects (additional infeasibilities are still possible due to potentially
onflicting constraints within a QP; this separate issue has been
ddressed in Xiao, Belta, and Cassandras (2022)).
The advantages of these event-driven schemes can be summa-

ized as follows: (i) Infeasible QP instances due to inter-sampling
ffects are eliminated, (ii) There is no longer a need to de-
ermine a proper time step size required in the time-driven
ethods, (iii) The number of control updates under event-driven
chemes is reduced, thereby reducing the overall computational
ost, and (iv) Since the number of QPs that need to be solved is
educed, this also reduces the need for unnecessary communica-
ion among CAVs. This reduced need for communication, along
ith the unpredictability of event-triggering relative to a fixed
ime discretization approach, results in the system being less sus-
eptible to malicious attacks (Ahmad, Sabouni, Xiao, Cassandras,
Li, 2023).
The paper is organized as follows. In Section 2, we provide

n overview of the decentralized constrained optimal control
or CAVs in any conflict area setting, along with a brief review
f CBFs to set the stage for the OCBF approach. We also re-
iew the time-driven approach to solve such optimal control
roblems, motivating the proposed solutions to the problem.
n Section 3, event-triggered and self-triggered approaches are
eparately presented, including the formulation and solution of
Ps in both frameworks and their associated communication
chemes. In Section 4, simulation results compare time-driven,
vent-triggered, and self-triggered schemes, in terms of their
erformance metrics, computational load, and infeasible cases to
how how constraint violations are reduced through the proposed
pproaches.

. Problem formulation and time-driven control solutions

In this section, we review the setting as for CAVs whose
otion is cooperatively controlled at conflict areas of a traffic
etwork. This includes merging roads, signal-free intersections,
oundabouts, and highway segments where lane change maneu-
ers take place. We define a Control Zone (CZ) to be an area
ithin which CAVs can communicate with each other or with
coordinator (e.g., a Road-Side Unit (RSU)) which is responsible

or facilitating the exchange of information (but not controlling
ndividual vehicles) within this CZ. As an example, Fig. 1 shows a
onflict area due to vehicles merging from two single-lane roads
nd there is a single Merging Point (MP) which vehicles must
ross from either road. The problem formulation here is the same
s the one discussed in Xiao, Cassandras, and Belta (2021).
In such a setting, assuming all traffic consists of CAVs, a finite

orizon constrained optimal control problem can be formulated
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Fig. 1. The merging problem (based on Fig. 1 in Xiao, Cassandras, and Belta
2021)).

iming to determine trajectories that jointly minimize travel time
nd energy consumption through the CZ while also ensuring
assenger comfort (by minimizing jerk or centrifugal forces) and
uaranteeing safety constraints are always satisfied. Let F (t) be

the set of indices of all CAVs located in the CZ at time t . A CAV
enters the CZ at one of several origins (e.g., O and O′ in Fig. 1)
and leaves at one of possibly several exit points (e.g., M in Fig. 1).
The index 0 is used to denote a CAV that has just left the CZ. Let
N(t) be the cardinality of F (t). Thus, if a CAV arrives at time t , it
is assigned the index N(t)+1. All CAV indices in F (t) decrease by
one when a CAV passes over the MP and the vehicle whose index
is −1 is dropped.

The vehicle dynamics for each CAV i ∈ F (t) along the lane to
which it belongs in a given CZ are assumed to be of the form

ẋi(t) = vi(t), v̇i(t) = ui(t) (1)

where xi(t) denotes the distance from the origin at which CAV i
arrives, vi(t) denotes the velocity, and ui(t) denotes the control
input (acceleration). There are two objectives for each CAV, as
detailed next.

Objective 1 (Minimize travel time): Let t0i and t fi denote the
time that CAV i ∈ F (t) arrives at its origin and leaves the CZ at
its exit point, respectively. We wish to minimize the travel time
t fi − t0i for CAV i.

Objective 2 (Minimize energy consumption): We also wish to
minimize the energy consumption for each CAV i:

Ji(ui(t), t
f
i ) =

∫ t fi

t0i

Li(|ui(t)|)dt, (2)

where Li(·) is a strictly increasing function of its argument.
Constraint 1 (Safety constraints): Let ip denote the index of

the CAV which physically immediately precedes i in the CZ (if one
is present). We require that the distance zi,ip (t) := xip (t)−xi(t) be
constrained by:

zi,ip (t) ≥ ϕvi(t) + δ, ∀t ∈ [t0i , t
f
i ], (3)

where ϕ denotes the reaction time (as a rule, ϕ = 1.8s is used,
e.g., Vogel (2003)) and δ is a given minimum safe distance. If we
define zi,ip to be the distance from the center of CAV i to the
center of CAV ip, then δ depends on the length of these two CAVs
(generally dependent on i and ip but taken to be a constant over
all CAVs for simplicity).

Constraint 2 (Safe merging): Whenever a CAV crosses a MP, a
lateral collision is possible and there must be adequate safe space
for the CAV at this MP to avoid such collision, i.e.,

z (tm) ≥ ϕv (tm) + δ, (4)
i,ic i i i

3

where ic is the index of the CAV that may collide with CAV i at
merging point m = {1, . . . , ni} where ni is the total number of
MPs that CAV i passes in the CZ. The determination of CAV ic
depends on the policy adopted for sequencing CAVs through the
CZ, such as First-In-First-Out (FIFO) based on the arrival times
of CAVs, or any other desired policy. It is worth noting that
this constraint only applies at a certain time tmi which obviously
depends on how the CAVs are controlled. As an example, in Fig. 1
under FIFO, we have ic = i − 1 and tmi = t fi since the MP defines
the exit from the CZ.

Constraint 3 (Vehicle limitations): Finally, there are con-
straints on the speed and acceleration for each i ∈ F (t):

vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ] (5)

umin ≤ ui(t) ≤ umax, ∀t ∈ [t0i , t
f
i ], (6)

where vmax > 0 and vmin ≥ 0 denote the maximum and
minimum speed allowed in the CZ for CAV i, umin < 0 and
umax > 0 denote the minimum and maximum control for CAV
i, respectively.

Optimal Control Problem formulation. Our goal is to deter-
mine a control law achieving objectives 1–2 subject to constraints
1–3 for each i ∈ F (t) governed by the dynamics (1). Choosing
Li(ui(t)) =

1
2u

2
i (t) and normalizing travel time and 1

2u
2
i (t), we

use the weight α ∈ [0, 1] to construct a convex combination as
follows:

min
ui(t),t

f
i

Ji(ui(t), t
f
i ) =

∫ t fi

t0i

(
α +

(1 − α) 12u
2
i (t)

1
2 max{u2

max, u
2
min}

)
dt. (7)

Letting β :=
α max{u2max,u

2
min}

2(1−α) , to obtain a simplified form we
multiply (7) by β

α
which results in:

min
ui(t),t

f
i

Ji(ui(t), t
f
i ) := β(t fi − t0i ) +

∫ t fi

t0i

1
2
u2
i (t)dt, (8)

where β ≥ 0 is an adjustable weight to penalize travel time
relative to the energy cost. Note that the solution is decentralized
in the sense that CAV i requires information only from CAVs ip
and ic required in (3) and (4).

Problem (8) subject to (1), (3), (4), (5) and (6) can be analyt-
ically solved in some cases, e.g., the merging problem in Fig. 1,
(Xiao & Cassandras, 2021) and, a signal-free intersection, (Zhang
& Cassandras, 2019). However, obtaining solutions for real-time
applications becomes prohibitive when an optimal trajectory in-
volves multiple constraints becoming active. This has motivated
an approach which combines a solution of the unconstrained
problem (8), which can be obtained very fast, with the use of Con-
trol Barrier Functions (CBFs) which provide guarantees that (3),
(4), (5) and (6) are always satisfied through constraints that are
linear in the control, thus rendering solutions to this alternative
problem obtainable by solving a sequence of computationally ef-
ficient QPs. This approach is termed Optimal Control with Control
Barrier Functions (OCBF) (Xiao, Cassandras, & Belta, 2021).

The OCBF approach. The OCBF approach consists of three
steps: (i) the solution of the unconstrained optimal control prob-
lem (8) is used as a reference control, (ii) the resulting control
reference trajectory is optimally tracked subject to the constraint
(6), as well as a set of CBF constraints enforcing (3), (4) and (5).
(iii) This optimal tracking problem is efficiently solved by dis-
cretizing time and solving a simple QP at each discrete time step.
The significance of CBFs in this approach is twofold: first, their
forward invariance property (Xiao, Cassandras, & Belta, 2021)
guarantees that all constraints they enforce are satisfied at all
times if they are initially satisfied; second, CBFs impose linear
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onstraints on the control which is what enables the efficient
olution of the tracking problem through the sequence of QPs in
iii) above.

The reference control in step (i) above is denoted by uref
i (t).

he unconstrained solution to (8) is denoted by u∗

i (t), thus we
sually set uref

i (t) = u∗

i (t). However, uref
i (t) may be chosen to be

ny desired control trajectory and, in general, we use uref
i (t) =

(u∗

i (t), x
∗

i (t), xi(t)) where xi(t) ≡ (xi(t), vi(t))T , xi ∈ X (X ⊂ R2 is
he state space). Thus, in addition to the unconstrained optimal
ontrol and position u∗

i (t), x
∗

i (t), observations of the actual CAV
tate xi(t) provide direct feedback as well.
To derive the CBFs that ensure the constraints (3), (4), and

5) are always satisfied, we use the vehicle dynamics (1) to
efine f (xi(t)) = [vi(t), 0]T and g(xi(t)) = [0, 1]T . Each of these
onstraints can be easily written in the form of bq(x(t)) ≥ 0,

∈ {1, . . . , n} where n stands for the number of constraints
nd x(t) = [x1(t), x2(t), . . . , xN(t)(t)]. The CBF method (details
rovided in Xiao, Cassandras, and Belta (2021)) maps a constraint

bq(x(t)) ≥ 0 onto a new constraint which is linear in the control
input ui(t) and takes the general form

Lf bq(x(t)) + Lgbq(x(t))ui(t) + γ (bq(x(t))) ≥ 0, (9)

where Lf , Lg denote the Lie derivatives of bq(x(t)) along f and
g , respectively and γ (·) stands for any class-K function (Xiao,
Cassandras, & Belta, 2021). It has been established (Xiao, Cas-
sandras, & Belta, 2021) that satisfaction of (9) implies the satis-
action of the original problem constraint bq(x(t)) ≥ 0 because
f the forward invariance property. It is worth observing that
he newly obtained constraints are sufficient conditions for the
riginal problem constraints, therefore, potentially conservative.
We now apply (9) to obtain the CBF constraint associated with

he safety constraint (3). By setting

1(xi(t), xip (t)) = zi,ip (t) − ϕvi(t) − δ

= xip (t) − xi(t) − ϕvi(t) − δ, (10)

nd since b1(xi(t), xip (t)) is differentiable, the CBF constraint for
3) is

vip (t) − vi(t)  
Lf b1(xi(t),xip (t))

+ −ϕ
Lgb1(xi(t))

ui(t) + k1(zi,ip (t) − ϕvi(t) − δ)  
γ1(b1(xi(t),xip (t)))

≥ 0, (11)

where the class-K function γ1(x) = k1x is chosen here to be linear.
Deriving the CBF constraint for the safe merging constraint (4)

poses a technical challenge due to the fact that it only applies at a
certain time tmi , whereas a CBF is required to be in a continuously
differentiable form. To tackle this problem, we apply a technique
used in Xiao, Cassandras, and Belta (2021) to convert (4) to a
continuous differentiable form as follows:

zi,ic (t) − Φ(xi(t))vi(t) − δ ≥ 0, ∀t ∈ [t0i , t
m
i ], (12)

where Φ : R → R may be any continuously differentiable func-
tion as long as it is strictly increasing and satisfies the boundary
conditions Φ(xi(t0i )) = 0 and Φ(xi(tmi )) = ϕ. In this case, a linear
function can satisfy both conditions: Φ(xi(t)) = ϕ

xi(t)
L , where L is

the length of road traveled by the CAV from its entry to the CZ to
the MP of interest in (4). Then by setting

b2(xi(t), xic (t)) = zi,ic (t) − ϕvi(t) − δ

= xic (t) − xi(t) − Φ(xi(t))vi(t) − δ, (13)

proceeding as in the derivation of (11), we obtain:

vic (t) − vi(t) −
ϕ

L
v2
i (t)  + −ϕ

xi(t)
L   ui(t)+
Lf b2(xi(t),xic (t)) Lgb2(xi(t))

4

k2(zi,ic (t) − ϕ
xi(t)
L

vi(t) − δ)  
γ2(b2(xi(t),xic (t)))

≥ 0. (14)

he speed constraints in (5) are also easily transformed into CBF
onstraints using (9) by defining

3(xi(t)) = vmax − vi(t), (15)

4(xi(t)) = vi(t) − vmin. (16)

his yields:

−1
Lgb3(xi(t))

ui(t) + k3(vmax − vi(t))  
γ3(b3(xi(t)))

≥ 0 (17)

1
Lgb4(xi(t))

ui(t) + k4(vi(t) − vmin)  
γ4(b4(xi(t)))

≥ 0, (18)

or the maximum and minimum velocity constraints, respec-
ively.

Inclusion of soft constraints in (8). As a last step in the
CBF approach, we can exploit the versatility of the CBF method
o include soft constraints expressed as terminal state costs in
8), e.g., the CAV achieving a desired terminal speed. This is
ccomplished by using a Control Lyapunov Function (CLF) to track
pecific state variables in the reference trajectory if desired. A
LF V (xi(t)) is similar to a CBF (see Xiao, Cassandras, and Belta
2021)). In our problem, letting V (xi(t)) = (vi(t) − vref

i (t))2 we
an express the CLF constraint associated with tracking the CAV
peed to a desired value vref

i (t) (if one is provided) as follows:

f V (xi(t)) + LgV (xi(t))ui(t) + ϵV (xi(t)) ≤ ei(t), (19)

here ϵ > 0 and ei(t) makes this a soft constraint.
Now that all the original problem constraints have been trans-

ormed into CBF constraints, we can formulate the OCBF problem
s follows:

min
ui(t),ei(t)

Ji(ui(t), ei(t)) :=

∫ t fi

t0i

[1
2
(ui(t) − uref

i (t))2 + λe2i (t)
]
dt (20)

ubject to vehicle dynamics (1), the CBF constraints (11), (14),
17), (18), the control constraint (6), and CLF constraint (19).
ote that this is a decentralized optimization problem, as it only
equires information sharing with a small number of ‘‘neighbor’’
AVs, i.e. CAV ip and ic (if they exist). We denote this set of CAV
eighbors by Ri(t) at time t:

i(t) = {ip(t), ic(t)}. (21)

ote that Ri(t) in general can change over time, i.e., ic(t) changes
hen dynamic ‘‘resequencing’’ (discussed in Xiao and Cassandras
2020)) is carried out and ip(t) changes in the case of lane chang-
ng maneuvers. It is worth mentioning that in the single lane
erging example in Fig. 1 ip cannot change.
A common way to solve this dynamic optimization problem is

o discretize [t0i , t
f
i ] into intervals [t0i , t

0
i + ∆), . . . , [t0i + k∆, t0i +

k+1)∆), . . . with equal length ∆ and solving (20) over each time
nterval. The decision variables ui,k = ui(ti,k) and ei,k = ei(ti,k)
re assumed to be constant on each interval and can be easily
alculated at time ti,k = t0i + k∆ through solving a QP at each
ime step:

min
ui,k,ei,k

[
1
2
(ui,k − uref

i (ti,k))2 + λe2i,k], (22)

ubject to the CBF constraints (11), (14), (17), (18), and control
input bounds (6) and CLF constraint (19) where all constraints are
linear in the decision variables. We refer to this as the time-driven
approach, which is fast and can be readily used in real time.
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The main problem with this approach is that a QP may become
infeasible at any time instant because the decision variable ui,k is
held constant over a given time period ∆. Since this is externally
defined, there is no guarantee that it is small enough to ensure
the forward invariance property of a CBF, thereby also failing to
ensure the satisfaction of the safety constraints. In other words,
in this time-driven approach, there is a critical (and often restric-
tive) assumption that the control update rate is high enough to
avoid such a problem. There are several additional issues worth
mentioning: (i) imposing a high update rate makes the solution of
multiple QPs inefficient since it increases the computational bur-
den, (ii) using a common update rate across all CAVs renders their
synchronization difficult, and (iii) the predictability of a time-
driven communication mechanism across CAVs makes the whole
system susceptible to malicious attacks. As we will show next, the
two event-driven solutions proposed in this paper alleviate these
problems by eliminating the need to select a time step ∆.

3. Event-driven solutions

There are several possible event-driven mechanisms one can
adopt to invoke the solution of the QPs in (22) subject to the
CBF constraints (11), (14), (17), (18) along with control input
bounds (6). One approach is to adopt an event-triggering scheme
such that we only need to solve a QP (with its associated CBF
constraints) when one of two possible events (as defined next)
is detected. We will show that this provides a guarantee for the
satisfaction of the safety constraints which cannot be offered by
the time-driven approach described earlier. The key idea is to
ensure that the safety constraints are satisfied while the state
remains within some bounds and define events which coincide
with the state reaching these bounds, at which point the next
instance of the QP in (22) is triggered. Another idea is to create
a self-triggering framework with a minimum inter-event time
guarantee by predicting at ti,k the first time instant that any of the
CBF constraints in the QP problem (22) is subsequently violated.
We then select that as the next time instant ti,k+1 when CAV i
communicates with the coordinator and updates the control. A
comparison of the two mechanisms is given in Section 3.4.

3.1. Event-triggered control

Let ti,k, k = 1, 2, . . ., be the time instants when the QP in
(22) is solved by CAV i. Our goal is to guarantee that the state
trajectory does not violate any safety constraints within any time
interval [ti,k, ti,k+1) where ti,k+1 is the next time instant when the
QP is solved. Define a subset of the state space of CAV i at time
ti,k such that:

xi(ti,k) − si ≤ xi(t) ≤ xi(ti,k) + si, (23)

where si =
[
six siv

]T
∈ R2

>0 is a parameter vector whose
choice will be discussed later. Intuitively, this choice reflects a
trade-off between computational efficiency (when the si values
re large and there are fewer instances of QPs to be solved) and
onservativeness (when the values are small). We denote the set
f states of CAV i that satisfy (23) at time ti,k by

i(ti,k) =

{
yi ∈ X : xi(ti,k) − si ≤ yi ≤ xi(ti,k) + si

}
. (24)

In addition, let Ci,1 be the feasible set of our original constraints
(3), (4) and (5) defined as

Ci,1 :=

{
xi ∈ X : bq(xi) ≥ 0, q ∈ {1, 2, 3, 4}

}
. (25)

Next, we seek a bound and a control law that satisfies the

safety constraints within this bound. This can be accomplished

5

by considering the minimum value of each component in (9) for
every q ∈ {1, 2, 3, 4} as shown next.

Modified CBF constraints: Let us start with the first of the
three terms in (9), Lf bq(x(t)). Observing that not all state variables
are generally involved in a constraint bq(x(t)) ≥ 0, we can rewrite
this term as Lf bq(yi(t), yr (t)) with yi(t) as in (24) and where r
stands for ‘‘relevant’’ CAVs affecting the specific constraint of i,
i.e., r ∈ Ri(t) in (21). Let bmin

q,fi
(ti,k) be the minimum possible value

of the term Lf bq(yi(t), yr (t)) over the time interval [ti,k, ti,k+1) for
each q = {1, 2, 3, 4} over the set S̄i(ti,k) ∩ S̄r (ti,k):

bmin
q,fi (ti,k) = min

yi∈S̄i(ti,k)
yr∈S̄r (ti,k)

Lf bq(yi(t), yr (t)), (26)

where S̄i(ti,k) is defined as follows:

S̄i(ti,k) := {yi ∈ Ci,1 ∩ Si(ti,k)} (27)

Similarly, we can define the minimum value of the third term in
(9):

bmin
γq

(ti,k) = min
yi∈S̄i(ti,k)
yr∈S̄r (ti,k)

γq(yi(t), yr (t)). (28)

For the second term in (9), note that Lgbq(xi) is a constant for
q = {1, 3, 4}, as seen in (11), (17) and (18), therefore there is no
need for any minimization. However, Lgb2(xi) = −ϕ

xi(t)
L in (14) is

tate-dependent and needs to be considered for the minimization.
ince xi(t) ≥ 0, note that Lgb2(xi) is always negative, therefore, we
an determine the limit value bmin

2,gi
(ti,k) ∈ R, as follows:

bmin
2,gi (ti,k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
yi∈S̄i(ti,k)
yr∈S̄r (ti,k)

Lgb2(xi(t)), if ui,k ≥ 0

max
yi∈S̄i(ti,k)
yr∈S̄r (ti,k)

Lgb2(xi(t)), otherwise,
(29)

here the sign of ui,k, i ∈ F (ti,k) can be determined by simply
olving the CBF-based QP (22) at time ti,k.
Thus, the condition that can guarantee the satisfaction of (11),

14) and (17), (18) in the time interval
[
ti,k, ti,k+1

)
is given by

min
q,fi (ti,k) + bmin

q,gi (ti,k)ui,k + bmin
γq

(ti,k) ≥ 0, (30)

or q = {1, 2, 3, 4}. In order to apply this condition to the QP (22),
e just replace (9) by (30) as follows:

min
ui,k,ei,k

[1
2
(ui,k − uref

i (ti,k))2 + λe2i,k
]

s.t.(19), (30), (6) (31)

Event-triggered control execution: It is important to note
that each instance of the QP (31) is now triggered by one of the
following two events where k = 1, 2, . . . is a local event (rather
han time step) counter:

• Event 1: the state of CAV i reaches the boundary of Si(ti,k−1).
• Event 2: the state of CAV r ∈ Ri(ti,k−1) reaches the boundary

of Sr (ti,k−1), if Ri(ti,k−1) is nonempty. In this case either r =

ip or r = ic (e.g., in the merging problem ic = i − 1 ̸= ip
if such a CAV exists). Thus, Event 2 is further identified by
the CAV which triggers it and denoted accordingly by Event
2(r), r ∈ Ri(ti,k−1).

s a result, ti,k, k = 1, 2, . . . is unknown in advance but can be
etermined by CAV i through:

= min
{
t > t : |x (t) − x (t )| = s (32)
i,k i,k−1 i i i,k−1 i
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r |xip (t) − xip (ti,k−1)| = sip
or |xic (t) − xic (ti,k−1)| = sic

}
,

where ti,0 = t0i . Note that k is a local event counter for each i
so, strictly speaking, we should use ki. Instead, the index k can be
dropped and we can write xi(ti,last) rather than xi(ti,k−1). However,
when there is no ambiguity, we will simply write xi(ti) to indicate
that ti is the ‘‘last event’’ occurring at i.

The definition above is based on events which directly affect
CAV i (leading to i solving a QP) whether they are triggered by i
or r ̸= i. Alternatively, we may think of any CAV i as generating
Event 1 leading to a new QP solution by CAV i itself and Event
2(i) which affects some j ∈ {l|i ∈ Rl(t)}, i.e., i is relevant to some
j ̸= i. In this case, a violation of the bound of Si(ti,k−1) or Si(tj,k−1)
by the evolving state of CAV i triggers events relevant to CAV i or
j, respectively.

Events 1,2(r) can be detected through the dynamics in (1)
or from on-board state measurements, if available, along with
state information from relevant other CAVs (e.g., CAVs ip and ic in
Fig. 1) through the coordinator. Finally, note that because of the
Lipschitz continuity of the dynamics in (1) and the fact that the
ontrol is constant within an inter-event interval, Zeno behavior
oes not occur in this framework.
The following theorem formalizes our analysis by showing

hat if new constraints of the general form (30) hold, then our
riginal CBF constraints (11), (14) and (17), (18) hold.

Theorem 1. Given a CBF bq(x(t)) with relative degree one, let ti,k,
k = 1, 2, . . . be determined by (32) with ti,0 = t0i and bmin

q,fi
(ti,k),

bmin
γq

(ti,k), bmin
q,gi (ti,k) for q = {1, 2, 3, 4} obtained through (26), (28),

and (29). Then, any control input ui,k that satisfies (30) for all q ∈

{1, 2, 3, 4} within the time interval [ti,k, ti,k+1) renders the set Ci,1
forward invariant for the dynamic system defined in (1).

The proof follows along similar lines as Theorem 2 in Xiao,
Belta, and Cassandras (2021). By (24), we can write:

yi(t) ∈ Si(ti,k), yr (t) ∈ Sr (ti,k), yi(t) ∈ Ci,1 (33)

for all t ∈ [ti,k, ti,k+1), k = 1, 2, . . ..

Lf bq(xi(t)) ≥ bmin
q,fi (tk), (34)

γq(xi(t)) ≥ bmin
γq

(tk), (35)

Lgbq(xi(t))ui(tk) ≥ bmin
q,gi (tk)ui(tk), (36)

for q ∈ {1, 2, 3, 4}, by adding these inequalities which have the
same direction it follows that

Lf bq(xi(t)) + Lgbq(xi(t))ui(tk) + γq(xi(t)) (37)

≥ bmin
q,fi (tk) + bmin

q,gi (tk)ui(tk) + bmin
γq

(tk) ≥ 0.

i.e., (9) is satisfied. By Theorem 1 of Xiao, Cassandras, and Belta
(2021) applied to (9), if xi(0) ∈ Ci,1, then any Lipschitz continuous
controller ui(t) that satisfies (9) ∀t ≥ 0 renders Ci,1 forward
invariant for system (1). Therefore, Ci,1 is forward invariant for
the dynamic system defined in (1).

Remark 1. Expressing (30) in terms of the minimum value
of each component separately may become overly conservative
if each minimum value corresponds to different points in the
decision variable space. Therefore, an alternative approach is to
calculate the minimum value of the whole term.

Selection of parameters si. The importance of properly select-
ing the parameters si is twofold. First, it is necessary to choose
them such that all events are observed, i.e., given the sensing
6

capabilities and limitations of a CAV i, the value of si must be large
enough to ensure that no events will go undetected. In particular,
the variation of the states of CAV i within the sensor sampling
time must not be greater than bounds si. Therefore, letting Ts be
a given sensor sampling time, the maximum state (position and
speed) variation during this sampling time must satisfy:

xi(t + Ts) − xi(t) ≤ vmaxTs (38)

vi(t + Ts) − vi(t) ≤ max(umaxTs, |umin|Ts) (39)

where vmax, umax, and umin are given CAV i specifications. There-
fore, we need to pick lower bounds given by the maximum state
variations in (38) and (39) as follows:

si =

[
six
siv

]
≥

[
vmaxTs

max(umaxTs, |umin|Ts)

]
. (40)

Note that these lower bounds hold for every CAV i ∈ F (t). More-
over the right hand side only depends on the CAV specification
(we assume all CAVs are the same), therefore it follows that the
same lower bounds can also be used for sic and sip .

Second, the choice of si captures the trade-off between com-
putational cost and conservativeness: the larger the value of each
component of si is, the smaller the number of events triggering
instances of the QPs becomes, thus reducing the total compu-
tational cost. At the same time, the control law must satisfy
the safety constraints over a longer time interval as we take
the minimum values in (26)–(29), rendering the approach more
conservative.

Remark 2. Network delays can also be dealt with through a
proper choice of sr , where r ∈ Ri(t) as defined in (21) (i.e., as-
suming there is no delay in obtaining CAV i state information, si
will remain the same). Given a bounded delay in the network,
the state’s bound parameters can be selected in such a way as
to ensure safety. Let τD denote the upper bound of the network
delay, we can write: snewr (ti,k) = sr + sDr (ti,k) where

sDr (ti,k) =

[
sDrx(ti,k)
sDrv(ti,k)

]
=

[
max

( 1
2uminτ

2
D + vr (ti,k)τD, 0

)
|umin|τD

]
,

(41)

an be defined given umin. Then the set Sr (ti,k) can be modified
ccordingly as follows:

r (ti,k) = (42)

yr ∈ X : xr (ti,k) − snewr (ti,k) ≤ yr ≤ xr (ti,k) + snewr (ti,k)
}
.

ven though we want to calculate the maximum deviation in
he states given an upper bound on the delay, we only use umin
nstead of max(|umin|, umax). Due to the fact that delays become
ritical to CAV i in terms of safety only when other relevant vehi-
les r start slowing down, only the maximum rate of deceleration
s used in (41). Last but not least, this is clearly not the only way to
eal with network delays, as there are other methods involving,
or example, carefully designed communication protocols.

.2. Self-triggered control

As an alternative to event-triggered control, a self-triggered
synchronous control scheme can be used where each CAV i
ommunicates with the coordinator at specified time instants
ti,k}, k ∈ Z+. At each such instant ti,k, CAV i uploads its own
tate information xi(ti,k), the calculated control input ui(ti,k) that
s going to be applied over the time interval [ti,k, ti,k+1), and the
ext time when CAV iwill communicate with the coordinator and
esolve its QP, denoted as t . The data stored at the coordinator
i,next
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Table 1
Data stored on the coordinator for self-triggered control.
ti,last Last time CAV i communicated.
ti,next Next time CAV i will communicate.
xi(ti,last) Last updated position of CAV i.
vi(ti,last) Last updated velocity of CAV i.
ui(ti,last) Last control input of CAV i.

for all vehicles are shown in Table 1. We denote the most recent
stored information of the ith CAV at the coordinator as Ii =

ti,last, ti,next, xi(ti,last), vi(ti,last), ui(ti,last)].
The goal is to develop a self-triggered asynchronous algorithm

o determine the sequence of time instants ti,k and the control
nput ui(t), t ∈ [ti,k, ti,k+1) for each CAV to solve the problem
ormed in (20). Providing a lower bound for the inter-event time
interval is an imperative feature in a self-triggered scheme. It is
worth mentioning that since Zeno behavior never occurs under
Lipschitz continuity, such a guarantee is not necessary for the
event-triggered control algorithm. To provide such a guarantee
for the generated time instants ti,k, there should exist some Td >

such that |ti,k+1 − ti,k| ≥ Td. This is a design parameter which
epends on the sensor sampling rate, as well as the clock of the
n-board embedded system on each CAV. For the same reason,
he time-instants ti,k are calculated such that (ti,k mod Td) = 0
here mod denotes the modulo operator. In contrast to the time-
riven scheme with a fixed sampling time ∆, each CAV i ∈ F (ti,k)
alculates the time instant ti,k in which the QP problem must
e solved in a self-triggered fashion. As in the event-triggered
cheme, at each time instant ti,k, CAV i solves its QP problem
o obtain ui(ti,k). However, unlike the event-triggered scheme,
AV i also calculates the next time instant ti,k+1 at which it
hould resolve the QP problem. Note that similar to the time-
riven scheme, the newly obtained control input, ui(ti,k) is held
onstant over the time interval [ti,k, ti,k+1) for CAV i. We address
wo problems in the following. First, it will be shown how a lower
ound Td on the inter-event time interval can be ensured. Second,
e will show how each CAV i ∈ F (ti,k) specifies the time instants

i,k.

.2.1. Minimum inter-event time, Td
In this subsection, it is shown how the CBF constraints (11),

14), (17), and (18) for the CAV i should be modified to ensure
minimum inter-event time Td. This is achieved by adding extra
ositive terms to the right hand side of these constraints.
Modified maximum speed CBF constraints: first, consider

he maximum speed CBF constraint (17) to be satisfied when
olving the QP problem at ti,k with feasible solution ui(ti,k). Thus,
e have:

i,1(ti,k, ui(ti,k)) := −ui(ti,k) + k3b3(xi(ti,k)) ≥ 0. (43)

owever, the CBF constraint should be satisfied over the entire
ime interval [ti,k, ti,k + Td] to ensure the minimum inter-event
ime. Therefore, for all t ∈ [ti,k, ti,k + Td]:

i,1(t, ui(ti,k)) = −ui(ti,k) + k3b3(xi(t)) ≥ 0. (44)

y defining τ = t − ti,k as the elapsed time after ti,k, and recalling
hat the acceleration is kept constant over the inter-event time,
e can derive an expression for the velocity vi(t) as follows:

vi(τ ) = vi(ti,k) + ui(ti,k)τ , τ ∈ [0, Td]. (45)

ow by using (17), (43), and (45) we can rewrite (44) as follows:

(t, u (t )) = C (t , u (t )) − k u (t )τ τ ∈ [0, T ], (46)
i,1 i i,k i,1 i,k i i,k 3 i i,k d

7

In what follows, we show that if Ci,1(ti,k, ui(ti,k)) ≥ σi,1(Td) holds,
then:

Ci,1(t, ui(ti,k)) ≥ 0, ∀t ∈ [ti,k, ti,k + Td], (47)

where σi,1(Td) := k3uMTd and uM = max(|umin|, umax) > 0. To
prove (47), we can rewrite Ci,1(ti,k, ui(ti,k)) ≥ σi,1(Td) as follows:

Ci,1(ti,k, ui(ti,k)) − Ci,1(t, ui(ti,k))

+ Ci,1(t, ui(ti,k)) ≥ σi,1(Td) (48)

By combining (48) with (46), for all t ∈ [ti,k, ti,k + Td] and τ ∈

[0, Td] we have:

Ci,1(t, ui(ti,k)) ≥ σi,1(Td) − k3ui(ti,k)τ ≥ 0, (49)

where the non-negativity of the inequality follows from the def-
inition of σi,1(ti,k, Td) = k3uMTd, i.e., k3uMTd − k3ui(ti,k)τ ≥ 0 for
τ ∈ [0, Td]. Hence, in order to ensure the minimum inter-event
interval Td, the CBF constraint (17) should be modified to:

Ci,1(t, ui(t)) ≥ σi,1(Td). (50)

Modified minimum speed CBF constraints: Following a sim-
ilar derivation of the modified CBF constraint for the minimum
speed (17), it follows that (18) should be modified to:

Ci,2(t, ui(t)) ≥ σi,2(Td), (51)

where

Ci,2(t, ui(t)) := ui(t) + k4b4(xi(t))

σi,2(Td) := k4uMTd. (52)

Modified safety CBF constraint: let us consider the safety CBF
constraint (11) to be satisfied when solving the QP problem at ti,k
with a feasible solution ui(ti,k). It follows that

Ci,3(ti,k, ui(ti,k)) :=vip (ti,k) − vi(ti,k) − ϕui(ti,k)

+ k1b1(xi(ti,k), xip (ti,k)) ≥ 0. (53)

Once again, we need to ensure that the CBF constraint is satisfied
over the entire time interval [ti,k, ti,k + Td] as follows:

Ci,3(t, ui(ti,k)) = vip (t) − vi(t) − ϕui(ti,k)

+ k1b1(xi(t), xip (t)) ≥ 0, t ∈ [ti,k, ti,k + Td]. (54)

For ease of notation, we use the following definitions:

∆vi,ip (ti,k) = vip (ti,k) − vi(ti,k), (55)

∆ui,ip (ti,k) = uip (ti,k) − ui(ti,k). (56)

Similar to the procedure of deriving the lower bound for con-
straints (17) and (18), by using (11), (55), (56), and

xi(τ ) = xi(ti,k) + vi(ti,k)τ + 0.5ui(ti,k)τ 2, (57)

xip (τ ) = xip (ti,k) + vip (ti,k)τ + 0.5uip (ti,k)τ
2, (58)

we rewrite (54) as follows:

Ci,3(t, ui(ti,k)) =Ci,3(ti,k, ui(ti,k)) + ∆ui,ip (ti,k)τ

+ k1
(
0.5∆ui,ip (ti,k)τ

2
+ ∆vi,ip (ti,k)τ

− ϕui(ti,k)τ
)

≥ 0, τ ∈ [0, Td]. (59)

To further ease up the notation, we define

Mi,3(t, ti,k, ui(ti,k)) := Ci,3(ti,k, ui(ti,k)) − Ci,3(t, ui(ti,k)), (60)

which will be used later on. Similarly, in the following we intend
to show that if Ci,3(ti,k, ui(ti,k)) ≥ σi,3(ti,k, Td) holds, it follows:

C (t, u (t )) ≥ 0, t ∈ [t , t + T ], (61)
i,3 i i,k i,k i,k d
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i,3(ti,k, Td) :=|uip (ti,k)| + k1
(
0.5T 2

d (|uip (ti,k)| + uM )

+ (|∆vi,ip (ti,k)| + (1 + ϕ)uM )Td
)
. (62)

o demonstrate (61), we follow the same procedure as before by
starting with

Ci,3(ti,k, ui(ti,k)) ≥ σi,3(ti,k, Td), (63)

nd then rewrite (63) in the following form:

i,3(ti,k, ui(ti,k)) − Ci,3(t, ui(ti,k))

+ Ci,3(t, ui(ti,k)) ≥ σi,3(ti,k, Td) (64)

Then, combining (60) and (64), for t ∈ [ti,k, ti,k + Td] follows that:

Ci,3(t, ui(ti,k)) ≥ σi,3(ti,k, Td) − Mi,3(t, ti,k, ui(ti,k)) (65)

where σi,3(ti,k, Td), i.e. the upper bound of Mi,3(t, ti,k, ui(ti,k)), is
chosen such that the left hand side of the inequality is always
positive:

σi,3(ti,k, Td) − Mi,3(t, ti,k, ui(ti,k)) ≥ 0, (66)

hence, by modifying the CBF constraint (11) to:

Ci,3(t, ui(t)) ≥ σi,3(t, Td), (67)

one can enforce (54).
Modified safe merging CBF constraint: Following a similar

approach, to provide a minimum inter-event time Td, the CBF
constraint (14) should be modified to,

Ci,4(t, ui(t)) ≥ σi,4(t, Td), (68)

where Ci,4(t, ui(t)) = vic (t) − vi(t) −
ϕ

L v
2
i (t) − ϕ

xi(t)
L ui(t) +

2(b2(xi(t), xic (t)),

i,4(t, Td) := 0.5
ϕ

L
u2
MT 3

d + |vic (t)| + |vi(t)| +
ϕ

L
v2
i (t)

)
k4Td

+k4
(3ϕ
2L

(u2
M + |vi(t)|uM ) + 0.5(|uic (t)| + uM )

)
T 2
d

+

(
|uic (t)| + (

3ϕ
L

|vi(t)| +
ϕ

L
|xi(t)| + 1)uM . (69)

Finally, since the CLF constraint (19) is added optionally for an
optimal trajectory, it can be relaxed in the presence of safety
constraints and there is generally no need to ensure that it is
satisfied during the whole time-interval t ∈ [ti,k, ti,k + Td] with
the same relaxation variable value ei(ti,k). Therefore, there is no
need to modify it as was necessary for the CBF constraints. In
conclusion, to ensure the minimum inter-event time Td, at each
time instant ti,k, CAV i needs to solve the following QP:

min
ui,k,ei,k

1
2
(ui,k − uref

i (ti,k))2 + λe2i,k (70)

ubject to the modified CBF constraints (50), (51), (67), and (68),
he control input bounds (6) and the CLF constraint (19). In the
ext subsection, it will be shown how the time-instant ti,k should

be obtained for CAV i.

3.2.2. Self-triggered time instant calculation
The key idea in the self-triggered framework is to predict the

first time instant that any of the CBF constraints (11), (14), (17)
or (18), is violated and select that as the next time instant ti,k+1.
AV i then communicates with the coordinator and requests the
ecessary information to solve its next QP and obtain a new con-
rol input ui(ti,k+1) and update its stored data in the coordinator
able. Note that it is not required to consider the modified CBF
onstraints (50), (51), (67), and (68) here, since these are obtained
8

purely for ensuring the minimum inter-event time Td, while the
original CBF constraints (11), (14), (17), and (18) are sufficient for
satisfying constraints 1, 2, and 3 (state limitation constraint) in
problem (8).

For the speed constraint (17), it is clear that if ui(ti,k) ≤ 0
(decelerating), then this constraint always holds, hence there is
no need to check it. However, for ui(ti,k) > 0 (accelerating), the
constraint (17) can be violated. To calculate the time instant, t1i,k,
when this occurs we need to solve the following equation:

− ui(ti,k) + k3(vmax − vi(t)) = 0, t > ti,k. (71)

Recalling that the acceleration is held constant in the inter-event
time, (71) can be rewritten as

− ui(ti,k) + k3(vmax − vi(ti,k) − ui(ti,k)(t − ti,k)) = 0 (72)

and its solution yields:

t1i,k = ti,k +
−ui(ti,k) + k3vmax − k3vi(ti,k)

k3ui(ti,k)
.

Observe that at ti,k, the QP in (70) is solved, therefore the con-
straint (50) is satisfied at t = ti,k and we have −ui(ti,k)+k3(vmax−

i(ti,k)) ≥ σi,1(Td) > 0. It follows that t1i,k ≥ ti,k + Td.
For the second speed constraint (18), it is clear that if ui(ti,k) ≥

(accelerating), then this constraint is satisfied, hence there is
o need to check it. However, for ui(ti,k) < 0 (decelerating), the
onstraint (18) can be violated. Similar to the previous case, we
an solve the following equation for t to obtain t2i,k as the first
ime instant that constraint (18) is violated:

ui(ti,k) + k4(vi(ti,k) + ui(ti,k)(t − ti,k) − vmin) = 0 t > ti,k. (73)

Solving (73) leads to

t2i,k = ti,k +
−ui(ti,k) + k4vmin − k4vi(ti,k)

k4ui(ti,k)
,

nd it can be shown, similar to the previous case, that t2i,k ≥

i,k + Td.
For the rear-end safety constraint (11), we need to find the

irst time instant t > ti,k such that Ci,3(t, ui(ti,k)) = 0 in (59). This
eads to the following quadratic equation:

1
(
0.5∆ui,ip (ti,k)

)
τ 2

+
(
∆ui,ip (ti,k) + k1(∆vi,ip (ti,k)

− ϕui(ti,k))
)
τ + Ci,3(ti,k, ui(ti,k)) = 0.

he least positive root of the above equation is denoted as τi,3
nd we define t3i,k = ti,k + τi,3. The case of having both roots
egative corresponds to the constraint (11) not being violated,
ence t3i,k = ∞. Moreover, due to the added term in (67), it
ollows that t3i,k ≥ ti,k + Td.

Similarly for the safe merging constraint (14), the first time
nstant t > ti,k such that Ci,4(t, ui(ti,k)) = 0 can be obtained by
olving the following cubic equation:

− k4
ϕ

2L
u2
i (ti,k)τ

3
+
(
0.5∆ui,ic (ti,k) − k4

3ϕ
2L

u2
i (ti,k)+

− k4
3ϕ
2L

vi(ti,k)ui(ti,k)
)
τ 2

+ k4
(
∆ui,ic (ti,k) −

3ϕ
L

vi(ti,k)ui(ti,k)

+ (∆vi,ic (ti,k) −
ϕ

L
v2
i (ti,k) −

ϕ

L
ui(ti,k)xi(ti,k))

)
τ

+ Ci,4(ti,k, ui(ti,k)) = 0,

where ∆vi,ic (ti,k) = vic (ti,k)−vi(ti,k), ∆ui,ic (ti,k) = uic (ti,k)−ui(ti,k).
The least positive root is denoted as τi,4 and we define t4i,k =

ti,k + τi,4. Moreover, due to solving QP in (70) subject to the
modified CBF constraint derived in (68), it follows that t4i,k ≥

ti,k + Td. The case of having all roots negative corresponds to the
constraint (14) not being violated, hence t4 = ∞.
i,k
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Self-triggered control execution: First, it should be noted
that the time instants tqi,k, q = 1, . . . , 4 are obtained based on
he safety constraints (3) and (4), as well as the vehicle state
imitations (5). However, this choice can compromise the optimal
erformance of CAVs in the CZ. In particular, it is possible that the
cceleration of a CAV stays constant for a long period of time if
here are no safety constraints or vehicle state limit violations,
hereas, as shown in Xiao, Cassandras, and Belta (2021), the
ptimal acceleration trajectory of the CAV in fact changes linearly.
herefore, in order to avoid this issue and minimize deviations
rom the optimal acceleration trajectory, one can impose a maxi-
um allowable inter-event time, denoted by Tmax. To accomplish

his, we can define

min
i,k = min

{
t1i,k, t

2
i,k, t

3
i,k, t

4
i,k, ti,k + Tmax

}
. (74)

he next update time instant for CAV i, i.e. ti,k+1 = ti,next should
ow be calculated. Towards this goal, consider the case where
min
i,k ≤ min(tip,next, tic ,next), which corresponds to the next update
ime instant of CAV i occurring before the next control update of
he preceding vehicle ip or the conflict CAV ic . Then, we can set
i,k+1 = ti,next = tmin

i,k from (74).
The only remaining case is when tmin

i,k > min(tip,next, tic ,next),
hich corresponds to either CAV ip or ic updating its control

nput sooner than CAV i, hence CAV i does not have access to
heir updated control input. Consequently, checking the con-
traints (11) and (14) is no longer valid. In this case, tnexti =

in(tip,next, tic ,next) + Td which implies that CAV i’s next update
ime will be immediately after the update time of CAV ip or ic
ith a minimum inter-event time interval Td.
By setting tmin

r,next = min(tip,next, tic ,next), we can summarize the
election of the next self-triggered time instant as follows:

i,next =

{
tmin
i,k , tmin

i,k ≤ tmin
r,next

tmin
r,next + Td, otherwise, (75)

inally, in order to have (ti,k mod Td) = 0, we set ti,next =
ti,next
Td

⌋ × Td.
It should be noted that the case of ti,next = tic ,next or ti,next =

ip,next corresponds to having identical next update times for CAV
and CAV ic or CAV ip so that they need to solve their QPs at

the same time instant. However, in order for CAV i to solve its
QP at the time instant ti,k+1 = ti,next, it requires the updated
ontrol input of CAV ic or CAV ip, i.e. uic (ti,k+1) or uip (ti,k+1); this is
practically not possible. In order to remedy this issue, whenever
ti,next = tic ,next or ti,next = tip,next, CAV i solves its QP at ti,k+1
y using uM instead of uic (ti,k+1) and uip (ti,k+1) in (67) and (68).

This corresponds to considering the worst case in σi,3(t, Td) and
σi,4(t, Td). Moreover, since calculating the next update time ti,k+2
also depends on uic (ti,k+1) and uip (ti,k+1), CAV i in this case acts
similar to the time-driven case with assigned ti,k+2 = ti,k+1 + Td.
Then, at the next time instant ti,k+2, CAV i can obtain the updated
control inputs of CAV ic and CAV ip from the coordinator and
follows the proposed self-triggered scheme.

3.3. Communication schemes

C.1. Event-Triggered Communication Scheme.
As mentioned earlier, a coordinator is responsible for exchang-

ing information among CAVs (but does not exert any control). To
accommodate event-triggered communication, the coordinator
table in Fig. 1 is extended as shown in Table 2 so that it includes
‘‘relevant CAV info’’ data for each CAV i. In particular, in addition
to the states of CAV i in column 2, denoted by xi(ti), the states
of CAVs r ∈ Ri(ti) are included, denoted by xr (ti), in column
3, where CAV r affects the constraints of CAV i, i.e., r ∈ Ri(ti).
In an event-driven scheme, frequent communication is generally
9

Table 2
Extended coordinator table from Fig. 1 for event triggered control.

Extended coordinator table

Index CAV info Relevant CAV info Lane

0 x0(t0) – Main
1 x1(t1) – Main
2 x2(t2) x1(t2) Merging
3 x3(t3) x1(t3), x2(t3) Merging
4 x4(t4) x1(t4), x3(t4) Main
5 x5(t5) x4(t5) Main

not needed, since it occurs only when an event is triggered. CAV
i updates its state in the coordinator table and re-solves a QP in
two cases depending on which event occurs: (i) Event 1 triggered
by i. The first step is state synchronization: CAV i requests current
states from all relevant CAVs and the coordinator updates these
(column 3), as well as the state xi(ti) (column 2). CAV i then solves
its QP while the coordinator notifies all CAVs r ∈ Ri(ti) of the new
CAV i state so they can update their respective boundary set Sr (ti).
This may trigger an Event 2(r) to occur at some future event time
as in (32); such an event cannot be triggered instantaneously,
as it takes some finite time for a bound in Sr (ti) to be reached
because of Lipschitz continuity in the dynamics. In addition, the
coordinator notifies all CAVs j such that i ∈ Rj(ti) (i.e. i is relevant
to j) so that they can update their bounds Sj(ti) respectively. (ii)
Event 2(r) is triggered by r ∈ Ri(ti). When CAV r reaches the
oundary set Sr (ti) it notifies the coordinator to update its state

(column 2). The coordinator passes on this information to all CAVs
j where r ∈ Rj(ti), which includes i since r ∈ Ri(ti), and the
orresponding state of r is updated (column 3). Then, CAV i re-
olves its QP and the coordinator updates ti to the current time
nd the state xi(ti) (column 2) and the state xr (ti)(column 3). The
est of the process is the same as in case (i). Note that any update
n CAV i’s state due to a triggered event can immediately affect
nly CAVs l > i such that i is relevant to l. If an ‘‘event chain’’
nsues, the number of events is bounded by N(ti).

emark 3. It is possible to simplify the communication scheme
y assuming that each CAV can measure (through local sensors)
he state of its relevant CAVs (i.e. in the case of CAV i, the states of
he CAV r ∈ Ri(ti)). Thus, CAVs can check for violations not only
n their own state boundaries Si(ti) but also in their relevant CAV
tate boundaries, Sr (ti). The same applies to the case where CAVs
ave a direct vehicle-to-vehicle (V2V) communication capability.

C.2. Self-Triggered Communication Scheme.
In view of the constraints (11) and (14), CAV i requires knowl-

dge of tip,last, vip (ti,k), xip (ti,k), tic ,last, vic (ti,k), and xic (ti,k) at time
nstant ti,k. Hence, at each time instant that it accesses the co-
rdinator, it needs to download the recorded data of CAV ip and
c . Then, the required updated information at ti,k for CAV ip can
e calculated as vip (ti,k) = vip (tip,last) + (ti,k − tip,last)uip (tip,last),
ip (ti,k) = xip (tip,last) + (ti,k − tip,last)vip (tip,last) +

1
2 (ti,k − tip,last)

2uip
(tip,last), with similar information calculated for CAV ic . Note that
the information for CAV ip may also be obtained from the on-
board sensors at CAV i if such are available. There are two key
differences between the event-triggered and self-triggered ap-
proaches in the communication scheme as follows: (i). In the
self-triggered approach in addition to the states of the CAVs
xi(ti,last), control input ui(ti,last), current time instant ti,last, and the
next time instant of solving QP ti,next have to be shared. Whereas
in the event-triggered only states of the CAVs and the states of the
relevant CAVs at the time of the QP solving are needed. (ii). In this
scheme, unlike the event-triggered scheme, the coordinator does
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ot notify other relevant CAVs when a particular CAV solves QP
nd updates its data since the next QP solving time is known and
tored in the coordinator table. For example, when CAV i solves
its QP there is no need for the CAVs jwhere i ∈ Rj(ti) to be notified
as they are already aware. Instead, the coordinator only receives
and stores the current time instant, states, control input, and the
next time instant of solving QP of the CAV i. Also upon download
request from a particular CAV at the time of solving QP, access
to the data of the relevant CAVs r will be given to that particular
CAV by the coordinator.

3.4. Comparison of control schemes

We briefly discuss the similarities and differences between the
event-triggered and self-triggered control schemes. The infeasi-
bility issue and excessive computational burden of solving QPs
through a time-driven method are addressed in both approaches.
In both approaches, the original CBFs are replaced with modified
CBFs (i.e. (30) for q = {1, 2, 3, 4} in the event-triggered approach
and (50), (51), (67), and (68) in the self-triggered approach) to
nsure the feasibility of the QP at the next time instant. In both
pproaches events determine the next time instant of QP. In the
vent-triggered scheme, the event occurrence is unknown to the
ehicles and the onboard sensors are responsible for detecting
uch events, as in (32), whereas in the self-triggered approach
he next event time can be analytically calculated as in (74). In
oth approaches, there are some parameters that can be adjusted
o avoid conservativeness and potentially deal with delays and
oise, such as si in the event-triggered approach, and Td, Tmax
n the self-triggered approach. Due to the unpredictability of
he events in the event-triggered approach, the communication
cheme becomes slightly more complicated compared to the self-
riggered approach. Finally in terms of results, the self-triggered
pproach was found to be more conservative compared to the
vent-triggered approach as will be discussed in the next section.

. Simulation results

All algorithms in this section have been implemented in MAT-
AB. We used quadprog for solving QPs of the form (22), (31) and
70), lingprog for solving the linear programming in (26), (28)
nd (29), fmincon for a nonlinear optimization problem arising
hen (26) and (28) become nonlinear, and ode45 to integrate the

vehicle dynamics.
We have considered the merging problem shown in Fig. 1

where CAVs are simulated according to Poisson arrival processes
with an arrival rate which is fixed for the purpose of comparing
the time-driven approach and the event-driven schemes (over
different bound values in (32) for the event-triggered scheme
nd with different Tmax for the self-triggered scheme). The initial
peed vi(ti,0) is also randomly generated with a uniform distribu-
ion over [15 m/s, 20 m/s] at the origins O and O′, respectively.
he parameters for (20), (31), and (70) are: L = 400 m, ϕ =

.8 s, δ = 0 m, umax = 4.905 m/s2, umin = −5.886 m/s2, vmax =

0 m/s, vmin = 0 m/s, k1 = k2 = k3 = k4 = 1, λ = 10 and
d = 0.05. The sensor sampling rate is 20 Hz, sufficiently high
o avoid missing any triggering event as discussed earlier. The
ontrol update period for the time-driven control is ∆t = 0.05 s.
or the event-triggered scheme, we let the bounds S = [sx, sv] be
he same for the all CAVs in the network and vary them between
he values of {[0.5, 1.5], [0.5, 2], [0.5, 2.5]}. For the self-triggered
cheme, we set Tmax ∈ {0.5, 1, 1.5, 2}.
In our simulations, we included the computation of a more

ealistic energy consumption model (Kamal, Mukai, Murata, &
awabe, 2012) to supplement the simple surrogate L2-norm
2
u ) model in our analysis: fv(t) = fcruise(t) + faccel(t) with

10
cruise(t) = ω0 + ω1vi(t) + ω2v
2
i (t) + ω3v

3
i (t), faccel(t) = (r0 +

1vi(t)+r2v2
i (t))ui(t). where we used typical values for parameters

1, ω2, ω3, r0, r1 and, r2 as reported in Kamal et al. (2012).
Our results from several simulations corresponding to three

ifferent methods under the same conditions with different val-
es for the relative weight of energy vs time are shown in Tables 3
nd 4: the time-driven method, the event-triggered scheme, and,
he self-triggered scheme. We observe that by using the event-
riggered and self-triggered approaches we are able to signif-
cantly reduce the number of infeasible QP cases (up to 95%)
ompared to the time-driven approach. At the same time, the
verall number of instances when a QP needs to be solved has
lso decreased up to 68% and 80% in the event-triggered and self-
riggered approaches, respectively. Note that the large majority
f infeasibilities is due to holding acceleration constant over an
nappropriate sampling time, which can invalidate the forward
nvariance property of CBFs over the entire time interval. These
nfeasible cases were eliminated by the event-triggered and self-
riggered schemes. However, another source of infeasibility is due
o conflicts that may arise between the CBF constraints and the
ontrol bounds in a QP. This cannot be remedied through the
roposed event-triggered or self-triggered QPs; it can, however,
e dealt with by the introduction of a sufficient condition that
uarantees no such conflict, as described in Xiao et al. (2022).
In Tables 3 and 4, we can also observe some loss of perfor-

ance (i.e. average travel time increases hence road throughput
ecreases) in both approaches as the values of the bound parame-
ers in the event-triggered approach and Tmax in the self-triggered
pproach increase, hence increasing conservativeness. On the
ther hand, this decreases the computational load expressed in
erms of the number of QPs that are solved in both methods,
llustrating the trade-off discussed in previous sections. For in-
tance, when α = 0.25, the number of QPs (i.e. the indicator of
omputation load) and thereby the number of communications
etween the CAVs is reduced by 49% and 80% in the event-
riggered and self-triggered scheme respectively, compared to
he time-driven approach. There is also an apparent discrepancy
n the energy consumption results: when the L2-norm of the
ontrol input is used as a simple metric for energy consumption,
he values are higher under event-triggered and self-triggered
ontrol, whereas the detailed fuel consumption model shows
ower values compared to time-driven control. This is due to the
act that u2

i penalizes CAVs when they decelerate, whereas this is
ot actually the case under a realistic fuel consumption model.
We can also visualize the results presented in Tables 3 and 4

y showing the variation of the average objective functions in (7)
ith respect to α for different choices of [sx, sv] and Tmax, shown

n Fig. 2 and Fig. 3, respectively. As seen in Fig. 2, by selecting
igher values for bounds in the event-triggered scheme and for
max in the self-triggered scheme (being more conservative) the
bjective functions will also attain higher values, while the lowest
ost (best performance) is reached under time-driven control.
Constraint violation. It is worth noting that an ‘‘infeasible’’ QP

oes not necessarily imply a constraint violation, since violating a
BF constraint does not always imply the violation of an original
onstraint in (3), (4), and (5). This is due to the conservative
ature of a CBF whose intent is to guarantee the satisfaction of our
riginal constraints. In order to explicitly show how an infeasible
ase may lead to a constraint violation and how this can be
lleviated by the event-triggered and self-triggered schemes, we
imulated 12 CAVs in the merging framework of Fig. 1 with the
xact same parameter settings as before and with S = [0.5, 1.5]
n the event-triggered scheme, Tmax = 1 in the self-triggered
cheme and β = 5. Fig. 4 shows the values of the rear-end
afety constraint over time. One can see that the satisfaction of
afety constraints is always guaranteed with the event-triggered
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Table 3
CAV metrics under self-triggered (see Section 3.1) and time-driven control.

Item Self-Triggered Time-driven Time-driven
modified CBF

Tmax 0.5 1 1.5 2 Ts = Td = 0.05 Ts = 0.05

α = 0.1

Ave. Travel time 19.5 19.48 19.48 19.49 19.5 19.42
Ave. 1

2 u
2 4.27 5.00 5.93 7.2 3.37 3.18

Ave. Fuel consumption 31.86 32.21 32.64 33.23 31.32 31.61
Computation load (Num of QPs solved) 20.46% (7252) 11.9% (4218) 10.87% (3854) 10.32%(3658) 100.5% (35636) 100% (35443)
Num of infeasible cases 42 42 43 32 190 315

α = 0.25

Ave. Travel time 15.57 15.56 15.57 15.62 15.58 15.44
Ave. 1

2 u
2 14.33 15.10 15.68 16.68 13.38 13.34

Ave. Fuel consumption 54.45 53.51 52.57 52.94 54.17 55.81
Computation load (Num of QPs solved) 19.5% (5495) 13.68% (3857) 12.34% (3479) 12.72% (3588) 100.9% (28461) 100% (28200)
Num of infeasible cases 27 27 28 24 249 341

α = 0.4

Ave. Travel time 15.15 15.15 15.18 15.2 15.16 15.01
Ave. 1

2 u
2 18.5 19.32 19.73 20.36 17.64 17.67

Ave. Fuel consumption 55.23 53.35 52.67 52.95 54.93 56.5
Computation load (Num of QPs solved) 20.4% (5591) 14.85% (4071) 13.69% (3754) 13.60% (3727) 101.0% (27695) 100% (27412)
Num of infeasible cases 25 25 25 20 220 321

α = 0.5

Ave. Travel time 14.79 14.79 14.82 14.89 14.8 14.63
Ave. 1

2 u
2 25.5 25.84 26.43 27.5 24.86 25.08

Ave. Fuel consumption 55.5 53.15 52.9 53.45 55.5 56.93
Computation load (Num of QPs solved) 21.8% (5841) 16.7% (4322) 15.09% (4034) 15.17% (4054) 101.1% (27033) 100% (26726)
Num of infeasible cases 19 20 20 20 250 341
Fig. 2. Average objective function value with respect to α (time weight with
espect to energy in (7)) for different selection of bounds in event-triggered
pproach (see Section 3.1).

nd self-triggered approach as there is no infeasible case and the
alue of the constraint b1(x(t))) is well above zero. In contrast, we
ee a clear violation of the constraint in the time-driven scheme
n the cases of CAVs 8 depicted by the blue line (see Fig. 2).

Robustness. We have investigated the robustness of both
chemes with respect to different forms of uncertainty, such as
odeling and computational errors, by adding two noise terms to

he vehicle dynamics: ẋi(t) = vi(t) + w1(t), v̇i(t) = ui(t) + w2(t),
here w1(t), w2(t) denote two random processes defined in an

appropriate probability space which, in our simulation, are set
to be uniformly distributed over [−2, 2] and [−0.2, 0.2], respec-
tively. We repeated the prior simulation experiment with added
noise and results shown in Figs. 5 and 6. We can see that the
event-triggered and self-triggered schemes with almost similar
performance because of their conservativeness keep the functions
well away from the unsafe region (below 0) in contrast to the
11
Fig. 3. Average objective function value with respect to α (time weight with
respect to energy in (7)) for different selection of bounds in self-triggered
approach (see Section 3.2).

time-driven approach where we observe constraint violations due
to noise, e.g., CAVs 3, 4, and, 9 in Fig. 5 and CAV 8 in Fig. 6 and .

Remark 4. With the aim of validating our controllers in the
presence of noise, delays, and system uncertainty, we designed
a laboratory test bed using small mobile robots to emulate CAVs.
The results of the implementation demonstrate how the event-
triggered scheme is computationally efficient and can handle
measurement uncertainties and noise compared to time-driven
control while guaranteeing safety. For instance, in this setup, the
main sources of noise are the Optitrack localization system we
use and the IMU of the robots (to measure their velocity). Based
on the IMU datasheet, the total RMS noise is 0.05 deg/s and for
the Optitrack system the noise can be up to 1 mm depending on
the position of the markers installed on the robots (Nagymáté &
Kiss, 2018). A video of the implementation of our event-triggered
scheme for the safe and optimal merging of mobile robots may be
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Table 4
CAV metrics under event-triggered (see Section 3.1) and time-driven control.

Item Event triggered Time driven

Bounds sv = 0.5, sx = 1.5 sv = 0.5, sx = 2 sv = 0.5, sx = 2.5 ∆t = 0.05

α = 0.1

Ave. Travel time 19.61 19.73 19.65 19.42
Ave. 1

2 u
2 4.45 4.81 5.16 3.18

Ave. Fuel consumption 31.77 31.51 31.04 31.61
Computation load (Num of QPs solved) 50% (17853) 47% (16778) 34% (12168) 100% (35443)
Num of infeasible cases 42 42 43 315

α = 0.25

Ave. Travel time 15.82 15.88 15.95 15.44
Ave. 1

2 u
2 13.93 14.06 14.25 13.34

Ave. Fuel consumption 52.12 51.69 51.42 55.81
Computation load (Num of QPs solved) 51% (14465) 51% (14403) 48% (13707) 100% (28200)
Num of infeasible cases 27 27 28 341

α = 0.4

Ave. Travel time 15.4 15.46 15.53 15.01
Ave. 1

2 u
2 18.04 18.13 18.22 17.67

Ave. Fuel consumption 53.155 52.77 52.42 56.5
Computation load (Num of QPs solved) 54% (14089) 53% (14072) 49% (13573) 100% (27412)
Num of infeasible cases 25 25 25 321

α = 0.5

Ave. Travel time 15.05 15.11 15.17 14.63
Ave. 1

2 u
2 24.94 24.88 24.93 25.08

Ave. Fuel consumption 53.65 53.41 53.21 56.93
Computation load (Num of QPs solved) 51% (13764) 51% (13758) 50% (13415) 100% (26726)
Num of infeasible cases 20 20 20 341
Fig. 4. The variation of rear-end safety constraints for the time-driven, event-
riggered and self-triggered approaches. As can be seen, the blue line associated
ith CAV 8 violates the rear-end safety constraint by becoming negative in the
ime-driven approach, whereas in both event and self-triggered approaches it
tays well above the zero level. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

ound at https://www.youtube.com/watch?v=qwhLjEskPS8. More
etailed results and analysis can be found in Sabouni, Ahmad,
iao, Cassandras, and Li (2023).

. Conclusions

The problem of controlling CAVs in conflict areas of a traffic
etwork subject to hard safety constraints can be solved through
combination of tractable optimal control problems and the use
12
Fig. 5. The variation of safe merging constraints for the time-driven, event-
triggered and self-triggered approaches in the presence of noise. It can be
observed that the yellow, purple, and blue lines corresponding to safe merging
constraints for CAVs 3, 4 and 9 violate these constraints by becoming negative,
whereas in the proposed event and self-triggered schemes they stay well above
zero. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

of CBFs. These solutions can be derived by discretizing time and
solving a sequence of QPs. However, the feasibility of each QP
cannot be guaranteed over every time step. When this is due to
the lack of a sufficiently high control update rate, we have shown
that this problem can be alleviated through either an event-
triggered scheme or a self-triggered scheme, while at the same
time reducing the need for communication among CAVs, thus

https://www.youtube.com/watch?v=qwhLjEskPS8
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Fig. 6. The variation of rear-end safety constraints for the time-driven, event-
riggered, and self-triggered approaches in the presence of noise. It can be
bserved that the blue line corresponding to rear-end safety constraints for
AV 8 violates these constraints by becoming negative, whereas in the proposed
vent and self-triggered schemes it stays well above zero. (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

owering computational costs and the chance of security threats.
ngoing work is targeted at eliminating all possible infeasibilities
hrough the use of sufficient conditions based on the work in Xiao
et al. (2022) added to the QPs, leading to complete solutions of
CAV control problems with full safety constraint guarantees. As
unnecessary communication is avoided, the proposed schemes
are less likely to suffer from communication-related issues. How-
ever, imperfect communication can still be a problem and, as
part of our future work, we will investigate how packet loss and
delays affect the proposed methods and how they can possibly be
mitigated. The first step in this direction has been the successful
validation of these schemes in a laboratory-scale test-bed where
noise, delays, packet loss, and uncertainty are inevitable.
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