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a b s t r a c t

We derive optimal control policies for a Connected Automated Vehicle (CAV) and cooperating
neighboring CAVs to carry out a lane change maneuver consisting of a longitudinal phase where the
CAV properly positions itself relative to the cooperating neighbors and a lateral phase where it safely
changes lanes. In contrast to prior work on this problem, where the CAV ‘‘selfishly’’ only seeks to
minimize its maneuver time, we seek to ensure that the fast-lane traffic flow is minimally disrupted
(through a properly defined metric). Additionally, when performing lane-changing maneuvers, we
optimally select the cooperating vehicles from a set of feasible neighboring vehicles and experimentally
show that the highway throughput is improved compared to the baseline case of human-driven
vehicles changing lanes with no cooperation. When feasible solutions do not exist for a given maximal
allowable disruption, we include a time relaxation method trading off a longer maneuver time with
reduced disruption. Our analysis is also extended to multiple sequential maneuvers. Simulation results
show the effectiveness of our controllers in terms of safety guarantees and up to 16% and 90% average
throughput and maneuver time improvement respectively when compared to maneuvers with no
vehicle cooperation.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Advancements in transportation technologies, including Con-
ected Automated Vehicles (CAVs), have the potential to greatly
nhance transportation networks by improving safety and com-
ort, reducing congestion, and increasing energy efficiency. In
he realm of highway driving, autonomous car-following systems
ave seen significant developments in recent years, as outlined

✩ Supported by the Honda Research Institute USA (HRI-USA), by The National
Science Foundation (NSF), USA under grants ECCS-1931600, DMS-1664644, CNS-
1645681, CNS-2149511, by AFOSR, USA under grant FA9550-19-1-0158, by
ARPA-E, USA under grant DE-AR0001282, and by the MathWorks. The material
in this paper was partially presented at the 25th IEEE Intelligent Transportation
Systems Conference (ITSC), September 18th–October 12th, 2022, Macau, China.
This paper was recommended for publication in revised form by Associate Editor
Antonella Ferrara under the direction of Editor Thomas Parisini.

∗ Corresponding author.
E-mail addresses: aschavez@bu.edu (A.S. Chavez Armijos), anlianni@bu.edu

(A. Li), cgc@bu.edu (C.G. Cassandras), behdad_chalaki@honda-ri.com
(B. Chalaki), emoradipari@honda-ri.com (E. Moradi-Pari),
hnourkhizmahjoub@honda-ri.com (H.N. Mahjoub),
vaishnav_tadiparthi@honda-ri.com (V. Tadiparthi).
1 Y. K. Al-Nadawi and H. Araki were with HRI during the period of this work.
https://doi.org/10.1016/j.automatica.2024.111651
0005-1098/© 2024 Elsevier Ltd. All rights reserved.
in Wang et al. (2016, 2015), Zhao et al. (2018). However, automat-
ing lane change maneuvers remains a challenging problem that
has garnered increased attention (Bax et al., 2014; He et al., 2021;
Nilsson et al., 2015). Existing work primarily focuses on control-
ling a single vehicle during the maneuver, lacking an analysis of
the overall disruption effects on traffic flow.

The rise of CAVs presents an opportunity for cooperative ma-
neuvers on multi-lane roads (Li et al., 2020; Luo et al., 2016;
Mahjoub et al., 2017). Coordinated lane changes become es-
pecially crucial in heavy traffic conditions, where the coopera-
tion of multiple vehicles can enable a broader range of feasible
maneuvers, enhance safety, and improve throughput.

Solving cooperative multi-agent lane-changing maneuvers can
take a centralized or decentralized approach. In the centralized
method, a Control Zone (CZ) issues commands to all vehicles
within a specified area. However, this can be computationally
challenging. In contrast, the decentralized approach involves each
agent computing its solution, which may result in conservative
solutions and unwanted disruptions (Li et al., 2018).

Prior work, such as Chen et al. (2022), has provided time and
energy-optimal solutions for lane-changing maneuvers. However,
these approaches tend to be vehicle-centric, focusing on the ma-
neuvering vehicle’s optimization while neglecting the impact on
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Fig. 1. The basic lane-changing maneuver process.

ther vehicles. This approach can lead to traffic flow slowdowns
n congested scenarios.

Our paper addresses these limitations by adopting a system-
entric approach, balancing the needs of the individual vehicle
ith the overall traffic flow. We focus on multiple sequential

ane-changing maneuvers, considering both vehicle position and
peed disruption. Our analysis aims to improve traffic throughput
nd minimize disruptions in various traffic conditions.
In summary, this paper presents a comprehensive approach to

ooperative lane-changing maneuvers, combining system-centric
nd vehicle-centric objectives. We consider both position and
peed disruption and aim to enhance traffic flow in different
cenarios.
In previous work, Chen et al. (2022) provided a time and

nergy optimal solution for the maneuver shown in Fig. 1, in
hich the controlled vehicle C attempts to overtake an uncon-
rollable vehicle U by using the left lane to pass. A decentralized
olution is provided based on cooperation and communication
ith two neighboring vehicles (vehicles 1 and 2) to minimize
he total maneuver time and subsequently determine trajectories
hat minimize the energy consumed by all three cooperating
ehicles. This approach applies to a wider range of scenarios
elative to those in Kamal et al. (2013), Luo et al. (2016), Nilsson
t al. (2017).
However, by seeking to minimize C ’s maneuver time, Chen

t al. (2022) adopt a vehicle-centric (selfish) viewpoint which
gnores the effect of the maneuver on all remaining vehicles. As a
esult, since vehicle 2 typically decelerates to allow C to get ahead
f it, this deceleration may cause a traffic flow slowdown in the
eft lane which can negatively impact throughput, especially in
ongested scenarios. Moreover, the analysis assumes that vehicles
and 2 are predetermined rather than being optimally selected
mong a set of possible cooperation candidates.
The main contribution of this paper is the alleviation of the

forementioned limitations in such selfish maneuvers by adopting
n optimality viewpoint that combines system-centric objectives
ith vehicle-centric ones, as introduced in Chavez Armijos et al.
2022). This provides a decentralized optimal solution where our
ptimal controller design includes the social optimality goal of
nsuring that the resulting traffic throughput on the highway is
mproved by adding vehicles to the fast lane while (i) limiting
he ‘‘disruption’’ that cooperation among multiple vehicles on the
oad can cause on the fast lane traffic flow, and (ii) determining
n optimal pair of cooperating vehicles, which play the role
f 1 and 2 in Fig. 1, within a set of feasible such candidates.
dditionally, we focus on the realization of multiple sequential
ane-changing maneuvers under the assumption of cooperation
ith surrounding vehicles.
The disruption metric introduced in Chavez Armijos et al.

2022) considers how the positions of vehicles in the fast lane are
isrupted relative to the ‘‘ideal’’ trajectories where fixed speeds
re maintained. The associated disruption in their speeds is, how-
ver, not taken into account and this can be shown to allow for
ignificant slowdowns in the traffic flow in certain situations.
2

key contribution of this paper is to alleviate this limitation
n Chavez Armijos et al. (2022) by employing a disruption metric
hat includes both vehicle position and speed. This necessitates a
ew analysis for the problem of deriving time and energy-optimal
aneuvers while also ensuring throughput improvements un-
er different traffic densities. This paper provides this analysis,
onsiders the sensitivity of the resulting algorithm to the afore-
entioned traffic densities, and makes use of a new estimate
f the fast lane desired speed based on the speeds from the
ooperative vehicle sets.
As in Chen et al. (2022), we decompose the maneuver into a

ongitudinal component followed by a lateral component. In the
ongitudinal part, our approach is based on first determining an
ptimal maneuver time for C subject to all safety and speed and
cceleration constraints for C , 1, and 2 (see Fig. 1) and such that
attains a desired final speed that matches that of the fast lane

raffic flow. We then solve a fixed terminal time decentralized
ptimal control problem for each of the two cooperating vehicles
n which energy consumption is minimized while penalizing the
eviation of 1 and 2 from the fast lane desired speed. In the lateral
hase, we solve a decentralized optimal control problem seeking
o jointly minimize the time and energy consumed which is no
ifferent than the one presented in Chen et al. (2022). Our anal-
sis also allows the determination of a vehicle pair that results
n minimal acceleration/deceleration for them. This minimizes
he possibility of excessive braking or deceleration of the rear
ehicle in the pair (2 in Fig. 1), quantified through an appropriate
‘disruption metric’’. An interesting consequence of our analysis is
hat it leads to vehicles forming natural platoons that dictate the
ree-flow speed of the fast lane on a two-lane highway.

The rest of the paper is organized as follows. Section 2 presents
he formulation of the longitudinal lane-change maneuver prob-
em. In Section 3, a complete optimal control solution to co-
rdinate the longitudinal portion of the lane change maneuver
s obtained. Section 4 describes the lateral portion of a lane-
hanging maneuver. Section 5 provides simulation results for
everal representative examples and we conclude with Section 6.

. Problem formulation

In this section, we present a system-centric problem formu-
ation of the cooperative maneuver setting in Fig. 1. We decom-
ose the maneuver into a longitudinal and a lateral component.
he former includes the determination of a minimally disrupting
ooperative pair (playing the role of 1 and 2 in Fig. 1) while
inimizing the deviation from the fast lane desired speed.
Let C be the vehicle that initiates an automated maneuver.

his can be manually triggered by the driver of C deciding to
vertake vehicle U or automatically triggered by a given distance
etected from an uncontrollable vehicle U ahead of C , as shown
n Fig. 2. Assuming that all vehicles other than U are CAVs, we
ill henceforth refer to them as such.

.1. Cooperative vehicle set

Let S(t) be the set of potential cooperating vehicles in the
ast lane for CAV C during its lane change maneuver. This set is
efined by the parameters Lr (distance in the rear of C) and Lf
distance in front of U) which are typically selected to include all
ehicles within a given communication range.
Using the longitudinal position xi(t) of vehicle i relative to a

eference origin O, we define S(t) as:

(t) :=
{
i | xC (t) − Lr ≤ xi(t) ≤ xU (t) + Lf

}
(1)

here xi(t) is the longitudinal position of CAV i. We order the N
AVs in S(t) by index from furthest ahead of C to nearest, so i+1



A.S. Chavez Armijos, A. Li, C.G. Cassandras et al. Automatica 165 (2024) 111651

s

f
o
T
a
t
i
f
d

x

x

Fig. 2. Cooperative vehicle sets S̄C , S̄, and optimal CAV subset (i∗, i∗ + 1) ∈ S̄C
election diagram.

ollows i. To simplify, once we determine N members of S(t), we
rder their indices in ascending order, making S(t) = 1, . . . ,N .
his setup helps us recognize cooperating pairs as (i, i + 1),
llowing CAV C to merge between them. However, this excludes
he possibility of CAV C changing lanes ahead of the first vehicle
n S(t) or behind the last. To address this, we extend the set as
ollows: We introduce S+(t) = {i | xi(t) > xU (t) + Lf } and
esignate i+ to be the CAV immediately ahead of 1 in S(t) if

S+(t) ̸= ∅. Otherwise, i+ is a ‘‘virtual’’ CAV with xi+ (t) = ∞.
Similarly, S−(t) = {i | xi(t) < xC (t) − Lr}, and i− is the
CAV immediately behind the last vehicle in S(t) if S−(t) ̸= ∅;
otherwise, i− is a ‘‘virtual’’ CAV with xi+ (t) = −∞. This leads to
the extended set:

SC (t) = S(t) ∪ {i+, i−} (2)

We rewrite SC (t) as {0, 1, . . . ,N,N + 1}, assigning 0 to i+ and
N + 1 to i−. We will select an optimal pair, as described later, to
be a subset {i∗, i∗ + 1} of this set, with i∗ ∈ {0, 1, . . . ,N}.

Construction of Cooperative Set. To determine SC (t) without
unnecessary computation, we overestimate it by assuming con-
stant speeds in [t0, Tmax], where Tmax is a maximum tolerable
maneuver time. Thus, we obtain S̄(Tmax) by evaluating it on (1)
with xi(Tmax) = xi(t0) + vi(t0)Tmax. By adjusting Lf , Lr , and Tmax,
we can include any desired number of candidate vehicles in
S̄, subject to C ’s communication range. Finally, the equivalent
over-approximated set is defined as

S̄C = S̄(Tmax) ∪ {i+, i−} (3)

If multiple maneuvers are to be executed, we index them by
k = 1, 2, . . . and write SkC (t) to represent the associated set
corresponding to CAV C , which initiates the maneuver. We first
limit ourselves to the simpler notation SC (t).

2.2. Fast lane desired speed

We define fast lane desired speed as the average speed at
which the traffic travels on a lane or a road segment. To design a
policy to perform minimally disrupting lane changes, it is neces-
sary to estimate the fast lane desired speed from the perspective
of the ego vehicle C . However, due to limitations of observability
and sensing range, we can define the fast lane desired speed vflow
of the fast lane at time t as a convex combination (with weighting
factor ω) of the average speed of the vehicles in the set SC (t) and
the maximum allowable speed of the road. Thus, letting ∥SC (t)∥
be the cardinality of SC (t), set

vSC (t) =
1

∥SC (t)∥

∑
i∈SC (t)

vi(t) (4)

and define

v (t) = ωv (t) + (1 − ω)v (5)
flow SC max

3

Practically, we can think of ω as an ‘‘aggressiveness factor’’
that controls the target speed that each of the vehicles involved
in a cooperative maneuver would try to reach. Specifically, when
vflow(t) is closer to vmax, the cooperative vehicles will try to
accelerate more aggressively to reach higher speeds, while when
vflow(t) is closer to vSC (t), the vehicles will try to match the
average speed of nearby vehicles more closely. This allows the
tuning of the aggressiveness of the cooperative maneuver while
still taking into account the actual traffic conditions.

2.3. Vehicle dynamics

For every vehicle i ∈ S(t) its dynamics take the form

˙i(t) = vi(t), v̇i(t) = ui(t) (6)

where, in addition to xi(t), we define vi(t) and ui(t) to be vehicle
i’s velocity and (controllable) acceleration respectively. Without
loss of generality, we define the origin for CAV i involved in a
maneuver to be the position xC (t0) of CAV C , where t0 denotes
the time at which the maneuver is triggered. We will use tf to
denote the time when the longitudinal maneuver is complete. The
control and speed are constrained as follows:

uimin ≤ ui(t) ≤ uimax , ∀t ∈ [t0, tf ] (7a)

vimin ≤ vi(t) ≤ vimax , ∀t ∈ [t0, tf ] (7b)

where vimax > 0 and vimin > 0 denote the maximum and
minimum speed allowed, usually determined by the rules of the
highway. Similarly, uimax > 0 and uimin < 0 are i’s maximum and
minimum acceleration control for vehicle i.

2.4. Safety constraints

Let δi(vi(t)) be the speed-dependent safety distance of CAV
i, defined as the minimum required distance between i and its
immediately preceding vehicle:

δi(vi(t)) = ϕvi(t) + ε, (8)

where ϕ is a constant value that denotes the reaction time (usu-
ally defined as ϕ = 1.8 s Vogel (2003)), ε is a constant, and
δi(vi(t)) is specified from the center of i to the center of its
preceding vehicle. We can now define all safety constraints that
must be satisfied during a lane-changing maneuver of C when
cooperating with any two CAVs (i, i + 1):

xU (t) − xC (t) ≥ δC (vC (t)), ∀t ∈ [t0, tf ] (9a)

xi(t) − xi+1(t) ≥ δi+1(vi+1(t)), ∀t ∈ [t0, tf ] (9b)

C (tf ) − xi+1(tf ) ≥ δi+1(vi+1(tf )), (9c)

xi(tf ) − xC (tf ) ≥ δC (vC (tf )) (9d)

2.5. Traffic disruption

We aim to quantify the extent to which a successful lane-
changing maneuver can disrupt fast-lane traffic. To achieve this,
we introduce the concept of disruption:

Definition 1 (Single Vehicle Disruption). For any tf > t0, let xi(tf )
be the terminal position of vehicle i, determined by some control
policy ui(t), t ∈ [t0, tf ]. For any vehicle i ∈ SC (t), the disruption
metric Di(t) at time t > t0 is defined as the convex combination:

Di(t) = γxdix(t) + γvdiv(t) (10)

where dix(t) and div(t) are the contributions of position and speed
disruption, respectively, and γ , γ ∈ [0, 1], γ + γ = 1.
x v x v
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The constants γx and γv are the weighted contributions of one
component over the other, making them tunable parameters to
control which aspect of disruption is more critical to minimize.
This definition provides a quantifiable metric for the disruption
caused by a vehicle i during a highway maneuver. The position
component dix(t) measures the deviation from an ideal undis-
rupted trajectory, while the speed component div(t) measures the
deviation from the desired lane speed.

To accurately define the dimensionality of the convex combi-
nation for a lane-changing maneuver, we derive each disruption
contribution along with its corresponding normalization factor
below.

Position Disruption. The position disruption dix(t) is defined
as the square of the disruption caused to i due to an acceler-
ation/deceleration control ui(t) relative to its undisrupted final
position. We express it as:

dix(t) = (xi(t) − [xi(t0) + vi(t0)(t − t0)])2 (11)

This equation quantifies the difference between the actual posi-
tion xi(t) of vehicle i under a given control policy at time t and
its ideal position, achieved by maintaining a constant speed vi(t0).
This ideal scenario minimizes energy consumption due to any
acceleration/deceleration.

To normalize dix(t) in (11), we define:

γx =
γ

(dxmax (t))2
(12)

Here, γ ∈ [0, 1] is a tuning parameter and dxmax (t) is the max-
mum possible position disruption that vehicle i could generate
ver [t0, t0 + t], i.e., under minimum speed and minimum accel-
ration (maximum deceleration). Thus, we define two cases: first,
he maximum distance traveled under minimum acceleration,
nd second, the maximum distance traveled under minimum
cceleration before the vehicle attains its minimal longitudinal
peed. Therefore, dxmax takes the form

xmax (t) =

{
dumin , if umin(t − t0) + vi(t0) ≥ vmin

dvmin , otherwise.
(13)

ith

umin = vi(t0)(t − t0) −
(
vi(t0)(t − t0) + 0.5umint2

)
vmin = vi(t0)(t − t0)

−vmin

(
(t − t0) −

vmin − vi(t0)
umin

)
+

v2
imin − vi(t0)2

2umin

Speed Disruption. We define the speed disruption contribution
i
v(t) as the deviation of vehicle i’s speed vi(t) from the fast lane’s
esired speed vflow. It is expressed as:
i
v(t) =

(
vi(t) − vflow

)2 (14)

ith its corresponding normalization factor defined as

v =
1 − γ

max{(vmin − vflow)2, (vmax − vflow)2}
.

where γ ∈ [0, 1] is the same weight parameter in (12).
Now, let us define the triplet of vehicles involved in a lane-

changing maneuver as Si = {C, i, i + 1}. We can define the total
disruption produced by Si as follows:

Definition 2 (Total Disruption). The total disruption DS(t) is de-
fined as the convex combination of the single vehicle disruption
contributions Di(t) defined in (10):

DSi (t) =

∑
j∈Si

ζjDj(t), (15)

where, ζ ∈ [0, 1] are the weights such that
∑

ζ = 1.
j j∈Si j

4

The weights in (15) allow for the consideration of different
potential effects that each cooperating CAV will have on the
overall total disruption. For example, if ζi+1 is large relative to ζi
and ζC , it places more weight on the disruption caused to the rear
vehicle, which allows C to move ahead of it, potentially affecting
other vehicles behind i + 1.

It is important to note that (15) is a quadratic disruption met-
ic that depends on factors such as the total maneuver time length
f − t0, the terminal positions xi(tf ), and the terminal speeds vi(tf )
or every CAV i involved in the maneuver. This metric implicitly
enalizes various disruptions, including the time it takes for vehi-
les to regain fast lane speed after a lane-changing maneuver and
he potential chain reaction of slowdowns. If multiple maneuvers
re considered (indexed by k = 1, 2, . . .), we can minimize an
ggregate metric DTotal by summing individual disruptions Dk

S(t).

.6. Optimal maneuver objectives

We consider two objectives for the longitudinal maneuver
roblem: first, we wish to minimize the maneuver time tf expe-
ienced by CAV C and its cooperating vehicles; second, we wish
o minimize the energy consumption of each of the three coop-
rating CAVs, i.e., C , i and i+1. At the same time, we must satisfy
he safety constraints (8) and vehicle constraints (7). Finally, we
ust ensure that the disruption metric (15) does not exceed a
iven threshold Dth. Thus, among all candidate cooperating pairs
i, i+1) for which these objectives are achieved we select the one
hat solves the disruption minimization problem:

S∗

i = argmin
Si∈S̄C

DSi (t
∗

f ) (16a)

.t. DSi (t
∗

f ) ≤ Dth (16b)

here D∗

C (t) denotes the minimum disruption which corresponds
o the triplet S∗

i = {C, i∗, i∗ + 1} with minimum disruption.

. Longitudinal optimal control solution

In this section, we present a detailed solution approach with
he following key elements: (i) We specify the objective functions
C for CAV C and Ji for any i ∈ SC (t). (ii) We obtain the optimal
ooperating pair (i∗, i∗ +1) by evaluating the total disruption that
ach possible cooperative triplet might produce. (iii) We include
time relaxation on the optimal maneuver time t∗f so that, if a

easible solution does not exist, we seek one for a relaxed value
′

f > t∗f . The relaxation process captures the trade-off between
he ‘‘selfish’’ goal of C to minimize its maneuver time and the
ystem-wide ‘‘social’’ goal of minimizing traffic flow disruptions
hile ensuring an increase in throughput by adding vehicles to
he fast lane. The overall description of the solution process for
he optimal maneuver ensuring a minimal disruption that does
ot exceed a given threshold Dth is given in Fig. 3. However, we
escribe each step in detail in the subsequent subsections.

.1. CAV C optimal trajectory

Given a CAV C traveling behind an uncontrolled vehicle U , a
‘start maneuver’’ request is sent to surrounding vehicles, and the
tarting time t0 is defined when xU (t) − xC (t) ≤ dstart, where
start denotes the minimum distance at which CAV C decides to
nitiate a lane-changing maneuver. It is important to point out
hat at that instant the values of the optimal maneuver time and
he entire optimal trajectory of C can be evaluated, which also
nables planning the complete solution to the problem.
We now define the optimal control problem (OCP) for CAV C

s follows:

min
wv (vC (tf ) − vflow)2 +

∫ tf (
wt +

wu u2
C (t)

)
dt (17a)
tf ,{uC (t)} 2 t0 2
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Fig. 3. Cooperative maneuver flow diagram.

s.t. (6), (7),

xU (t) − xC (t) ≥δC (vC (t)), ∀t ∈ [t0, tf ], (17b)

t0 ≤ tf ≤ Tmax (17c)

Here, w{t, v, u} are adjustable non-negative weights with appro-
priate dimensions that place a relative emphasis on each of the
three objective function components with respect to each other
during the optimization process. Thus, we can penalize longer
maneuver times, deviation from the desired speed, and energy
consumption to trade off among these metrics as desired. The
desired speed value of vC (tf ) is set to vflow as defined in (5)
using vS̄C with S̄C defined in (3). Constraint (17b) capture the
safe distance constraint (9a) between C and U (assuming that
the position and speed of U can be sensed or estimated by C).
Similarly, in constraint (17c), we specify Tmax as the maximum
tolerable time to perform a lane-changing maneuver. In practice,
if constraint (17c) cannot be met for a given Tmax, CAV C has the
option of either relaxing this value (as detailed in Section 3.4) or
simply aborting the maneuver. Finally, note that problem (17) is
solved given the initial position and speed of CAV C .

The solution of this OCP can be analytically obtained, as shown
in the Appendix, through standard Hamiltonian analysis similar
to OCPs formulated and solved in Chen et al. (2022).

It is worth pointing out that depending on the weights wi and
the starting distance dstart of the maneuver, the form of the cor-
responding optimal trajectory can be either strictly accelerating
or first decelerating followed by an accelerating component so
that (9a) is satisfied regardless of the initial conditions of CAV
C . Intuitively if there is adequate distance ahead of C , it can
accelerate at a maximal rate to attain vc(tf ) = vflow; otherwise,
it needs to first decelerate to create such an adequate distance
ahead of it and then accelerate to minimize the terminal speed
cost in (17a).

3.2. Optimal trajectories for CAV candidates (i, i + 1)

For any CAV i other than C , we define its objective function to
be:

Ji(ui(t)) = β(vi(t∗f ) − vflow)2 +

∫ t∗f 1
u2
i (t)dt
t0 2
5

where t∗f was determined from (17) and

β =

αv max
{
u2
imin

, u2
imax

}
(1 − αv)

with αv being a constant weight factor with appropriate di-
mensions that penalizes speed deviation from the desired vflow
relative to an energy consumption metric so that CAV i (where
i = i∗ or i = i∗ + 1 when the optimal cooperative pair has been
found) solves the following two fixed terminal time OCPs for CAV
i and i + 1 respectively:

min
{ui(t)}

β(vi(t∗f ) − vflow)2+
∫ t∗f

t0

1
2
u2
i (t)dt (18a)

s.t. (6), (7)

xi−1(t) − xi(t) ≥ δi(vi(t)), ∀t ∈ [t0, t∗f ], (18b)

xi−1(t) = xi−1(t0) + vi−1(t)(t − t0) (18c)

xi(t∗f ) − xC (t∗f ) ≥δC (vC (t∗f )) (18d)

where xi(t∗f ) is the terminal position for vehicle i under the safety
considerations of a potential vehicle ahead of i (labeled i− 1) for
all t ∈ [t0, t∗f ], as well as the safety constraint for the terminal
position of CAV C computed by the OCP in (17).

min
{ui+1(t)}

β(vi+1(t∗f ) − vflow)2 +

∫ t∗f

t0

1
2
u2
i+1(t)dt (19a)

s.t. (6), (7)

xC (t∗f ) − xi+1(t∗f ) ≥ δi+1(vi+1(t∗f )) (19b)

vi+1(t∗f ) ≥ vth (19c)

Here, the terminal position for i + 1 is only constrained by CAV
C in (19b). Additionally, in (19) we remove the safety constraint
(9b) between i and i+1 due to Thm. 1 in Chen et al. (2022) where
it is shown that in an optimal maneuver, CAV i does not accelerate
and CAV i + 1 does not decelerate.

Lastly, in (19c) we include a terminal constraint on the min-
imum allowable terminal speed for i + 1 with the introduction
of vth, which differs from vflow in that it prevents i + 1 from
reaching a terminal speed which is much lower than vflow . Ignor-
ing the vth constraint can lead to a subtle pattern of inefficient
maneuvers we observed when implementing our prior controllers
in Chavez Armijos et al. (2022): when a CAV i∗ + 1 decelerates
to a much lower speed than the fast lane desired speed to allow
lane changes, it may repeatedly decelerate to allow multiple new
maneuvering CAVs to get ahead of it with short maneuver times.
This can be very effective in terms of the objective of minimizing
maneuver times, at the expense of dramatic traffic disruptions
and ultimate high congestion in the fast lane.

3.3. Selection of optimal cooperative pair (i∗, i∗ + 1)

The optimal cooperative pair (i∗, i∗ + 1) among all i ∈ S̄C in
(3) is the one that minimizes the disruption metric in (15) by
selecting the terminal states

(
xi(t∗f ), vi(t∗f )

)
for every pair i and

i + 1 resulting in minimal disruption.
The solution of (18) and (19) for every pair (i, i+1) respectively

provides the optimal terminal positions xi(t∗f ), xi+1(t∗f ) and termi-
nal speeds vi(t∗f ), vi+1(t∗f ) that provide the inputs for computing
the disruption metric DSi (t), defined in (15), for the triplet Si ∈ S̄C .

Specifically, we solve (16) by discretizing the set of candidate
vehicles S̄C . Thus, (16) is solved by comparing the values of DSi (t

∗

f )
obtained over a finite set consisting of vehicle pairs (i, i+ 1) that
satisfy the disruption constraint.
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emark 1. If no solution to (16) is found, it is still possible to
derive a solution based on the analysis in Chen et al. (2022), with
no consideration of disruption. Alternatively, we may proceed
with the time relaxation process described in Section 3.4.

3.4. Maneuver time relaxation

It is possible that no solution to (18), (19), or (16) may be
ound. The most common reason is that the optimal maneuver
nd time t∗f , determined by CAV C at the first step of the solution
pproach, is too short to allow C to reach a speed sufficiently
lose to vflow and for cooperating CAVs to adjust their positions to
atisfy the safety constraints in (8). In such cases, it is possible to
erform a relaxation of t∗f obtained through (17) by trading it off
gainst the energy consumption due to the maneuver extension.
hus, the new terminal time is given as t ′f = tf λtf where λtf > 1 is
relaxation factor. Observe that this time modification changes

he form of the OCP (17) since the terminal time is now fixed
t t ′f > t∗f and the solution will lead to a new terminal position
c(t ′f ) for CAV C . The new fixed terminal time OCP formulation is
s follows:

min
uC (t)}

β(vi+1(t ′f ) − vflow)2 +

∫ t ′f

t0

1
2
u2
C (t)dt (20a)

s.t. (6), (7), and

xU (t) − xC (t) ≥ δC (vC (t)), ∀t ∈ [t0, t ′f ], (20b)

This process may continue, as shown in Fig. 3 until a feasible
solution is determined or the constraint t ′f ≤ Tmax is violated.
Thus, we define the maximum number of iterations allowed for
every candidate pair. If the maximum number of iterations is
reached, we proceed with the next candidate pair index.

Remark 2. Despite time relaxation, problem (20) can still be
infeasible if dstart is small or if the constraint (9a) is active at t0.
Therefore, CAV C can abort the maneuver and wait a specified
time interval for the next opportunity window. Otherwise, a
‘‘selfish’’ maneuver may be performed as in Chen et al. (2022)
by computing the minimum feasible terminal time and minimum
terminal position for any i and i + 1 with i ∈ S̄C .

3.5. Optimization procedure summary

We summarize the optimization process described above and
portrayed in Fig. 3. Specifically, the overall optimization problem
consists of the following steps:

1. Given the initial position for CAV C and vehicle U , as well as
a maximum allowable time Tmax ≥ t∗f , we replace the candidate
set SC (t∗f ) by a simpler fixed set denoted by S̄C . Then, using the set
S̄C , the fast lane desired speed vflow is estimated as in (4).

2. CAV C determines an optimal terminal time t∗f and con-
trol {u∗

C (t)}, t ∈ [t0, t∗f ] for the maneuver to minimize a given
objective function JC subject to the vehicle dynamics (6), safety
constraint (9a), and physical constraints (7). Moreover, its optimal
terminal speed vC (t∗f ) must be close to (or exactly match) the
desired speed given by the fast lane speed vflow .

3. The solution t∗f specifies the terminal position xC (t∗f ) for
CAV C . This allows the computation of the trajectory for each
possible candidate pair in S̄C . Once each of the optimal trajectories
is determined, an optimal pair (i∗, i∗ + 1) of cooperating CAVs
must be selected to minimize the disruption metric DSi (t

∗

f ) in (15).
Since DSi (t

∗

f ) depends on the terminal states xi(t∗f ), xi+1(t∗f ) in (15),
its minimization depends on the optimal trajectories selected by
 p

6

Fig. 4. Lateral dynamics diagram.

CAVs i ∈ S̄C . This requires the determination of optimal controls
{u∗

i (t)}, t ∈ [t0, t∗f ] for all i ∈ S̄C minimizing a given objective
unction Ji (to be defined in the sequel) subject to the vehicle
ynamics (6) and constraints (7), (9b), (9c), and (9d).
4. We determine an optimal pair (i∗, i∗ + 1) which minimizes

he disruption metric DSi (t
∗

f ) over all i ∈ S̄. This solution must
atisfy DSi (t

∗

f ) ≤ Dth.

. Lateral optimal control solution

In this paper, the lateral component of the maneuver is no dif-
erent than the one presented in Chen et al. (2022) for the purely
ehicle-centric lane-changing maneuver. In this section, we limit
urselves to an overview of this lateral maneuver component.
et tL0 be the start time of the lateral phase of the lane-change
aneuver. The most conservative approach is to set tL0 = t∗f ,

he optimal terminal time of the longitudinal phase. However,
epending on the “aggressiveness” of a driver we may select
L
0 ≤ t∗f as further discussed in this section.

The vehicle dynamics used during the lateral maneuver are
xpressed as

ẋ(t) = v(t)cosθ (t), ẏ(t) = v(t)sinθ (t)
θ̇ (t) = v(t)tanφ(t)/Lw, φ̇(t) = ω(t) (21)

here the physical interpretation of all variables above is shown
n Fig. 4. Specifically, we denote x(t), y(t), v(t), θ (t), and φ(t)
s CAV C states representing the longitudinal position, lateral
osition, speed, heading angle, and steering angle, respectively.
imilarly, we define ω(t) and u(t) as the control inputs for CAV C
enoting the angular acceleration, and acceleration of the vehicle,
espectively. Lastly, we denote Lw as the wheel length distance.
e impose physical constraints as follows:

φ(t)| ≤ φmax, |θ (t)| ≤ θmax (22)

he associated initial conditions are φ(tL0) = 0, θ (tL0) = 0, y(tL0) =

. The terminal time is defined as tLf and the associated terminal
onditions are

(tLf ) = 0, θ (tLf ) = 0, y(tLf ) = l (23)

here l is the lane width.

.1. Optimal control problem formulation

Once defined the vehicle’s lateral dynamics together with its
hysical constraints, the optimal control problem for the lateral
aneuver is formulated as

min
(t),tLf

∫ tLf

tL0

1
2
wφφ2(t)dt + wtLf

tLf (24)

s.t. (21), (22), (23)

here the objective function combines both the lateral maneuver
ime and the associated energy of the controllable vehicle (ap-
roximated through the integral of φ2(t)) above. The two terms
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Fig. 5. Maneuver aggressiveness.

in Fig. 4 need to be properly normalized, therefore, we set wφ =

ρL

φ2
max

and wtLf
=

1−ρL

T Lfmax
, where ρL

∈ [0, 1] and T L
fmax is set based on

n empirical value. We assume that v(t) = v is constant over the
ateral maneuver, which is reasonable since, as shown in Chen
t al. (2022), the lateral phase time is much smaller compared
o the longitudinal phase. For a complete detailed solution to
roblem (24), we direct the reader to Chen et al. (2022).

.2. Combination of longitudinal and lateral maneuvers

After addressing the longitudinal and lateral maneuver com-
onents separately, we next consider how to integrate them
nto a complete lane change maneuver. The initial time tL0 for
he lateral maneuver phase is associated with a preset driver
aggressiveness” level. As illustrated in Fig. 5, the most conser-
ative approach is to not execute the lateral maneuver until
he longitudinal phase is complete, i.e., set tL0 = tf . The most
ggressive approach is determined by the earliest time at which
AV C would merge in between i∗ and i∗ + 1, that is the time
L
0 at which any adjacent vehicle along the longitudinal direction
an be guaranteed to not collide with CAV C .
Once the optimal cooperative pair is chosen, let us define the

arliest times when CAV C has reached a safe distance form each
f the other three CAVs involved in the longitudinal maneuver in
ig. 1. Thus, we define τj s.t. j ∈ {i∗, i∗ +1,U} as the earliest times
t which CAV C has reached a safe terminal position in accordance
o (9b), (9c), and (9a) respectively. Thus, τj is defined as follows:

τi∗ = min{t ∈ [t0, tf ] : xi∗ (t) − xC (t) ≥ ϵv} (25a)

i∗+1 = min{t ∈ [t0, tf ] : xC (t) − xi∗+1(t) ≥ ϵv} (25b)

τU = min{t ∈ [t0, tf ] : xU (t) − xC (t) ≥ ϵv} (25c)

where ϵv denotes a minimum safe distance similar to (8), typ-
ically determined by the length of CAV C . We then define the
lateral maneuver starting time tL0 = ta as follows:

ta = max{τi∗ , τi∗+1, τU } (26)

Remark 3. Setting the lateral maneuver starting time tL0 = ta may
not always be feasible due to the assumption of constant speeds
over the lateral maneuver. However, collision avoidance can still
be guaranteed similar to Section 3.4, where the longitudinal ma-
neuver time can be extended to allow larger gaps between i∗ and
i∗ + 1 and consequently longer adjustment intervals.

Remark 4. We can extend the maneuver execution to perform
a series of individual maneuvers following Fig. 3 indexed by k
that minimizes the aggregate metric DTotal =

∑N
k=1 D

k
Si
(t∗kf ). For

each maneuver k we compute a series of system-centric (social)
optimal trajectories that start sequentially by defining a CAV C
as soon as the maneuver k − 1 has completed its corresponding
7

lateral phase. Thus, the initial time for maneuver k is upper
bounded by the terminal time of maneuver k−1

(
tk0 ≥ tk−1

f

)
. Note

that CAV C for maneuver k − 1 can become a CAV candidate for
the kth maneuver. It is also possible to parallelize several such
maneuvers by allowing them to start simultaneously given a set
of target vehicles (CAV C).

5. Simulation results

This section provides simulation results illustrating the time
and energy-optimal controllers we have derived and comparing
their performance against a baseline of non-cooperating (e.g.,
human-driven) vehicles. Our results are based on using the traf-
fic simulation software package PTV Vissim where we use the
included COM API to control the vehicles involved in each lane-
changing maneuver. We only relinquish control for the duration
of each maneuver and return it to PTV Vissim after the maneuver
has ended.

Our simulation setting consists of a straight two-lane highway
segment 4000 m long and an allowable speed range of v =

[10, 35]m/s. The incoming traffic is spawned with a desired
speed of vflow = 34 m/s. Similarly, the inter-vehicle safe distance
(8) is given by ε = 1.5m and headway parameter ϕ drawn from a
normal distribution N (0.6, 0.4) s set to represent tighter bounds
due to the assumption of a road composed by 100% CAVs with
communication capabilities. To simulate congestion generation,
we spawn an uncontrolled vehicle U traveling on the right lane
(slow lane) with a constant speed vU = 16 m/s throughout the
simulation. The corresponding CAV C is defined as vehicle U ’s
immediately following vehicle. For the maneuver start distance
we select dstart from N (70, 10)m for every CAV C initiating a
maneuver. To find the possible CAV candidates on the fast lane,
we choose Lf = 50m and Lr = 80 m in setting the candidate
set S̄C in (3). The control limits specified for every CAV are given
by umin = −7 m/s2 and umax = 3.3 m/s2. The minimum safety
distance to perform a lane change was defined as ϵv = 9m which
includes an average vehicle length of 4m. It is assumed that
all CAVs in all simulation scenarios share the same parameters
and control bounds. Lastly, we run our simulations on an AMD
Ryzen 9 5900x 3.7 GHz. For simplicity, we use CasADi Andersson
et al. (2019) as a numerical solver and IPOPT as an interior point
optimizer for the computation of the OCP solutions. We employ
a numerical solution in order to assess the worst-case time per-
formance for the computation of the trajectories corresponding
from solving problems (17a), (18), (19), and (20) respectively.
The computational time can be substantially decreased by taking
advantage of the analytical solutions derived in Appendix A.1.

5.1. CAV C longitudinal maneuver

We apply the formulation proposed for CAV C in (17a) for
different settings using the desired fast lane speed vflow = 30 m/s.
Thus, we provide simulation results for the initial conditions
pertaining only to vehicles U and C as described in Table 1 for
Cases 1 and 2. For Case 1, we show a sample trajectory generated
from the relaxation of the optimal time proposed in (20) with the
relaxation factor λtf = 1.1. Additionally, we define the weighting
factors in (17a) as wv = 0.25, wt = 0.55, and wu = 0.2. It can be
seen for Case 1, when dstart = 50m, the resulting maneuver time
is t∗f = 2.7 s, and a linear control strategy of constant acceleration
to reach vflow is shown in Fig. 6(a). Conversely, for Case 2, when
the resulting relaxed maneuver time is t∗f = 3.6 s given that
CAV C needs to first undergo a deceleration segment to provide
enough space to undergo a final acceleration segment allowing
CAV C to get close to vflow without violating the safety constraint

(9a) as shown in Fig. 6(b). Finally, numerically solving the OCP
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Table 1
Vehicle C sample results.

Description
States Relaxed dstart

[m]
xU (t0)
[m]

vU (t0)
[m/s]

xC (t0)
[m]

vC (t0)
[m/s]

tf
[s]

vC (tf )
[m/s]

Case 1 False 50 50 16 0 23 2.73 29.53
Case 2 True 50 50 16 0 23 3.63 29.57
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Fig. 6. Sample optimal trajectory solutions for CAV C .

17a) with a time discretization of 250 points (this is the hardest
roblem to solve due to the non-convexity of its objective), we
btain results that take an average of 611 ms to obtain. Similarly,
e obtained an average computation time of 85 ms for OCP (20)
ith similar computation times for OCPs (18) and (19).

.2. Sequential maneuvers

We also implemented a series of optimal maneuvers taking
nto account the system-centric goal of minimizing throughput
isruptions. Unlike our previous study in Chavez Armijos et al.
2022), the disruption metric now includes a speed disruption
omponent.
8

The maximum disruption value used for this study was given
s Dth = 0.15, with the weight factor γ = 0.8 for position
nd 1 − γ = 0.2 for velocity in (10). In the optimal control
roblem (OCP) (17a) for CAV C , the weight factors are given as
t = 0.55, wv = 0.25 and wu = 0.2 to penalize maneuver time,
erminal velocity costs, and energy consumption, respectively.
he disruption for CAV i∗ is set as 0 since the speed of CAV i∗ will
ever decrease, and the weights ζC , ζi∗+1 for CAV C and CAV i∗+1
n (15) are 0.5 and 0.5, respectively. When calculating the desired
peed of the fast lane vflow in (5), we set ω = 0.3 as the weight on
he average speed and 1−ω = 0.7 as the weight on the maximum
peed. When computing the disruption, the maximum disruption
llowed was defined as Dth = 0.15. For simulation purposes, we
llowed up to ten relaxations per candidate pair. The throughput
nalysis is performed by counting the number of vehicles within
240 s window that crosses a measurement point at 4000m

rom the starting line. To investigate the effectiveness of our
ontrollers over different traffic rates, we performed simulations
nder traffic rates of 2000, 3000, 4000, and 5000 vehicles/hour,
espectively. We collected data to obtain statistics for throughput,
aneuver time, number of completed maneuvers, and average

ravel time for a CAV to pass the specific segment so as to make
omparisons to the baseline case of 100% human-driven vehicles
HDVs) in Vissim.

Performance results for optimally controlled CAVs and non-
ooperating vehicles under different traffic rates are summarized
n Table 2. We use ‘‘OCMs’’ and ‘‘Baseline’’ to represent cooper-
tive Optimal Control Maneuvers and non-cooperative human-
riven cases, respectively. Table 2 shows that the throughput
mprovement of our OCMs strategies increases from 4.31% to
6.46% compared to the baseline as the traffic rates increase from
000 to 5000. Meanwhile, the maneuver time of CAV C is around
s in the OCMs, while it takes a vehicle without any cooperation
enefit more than 30 s to complete a lane change maneuver in
he baseline. The average maneuver time for CAVs decreases by
bout 80%, which in turn reduces vehicle energy consumption
hen a lane change is performed. Additionally, the number of
AVs completing the maneuver in OCMs increases by at least
25% and up to 762.5%, and the average travel time for a CAV to
ass the segment is reduced by 3.53% to 9.29% when traffic rates
ncrease from 2000 to 5000 respectively. Moreover, we provide
ar charts for the throughput, maneuver time, and the number of
AV C maneuvers comparing the different performance metrics
nder several traffic rates as shown in Figs. 7(a), 7(b), and 7(c)
espectively. These include the mean value and standard devi-
tion under different traffic rates for both OCMs and baseline
ases. The differences for each pair in these charts are statistically
ignificant, indicating that optimally controlled CAVs experience
ignificantly improved baseline performance, while also resulting
n improved OCM throughput.

In addition, we compare the performance of OCMs with the
ase where vehicles still optimally control their acceleration,
ut there is no longer any optimal cooperative pair selection.
nstead, CAV C adopts the ‘‘greedy policy’’ of cooperating with its
mmediate leader and the immediate follower on the fast lane,
espectively. Thus, (16) is no longer applied. The ‘‘greedy policy’’
s equivalent to the approach proposed by Chen et al. (2022).
his benefits the ‘‘selfish’’ objective of achieving shorter maneu-
er times at the expense of the ‘‘social’’ objective of improving
hroughput. The results are summarized in Table 3. As expected,
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Table 2
Throughput analysis comparison between OCMs and human driving baseline on a 4000 m highway segment under different traffic rates.
Traffic rate
[veh/hour]

Throughput [veh/hour] Maneuver time [s] Number of completed maneuvers (in 240 s) Avg. travel time [s]

OCMs Baseline Difference [%] OCMs Baseline Difference [%] OCMs Baseline Difference [%] OCMs Baseline Difference [%]

2000 1017 975 4.31 6.01 29.21 −79.42 26.00 8.00 225.00 139.01 144.10 −3.53
3000 1251 1155 8.31 6.06 44.20 −86.29 36.30 5.00 626.00 144.53 151.04 −4.31
4000 1350 1170 15.38 6.33 53.89 −88.25 34.50 4.00 762.50 148.37 158.77 −6.55
5000 1380 1170 17.95 6.54 32.50 −79.88 32.00 6.00 433.33 149.02 164.28 −9.29
Table 3
Throughput analysis comparison between OCMs and heuristic CAV selection on a 4000 m highway segment under different traffic rates.
Traffic rate
[veh/hour]

Throughput [veh/hour] Maneuver time [s] Number of completed maneuvers (in 240 s) Avg. travel time [s]

OCMs Heuristic Difference [%] OCMs Heuristic Difference [%] OCMs Heuristic Difference [%] OCMs Heuristic Difference [%]

2000 1017 1015 0.20 6.01 6.21 −3.17 26.00 27.83 −6.59 139.01 140.16 −0.82
3000 1251 1176 6.41 6.06 5.64 7.47 36.30 35.88 1.18 144.53 146.94 −1.64
4000 1350 1189 13.51 6.33 5.74 10.36 34.50 39.71 −13.13 148.37 154.97 −4.26
5000 1380 1203 14.71 6.54 5.55 17.75 32.00 37.40 −14.44 149.02 157.68 −5.49
Fig. 7. Maneuver impact on network performance.
l
b
N
b
w

Table 4
Energy comparison between OCMs and heuristic CAV selection on a 4000 m
highway segment under different traffic rates.
Traffic rate
[veh/hour]

Avg. energy ( 12 u2) Avg. fuel consumption [mL/s]

OCMs Baseline Difference [%] OCMs Baseline Difference [%]

2000 726 1217 −40.3 108140 137810 −21.5
3000 2958 3278 −9.8 216330 257460 −16.0
4000 7169 7514 −4.6 400060 448130 −10.7
5000 13270 19408 −31.6 569460 777420 −26.8

the OCM approach in Table 2 achieves better throughput at the
xpense of slightly longer maneuver times; however, note that
he overall average travel time in Table 3 is still improved relative
to the heuristic.

Lastly, Table 4 presents a comparison of the average energy
consumption and average fuel consumption between optimally
controlled CAVs (OCMs) and non-cooperating human-driven ve-
hicles (baseline) at different traffic rates. Fuel consumption is
modeled based on equations from Kamal et al. (2013) that ac-
count for cruise and acceleration components. Additionally, it is
assumed that negative acceleration does not generate fuel con-
sumption. Overall, the table highlights the potential benefits of
optimally controlling CAVs to improve fuel efficiency and reduce
emissions. The improvements in energy consumption using the
u2 metric are consistent with the more detailed fuel consumption
model.

5.3. Sensitivity analysis

In this section, we wish to quantify the effect that each of the
several parameters used in our analysis can have on the perfor-
mance of an individual maneuver, as well as their impact on the
overall traffic network performance. Thus, we have performed a
sensitivity analysis on the maneuver times and the number of
9

maneuvers as the individual (vehicle-centric) performance met-
rics. Similarly, we analyzed the average throughput on each sim-
ulation run as a metric for traffic network (system-centric) per-
formance. Specifically, using a similar simulation setup as in
Section 5.2 with a total simulation length of 240 s, we performed
three sets of experiments by modifying parameters ω defined in
(4), γ defined in (10), and ζi defined in (15). A summary contain-
ing the parameters used for the sensitivity analysis is shown in
Table 5. Similarly, the averaged results over each corresponding
set of parameters are shown in Fig. 8.

It can be seen from Fig. 8 that for the position disruption
weight γ , the overall number of performed maneuvers did not
change much on average. However, it can be seen that whenever
γ ≥ 0.75 the throughput starts seeing a dramatic decrease
in magnitude. On the contrary, with increasing γ , a monotonic
increase in the average maneuver time can be observed, with a
particular emphasis when the speed disruption contribution is
almost null. This shows the overall need for the speed disruption
contribution.

On a similar note, it can be seen that the weight ω used in
the fast lane desired speed estimate plays a significant role in
the average number of maneuvers performed. Similarly, it can
be seen that the average throughput behaves proportionally with
the average number of maneuvers influenced by the changes in
ω. The optimal behavior can be seen to occur whenever ω ≈

0.25, meaning that a larger weight should be given to vmax. The
aforementioned behavior can be explained given that the average
traffic speed is only given by a smaller subset S̄C of the high-speed
ane which might have been disrupted by a previous maneuver,
ut the overall fast lane desired speed might be much higher.
evertheless, whenever only using vflow = vmax (or ω = 0), it can
e seen that the overall maneuver length is increased significantly
ith a proportional decrease in throughput.
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Table 5
Parameters used in the different evaluation scenarios. Each row represents a distinct simulated scenario,
with parameters varying one at a time across scenarios for generating the results in Fig. 8.
Traffic Density

[veh/h]

Number
Runs Dth ω γ ζ1 ζ2 ζC ζ2 + ζC

3000 5 0.15 0 0.8 0 0.5 0.5 1
3000 5 0.15 0.25 0.8 0 0.5 0.5 1
3000 5 0.15 0.5 0.8 0 0.5 0.5 1
3000 5 0.15 0.75 0.8 0 0.5 0.5 1
3000 5 0.15 1 0.8 0 0.5 0.5 1
3000 5 0.15 0.3 0 0 0.5 0.5 1
3000 5 0.15 0.3 0.25 0 0.5 0.5 1
3000 5 0.15 0.3 0.5 0 0.5 0.5 1
3000 5 0.15 0.3 0.75 0 0.5 0.5 1
3000 5 0.15 0.3 1 0 0.5 0.5 1
3000 3 0.15 0.5 0.8 0.5 0.5 0 0.5
3000 3 0.15 0.5 0.8 0.4 0.2 0.4 0.6
3000 3 0.15 0.5 0.8 0.33 0.33 0.34 0.67
3000 3 0.15 0.5 0.8 0 0.5 0.5 1
a
(

(

w

λ

T

λ

a

A

a
E

Fig. 8. Sensitivity analysis.

Lastly, the overall effect of ζi in (15) is analyzed by varying
he split contributions of every CAV C , i∗, and i∗ + 1 involved
n each maneuver. It can be seen that the effect on varying
i does not impact the average number of maneuvers for each
un. However, it can be observed from the throughput analysis
hat the behavior is linear with the highest throughput obtained
hen ζ1 = 0. Such high throughput, however, comes at the

expense of slightly higher maneuver times. This phenomenon is
consistent with Theorem 1 in Chen et al. (2022) where CAV i∗
an only accelerate or maintain its speed, thus making its possible
isruption contribution negligible.

. Conclusions

We have developed a decentralized optimal control frame-
ork for multiple cooperating CAVs that combines the ‘‘vehicle-
entric’’ objective of minimizing the maneuver time and energy
onsumed by all cooperating CAVs and the ‘‘system-centric’’ ob-
ective of minimizing throughput disruption in the fast lane. Our
nalysis includes the selection of an optimal cooperation pair of
AVs within a neighboring candidate set that minimizes a disrup-
ion metric for the fast lane traffic flow to ensure it never exceeds
given threshold. Simulation results show the effectiveness of

he proposed controllers with improvements of up to 16% and
0% in average throughput and maneuver time respectively when
ompared to maneuvers with no vehicle cooperation. Ongoing
 λ

10
work aims to perform multiple maneuvers simultaneously while
still minimizing traffic disruption. An important next step is to
extend our analysis to a mixed-traffic setting with both CAVs
and human-driven vehicles (HDVs). Future work will incorporate
more complex models and investigate how to bridge the gap
between modeling and real-world execution.

Appendix. Analytical OCP solution

A.1. CAV C trajectory Hamiltonian analysis

The solution of the OCP (17) for CAV C can be analytically
obtained by standard Hamiltonian analysis. To simplify the ex-
pression of the objective, we set the parameters αt = wt/wu,
αv = wv/wu where w{t,v,u} are the adjustable non-negative
weights in (17). The Lagrange multipliers µ1, µ2, µ3, µ4, µ5 are
positive when their corresponding constraints are active and be-
come 0 when the constraints are inactive. Note that the problem
has an unspecified terminal time tf , and the terminal condition
for tf is contained in the objective. As in Bryson (2018), the
terminal cost is given as Φ :=

αv

2 [vC (tf ) − vflow]
2 which is not

n explicit function of time, and the transversality condition for
17) is

Φt + H)|t=tf = H(xC(t), λC (t), uC (t))|t=tf = 0, (A.1)

ith the costate boundary conditions

x
C (tf ) = (

∂Φ

∂xC
)|t=tf = 0,

λv
C (tf ) = (

∂Φ

∂vC
)|t=tf = αv[vC (tf ) − vflow].

he Euler–Lagrange equations are given as

˙ x
C = −

∂H
∂xC

= −µ5,

λ̇v
C = −

∂H
∂vC

= −λx
C + µ3 − µ4 − ϕµ5, (A.2)

nd the necessary condition for optimality is
∂H
∂uC

= uC (t) + λv
C (t) − µ1 + µ2 = 0. (A.3)

.1.1. Control, state, safety constraints inactive
In this case, the constraints in (6) are inactive for all t ∈ [t0, tf ],

nd we have µ1 = µ2 = µ3 = µ4 = µ5 = 0. Applying the
uler–Lagrange equations in (A.2), we get λ̇x

C = −µ5 = 0 and
˙ v

= −λx (t), which imply that λx
= a and λv

= −(at + b),
C C C C
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espectively. The parameters a, b here are integration constants.
From (A.3), we have

uC (t) + λv
C (t) = 0, (A.4)

nd uC (t) = −λv
C (t) = at+b. Moreover, considering the boundary

ondition of the costate vector at time tf , we have

λx
C (tf ) =

∂Φ

∂x
|t=tf = 0, (A.5)

hich indicates that λx
C (t) = a = 0 for all t ∈ [t0, tf ], and we

et λv
C (t) = −b and uC (t) = b for all t ∈ [t0, tf ]. Furthermore,

e have αv[vflow − vC (tf )] = b according to the costate boundary
ondition.
From (A.1), the transversality condition gives the following

elationship
1
2
u2
C (tf ) + αt + λx

C (tf )vC (tf ) + λv
C (tf )uC (tf ) = 0, (A.6)

nd recalling that uC (t) = b, it follows that b = ±
√
2αt and

C (t) = ±
√
2αt . Consequently, we obtain the following optimal

olution for t ∈ [t0, tf ]:

u∗

C (t) = b = ±

√
2αt , (A.7)

v∗

C (t) = v0 ±

√
2αt (t − t0), (A.8)

x∗

C (t) = xC (t0) + v0(t − t0) ±
1
2

√
2αt (t − t0)2. (A.9)

Furthermore, the costate condition and (A.8) provide the terminal
time tf as

t∗f = t0 +
αv(vflow − v0) ∓

√
2αt

±αv

√
2αt

. (A.10)

bserve that in this case, the optimal control input is a time-
nvariant acceleration. The sign of the optimal control u∗

C (t) de-
ends on the initial speed vC (t0).

A.1.2. Some constraints active
Define x̄C (tf ) as the terminal position of CAV C if uC (t) = 0 for

all t ∈ [t0, tf ], and xC (tf ) as the actual terminal position of CAV C .
hen, we can specify several cases depending on the relationship
etween x̄C (tf ) and xC (tf ). Following the same analysis as in Chen
t al. (2022), there only exist three feasible cases under which the
afety constraints are satisfied:

ase 1: x̄C (tf ) ≤ xC (tf ) ≤ xU (tf ) − δC
If x̄C (tf ) ≤ xC (tf ), then u∗

C (t) ≥ 0 and uC (t) = −
√
2αt is

infeasible. For uC (t) =
√
2αt , we consider whether the velocity,

acceleration, and safety constraints are active or not.
Firstly, we consider the control constraint. Since uC (t) =

√
2αt

s a constant acceleration which only depends on αt , we can
asily compare it with uC,max and uC,min. If

√
2αt > uC,max, then

∗

C (t) = uC,max; if
√
2αt < uC,max, then the acceleration constraint

will never be activated in this case.
Secondly, we consider the velocity constraint. Since CAV C

ccelerates to vflow with constant acceleration uC (t) =
√
2αt , we

nly need to compare vC (tf ) to vflow . Since the desired velocity
vflow has to satisfy vflow ≤ vC,max and we have uC (t) ≥ 0, it follows
that the velocity constraint will never be activated in this case.

Finally, we check the safety constraint. Suppose at time t1 ∈

[t0, tf ) the safety constraint is active under uC (t) =
√
2αt . Then,

C (t1) = xU (t1) − [ϕvC (t1) + ε]. At time t−1 , the position of CAV
C satisfies x∗

C (t
−

1 ) < xU (t−1 ) − [ϕvC (t−1 ) + ε], and we must have
vC (t−1 ) > vU to activate the safety constraint. With the continuity
of xC (t), vC (t) and uC (t) ≥ 0, the position of CAV C at time t+1
should satisfy x∗

C (t
+

1 ) > xU (t+1 )−[ϕvC (t+1 )+ε]. With uC (t) ≥ 0, we
will eventually have x (t) > x (t)−[ϕv (t)+ε] for all t ∈ (t , t ],
C U C 1 f
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which contradicts the safety condition (6). Therefore, the safety
constraint will never be activated for all t ∈ [t0, tf ] in this case.

Observe that in the analysis of Case 1, we apply uC (t) =
√
2αt

to check all constraints and have not determined the value of αt .
Therefore, if

√
2αt > uC,max and the acceleration constraint is

ctivated, we apply uC,max instead. Then, the difference between
C (tf ) and vflow will be larger, so the speed and safety constraints
ill not be activated.

ase 2: xC (tf ) ≤ x̄C (tf ) ≤ xU (tf ) − δC
If xC (tf ) ≤ x̄C (tf ), then u∗

C (t) ≤ 0 and uC (t) =
√
2αt will be

infeasible in this case. With the same analysis as in Case 1, vC (t)
decelerates from v0 to vflow , hence vC (t) will not reach vC,min since
vflow satisfies vflow ≥ vC,min. Moreover, the safety constraint will
not be activated for a reason similar to the one in Case 1.

Case 3: xC (tf ) ≤ xU (tf ) − δC ≤ x̄C (tf )
For xC (tf ) ≤ xU (tf )− δC ≤ x̄C (tf ), then u∗

C (t) = −
√
2αt . We can

check if the control constraint will be activated for all t ∈ [t0, tf ].
Thus, we only consider the speed and safety constraints next.

Firstly, suppose only the speed constraint is active. Proceeding
as in Case 1, the maximum speed constraint will not be acti-
vated. We only need to check if the minimum speed constraint
is activated or not. Assume CAV C reaches vmin at t1, then t1 =

t0 +
vmin − vC (t0)

−
√
2αt

. However, after CAV C enters the minimum

speed-constrained arc, there is no hard terminal constraint to let
C exit this arc.

Secondly, suppose only the safety constraint is activated at
time t2 ∈ [t0, tf ). We then have xC (t2) = xU (t2) − [ϕvC (t2) + ε].
o activate the safety constraint, we must have vC (t−2 ) > vU and
C (t−2 ) < xU (t−2 )−[ϕvC (t2)+ε]. To guarantee safety, vC (t+2 ) should
atisfy vC (t+2 ) ≤ vU , otherwise, the safety constraint will be
iolated by the continuity of xC (t) and vC (t). Therefore, we have
C (t2) = vU , which is equivalent to v0+uC (t2−t0) = vU and t2 can
e calculated as t2 = t0 +

vU − v0

uC
. Since uC (t) = −

√
2αt < 0 for

ll t ∈ [t0, t2] and uC (t) ≤ 0 for all t ∈ [t0, tf ], then vC (t) < vU for
ll t ∈ (t2, tf ] if t2 ≤ tf , and the constraint will not be activated
gain in t ∈ (t2, tf ]. If t2 ≥ tf , then the safety constraint will be
nactive for all t ∈ [t0, tf ]. However, it is impossible to get t2 ≥ tf ,
ince vU < vflow , otherwise there is no reason for CAV C to change
its lane.

Lastly, if the two constraints are active, we need to figure out
the activation order. If the minimum speed constraint is activated
first with vmin < vU , the safety constraint will not be activated
for all t ∈ (t1, tf ]. Since the safety constraint is only activated
instantaneously at t2 ≤ tf , the two constraints being active is
quivalent to only the minimum speed constraint being active.
From the analysis above, we have proved that the safety

onstraint may only be activated instantaneously at t2 ≤ tf for
vU < vflow , which can be omitted, and then enter the minimum
speed constrained arc. For t ∈ (t1, tf ], there are two possible
trajectories for CAV C . One is to maintain vmin, then tf = t1 for
optimality (otherwise, the time component in (A.11b) increases
while the other two remain fixed). Another trajectory is to ac-
celerate again at t3 < tf . If the safety constraint is inactive for
all t ∈ (t3, tf ], i.e., xU (t) − xC (t) > δC (vC (t)), ∀t ∈ (t3, tf ], then
the problem becomes unconstrained again, which is the same
as Case 1. However, this trajectory will not be optimal because
it contains unnecessary deceleration during [t0, t1] without the
safety constraint being activated for all t ∈ [t0, tf ] and causes
increased energy consumption. Therefore, the optimal trajectory
for CAV C is to have the safety constraint activated at some
t4 ≤ tf . If t4 < tf , then we have vC (t) = vU for all t ∈ [t4, tf ],
otherwise the safety constraint will be violated or the trajectory
will be again suboptimal. The total cost is increasing for t from t
4
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o tf since it causes additional time and energy without increasing
peed. To achieve optimality, we conclude that t4 = tf .
Therefore, the inequality constraint xU (t) − xC (t) = δC (vC (t))

for all t ∈ [t0, tf ] is equivalent to xU (tf ) − xC (tf ) = δC (vC (tf )) and
the OCP for CAV C can be rewritten as

min
tf ,uC (t)

αv

2
(vC (tf ) − vflow)2 +

∫ tf

t0

(
αt +

1
2
u2
C (t)

)
dt (A.11a)

s.t. ẋC (t) = vC (t), v̇C (t) = uC (t), (A.11b)

uCmin ≤ uC (t) ≤ uCmax , ∀t ∈ [t0, tf ] (A.11c)

vCmin ≤ vC (t) ≤ vCmax , ∀t ∈ [t0, tf ], (A.11d)

xU (tf ) − xC (tf ) = δC (vC (tf )), 0 ≤ tf ≤ Tmax (A.11e)

where the difference between (17) and (A.11) is that the safety
constraint for CAV C with respect to vehicle U becomes a strict
equality constraint at the terminal time tf . The reason is that we
have proved that the safety constraint may be activated instanta-
neously at t2 and will never be activated again after t2 so that the
safety constraint for all t ∈ [t0, tf ) becomes redundant. Moreover,
equality holds to save any unnecessary deceleration of CAV C . For
this revised OCP, its Hamiltonian becomes

H(xC, λC , uC ) =
1
2
u2
C (t) + αt + λx

C (t)vC (t) +

λv
C (t)uC (t) + µ1(uC,min − uC (t)) + µ2(uC (t) − uC,max)

+µ3(vC,min − vC (t)) + µ4(vC (t) − vC,max), (A.12)

the costate boundary conditions become

λx
C (tf ) = (

∂Φ

∂xC
)|t=tf = a,

v
C (tf ) = (

∂Φ

∂vC
)|t=tf = αv[vC (tf ) − vflow],

a is a constant, and the Euler–Lagrange equations are given as

λ̇x
C = −

∂H
∂xC

= 0,

˙ v
C = −

∂H
∂vC

= −λx
C + µ3 − µ4. (A.13)

(1) No Constraint Active. If no constraint is active for all t ∈

[t0, tf ], then all Lagrange multipliers µ1, µ2, µ3, µ4 are 0. Thus,
(A.13) gives λ̇x

C = 0, λ̇v
C = −λx

C , i.e., λ
x
C = a, λv

C = −(at+b), where
a, b are integration constants. With the same necessary condition
for optimality in (A.3), we have

uC (t) + λv
C (t) = 0, (A.14)

which implies uC (t) = −λv
C (t) = at + b. Hence, the speed

and position trajectories of CAV C will be expressed as vC (t) =
1
2at

2
+ bt + c and xC (t) =

1
6at

3
+

1
2bt

2
+ ct + d, where

, b, c, d are integration constants. In addition, the transversality
ondition (A.1) gives the following relationship:

1
2
u2
C (tf ) + αt + λx

C (tf )vC (tf ) + λv
C (tf )uC (tf ) = 0. (A.15)

Combining all the boundary conditions above and the initial
conditions of t0, v0

C , vU , vflow, αt , αv, xC (t0), xU (t0), the following
six equations hold:

atf + b = αv(vflow − vC (tf )),

vC (tf ) =
1
2
at2f + btf + c,

vC (t0) =
1
at2 + bt0 + c,
2 0 t

12
αt + avC (tf ) =
1
2
(atf + b)2, (A.16)

xC (t0) =
1
6
at30 +

1
2
bt20 + ct0 + d,

U (tf ) − δC (vC (tf )) =
1
6
at3f +

1
2
bt2f + ctf + d. (A.17)

Thus, the unknown variables a, b, c, d, tf can be obtained by
olving (A.17). It is also easy to show that a has to be non-
egative, and b has to be non-positive. If both a, b are positive,
hen CAV C will never decelerate, which violates the terminal
onditions for xC (tf ) ≤ x̄C (tf ). If both a, b are negative, then
AV C will keep decelerating, which violates the optimality in
he unconstrained case. If a is negative, b is positive, this means
hat CAV C will accelerate over [t0, t1] where t1 = −

b
a , then

decelerate. If t1 ≥ tf , which means CAV C keeps accelerating for
all t ∈ [t0, tf ], then the terminal constraint xC (tf ) ≤ x̄C (tf ) will
be violated. If t1 ≤ tf , which means CAV C accelerates in [t0, t1],
then decelerates in [t1, tf ], which violates the optimality in the
unconstrained case.

(2) Safety Constraint Active Only. In this case, we can show
that the safety constraint will be activated at most once instan-
taneously during [t0, tf ). First, note that with the initial condition
vC (t0) < vflow and the terminal position xC (tf ) ≤ xU (tf ) − δC ≤

x̄C (tf ), CAV C cannot keep accelerating over [t0, tf ], otherwise we
will get Case 1. If the safety constraint is activated at t1, then
vC (t1) = vU ; otherwise, if vC (t1) > vU , then from the continuity
of velocity, the safety constraint will be violated at t+1 , whereas
if vC (t1) < vU , then the safety constraint will not be activated
at t1. Considering the value of t1, if t1 ≥ tf , then it follows that
indeed the safety constraint will be activated at most once. On the
other hand, if t1 < tf , there are two possible trajectories for CAV

in t ∈ [t1, tf ]. One is to travel at constant speed such that the
afety constraint is activated for all t ∈ [t1, tf ] with vC (t) = vU .
owever, to achieve optimality, t1 should be exactly equal to tf
ecause the objective function in (A.11b) is monotonically in-
reasing over [t1, tf ] with the same terminal speed cost. Another
rajectory is to exit the safety-constrained arc at t2 < tf . However,
o guarantee safety, C still has to decelerate at t2, then accelerate
t some t3 such that t2 < t3 < tf to satisfy the terminal position
onstraint xU (tf ) − xC (tf ) = δC (vC (tf )). However, decreasing the
length of the safety-constrained arc will decrease the objective,
hence the optimal solution is to have t1 = t2.

Therefore, having shown that the safety constraint will be
activated at most once instantaneously during [t0, tf ), we now
only need to consider whether the speed and control constraints
are active as discussed in the remaining cases below.

(3) Control Constraint Active Only. The analysis in (1) indicates
that the acceleration is non-decreasing, so the minimum control
constraint will not be activated if it is inactive at the initial
time. Firstly, we assume only the maximum control constraint
is activated. Suppose u(t) reaches umax at time t1. Then uC (t) =

at + b for t ∈ [t0, t1], uC (t) = umax for t ∈ [t1, tf ] and t1 can be
computed by at1 + b = umax with the obtained coefficients a, b
from (A.17). Moreover, xC (t1), vC (t1) can also be obtained and we
can express the terminal speed as

vC (tf ) = vC (t1) + umax(tf − t1), (A.18)

and the terminal position

vU (tf − t0) − δ(vC (tf )) (A.19)

= xC (t1) + vC (t1)(tf − t1) +
1
2
umax(tf − t1)2

o solve for the terminal time t .
f



A.S. Chavez Armijos, A. Li, C.G. Cassandras et al. Automatica 165 (2024) 111651

u
a
w

x

s
t

w
a
b
w
H
i
a

w
c

a

t

c
r
c
u
a

w
a
t
t
t
u

v

λ

w

=

S
x
t
a
c
t

t
a

v

t

If only the minimum control constraint is activated, since the
acceleration is non-decreasing, the entry point of the constrained
arc is t0, and suppose t2 is the exit point of the constrained arc.
Similarly, we have the following six equations:

at2 + b = umin,

atf + b = αv[vflow − vC (tf )],
1
2
at22 + bt2 + c = vmin,

1
6
at32 +

1
2
bt22 + ct2 + d = (A.20)

xC (t0) + vC (t0)(t2 − t0) +
1
2
umin(t2 − t0)2,

1
6
at3f +

1
2
bt2f + ctf + d = xU (tf ) − δ(vC (tf )),

1
2
(atf + b)2 + αt + avC (tf ) − (atf + b)2 = 0,

to solve for a, b, c, d, t2, tf .
Finally, if the minimum and maximum constraints are both

activated, suppose the exit point for the minimum constraint
is τ1, and the starting point for the maximum constraint is µ2.
Then u(t) = umin, t ∈ [t0, τ1), u(t) = at + b, t ∈ [τ1, τ2] and
(t) = umax, t ∈ (τ2, tf ]. Therefore, τ1 is the same as t2 in the
bove case, and we now calculate τ2 and tf by using aτ2+b = umax
ith

C (τ2)+vC (τ2)(tf − τ2) (A.21)

+
1
2
umax(tf − τ2)2 = xU (tf ) − δ(vC (tf ))

vC (τ2) =
1
2
aτ 2

2 + bτ2 + c,

xC (τ2) =
1
6
at32 +

1
2
bt22 + ct2 + d

o that we can solve for τ2, tf , where a, b, c, d are obtained from
he Eqs. (A.20).

(4) Speed Constraint Active Only. From the terminal position,
e know that CAV C includes both a deceleration and acceler-
tion trajectory segment. Since the safety constraint will never
e activated in [t0, tf ) and we have vflow < vmax, the maneuver
ill be completed before the maximum constraint is activated.
ence, we only need to check whether the minimum speed vmin
s reached. Suppose t1 is the starting point of such a constrained
rc and t2 is the exit point. Then, u(t) = at +b for t ∈ [t0, t1), and

u(t) = 0 for t ∈ [t1, t2]. We can compute t1 through at1 + b = 0
and further express the velocity and position of CAV C at t1 as

vC (t1) =
1
2
at21 + bt1 + c,

xC (t1) =
1
6
at31 +

1
2
bt21 + ct1 + d, (A.22)

here the coefficients a, b, c, d are obtained by (A.17). Hence, we
an solve the following six equations

1t2 + b1 = 0,

1
2
a1t22 + b1t2 + c1 = vmin,

a1tf + b1 = αv(vflow − vC (tf )), (A.23)

1
6
a1t32 +

1
2
b1t22 + c1t2 + d1 = xC (t1) + vmin(t2 − t1),

1
a1t3 +

1
b1t2 + c1tf + d1 = xU (tf ) − δ(vC (tf )),
6 f 2 f

13
1
2
(a1tf + b1)2 + αt + a1vC (tf ) − (a1tf + b1)2 = 0

o obtain a1, b1, c1, d1, t2, tf .
(5) Control and Speed Constraints Active. Based on the speed

onstraint analysis above, the maximum speed will not be
eached during [t0, tf ]. Therefore, there are only three cases that
ould occur if we have control and speed constraints active, i.e., (i)
min, vmin active, (ii) umax, vmin active, (iii) umin, vmin and umax
ctive.
(i) umin, vmin active: First, we need to check which constraint

ill be activated first. If vmin is reached, this indicates that the
cceleration decreases to 0, and the acceleration has to be positive
o exit the vmin constrained arc. Hence, umin is reached first at
1 > t0, then reaches vmin at t2 > t1. Notice that for t ∈ [t0, t1),
he control constraint has the same performance as in (3), so we
se (A.20) to get the CAV C trajectory for t ∈ [t0, t1] directly.
At time t2, we have the interior constraint N(vC (t)) = vmin −

C (t2) = 0, and

T
C (t

−

2 ) = λT
C (t

+

2 ) + π
∂N
∂x

|t=t2 ,

H(t−2 ) = H(t+2 ) − π
∂N
∂t

|t=t2 , (A.24)

where π is a Lagrangian multiplier. Based on (A.24), we have
λx
C (t

−

2 ) = λx
C (t

+

2 ), λv
C (t

−

2 ) = λv
C (t

+

2 )−π , and H(t−2 ) = H(t+2 ). Hence,
e have

1
2
u2
C (t

−

2 ) + αt + λx
C (t

−

2 )vC (t−2 ) + λv
C (t

−

2 )uC (t−2 )

1
2
u2
C (t

+

2 ) + αt + λx
C (t

+

2 )vC (t+2 ) + λv
C (t

+

2 )uC (t+2 ). (A.25)

ince the state variables are continuous, we have vC (t−2 ) = vC (t+2 ),
C (t−2 ) = xC (t+2 ) and uC (t+2 ) = 0. Moreover, the optimality condi-
ion gives uC (t−2 ) = −λv

C (t
−

2 ). Thus, we can calculate uC (t−2 ) = 0
ccording to (A.25), i.e., uC (t2) = 0. Letting the exit point be t3,
ombining the optimality and transversality conditions, we have
he following six equations

1
2
a1t23 + b1t3 + c1 = vmin,

1
6
a1t33 +

1
2
b1t23 + c1t3 + d1 = xC (t2) + vmin(t3 − t2),

a1t3 + b1 = 0,

1
6
a1t3f +

1
2
b1t2f + c1tf + d1 = xU (tf ) − δ(vC (tf )),

a1tf + b1 = γ (vd − vC (tf )),

1
2
(a1tf + b1)2 + β + a1vC (tf ) − (a1tf + b1)2 = 0 (A.26)

o solve for a1, b1, c1, d1, t3, tf . Note that using the coefficients
, b, c, d in (A.20) and the known t1, we can similarly calculate

t2 from at2 + b = 0, and vC (t2), xC (t2).
(ii) umax, vmin active: In this case, the optimality of the solution

determines that vmin has to be reached before umax, otherwise,
min will not be reached or the solution will not be optimal. For
he minimum speed constraint being activated first, suppose t1
is the entry point of the minimum velocity-constrained arc, t2
is the corresponding exit point, and t3 is the entry point of the
acceleration constraint. For t ∈ [t0, t1), the trajectories of CAV C
have the same performance as in (4), i.e., uC (t) = at + b, t ∈

[t0, t1), uC (t) = 0, t ∈ [t1, t2), and uC (t) = a1t + b1, t ∈ [t2, t3),
where t , t , a, b, a , b can be calculated from (A.22) and (A.23).
1 2 1 1
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I
n addition, t3 can be computed from a1t3 + b1 = umax, and we
can further obtain vC (t3), xC (t3).

For the terminal position constraint, the states at the terminal
time tf should satisfy the following equation:

xC (t3) + vC (t3)(tf − t3) +
1
2
umax(tf − t3)2 =

xU (t0) + vU (tf − t0) − φvC (tf ) − δ,

which provides the solution for tf .
(iii) umin, vmin and umax active: regarding the activation order

of the three constraints, umin, vmin, and umax, proceeding as in the
previous cases, umin will be activated first to reach vmin, then CAV
C accelerates from vmin to vflow , and then umax is activated. We
can directly combine the results of cases (i) and (ii) to get the
complete trajectory for CAV C in this case.

A similar analysis can be performed for the solutions for CAVs
i and i+ 1, thus we omit the details for the Hamiltonian analysis
corresponding to (18), (19), and (20).
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