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of machine learning on microcontrollers.
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Is TinyML
Sustainable?

THE CONTINUED GROWTH oOf carbon emissions

and global waste presents a great concern for our
environment, increasing calls for a more sustainable
future. In response, the United Nations’ (UN) 2030
Agenda for Sustainable Development established a
shared framework aiming toward peace and prosperity
for people and the planet. At its core are 17 Sustainable
Development Goals (SDGs),"® a call to action for all
countries to work toward a more environmentally,
economically, and socially sustainable future.

Tiny machine learning (TinyML), which enables ML
on microcontroller (MCU) devices, holds potential for
addressing numerous UN Sustainable Development
Goals, particularly those related to environmental
sustainability (see Figure 1). While TinyML’s operational
benefits for sustainability are often highlighted,
itis crucial to consider the entire life cycle of both
applications and hardware to ensure a net carbon
reduction. This article contributes by presenting case
studies illustrating TinyML’s sustainability benefits,
examining the environmental impacts of
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TinyML at both MCU and system levels
through a life cycle analysis (LCA), and
identifying future research directions
for sustainable TinyML.

TinyML is the deployment of ma-
chine learning (ML) algorithms onto
low-cost, low-power, and resource-
constrained MCU systems. TinyML
stores neural network models directly
within memory (for example, flash)
and runs inference directly on the
output of onboard sensors. This ap-
proach enables intelligent on-device
sensor analytics unavailable with tra-
ditional Internet of Things (IoT) ap-
proaches, which instead typically rely
on communication with the cloud to
transmit data for external processing.
Importantly, TinyML achieves this us-
ing a fraction of the compute resourc-
es needed for traditional ML systems.
Table 1 compares TinyML with tradi-
tional BigML (such as cloud and mo-
bile systems) and shows how TinyML
requires orders of magnitude fewer
resources across compute, memory,
storage, power, and cost. Finally, while
the heterogeneity and limited resourc-
es of MCU devices present new chal-
lenges for on-device training, model
updating, and deployment, recent
research, and the development of ML
frameworks such as TensorFlow Lite
for Microcontrollers'* have increased
the accessibility of TinyML.

key insights

® TinyML (machine learning on low-power
microcontrollers) unlocks sustainable
computing solutions, increasing
agriculture yield and mitigating climate
change, to help address many of the UN’s
Sustainable Development Goals

m Life cycle analysis (LCA) reveals a
significant carbon footprint for TinyML
at scale, as there are billions of MCUs
deployed globally; however, TinyML can
drastically reduce emissions in other
sectors, offsetting its own footprint in the
process

B The microcontroller unit (MCU) in TinyML
devices has a relatively small footprint
compared to the battery and sensing
components; hence, TinyML devices
environmental influence rests on holistic
and sustainable system design.
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The ubiquity, low-cost, and small
power envelope of MCUs, paired with
TinyML’s independence from Internet
connectivity, enables ML models to be
deployed globally anywhere at scale.
For these reasons, along with band-
width, latency, energy, reliability, and
privacy concerns, running ML directly
on these embedded edge devices is
growing in popularity.

With more than 250 billion MCUs
deployed globally today, and the cost of
MCUs expected to drop below $0.50 per
unit, this number is expected to grow,
eclipsing 40 billion MCUs shipped per
annum in the next decade.* As such,

TinyML will become an ever-present
technology. But the question we must
ask ourselves is do we run the risk of
producing an Internet of Trash over
the course of TinyML devices’ lifetime?

Applications of TinyML

for Sustainability

To fairly evaluate the environmental
impacts of machine learning on MCUs,
we first consider TinyML’s benefits.
Typical well-known consumer-facing
applications of TinyML include key-

word spotting, image classification,
and anomaly detection.” However,
many other applications of TinyML
can be used to enable a more sustain-
able future.® In the following sections,
emerging applications are highlight-
ed, which show how TinyML can help
with important environmental-related
SDGs (as shown in Figure 1).

TinyML is well-suited for improv-
ing the sustainability of global agri-
culture, aiding wildlife conservation,
and helping combat climate change
and its impacts.

Zero hunger and good health and
well-being (SDG #2 and #3). End hun-
ger, achieve food security & improved nu-
trition, promote sustainable agriculture,
and ensure healthy lives while promoting
well-being for all at all ages.

ML applications can increase ag-
riculture production through data-
driven methods. For example, Nuru, a
mobile and cloud-based ML app from
the PlantVillage project, is more accu-
rate than humans at detecting plant
diseases and enabled one farmer to
increase her revenue by 55% and yields
by 146%.'>*° ML has also been used

for autonomous devices such as tiny
drones, which can provide targeted
pesticide applications that reduce use
to 0.1% of conventional blanket spray-
ing.”” As another example, researchers
developed a cough monitor system
to flag respiratory problems in pigs
by placing microphones over animal
pens that can alert farmers 12 days ear-
lier than standard methods.?

TinyML has the potential to increase
the impact of these systems. First, it
can enable these and many other ap-
plications to be used in remote regions
through low-power, low-connectivity
operations. Second, it can enable
scaled deployment of these smart sen-
sors, which could provide more target-
ed information (for example, on all in-
dividual pigs in real time for the cough
monitor system). Most importantly, it
would increase global access to these
technologies by reducing costs. As Spar-
row and Howard note, global adoption
can only occur if devices “can be manu-
factured and sold cheaply enough to be
available to smaller farms.”*!

TinyML can also be used to aid in
our health and well-being. One of the
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diseases noted in the UN’s SDG report
is malaria due to its massive global im-
pact. In fact, nearly half of the world
population has been killed by mos-
quitoes.”® Gaps in funding and access
to life-saving tools led to a dispropor-
tionate 94% of all malaria cases and
deaths in 2019 occurring in the Afri-
can region.*® Using Edge Impulse,” a
development platform for TinyML, a
system was prototyped to identify the
deadliest mosquitoes using wing beats
sound classification with 88.3% accura-
cy.”” This is another example in which
global access to these systems will have
a tremendous impact and could poten-
tially save lives.

Life on land and below water (SDG
#14 and #15). Protect, restore, con-
serve, and promote sustainable use of
terrestrial and aquatic ecosystems, sus-
tainably manage forests and marine
resources, combat desertification, halt
biodiversity loss.

TinyML can help preserve the plan-
et’s biodiversity by improving the effi-

ciency of conservation efforts that rely
on distributed sensing networks. One
such instance is to resolve human-el-
ephant conflicts in Asia and Africa. By
only transmitting notifications of el
ephant detection instead of full video
streams to the cloud, RESOLVE’s Wild-
Eyes Al camera can run for more than
1.5 years on a single Lithium-Ion bat-
tery.’® AI on the edge is also being used
at Liwonde National Park in Malawi to
prevent poaching, and as of September
2019, the park had lost no animals in
30 months.*® Similar systems are being
used to prevent collisions with whales
in busywaterways. For example, Google
deployed a TinyML model on hydro-
phones (underwater microphones) to
alert ships in Vancouver Bay.*

Due to the low computational re-
quirements, opportunities also exist
for upcycled and recycled electronic
devices for TinyML applications. Rain-
forest Connection (RFCx) uses recycled
smartphones to develop solar-powered
listening devices for pinpointing defor-

Figure 1. We show the positive (green arrows) and negative (red arrows) environmental

footprint of the complete life cycle of TinyML systems as well as how TinyML can contrib-
ute to the UN’s environmental sustainability goals.
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Table 1. Cloud and mobile ML systems compared with TinyML across frequency, memory,

storage, power, price, and footprint. The footprint of TinyML systems is far less.

Platform Freq. Memory  Storage Power Price Co,-eq Footprint
Cloud GHz 10+GB TBs-PBs ~1kW $1000+ Hundreds of kgs
Mobile GHz Few GB GBs ~1W $100+ Tens of kgs
Tiny MHz KBs Few MB ~1mwW $10 Single kgs
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estation over long distances.* Similar
opportunities exist for upcycling MCUSs.

Climate action (SDG #13). Take ur-
gent action to combat climate change
and its impacts.

TinyML is well-suited to efforts
aimed at combating climate change
and its impacts through environ-
mental monitoring applications. For
example, Ribbit Network recently
launched an effort to crowdsource the
world’s largest greenhouse gas emis-
sions dataset through distributed in-
telligent sensors that enabled cheap,
accurate, and actionable local data on
emissions. Similarly, the SmartFor-
est project utilizes a remote monitor-
ing system to provide information on
tree growth. This replaced the need for
150-160 employees to regularly go into
the field with a single trip to install the
sensors,” significantly reducing hu-
man impact on the ecosystem while
increasing data quality.

In the long term, TinyML also has
the potential to power the next gen-
eration of tiny robots to help reduce
the global impact of climate change.
For example, climate change has con-
tributed to the widespread decline
of essential pollinators like bumble
bees,* threatening the global food
supply (SDG #2 mentioned previ-
ously). TinyML can help provide in-
telligence to tiny robots like the Ro-
bobee® that can be used as artificial
pollinators. However, there are still
many challenges and opportunities to
unlock tiny robot learning.*!

Finally, one area of broad interest
is the building sector. Existing sys-
tems that control lighting, automated
window shading, and HVAC based on
occupancy and light-intensity sensors
show a 20%-40% reduction in building
energy usage.>?® Adding ML capabili-
ties to these systems would lead to fur-
ther improvements in efficiency. This
increased efficiency is critical as energy
production along with residential and
commercial energy usage are leading
sectors contributing to global green-
house gas emissions (see Figure 2).

Quantifying the

Sustainability of TinyML

The benefits of ML on MCUs for envi-
ronmental sustainability and beyond
will continue to fuel the IoT revolu-
tion, connecting billions of devices



around us. However, embedding
smart computing into everyday ob-
jects may have looming environmen-
tal consequences through increased
electronic waste.** To better under-
stand the environmental costs asso-
ciated with TinyML, a life cycle anal-
ysis (LCA) of the complete TinyML
system (that is, MCU plus peripher-
als and power supply) is performed.
This analysis demonstrates the foot-
print of MCUs and TinyML systems
individually is relatively small. When
this analysis is expanded to consider
the global scaled impact of TinyML,
the impact could be substantial if not
offset by using TinyML for sustain-
able applications.

Growing environmental risks of
IoT trash. Electronic waste (e-waste) is
a growing concern and polluting our
environment. In 2019, it was reported
that e-waste had grown by 20% over the
past five years,*® and by 2030, forecasts
predict a total of 75 million metric tons
of e-waste.*® In addition to the e-waste,
the carbon emissions from manufac-
turing and operating these devices are
also growing and impacting the envi-
ronment. TinyML has the potential to
drive more demand for innovative IoT
solutions that would advance the ubiq-
uitous computing movement, but fur-
ther exacerbate the growing “Internet
of Trash.”

Parallels can be drawn from the
plastic pandemic. An abundance of re-
sources (for example, plastic, silicon)
has made it easy to manufacture “in-
finitely” at scale and the convenience
offered by such products made it easy
to ignore environmental concerns.
Consequently, plastic has contributed
significantly to land and water pollu-
tion, and its production contributes
to global warming by emitting green-
house gases. Plastic also contains toxic
chemicals that can leach into food and
water and have been linked to health
problems. These adverse side effects
provide a cautionary tale and motiva-
tion to carefully consider the net bene-
fit of TinyML systems and applications.

Environmental impact of MCUs.
The TinyML life cycle analysis starts
at the MCU level with publicly acces-
sible data from STMicroelectronics.*?

a The general trends hold for other MCU manu-
facturers.
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Figure 2. Breakdown of global CO; emissions as of 2019.2%
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The hardware life cycle of an MCU can
typically be broken down into five
stages: extraction and treatment of
raw materials, product manufactur-
ing, transport and distribution, prod-
uct use, and end of life. As shown in
Figure 3, there are four different en-
vironmental indicators that can be
used to analyze the footprint of the
processing hardware required for
TinyML: water demand, freshwater
eutrophication, photochemical oxi-
dant formation, and climate change.
Across all four indicators, produc-
tion, or more specifically, energy con-
sumption during production, is the
dominant driver of an MCU’s environ-
mental footprint, as noted in previous
work.?°? However, the exact break-
down varies across indicators.

Water demand. SDG #6 highlight-
ed that billions of people are without
abundant access to clean water. This
indicator measures the volume of water
evaporated, consumed, used for cool-
ing, or released downstream, during an
MCU’s life cycle. Figure 3 shows that
while much (54%) of the water used in
an MCU’s life cycle is attributed to the
production site, extracting and trans-
forming the raw materials also requires
a substantial amount of water (41%).

Freshwater eutrophication. Eutro-
phication, the proliferation of algae
and plants in bodies of water, is one
of the most significant threats to our
aquatic ecosystems (SDG #14). This in-
dicator measures this impact in grams
of phosphorous equivalent (g P-eq.), as
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phosphorous is a common cause of al-
gae blooms from over-enriched aquat-
ic ecosystems. Figure 3 shows that this
environmental indicator has the most
balanced impact on the five stages of
an MCU life cycle, with 45% of the foot-
print attributable to production, 28%
to the MCU use, and 27% to the extrac-
tion of raw materials.

Photochemical oxidant formation.
This indicator measures milligrams
of non-methane volatile organic com-
pounds (NMVOC) formed. These play
an essential role in the formation of
photochemical oxidants, which can
exacerbate respiratory ailments and
lead to smog formation, impacting
the climate (SDG #13), local air quality
(SDG #15), and public health. Figure
3 shows that this footprint is mainly
driven by production, accounting for
74% of the total, with 71% coming from
energy usage during production.

Climate change. This indicator mea-
sures equivalent grams of carbon diox-
ide (CO,-eq) emitted. CO, is the most
prevalent greenhouse gas produced
by humans and a primary driver of
climate change (SDG #13). As Figure 3
shows, most of the carbon emissions
come during production of the MCU
(81%), with the majority resulting from
energy consumption (56%). The entire
carbon footprint of an MCU is 390g
COy-eq. For perspective, this footprint
is equivalent to a gasoline-powered car
driving 1.6km. Given that cars typically
drive hundreds of thousands of miles
during their lifetime, a single MCU alone
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has minimal impact in the context of ev-
eryday human actions. In the following
section, CO, emissions are used as the
primary measure due to their wide ac-
ceptance for assessing environmental
impact.

Footprint of TinyML systems.
MCUs are the heart of embedded
TinyML systems, but we must con-
sider the additional components that
constitute a complete TinyML system
to get a more accurate picture of the
complete footprint. Thus, in this sec-
tion, we systematically analyze the
footprint of the systems used for the
widely deployed TinyML applications
of keyword spotting and image clas-
sification. This analysis outlines all
pieces needed for deploying a system
in the wild such as casing, sensing, ac-
tuators, transport, and more.

TinyML Footprint Calculator. We
developed an open source TinyML
Footprint Calculator to evaluate the

footprint of TinyML systems.” This
tool can be used in the future to help
engineers understand the impact of
the devices they are developing. For
example, this tool could produce the
environmental impact report for ML
sensor datasheets.*

Our calculator leverages the raw
data from a recent 2021 study by Pir-
son and Bol** assessing the embodied
carbon footprint of IoT devices. Pir-
son and Bol* break down the general
architecture and hardware profile of
an IoT edge device into a collection of
basic functional blocks: processing,
memory, actuators, casing, connectiv-
ity, PCB, power supply, security, sens-
ing, transport, user interface, and oth-
ers circuit components (for example,
resistors, capacitors, diodes).

Within the various blocks, Pirson

b Available at https://github.com/harvard-edge/
TinyML-Footprint

and Bol break down the impact based
on application specifications. How-
ever, Pirson and Bol note that the data
provided only encapsulates stages 1
through 3 of the hardware life cycle
(that is, embodied footprint). As such,
we additionally model and capture the
product use stage (operational foot-
print) and end-of-life stage of the hard-
ware life cycle in Figure 4.

To account for the use stage, we
calculated the CO,-eq of recharging
a power supply for three years of con-
tinuous use at 1mW, the average power
consumption of commercial TinyML
systems.”? We note that some TinyML
applications may require much less
power when idle (for example, keyword
spotting) and that we used a three-year
benchmark to be consistent with Ap-
ple’s analysis that was our baseline.

In addition, we included the ML
model training costs since they can
be large, on the order of millions of kg

Figure 3. Four different environmental indicators measuring the impact of MCUs on our environment.

Each footprint contains both the operational and embodied footprint of the device, including
the five-stage life cycle of an MCU. Data courtesy of STMicroelectronics.*® The data from
other MCU providers follow the same operational and embodied footprint trends.
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of CO,-eq for large cloud ML tasks.>?
Costs were based on footprint esti-
mates of DenseNet,'” which serve as
an upper bound on computation as it
is an order of magnitude larger than
the typical size of TinyML models.
This upper bound can also help ac-
count for extra training runs that may
be conducted during neural architec-
ture search (NAS).¢

Breaking down TinyML’s footprint.
The calculated footprint of TinyML
systems is broken down into three
scenarios. The “Low-Cost Profile” sce-
nario represents a keyword spotting
application that requires only a simple
microphone sensor. The “Medium-
Cost Profile” scenario represents an
image classification application that
requires a much larger camera sensor.

¢ NAS has been used in prior work,® but is not
typical for many TinyML application and can
be generalized."

The “High-Cost Profile” scenario again
uses the image classification applica-
tion, instead using the upper bound
carbon emission values for each com-
ponent provided in Pirson and Bol.*”
These scenarios represent typical, but
not absolute, bounds for assessing
classical TinyML systems. For com-
plete details, see https://github.com/
harvard-edge/TinyML-Footprint.

As the stacked bar graph on the
right side of Figure 4 shows, the em-
bodied footprint of all components
is much greater than the system’s
operational footprint (captured in
“Product Use”). This result aligns
with previous literature suggesting
that manufacturing dominates the
environmental footprint of small
electronics.?*** Moreover, the figure
highlights that the processing’s (that
is, MCU’s) embodied footprint does
not contribute significantly. Instead,
most of the footprint is attributable

research

to the embodied footprint of the ad-
ditional components (for example,
power supply, sensor, circuit board)
and the transportation costs associat-
ed with manufacturing and distribu-
tion. In particular, the power supply is
one of the dominating factors in the
footprint. The embodied footprint of
a battery required to deploy TinyML
in the wild for years is much larger
than any other system component.
One may consider comparing our
TinyML system footprint to another
device used for making progress to-
ward the SDGs or an edge-class server.
However, the documentation of such
data is still relatively new and limited.
Thus, using what is publicly available,
the typical TinyML system footprint is
compared with the latest Apple Watch
Series 7 (representative of an “edge”
device) to provide a baseline reference
for understanding the total carbon
footprint of a TinyML device, as shown

Figure 4. A breakdown of different TinyML system footprints.

This illustration highlights the footprint is largely attributable to the embodied footprint of the power
supply, onboard sensors, and transportation. Note that actuator and connectivity blocks from Pirson
and Bol* are encapsulated in “Other” and “Processing,” respectively, while “Product Use” captures the
operational footprint. The carbon footprint of Apple's Series 7 Watch* and 16-inch MacBook Pro?® are
also provided for reference. For more details and to compute the footprint of your own TinyML system,
see https://github.com/harvard-edge/TinyML-Footprint.
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on the left of Figure 4. In the figure, the
footprint of a 16-inch MacBook Pro is
also provided to give the reader an idea
of a device footprint representative of
traditional computing hardware.

The carbon footprint of the Apple
Watch, considering three years of use, is
34kg CO,, with 76% of the footprint at-
tributable to production, 10% to trans-
port, and 13% to everyday use.* This car-
bon footprint is 5-38x larger compared
to a TinyML system. Moreover, for ref-
erence, a TinyML system has a 49-392x
smaller footprint than a Macbook.?

This complete LCA shows the ad-
ditional components that constitute
a TinyML system have a larger carbon
footprint than the MCU alone, but still
have a much smaller footprint than ex-
isting computing systems.

TinyML at scale. Each TinyML de-
vice will have an associated environ-
mental footprint, as outlined previ-
ously, and can provide environmental
benefits. However, humanity is on
the path to a future with billions of
deployed intelligent IoT devices. To
better understand the net effect of
TinyML at scale, this section assesses
what happens to TinyML’s footprint if
these systems are scaled to the number
of MCUs deployed globally, which cur-
rently sits at around 250 billion. For ref-
erence, there are currently only around
15 billion IoT devices,** with two bil-
lion TinyML device installs in 2022 and
a projected 11 billion in 2027.2 These
numbers suggest that including all 250
billion existing MCUs under TinyML’s
footprint is a very conservative overes-

timate. However, we do so, and use the
“High-cost Profile” data from Figure 4,
to provide an upper bound for the net
effect of TinyML both now and into the
near future. This scenario results in a
combined, non-trivial global carbon
footprint of 1,765 million metric tons of
COy-eq.

This is a substantial footprint that
is quite concerning for TinyML on its
own. However, along with this number
we need to consider the emissions that
were avoided by using these systems.
As mentioned earlier, there are existing
examples (for example, Asopa et al.> and
King et al.?®) of simple, intelligent IoT
devices that can reduce building CO,
emissions by at least 20%. In this case,
enduring the footprint of these smart
devices is worthwhile as their footprint
is most likely negligible when com-
pared to the 20% reduction in a build-
ing’s emissions.

Figure 5 now compares the calcu-
lated global carbon footprint of TinyML
(blue bar) in the context of the emis-
sions these TinyML systems could help
avoid through efficiency improvements
in other sectors. If the 20% reduction
in a single building’s emissions were
applied to the entire residential home
sector over three years (green bar), 1,181
million metric tons of CO,-eq would
be avoided. These avoided emissions
alone would offset 67% of the worst-case
costs of TinyML. The residential sec-
tor, though, only represents 6% of total
global emissions (Figure 2). If remain-
ing TinyML devices were able to reduce
emissions from all other sectors by as

Figure 5. If all 250 billion MCUs were TinyML systems with three-year lifespans, their

worst-case footprint would be 1,765 million metric tons of CO,.

If these systems enabled a 20% emissions reduction for the residential sector and only a
0.6% reduction for all other sectors (Figure 2), the total footprint would be net-zero. Anything
larger (for example, 20%) results in more carbon savings from TinyML than emissions.
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little as 0.6% on average (orange bar),
then TinyML would break even from an
emissions standpoint.

Furthermore, if we were to extrapo-
late this 20% reduction in the residen-
tial sector to all sectors (yellow bar) we
would see a net reduction in global CO,
emissions by over 18.4 billion metric
tons. While a 20% reduction in emis-
sions from all sectors may be unrealis-
tic, anything greater than a 0.6% reduc-
tion on average would result in TinyML
saving more emissions than it pro-
duced. This result suggests that TinyML
systems, if designed with careful inten-
tion, can elicit an overall positive im-
pact on the environment.

Discussion

Prior claims regarding the use of digital
technologies for greenhouse gas emis-
sions mitigation do not always address
critical aspects that can result in over-
estimated benefits.*® Thus, in this sec-
tion, we recognize the limitations of our
analysis and discuss other important
factors that should be considered in
future work to develop a deeper under-
standing of the impact of TinyML on en-
vironmental sustainability.

Limitations of our study. One major
limitation is the lack of publicly avail-
able data on the environmental impact
of modern digital electronics. This
makes it difficult for our analysis to be
detailed and precise and makes it chal-
lenging for consumers to understand
the environmental impact of their pur-
chases. This can also lead to uncertainty
in analysis that can be challenging to
quantify. However, it is promising to see
there is increasing demand for LCA and
carbon footprint data. This additional
data will empower consumers and en-
able the heterogeneity in these systems
to be accounted for in future work.

Another important consideration
is Jevons’ paradox (or rebound effect),
which suggests that advancements
in efficiency can lead to an overall in-
crease in consumption and a negative
impact on the environment. The sec-
tion on “TinyML at scale” attempts to
address this by examining a scenario in
which TinyML systems are produced at
a much larger scale than they are used
today. And while this section suggests
that TinyML systems have the potential
to have a positive impact, the conclu-
sions of this assessment are limited



by the current availability of heteroge-
neous data.

Finally, it is also important to note
that our analysis approximates carbon
savings from TinyML solutions by com-
paring with a baseline with no interven-
tion. However, alternative (non-TinyML)
approaches could also be made to save
emissions (for example, behavioral
changes or manual efforts by humans
to reduce building emissions) that fu-
ture works should compare with to pro-
vide further trade-offs and analysis.

Considerations for future studies. In
this section, we mention several addi-
tional factors that should be considered
in future complementary studies.

IoT device growth. Our study assumes
all 250 billion existing MCUs are Ti-
nyML systems as a conservative over-
estimate for analysis. However, this is
not actually the case as only a subset of
deployed MCUs are being used for Ti-
nyML. Realistically, 250 billion TinyML
systems will not be reached for some
time, though. Table 2 projects when this
250 billion device mark will be reached
based on available IoT device reports
from Statista.”> IoT device growth can
be closely tied to TinyML's growth.'
Assuming linear growth, the 250 bil-
lion device mark will be reached in 120
years. However, if we instead assume
exponential growth, the mark would be
reached in only 20 years, and we would
reach trillions of devices in 30 years.

Given this, a key question is whether
there is a limit to the carbon savings
from TinyML, leading to another ex-
ample of Jevons’ paradox. Addition-
ally, while most commodity MCUs can
support TinyML applications today, a
phase-in process will likely be necessary
to transition current IoT devices.

Semiconductor manufacturing. Using
data from Pirson and Bol, our analysis
assumes the MCU is fabricated using
90nm CMOS technology.* However,
the environmental impact of semicon-
ductor manufacturing increases with
each successive technology node. For
example, Bardon et al.” shows a 2.5x
increase in greenhouse gas emissions
per wafer when scaling from 28nm to
3nm. Fortunately, emissions are reduced
when normalized on a per-transistor ba-
sis. Therefore, if we are to keep our MCU
designs the same (that is, the same
number of logic and transistors) then
our MCU footprint can actually reduce
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Table 2. Exponential and linear growth projections based on Statista Reports for loT

devices.“? Each column lists the first year that X billion devices will be reached.

loT Device Growth

~15 Billion >50 Billion >100 Billion >250 Billion >1 Trillion
Linear 2023 2041 2067 2144 2531
Exponential 2023 2032 2036 2043 2053

and benefit from each successive tech-
nology node.! We additionally advocate
for repurposing existing MCU hardware
for TinyML systems.

Device lifetime: Embodied vs. opera-
tional footprint. Our study assumes a
three-year device lifetime to compare
with LCA’s from other vendors. How-
ever, Eeckhout highlights that the ratio
of operational to embodied footprint
is important.’® In the case of our study,
sweeping the device lifetime from 1-10
years does not have a large impact on
the carbon footprint of an individual
device as the operational footprint is
minimal.© However, when considering
the saved emissions from TinyML, the
lifetime of the devices impacts the total
positive impact. Reducing our assumed
three-year lifespan to one year would
require 4.1% savings from other sectors
to break even (rather than 0.6%). How-
ever, increasing the lifespan to 10 years
would allow the residential sector sav-
ings alone to offset the total footprint of
TinyML.

Beyond carbon. Our study concludes
that TinyML devices can elicit an over-
all positive impact on the environment
with respect to carbon emission savings
and global warming.

However, it is important to note that
there are many other environmental
factors to consider. As such, it is possi-
ble that TinyML does not have an overall
positive impact when considering other
environmental measures for sustain-
ability. Finally, climate change repre-
sents a significant planetary boundary,
butitis essential to acknowledge the ex-
istence of other environmental factors
within which humanity must safely op-
erate. These include but are not limited
to biosphere integrity, global change

d This benefitwould also apply to the image sen-
sor used in our study that assumes fabrication
using 250nm CMOS technology.

e However, if the power consumption of the
TinyML system is much greater and requires
multiple batteries, the embodied footprint
would increase.
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biology, hydrological and biogeochemi-
cal cycles, land-system changes, strato-
spheric ozone depletion, and ocean
acidification.*

Another essential aspect to consider
is the societal and human costs associ-
ated with TinyML production. TinyML
deployment is inherently different
from cloud ML deployment, meaning
TinyML’s non-environmental related
impacts could also look very differ-
ent. For example, batteries are a criti-
cal component of TinyML systems, the
implications of which are discussed
later. Moreover, the global and remote
distribution of TinyML systems means
that the associated costs are not local-
ized to a single location, contrasting a
cloud datacenter. Thus, rules and regu-
lations surrounding best practices for
manufacturing and deploying TinyML
systems can be subject to exploitation
as laws regarding mining, child labor,
and others can change based on loca-
tion. We must also consider these con-
sequences.

Future Sustainable TinyML

While TinyML has the potential to con-
tribute to global sustainable develop-
ment and environmental sustainabil-
ity, there are still many challenges that
must be overcome to fully realize this
potential. As noted, the environmental
impact of TinyML will be non-negligi-
ble. Even if the benefits of TinyML can
potentially outweigh its impact, it is
important to be cautious and ensure
future generations of TinyML devices
are sustainable. In this section, we will
discuss the broader implications of our
study and suggest ways to make TinyML
more sustainable.

First and foremost, it should be not-
ed that for sustainable design to be truly
successful, incentives must be provided
to corporations and engineers to priori-
tize sustainability when making deci-
sions. Policy changes such as a carbon
tax or related measures that can help
curb emissions need to be investigated
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for consideration. Moreover, as men-
tioned, human cost needs to be also
pushed at the forefront of any deci-
sions or innovations made.

Energy harvesting. Our analysis re-
vealed that the batteries used to power
TinyML devices dominate their envi-
ronmental impact. Batteries also pres-
ent several other environmental issues,
such as pollution and the release of
carcinogens.? In particular, the extrac-
tion of lithium is especially harmful to
the environment and has caused se-
vere water insecurity for already mar-
ginalized people.”

Research in energy harvesting®
needs to be prioritized to make “bat-
teryless” TinyML the standard prac-
tice to reduce the associated environ-
mental and societal costs that come
with batteries. Furthermore, advance-
ments in intermittent computing®
could be suitable in TinyML scenarios
and help further reduce the needed
power supply.

Efficient sensing. The second larg-
est contributor to the footprint in two
of the three profiles analyzed was the
sensor. Sensing is essential in TinyML,
but using smaller (for example, cam-
era vs. inertial measurement unit) or
lower-quality sensors (for example,
low- vs. high-resolution camera) could
further reduce the environmental im-
pact of the device. Due to the relatively
low footprint of the compute, more ad-
vanced TinyML models could be used
to make up for the loss in performance
introduced by lower-quality sensors,
potentially reducing the overall foot-
print while achieving the same perfor-
mance. Additionally, sensor fusion,
using multiple small sensors, could
also be used to reduce the total envi-
ronmental impact.*’ See p. 25 for more
on ML sensors.

Datasheets for ML sensors. Greater
transparency regarding the system’s
dataand costsis needed to deploy these
TinyML devices safely and ethically.
TinyML instantiations must clearly
and transparently articulate their pri-
vacy and security boundaries. One so-
lution to address privacy concerns is to
separate the input sensor data and ML
processing from the rest of the system
at the hardware level. Also, new supple-
mentary information is needed in the
form of a datasheet that builds upon
traditional datasheets used for electri-
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cal components to enable transpar-
ency to end users.” These datasheets
should include information about the
environmental impact and LCA of the
device in an easy-to-understand format
so that users can use TinyML devices
in an environmentally friendly and
sustainable way. To drive this, a bench-
markis needed to systematically report
and measure the sustainability of com-
puting systems.

Datasets for low-resource domains.
Many TinyML applications depend
on real-world data, which can be
challenging to obtain, particularly
in public domains. To foster TinyML
development, there is a need for ex-
tensive, open access datasets focused
on low-resource, high-impact sensor-
based problems, akin to ImageNet for
TinyML. Similar to how open source
software development has enabled
code sharing and reduced costs, creat-
ing large, public, and representative
datasets for TinyML is essential. How-
ever, it is also important to consider
the environmental impact of the data
collection. For example, collecting
data in nature can be disruptive and
harmful. On the other hand, alterna-
tive methods such as computationally
intensive simulations may require car-
bon-consuming resources to obtain.

Emerging technologies. New tech-
nologies are being developed that
could lead to more sustainable TinyML
practices. One example includes flex-
ible electronics: PragmatIC Semicon-
ductor has reported less than half of a
single gram of CO,-eq manufacturing
such integrated circuits.®® This class
of technologies could enable TinyML
to achieve greater reductions in emis-
sions than anticipated in our analysis.
However, these technologies are not yet
mature and have less processing power
than traditional silicon devices.'* More
research and development is needed
to utilize these sustainable technolo-
gies fully. Furthermore, sustainabil-
ity needs to be made a measure of fab
performance for existing technologies
as there are many opportunities for po-
tential energy savings in which TinyML
solutions could help.**

Recycle and upcycle. TinyML can
potentially exacerbate the problem of
electronic waste. However, recycling
and reusing TinyML devices is a vi-
able option as many of the algorithms



can run on standard, commonly used
MCU hardware. This can extend the
life of the MCU and reduce the amount
of waste sent to landfills. In addition
to recycling MCU hardware, industry
should consider recycling old technol-
ogy nodes when fabricating additional
MCUs for TinyML. More broadly speak-
ing, TinyML systems should consider
more sustainable designs when high
computational performance is not an
application requirement.

Accessibility. Finally, for TinyML to
have a significant impact on a global
scale, there is a need for global ac-
cess to hardware and educational re-
sources. Fortunately, recent efforts,
led by the TinyML foundation and
the TinyML Open Education Initia-
tive (TinyMLedu), among others, have
both developed such open-source ma-
terials and provided low-cost or no-cost
hardware to learners.*

Conclusion
Using ML on microcontrollers can have
a significant impact on environmental
sustainability. Low-power ML on low-
cost MCU-class hardware has the po-
tential to improve efficiency in various
sectors, enabling significant reductions
in carbon emissions. This assessment
shows that TinyML’s carbon footprint
could be offset by using the technology
to reduce emissions from other econom-
ic sectors. However, TinyML’s footprint
is not negligible when scaled globally,
and thus designers must be mindful and
factor in sustainability when develop-
ing new devices. Emerging technologies
may further enable more sustainable
computing practices and cement the
net-positive potential of TinyML.
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