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We derive optimal control policies for a Connected Automated Vehicle (CAV) and cooperating
neighboring CAVs to carry out a lane change maneuver consisting of a longitudinal phase where the
CAV properly positions itself relative to the cooperating neighbors and a lateral phase where it safely
changes lanes. In contrast to prior work on this problem, where the CAV “selfishly” only seeks to
minimize its maneuver time, we seek to ensure that the fast-lane traffic flow is minimally disrupted
(through a properly defined metric). Additionally, when performing lane-changing maneuvers, we
optimally select the cooperating vehicles from a set of feasible neighboring vehicles and experimentally
show that the highway throughput is improved compared to the baseline case of human-driven
vehicles changing lanes with no cooperation. When feasible solutions do not exist for a given maximal
allowable disruption, we include a time relaxation method trading off a longer maneuver time with
reduced disruption. Our analysis is also extended to multiple sequential maneuvers. Simulation results
show the effectiveness of our controllers in terms of safety guarantees and up to 16% and 90% average
throughput and maneuver time improvement respectively when compared to maneuvers with no
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1. Introduction

Advancements in transportation technologies, including Con-
nected Automated Vehicles (CAVs), have the potential to greatly
enhance transportation networks by improving safety and com-
fort, reducing congestion, and increasing energy efficiency. In
the realm of highway driving, autonomous car-following systems
have seen significant developments in recent years, as outlined
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in Wang et al. (2016, 2015), Zhao et al. (2018). However, automat-
ing lane change maneuvers remains a challenging problem that
has garnered increased attention (Bax et al., 2014; He et al., 2021;
Nilsson et al., 2015). Existing work primarily focuses on control-
ling a single vehicle during the maneuver, lacking an analysis of
the overall disruption effects on traffic flow.

The rise of CAVs presents an opportunity for cooperative ma-
neuvers on multi-lane roads (Li et al., 2020; Luo et al.,, 2016;
Mahjoub et al.,, 2017). Coordinated lane changes become es-
pecially crucial in heavy traffic conditions, where the coopera-
tion of multiple vehicles can enable a broader range of feasible
maneuvers, enhance safety, and improve throughput.

Solving cooperative multi-agent lane-changing maneuvers can
take a centralized or decentralized approach. In the centralized
method, a Control Zone (CZ) issues commands to all vehicles
within a specified area. However, this can be computationally
challenging. In contrast, the decentralized approach involves each
agent computing its solution, which may result in conservative
solutions and unwanted disruptions (Li et al., 2018).

Prior work, such as Chen et al. (2022), has provided time and
energy-optimal solutions for lane-changing maneuvers. However,
these approaches tend to be vehicle-centric, focusing on the ma-
neuvering vehicle’s optimization while neglecting the impact on
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Fig. 1. The basic lane-changing maneuver process.

other vehicles. This approach can lead to traffic flow slowdowns
in congested scenarios.

Our paper addresses these limitations by adopting a system-
centric approach, balancing the needs of the individual vehicle
with the overall traffic flow. We focus on multiple sequential
lane-changing maneuvers, considering both vehicle position and
speed disruption. Our analysis aims to improve traffic throughput
and minimize disruptions in various traffic conditions.

In summary, this paper presents a comprehensive approach to
cooperative lane-changing maneuvers, combining system-centric
and vehicle-centric objectives. We consider both position and
speed disruption and aim to enhance traffic flow in different
scenarios.

In previous work, Chen et al. (2022) provided a time and
energy optimal solution for the maneuver shown in Fig. 1, in
which the controlled vehicle C attempts to overtake an uncon-
trollable vehicle U by using the left lane to pass. A decentralized
solution is provided based on cooperation and communication
with two neighboring vehicles (vehicles 1 and 2) to minimize
the total maneuver time and subsequently determine trajectories
that minimize the energy consumed by all three cooperating
vehicles. This approach applies to a wider range of scenarios
relative to those in Kamal et al. (2013), Luo et al. (2016), Nilsson
et al. (2017).

However, by seeking to minimize C’s maneuver time, Chen
et al. (2022) adopt a vehicle-centric (selfish) viewpoint which
ignores the effect of the maneuver on all remaining vehicles. As a
result, since vehicle 2 typically decelerates to allow C to get ahead
of it, this deceleration may cause a traffic flow slowdown in the
left lane which can negatively impact throughput, especially in
congested scenarios. Moreover, the analysis assumes that vehicles
1 and 2 are predetermined rather than being optimally selected
among a set of possible cooperation candidates.

The main contribution of this paper is the alleviation of the
aforementioned limitations in such selfish maneuvers by adopting
an optimality viewpoint that combines system-centric objectives
with vehicle-centric ones, as introduced in Chavez Armijos et al.
(2022). This provides a decentralized optimal solution where our
optimal controller design includes the social optimality goal of
ensuring that the resulting traffic throughput on the highway is
improved by adding vehicles to the fast lane while (i) limiting
the “disruption” that cooperation among multiple vehicles on the
road can cause on the fast lane traffic flow, and (ii) determining
an optimal pair of cooperating vehicles, which play the role
of 1 and 2 in Fig. 1, within a set of feasible such candidates.
Additionally, we focus on the realization of multiple sequential
lane-changing maneuvers under the assumption of cooperation
with surrounding vehicles.

The disruption metric introduced in Chavez Armijos et al.
(2022) considers how the positions of vehicles in the fast lane are
disrupted relative to the “ideal” trajectories where fixed speeds
are maintained. The associated disruption in their speeds is, how-
ever, not taken into account and this can be shown to allow for
significant slowdowns in the traffic flow in certain situations.
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A key contribution of this paper is to alleviate this limitation
in Chavez Armijos et al. (2022) by employing a disruption metric
that includes both vehicle position and speed. This necessitates a
new analysis for the problem of deriving time and energy-optimal
maneuvers while also ensuring throughput improvements un-
der different traffic densities. This paper provides this analysis,
considers the sensitivity of the resulting algorithm to the afore-
mentioned traffic densities, and makes use of a new estimate
of the fast lane desired speed based on the speeds from the
cooperative vehicle sets.

As in Chen et al. (2022), we decompose the maneuver into a
longitudinal component followed by a lateral component. In the
longitudinal part, our approach is based on first determining an
optimal maneuver time for C subject to all safety and speed and
acceleration constraints for C, 1, and 2 (see Fig. 1) and such that
C attains a desired final speed that matches that of the fast lane
traffic flow. We then solve a fixed terminal time decentralized
optimal control problem for each of the two cooperating vehicles
in which energy consumption is minimized while penalizing the
deviation of 1 and 2 from the fast lane desired speed. In the lateral
phase, we solve a decentralized optimal control problem seeking
to jointly minimize the time and energy consumed which is no
different than the one presented in Chen et al. (2022). Our anal-
ysis also allows the determination of a vehicle pair that results
in minimal acceleration/deceleration for them. This minimizes
the possibility of excessive braking or deceleration of the rear
vehicle in the pair (2 in Fig. 1), quantified through an appropriate
“disruption metric”. An interesting consequence of our analysis is
that it leads to vehicles forming natural platoons that dictate the
free-flow speed of the fast lane on a two-lane highway.

The rest of the paper is organized as follows. Section 2 presents
the formulation of the longitudinal lane-change maneuver prob-
lem. In Section 3, a complete optimal control solution to co-
ordinate the longitudinal portion of the lane change maneuver
is obtained. Section 4 describes the lateral portion of a lane-
changing maneuver. Section 5 provides simulation results for
several representative examples and we conclude with Section 6.

2. Problem formulation

In this section, we present a system-centric problem formu-
lation of the cooperative maneuver setting in Fig. 1. We decom-
pose the maneuver into a longitudinal and a lateral component.
The former includes the determination of a minimally disrupting
cooperative pair (playing the role of 1 and 2 in Fig. 1) while
minimizing the deviation from the fast lane desired speed.

Let C be the vehicle that initiates an automated maneuver.
This can be manually triggered by the driver of C deciding to
overtake vehicle U or automatically triggered by a given distance
detected from an uncontrollable vehicle U ahead of C, as shown
in Fig. 2. Assuming that all vehicles other than U are CAVs, we
will henceforth refer to them as such.

2.1. Cooperative vehicle set

Let S(t) be the set of potential cooperating vehicles in the
fast lane for CAV C during its lane change maneuver. This set is
defined by the parameters L, (distance in the rear of C) and Ly
(distance in front of U) which are typically selected to include all
vehicles within a given communication range.

Using the longitudinal position x;(t) of vehicle i relative to a
reference origin O, we define S(t) as:

S() = {i | xc(t) = Ly = xi(t) < xu(t) + Ly} (1)

where x;(t) is the longitudinal position of CAV i. We order the N
CAVs in S(t) by index from furthest ahead of C to nearest, soi+1
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Fig. 2. Cooperative vehicle sets Sc, S, and optimal CAV subset (i*, i* + 1) € Sc
selection diagram.

follows i. To simplify, once we determine N members of S(t), we
order their indices in ascending order, making S(t) = 1,...,N.
This setup helps us recognize cooperating pairs as (i,i + 1),
allowing CAV C to merge between them. However, this excludes
the possibility of CAV C changing lanes ahead of the first vehicle
in S(t) or behind the last. To address this, we extend the set as
follows: We introduce S*(t) = {i | x(t) > xy(t) + L} and
designate i* to be the CAV immediately ahead of 1 in S(t) if
ST(t) # . Otherwise, it is a “virtual” CAV with x+(t) = oo.
Similarly, S7(t) = {i | xi(t) < xc(t) — L}, and i~ is the
CAV immediately behind the last vehicle in S(t) if S7(t) # @;

otherwise, i~ is a “virtual” CAV with x;+(t) = —oo. This leads to
the extended set:
Se(t) =S(t) U {i*, i} (2)

We rewrite Sc(t) as {0, 1,...,N, N + 1}, assigning 0 to it and
N + 1 to i~. We will select an optimal pair, as described later, to
be a subset {i*, i* + 1} of this set, with i* € {0, 1, ..., N}.

Construction of Cooperative Set. To determine Sc(t) without
unnecessary computation, we overestimate it by assuming con-
stant speeds in [to, Tmax], Where Tpax is @ maximum tolerable
maneuver time. Thus, we obtain S(T,x) by evaluating it on (1)
with X{(Tmax) = Xi(to) + vi(to)Tmax. By adjusting Ly, L, and Tmax,
we can include any desired number of candidate vehicles in
S, subject to C’s communication range. Finally, the equivalent
over-approximated set is defined as

-§C = E(Tmax) U {i+a i_} (3)
If multiple maneuvers are to be executed, we index them by
k = 1,2,... and write S’C‘(t) to represent the associated set

corresponding to CAV C, which initiates the maneuver. We first
limit ourselves to the simpler notation Sc(t).

2.2. Fast lane desired speed

We define fast lane desired speed as the average speed at
which the traffic travels on a lane or a road segment. To design a
policy to perform minimally disrupting lane changes, it is neces-
sary to estimate the fast lane desired speed from the perspective
of the ego vehicle C. However, due to limitations of observability
and sensing range, we can define the fast lane desired speed v,
of the fast lane at time ¢ as a convex combination (with weighting
factor w) of the average speed of the vehicles in the set S¢(t) and
the maximum allowable speed of the road. Thus, letting ||Sc(t)]|
be the cardinality of Sc(t), set

1
mm=”&mW§jmw (4)

ieSc(t)

and define

Vfiow(t) = wvsc(f) + (1 — @)vmax (5)
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Practically, we can think of w as an “aggressiveness factor”
that controls the target speed that each of the vehicles involved
in a cooperative maneuver would try to reach. Specifically, when
vaow(t) is closer to wvmax, the cooperative vehicles will try to
accelerate more aggressively to reach higher speeds, while when
vow(t) is closer to wvs.(t), the vehicles will try to match the
average speed of nearby vehicles more closely. This allows the
tuning of the aggressiveness of the cooperative maneuver while
still taking into account the actual traffic conditions.

2.3. Vehicle dynamics

For every vehicle i € S(t) its dynamics take the form
xi(t) = vi(t), i(t) = ui(t) (6)

where, in addition to x;(t), we define v;(t) and u;(t) to be vehicle
i's velocity and (controllable) acceleration respectively. Without
loss of generality, we define the origin for CAV i involved in a
maneuver to be the position xc(ty) of CAV C, where t;, denotes
the time at which the maneuver is triggered. We will use t; to
denote the time when the longitudinal maneuver is complete. The
control and speed are constrained as follows:

vt € [to, tr] (7a)
vt € [to, tr] (7b)

Ui < Ui(8) < Uiy

Vipin < Vilt) < Vi

where v;,,, > 0 and v, > 0 denote the maximum and
minimum speed allowed, usually determined by the rules of the
highway. Similarly, u;,, > 0 and u; , < 0 are i's maximum and
minimum acceleration control for vehicle i.

2.4. Safety constraints

Let 8;(vi(t)) be the speed-dependent safety distance of CAV
i, defined as the minimum required distance between i and its
immediately preceding vehicle:

Sivi(t)) = pui(t) + &, (8)

where ¢ is a constant value that denotes the reaction time (usu-
ally defined as ¢ = 1.8s Vogel (2003)), ¢ is a constant, and
8i(vi(t)) is specified from the center of i to the center of its
preceding vehicle. We can now define all safety constraints that
must be satisfied during a lane-changing maneuver of C when
cooperating with any two CAVs (i, i+ 1):

xy(t) — xc(t) = dc(vc(t)), vt € [to, tr] (9a)
Xi(t) = Xipa(£) = Sip1(viga(1)), vt € [to, tf] (9b)
xc(tr) — Xip1(tr) = Siv1(vir1(tr)), (9c)
xi(tr) — xc(tr) > Sc(vc(tr)) (9d)

2.5. Traffic disruption

We aim to quantify the extent to which a successful lane-
changing maneuver can disrupt fast-lane traffic. To achieve this,
we introduce the concept of disruption:

Definition 1 (Single Vehicle Disruption). For any ty > to, let x;(tf)
be the terminal position of vehicle i, determined by some control
policy u;(t), t € [to, t;]. For any vehicle i € Sc(t), the disruption
metric D;(t) at time t > ¢, is defined as the convex combination:

Di(t) = ydi(t) + yudi(t) (10)

where di(t) and di (t) are the contributions of position and speed
disruption, respectively, and yy, y, € [0, 1], px + ¥ = 1.
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The constants y, and y, are the weighted contributions of one
component over the other, making them tunable parameters to
control which aspect of disruption is more critical to minimize.
This definition provides a quantifiable metric for the disruption
caused by a vehicle i during a highway maneuver. The position
component d,(t) measures the deviation from an ideal undis-
rupted trajectory, while the speed component d;(t) measures the
deviation from the desired lane speed.

To accurately define the dimensionality of the convex combi-
nation for a lane-changing maneuver, we derive each disruption
contribution along with its corresponding normalization factor
below. '

Position Disruption. The position disruption d,(t) is defined
as the square of the disruption caused to i due to an acceler-
ation/deceleration control u;(t) relative to its undisrupted final
position. We express it as:

di(t) = (xi(t) — [xi(to) + vilto)(t — to)])? (11)

This equation quantifies the difference between the actual posi-
tion x;(t) of vehicle i under a given control policy at time t and
its ideal position, achieved by maintaining a constant speed v;(to).
This ideal scenario minimizes energy consumption due to any
acceleration/deceleration.

To normalize di(t) in (11), we define:

_r
(A (£))?

Here, y € [0, 1] is a tuning parameter and dy_, (t) is the max-
imum possible position disruption that vehicle i could generate
over [tg, to + t], i.e., under minimum speed and minimum accel-
eration (maximum deceleration). Thus, we define two cases: first,
the maximum distance traveled under minimum acceleration,
and second, the maximum distance traveled under minimum
acceleration before the vehicle attains its minimal longitudinal
speed. Therefore, d takes the form

Vx = (12)

Xmax

dy. . if upin(t — ¢ (to) > v

dxmax(t) = Upin> 1 umm(A 0) + vi(to) = Vmin (13)
dy,..» Otherwise.

with

Gy = Vilto)(t — o) — (vilto)(t — to) + 0.5Umint?)

dypin = Vilto)(t — to)
U
—Umin ((t —to) — e

~ Speed Disruption. We define the speed disruption contribution
d,(t) as the deviation of vehicle i's speed v;(t) from the fast lane’s
desired speed vgow. It is expressed as:

— Ui(fo)> n V2 — Vilto)?
Umin 2umin

i 2
d(t) = (vi(t) = vgow) (14)
with its corresponding normalization factor defined as
1-y
Y = > o
max{(vmin - Uﬂow) , (Umax - Uﬂow) }

where y € [0, 1] is the same weight parameter in (12).

Now, let us define the triplet of vehicles involved in a lane-
changing maneuver as S; = {C, i,i+ 1}. We can define the total
disruption produced by S; as follows:

Definition 2 (Total Disruption). The total disruption Ds(t) is de-
fined as the convex combination of the single vehicle disruption
contributions D;(t) defined in (10):

Ds(t) =) &Dy(t), (15)
Jjesi
where, ¢ € [0, 1] are the weights such that Zjesi ;=1

Automatica 165 (2024) 111651

The weights in (15) allow for the consideration of different
potential effects that each cooperating CAV will have on the
overall total disruption. For example, if ¢, is large relative to ¢;
and ¢c, it places more weight on the disruption caused to the rear
vehicle, which allows C to move ahead of it, potentially affecting
other vehicles behind i + 1.

It is important to note that (15) is a quadratic disruption met-
ric that depends on factors such as the total maneuver time length
tf — to, the terminal positions x;(tf), and the terminal speeds v;(ts)
for every CAV i involved in the maneuver. This metric implicitly
penalizes various disruptions, including the time it takes for vehi-
cles to regain fast lane speed after a lane-changing maneuver and
the potential chain reaction of slowdowns. If multiple maneuvers
are considered (indexed by k = 1, 2,...), we can minimize an
aggregate metric Doy by summing individual disruptions D’S‘(t).

2.6. Optimal maneuver objectives

We consider two objectives for the longitudinal maneuver
problem: first, we wish to minimize the maneuver time ¢; expe-
rienced by CAV C and its cooperating vehicles; second, we wish
to minimize the energy consumption of each of the three coop-
erating CAVs, i.e., C, i and i+ 1. At the same time, we must satisfy
the safety constraints (8) and vehicle constraints (7). Finally, we
must ensure that the disruption metric (15) does not exceed a
given threshold Dy,. Thus, among all candidate cooperating pairs
(i, i4+ 1) for which these objectives are achieved we select the one
that solves the disruption minimization problem:

Si" = argmin Ds,(tf) (16a)
S;eSc
s.t. Ds(tf') < Den (16b)

where D{(t) denotes the minimum disruption which corresponds
to the triplet S/ = {C, i*, i* + 1} with minimum disruption.

3. Longitudinal optimal control solution

In this section, we present a detailed solution approach with
the following key elements: (i) We specify the objective functions
Jc for CAV C and J; for any i € Sc(t). (ii) We obtain the optimal
cooperating pair (i*, i*+ 1) by evaluating the total disruption that
each possible cooperative triplet might produce. (iii) We include
a time relaxation on the optimal maneuver time tf* so that, if a
feasible solution does not exist, we seek one for a relaxed value
t; > tF. The relaxation process captures the trade-off between
the “selfish” goal of C to minimize its maneuver time and the
system-wide “social” goal of minimizing traffic flow disruptions
while ensuring an increase in throughput by adding vehicles to
the fast lane. The overall description of the solution process for
the optimal maneuver ensuring a minimal disruption that does
not exceed a given threshold Dy, is given in Fig. 3. However, we
describe each step in detail in the subsequent subsections.

3.1. CAV C optimal trajectory

Given a CAV C traveling behind an uncontrolled vehicle U, a
“start maneuver” request is sent to surrounding vehicles, and the
starting time ty is defined when xy(t) — xc(t) < dstarr, Where
dstare denotes the minimum distance at which CAV C decides to
initiate a lane-changing maneuver. It is important to point out
that at that instant the values of the optimal maneuver time and
the entire optimal trajectory of C can be evaluated, which also
enables planning the complete solution to the problem.

We now define the optimal control problem (OCP) for CAV C
as follows:

t
2 welt) = v+ [ (w4 S0 do

min (17a)
tr.{uc(t)} 2 t 2
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Find all candidate CAV pairs (i,i + 1)
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heck Feasibilify
Ds, (17) < Dy

Select M for CAV pair (i*,i" + 1) |

Execute maneuver

Fig. 3. Cooperative maneuver flow diagram.

s.t. (6), (7),
xy(t) — xc(t) =8c(vc(t)), Vt € [to, tf], (17b)
fo < tf < Tmax (17C)

Here, wy, ,, 4 are adjustable non-negative weights with appro-
priate dimensions that place a relative emphasis on each of the
three objective function components with respect to each other
during the optimization process. Thus, we can penalize longer
maneuver times, deviation from the desired speed, and energy
consumption to trade off among these metrics as desired. The
desired speed value of vc(t;) is set to vge, as defined in (5)
using Vs, with S¢ defined in (3). Constraint (17b) capture the
safe distance constraint (9a) between C and U (assuming that
the position and speed of U can be sensed or estimated by C).
Similarly, in constraint (17c), we specify Tpax as the maximum
tolerable time to perform a lane-changing maneuver. In practice,
if constraint (17c¢) cannot be met for a given T,.x, CAV C has the
option of either relaxing this value (as detailed in Section 3.4) or
simply aborting the maneuver. Finally, note that problem (17) is
solved given the initial position and speed of CAV C.

The solution of this OCP can be analytically obtained, as shown
in the Appendix, through standard Hamiltonian analysis similar
to OCPs formulated and solved in Chen et al. (2022).

It is worth pointing out that depending on the weights w; and
the starting distance dg.;; of the maneuver, the form of the cor-
responding optimal trajectory can be either strictly accelerating
or first decelerating followed by an accelerating component so
that (9a) is satisfied regardless of the initial conditions of CAV
C. Intuitively if there is adequate distance ahead of C, it can
accelerate at a maximal rate to attain v.(tf) = vpo; Otherwise,
it needs to first decelerate to create such an adequate distance
ahead of it and then accelerate to minimize the terminal speed
cost in (17a).

3.2. Optimal trajectories for CAV candidates (i, i+ 1)
For any CAV i other than C, we define its objective function to
be:
1,

) = B(E) — vpon ¥ + / L

to
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where t;‘ was determined from (17) and

imin’ ~ imax
(1—-ay)

with «, being a constant weight factor with appropriate di-
mensions that penalizes speed deviation from the desired vgo,
relative to an energy consumption metric so that CAV i (where
i=1i"ori=1i"+ 1when the optimal cooperative pair has been
found) solves the following two fixed terminal time OCPs for CAV
iand i+ 1 respectively:

o, max [u2 u? ]

13:

min B(vi(tf) — uﬂow)2+/[f 1u,?(r)dt (18a)
{ui(0)} v 2
s.t. (6), (7)
xi—1(t) — xi(t) > &i(wi(t)), Ve € [to, i1, (18b)
Xi—1(t) = xi—1(to) + vi—1 (£)(t — to) (18¢)
xi(tf) — xc(tf) =8c(ve(ty)) (18d)

where xi(tf‘) is the terminal position for vehicle i under the safety
considerations of a potential vehicle ahead of i (labeled i — 1) for
all t € [to, tji*], as well as the safety constraint for the terminal
position of CAV C computed by the OCP in (17).

51
min_ B(viy () — w2+/ —u? ,(t)dt 19a
(Ui+1(t))ﬂ(vl+l(f) o) ) (t) (19a)
s.t. (6), (7)
xc(tf) = Xipa(tf) = Sipa(viga(tf)) (19b)
vir1(tf) = ven (19¢c)

Here, the terminal position for i + 1 is only constrained by CAV
C in (19b). Additionally, in (19) we remove the safety constraint
(9b) between i and i+ 1 due to Thm. 1 in Chen et al. (2022) where
it is shown that in an optimal maneuver, CAV i does not accelerate
and CAV i+ 1 does not decelerate.

Lastly, in (19¢) we include a terminal constraint on the min-
imum allowable terminal speed for i + 1 with the introduction
of vm, which differs from vp, in that it prevents i + 1 from
reaching a terminal speed which is much lower than vgq,,. Ignor-
ing the vy, constraint can lead to a subtle pattern of inefficient
maneuvers we observed when implementing our prior controllers
in Chavez Armijos et al. (2022): when a CAV i* + 1 decelerates
to a much lower speed than the fast lane desired speed to allow
lane changes, it may repeatedly decelerate to allow multiple new
maneuvering CAVs to get ahead of it with short maneuver times.
This can be very effective in terms of the objective of minimizing
maneuver times, at the expense of dramatic traffic disruptions
and ultimate high congestion in the fast lane.

3.3. Selection of optimal cooperative pair (i*,i* + 1)

The optimal cooperative pair (i*, i* + 1) among all i € S¢ in
(3) is the one that minimizes the disruption metric in (15) by
selecting the terminal states (xi(tfi“), vi(tf‘)) for every pair i and
i+ 1 resulting in minimal disruption.

The solution of (18) and (19) for every pair (i, i+1) respectively
provides the optimal terminal positions x,-(t;‘), xi+1(tf‘) and termi-
nal speeds vi(t;‘), vi+1(tji“) that provide the inputs for computing
the disruption metric Ds,(t), defined in (15), for the triplet S; € Sc.

Specifically, we solve (16) by discretizing the set of candidate
vehicles Sc. Thus, (16) is solved by comparing the values of Dsi(tji“)
obtained over a finite set consisting of vehicle pairs (i, i + 1) that
satisfy the disruption constraint.
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Remark 1. If no solution to (16) is found, it is still possible to
derive a solution based on the analysis in Chen et al. (2022), with
no consideration of disruption. Alternatively, we may proceed
with the time relaxation process described in Section 3.4.

3.4. Maneuver time relaxation

It is possible that no solution to (18), (19), or (16) may be
found. The most common reason is that the optimal maneuver
end time t;‘, determined by CAV C at the first step of the solution
approach, is too short to allow C to reach a speed sufficiently
close to vy, and for cooperating CAVs to adjust their positions to
satisfy the safety constraints in (8). In such cases, it is possible to
perform a relaxation of tf obtained through (17) by trading it off
against the energy consumption due to the maneuver extension.
Thus, the new terminal time is given as t; = tyA,, where A, > 1is
a relaxation factor. Observe that this time modification changes
the form of the OCP (17) since the terminal time is now fixed
at tf/ > tf* and the solution will lead to a new terminal position
xc(tf/) for CAV C. The new fixed terminal time OCP formulation is

as follows:

t

min Bvis () — )2+/f1 2(t)de (20a)

iy Pt = von o J 5 e d
s.t. (6), (7), and

xy(t) = xc(t) = 8c(ve(t)), Ve € [to, t], (20Db)

This process may continue, as shown in Fig. 3 until a feasible
solution is determined or the constraint t; < Tpa.x is violated.
Thus, we define the maximum number of iterations allowed for
every candidate pair. If the maximum number of iterations is
reached, we proceed with the next candidate pair index.

Remark 2. Despite time relaxation, problem (20) can still be
infeasible if dg. is small or if the constraint (9a) is active at tg.
Therefore, CAV C can abort the maneuver and wait a specified
time interval for the next opportunity window. Otherwise, a
“selfish” maneuver may be performed as in Chen et al. (2022)
by computing the minimum feasible terminal time and minimum
terminal position for any i and i + 1 with i € Sc.

3.5. Optimization procedure summary

We summarize the optimization process described above and
portrayed in Fig. 3. Specifically, the overall optimization problem
consists of the following steps:

1. Given the initial position for CAV C and vehicle U, as well as
a maximum allowable time Ty.x > tf*, we replace the candidate

set Sc(t) by a simpler fixed set denoted by Sc. Then, using the set
Sc, the fast lane desired speed Vpow 1S estimated as in (4).

2. CAV C determines an optimal terminal time tf* and con-
trol {ug(t)}, t € [to, tJZ‘] for the maneuver to minimize a given
objective function Jc subject to the vehicle dynamics (6), safety
constraint (9a), and physical constraints (7). Moreover, its optimal
terminal speed vc(t}) must be close to (or exactly match) the
desired speed given by the fast lane speed vfg,.

3. The solution tf specifies the terminal position xc(t;‘) for
CAV C. This allows the computation of the trajectory for each
possible candidate pair in Sc. Once each of the optimal trajectories
is determined, an optimal pair (i*,i* 4+ 1) of cooperating CAVs
must be selected to minimize the disruption metric Dsi(rf*) in (15).
Since Dsi(tf*) depends on the terminal states xl-(t;‘), Xi+1(tf") in (15),
its minimization depends on the optimal trajectories selected by
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Fig. 4. Lateral dynamics diagram.

CAVs i € Sc. This requires the determination of optimal controls
{uf(6)}, t € [to, t;] for all i € Sc minimizing a given objective
function J; (to be defined in the sequel) subject to the vehicle
dynamics (6) and constraints (7), (9b), (9¢), and (9d).

4. We determine an optimal pair (i*, i* 4+ 1) which minimizes
the disruption metric Dsl.(tf*) over all i € S. This solution must
satisfy Dsi(tfk) < Dgp.

4. Lateral optimal control solution

In this paper, the lateral component of the maneuver is no dif-
ferent than the one presented in Chen et al. (2022) for the purely
vehicle-centric lane-changing maneuver. In this section, we limit
ourselves to an overview of this lateral maneuver component.
Let té be the start time of the lateral phase of the lane-change
maneuver. The most conservative approach is to set té = t):",
the optimal terminal time of the longitudinal phase. However,
depending on the “aggressiveness” of a driver we may select
té <t as further discussed in this section.

The vehicle dynamics used during the lateral maneuver are
expressed as

X(t) = v(t)cosO(t), y(t) = v(t)sind(t)
6(t) = v(t)tang(t)/Ly, ¢(t) = o(t)
where the physical interpretation of all variables above is shown
in Fig. 4. Specifically, we denote x(t), y(t), v(t), 6(t), and ¢(t)
as CAV C states representing the longitudinal position, lateral
position, speed, heading angle, and steering angle, respectively.
Similarly, we define w(t) and u(t) as the control inputs for CAV C
denoting the angular acceleration, and acceleration of the vehicle,
respectively. Lastly, we denote L, as the wheel length distance.

We impose physical constraints as follows:

1P(O)] < Pmaxs 10(8)] < Omax (22)

The associated initial conditions are ¢(t5) = 0, 6(t§) = 0, y(t}) =
0. The terminal time is defined as th and the associated terminal
conditions are

d(tf) =0, 6(¢f) =0, y(tf) =1 (23)
where [ is the lane width.

(21)

4.1. Optimal control problem formulation

Once defined the vehicle’s lateral dynamics together with its
physical constraints, the optimal control problem for the lateral
maneuver is formulated as

tL
. 1 5 L
min —wee (t)dt + wthtf (24)
t

sk Jib 2

s.t. (21), (22), (23)

where the objective function combines both the lateral maneuver
time and the associated energy of the controllable vehicle (ap-
proximated through the integral of ¢?(t)) above. The two terms
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Fig. 5. Maneuver aggressiveness.

in Fig. 4 need to be properly normalized, therefore, we set wy =

L _oL .
75— and wy = 7%, where p* € [0, 1] and T, is set based on
max

an empirical valu@%\/e assume that v(t) = v is constant over the
lateral maneuver, which is reasonable since, as shown in Chen
et al. (2022), the lateral phase time is much smaller compared
to the longitudinal phase. For a complete detailed solution to
problem (24), we direct the reader to Chen et al. (2022).

4.2. Combination of longitudinal and lateral maneuvers

After addressing the longitudinal and lateral maneuver com-
ponents separately, we next consider how to integrate them
into a complete lane change maneuver. The initial time té for
the lateral maneuver phase is associated with a preset driver
“aggressiveness” level. As illustrated in Fig. 5, the most conser-
vative approach is to not execute the lateral maneuver until
the longitudinal phase is complete, i.e., set t& = tr. The most
aggressive approach is determined by the earliest time at which
CAV C would merge in between i* and i* + 1, that is the time
té at which any adjacent vehicle along the longitudinal direction
can be guaranteed to not collide with CAV C.

Once the optimal cooperative pair is chosen, let us define the
earliest times when CAV C has reached a safe distance form each
of the other three CAVs involved in the longitudinal maneuver in
Fig. 1. Thus, we define 7; s.t. j € {i*, i* 41, U} as the earliest times
at which CAV C has reached a safe terminal position in accordance
to (9b), (9¢), and (9a) respectively. Thus, 7; is defined as follows:

T = min{t € [to, tr] : Xi+(t) — xc(t) > €,} (25a)
Ty = min{t € [to, tr] : Xc(t) — xp11(t) > €} (25b)
Ty = minft € [to, t] : xy(t) — xc(t) > €} (25¢)

where ¢, denotes a minimum safe distance similar to (8), typ-
ically determined by the length of CAV C. We then define the
lateral maneuver starting time t; = t“ as follows:

t* = max{zy, Tiq1, T} (26)

Remark 3. Setting the lateral maneuver starting time té = t* may
not always be feasible due to the assumption of constant speeds
over the lateral maneuver. However, collision avoidance can still
be guaranteed similar to Section 3.4, where the longitudinal ma-
neuver time can be extended to allow larger gaps between i* and
i* + 1 and consequently longer adjustment intervals.

Remark 4. We can extend the maneuver execution to perform
a series of individual maneuvers following Fig. 3 indexed by k
that minimizes the aggregate metric Dro1 = Y o D’S‘i(tf*"). For
each maneuver k we compute a series of system-centric (social)
optimal trajectories that start sequentially by defining a CAV C
as soon as the maneuver k — 1 has completed its corresponding
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lateral phase. Thus, the initial time for maneuver k is upper
bounded by the terminal time of maneuver k—1 (t§ > tf"_l). Note
that CAV C for maneuver k — 1 can become a CAV candidate for
the kth maneuver. It is also possible to parallelize several such
maneuvers by allowing them to start simultaneously given a set
of target vehicles (CAV C).

5. Simulation results

This section provides simulation results illustrating the time
and energy-optimal controllers we have derived and comparing
their performance against a baseline of non-cooperating (e.g.,
human-driven) vehicles. Our results are based on using the traf-
fic simulation software package PTV Vissim where we use the
included COM API to control the vehicles involved in each lane-
changing maneuver. We only relinquish control for the duration
of each maneuver and return it to PTV Vissim after the maneuver
has ended.

Our simulation setting consists of a straight two-lane highway
segment 4000 m long and an allowable speed range of v =
[10,35] m/s. The incoming traffic is spawned with a desired
speed of v, = 34 m/s. Similarly, the inter-vehicle safe distance
(8)is given by ¢ = 1.5 m and headway parameter ¢ drawn from a
normal distribution A(0.6, 0.4)s set to represent tighter bounds
due to the assumption of a road composed by 100% CAVs with
communication capabilities. To simulate congestion generation,
we spawn an uncontrolled vehicle U traveling on the right lane
(slow lane) with a constant speed vy = 16 m/s throughout the
simulation. The corresponding CAV C is defined as vehicle U’s
immediately following vehicle. For the maneuver start distance
we select dgae from N(70, 10)m for every CAV C initiating a
maneuver. To find the possible CAV candidates on the fast lane,
we choose Iy = 50m and L, = 80 m in setting the candidate
set Sc in (3). The control limits specified for every CAV are given
by Umin = —7 m/s? and umax = 3.3 m/s%. The minimum safety
distance to perform a lane change was defined as €, = 9m which
includes an average vehicle length of 4m. It is assumed that
all CAVs in all simulation scenarios share the same parameters
and control bounds. Lastly, we run our simulations on an AMD
Ryzen 9 5900x 3.7 GHz. For simplicity, we use CasADi Andersson
et al. (2019) as a numerical solver and IPOPT as an interior point
optimizer for the computation of the OCP solutions. We employ
a numerical solution in order to assess the worst-case time per-
formance for the computation of the trajectories corresponding
from solving problems (17a), (18), (19), and (20) respectively.
The computational time can be substantially decreased by taking
advantage of the analytical solutions derived in Appendix A.1.

5.1. CAV C longitudinal maneuver

We apply the formulation proposed for CAV C in (17a) for
different settings using the desired fast lane speed vg,, = 30 m/s.
Thus, we provide simulation results for the initial conditions
pertaining only to vehicles U and C as described in Table 1 for
Cases 1 and 2. For Case 1, we show a sample trajectory generated
from the relaxation of the optimal time proposed in (20) with the
relaxation factor Ay = 1.1 Additionally, we define the weighting
factors in (17a) as w, = 0.25, w; = 0.55, and w, = 0.2. It can be
seen for Case 1, when dg,;+ = 50 m, the resulting maneuver time
is tf* = 2.7 s, and a linear control strategy of constant acceleration
to reach vy, is shown in Fig. 6(a). Conversely, for Case 2, when
the resulting relaxed maneuver time is tf* = 3.6s given that
CAV C needs to first undergo a deceleration segment to provide
enough space to undergo a final acceleration segment allowing
CAV C to get close to vg,, without violating the safety constraint
(9a) as shown in Fig. 6(b). Finally, numerically solving the OCP
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Table 1
Vehicle C sample results.
States d, Xy (t vy (£ xc(t ve(t t ve(ty
Description Relaxed | 17 i]r(n‘])) [;E/E]) [Cr(n(i) [fIEI;)]) is] [fmi/g])
Case 1 False 50 50 16 0 23 2.73 29.53
Case 2 True 50 50 16 0 23 3.63 29.57
=100 SRS The maximum disruption value used for this study was given
= S as Dy, = 0.15, with the weight factor y = 0.8 for position
g sol— CAVC | and 1 — y = 0.2 for velocity in (10). In the optimal control
= Vehicle U problem (OCP) (17a) for CAV C, the weight factors are given as
< 0 ; i i ; Safety Distance w = 0.55, w, = 0.25 and w, = 0.2 to penalize maneuver time,
0 05 1 15 2 25 8 terminal velocity costs, and energy consumption, respectively.
=30F ] The disruption for CAV i* is set as 0 since the speed of CAV i* will
Egl i never decrease, and the weights ¢c, ¢+1 for CAV C and CAV i*+1
Sl il in (15) are 0.5 and 0.5, respectively. When calculating the desired
Bl | speed of the fast lane vgo,, in (5), we set w = 0.3 as the weight on
%22 ‘ ‘ ‘ ‘ : the average speed and 1—w = 0.7 as the weight on the maximum
_ 0 05 1 15 2 25 3 speed. When computing the disruption, the maximum disruption
Ng 25l . allowed was defined as Dy, = 0.15. For simulation purposes, we
a6l | allowed up to ten relaxations per candidate pair. The throughput
= § analysis is performed by counting the number of vehicles within
%2_2, , a 240s window that crosses a measurement point at 4000 m
o 2f ; ‘ ‘ ‘ : . from the starting line. To investigate the effectiveness of our
S o 05 1 15 2 25 3 controllers over different traffic rates, we performed simulations
Time [s] under traffic rates of 2000, 3000, 4000, and 5000 vehicles/hour,
respectively. We collected data to obtain statistics for throughput,
(a) Case 1: Constant acceleration with no time relaxation maneuver time, number of Completed maneuvers, and average
travel time for a CAV to pass the specific segment so as to make
£ 100f S ] comparisons to the baseline case of 100% human-driven vehicles
= R s (HDVs) in Vissim.
g sol— CAVC Performance results for optimally controlled CAVs and non-
= Vehicle U cooperating vehicles under different traffic rates are summarized
& Safety Distance
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(b) Case 2:Mixed acceleration under time relaxation

Fig. 6. Sample optimal trajectory solutions for CAV C.

(17a) with a time discretization of 250 points (this is the hardest
problem to solve due to the non-convexity of its objective), we
obtain results that take an average of 611 ms to obtain. Similarly,
we obtained an average computation time of 85 ms for OCP (20)
with similar computation times for OCPs (18) and (19).

5.2. Sequential maneuvers

We also implemented a series of optimal maneuvers taking
into account the system-centric goal of minimizing throughput
disruptions. Unlike our previous study in Chavez Armijos et al.
(2022), the disruption metric now includes a speed disruption
component.

in Table 2. We use “OCMs” and “Baseline” to represent cooper-
ative Optimal Control Maneuvers and non-cooperative human-
driven cases, respectively. Table 2 shows that the throughput
improvement of our OCMs strategies increases from 4.31% to
16.46% compared to the baseline as the traffic rates increase from
2000 to 5000. Meanwhile, the maneuver time of CAV C is around
7s in the OCMs, while it takes a vehicle without any cooperation
benefit more than 30 s to complete a lane change maneuver in
the baseline. The average maneuver time for CAVs decreases by
about 80%, which in turn reduces vehicle energy consumption
when a lane change is performed. Additionally, the number of
CAVs completing the maneuver in OCMs increases by at least
225% and up to 762.5%, and the average travel time for a CAV to
pass the segment is reduced by 3.53% to 9.29% when traffic rates
increase from 2000 to 5000 respectively. Moreover, we provide
bar charts for the throughput, maneuver time, and the number of
CAV C maneuvers comparing the different performance metrics
under several traffic rates as shown in Figs. 7(a), 7(b), and 7(c)
respectively. These include the mean value and standard devi-
ation under different traffic rates for both OCMs and baseline
cases. The differences for each pair in these charts are statistically
significant, indicating that optimally controlled CAVs experience
significantly improved baseline performance, while also resulting
in improved OCM throughput.

In addition, we compare the performance of OCMs with the
case where vehicles still optimally control their acceleration,
but there is no longer any optimal cooperative pair selection.
Instead, CAV C adopts the “greedy policy” of cooperating with its
immediate leader and the immediate follower on the fast lane,
respectively. Thus, (16) is no longer applied. The “greedy policy”
is equivalent to the approach proposed by Chen et al. (2022).
This benefits the “selfish” objective of achieving shorter maneu-
ver times at the expense of the “social” objective of improving
throughput. The results are summarized in Table 3. As expected,
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Table 2
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Throughput analysis comparison between OCMs and human driving baseline on a 4000 m highway segment under different traffic rates.

Traffic rate Throughput [veh/hour] Maneuver time [s]

Number of completed maneuvers (in 240 s) Avg. travel time [s]

[veh/hour] OCMs Baseline Difference [%] 0OCMs Baseline Difference [%] 0OCMs Baseline Difference [%] OCMs Baseline Difference [%]

2000 1017 975 431 6.01 29.21 —79.42 26.00 8.00 225.00 139.01 144.10 —353

3000 1251 1155 8.31 6.06 44.20 —86.29 36.30 5.00 626.00 144.53 151.04 —4.31

4000 1350 1170 15.38 6.33 53.89 —88.25 3450 4.00 762.50 148.37 158.77 —6.55

5000 1380 1170 17.95 6.54 3250 —79.88 32.00 6.00 433.33 149.02 164.28 —9.29
Table 3

Throughput analysis comparison between OCMs and heuristic CAV selection on a 4000 m highway segment under different traffic rates.

Traffic rate Throughput [veh/hour] Maneuver time [s]

Number of completed maneuvers (in 240 s) Avg. travel time [s]

[veh/hour]

OCMs Heuristic Difference [%] OCMs Heuristic Difference [%] OCMs Heuristic Difference [%] OCMs Heuristic Difference [%]
2000 1017 1015 0.20 6.01 6.21 —-3.17 26.00 27.83 —6.59 139.01 140.16 —0.82
3000 1251 1176 6.41 6.06 5.64 7.47 36.30 35.88 1.18 14453 146.94 —1.64
4000 1350 1189 13.51 6.33 5.74 10.36 34.50 39.71 —13.13 148.37 154.97 —4.26
5000 1380 1203 14.71 6.54 5.55 17.75 32.00 37.40 —14.44 149.02 157.68 —5.49
70
Il OCMs Il OCMs 40 Il OCMs
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Fig. 7. Maneuver impact on network performance.
Table 4

Energy comparison between OCMs and heuristic CAV selection on a 4000 m
highway segment under different traffic rates.

Avg. energy (%uz)

Traffic rate Avg. fuel consumption [mL/s]

veh/hour

fveh/ ! OCMs Baseline Difference [%] OCMs Baseline Difference [%]
2000 726 1217 —40.3 108140 137810 —-215

3000 2958 3278 —9.8 216330 257460 —16.0

4000 7169 7514 —4.6 400060 448130 —10.7

5000 13270 19408 —-31.6 569460 777420 —26.8

the OCM approach in Table 2 achieves better throughput at the
expense of slightly longer maneuver times; however, note that
the overall average travel time in Table 3 is still improved relative
to the heuristic.

Lastly, Table 4 presents a comparison of the average energy
consumption and average fuel consumption between optimally
controlled CAVs (OCMs) and non-cooperating human-driven ve-
hicles (baseline) at different traffic rates. Fuel consumption is
modeled based on equations from Kamal et al. (2013) that ac-
count for cruise and acceleration components. Additionally, it is
assumed that negative acceleration does not generate fuel con-
sumption. Overall, the table highlights the potential benefits of
optimally controlling CAVs to improve fuel efficiency and reduce
emissions. The improvements in energy consumption using the
u? metric are consistent with the more detailed fuel consumption
model.

5.3. Sensitivity analysis

In this section, we wish to quantify the effect that each of the
several parameters used in our analysis can have on the perfor-
mance of an individual maneuver, as well as their impact on the
overall traffic network performance. Thus, we have performed a
sensitivity analysis on the maneuver times and the number of

maneuvers as the individual (vehicle-centric) performance met-
rics. Similarly, we analyzed the average throughput on each sim-
ulation run as a metric for traffic network (system-centric) per-
formance. Specifically, using a similar simulation setup as in
Section 5.2 with a total simulation length of 240 s, we performed
three sets of experiments by modifying parameters w defined in
(4), v defined in (10), and ¢; defined in (15). A summary contain-
ing the parameters used for the sensitivity analysis is shown in
Table 5. Similarly, the averaged results over each corresponding
set of parameters are shown in Fig. 8.

It can be seen from Fig. 8 that for the position disruption
weight y, the overall number of performed maneuvers did not
change much on average. However, it can be seen that whenever
y > 0.75 the throughput starts seeing a dramatic decrease
in magnitude. On the contrary, with increasing y, a monotonic
increase in the average maneuver time can be observed, with a
particular emphasis when the speed disruption contribution is
almost null. This shows the overall need for the speed disruption
contribution.

On a similar note, it can be seen that the weight w used in
the fast lane desired speed estimate plays a significant role in
the average number of maneuvers performed. Similarly, it can
be seen that the average throughput behaves proportionally with
the average number of maneuvers influenced by the changes in
w. The optimal behavior can be seen to occur whenever v ~
0.25, meaning that a larger weight should be given to vpa. The
aforementioned behavior can be explained given that the average
traffic speed is only given by a smaller subset S¢ of the high-speed
lane which might have been disrupted by a previous maneuver,
but the overall fast lane desired speed might be much higher.
Nevertheless, whenever only using vfow = Umax (0r @ = 0), it can
be seen that the overall maneuver length is increased significantly
with a proportional decrease in throughput.
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Table 5
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Parameters used in the different evaluation scenarios. Each row represents a distinct simulated scenario,
with parameters varying one at a time across scenarios for generating the results in Fig. 8.

Traf[f‘i/z h[;il]mty N;I:lllllJSer Dy © v o o o« "y
3000 5 0.15 0 0.8 0 0.5 0.5 1
3000 5 0.15 0.25 0.8 0 0.5 0.5 1
3000 5 0.15 0.5 0.8 0 0.5 0.5 1
3000 5 0.15 0.75 0.8 0 0.5 0.5 1
3000 5 0.15 1 0.8 0 0.5 0.5 1
3000 5 0.15 0.3 i} 0 0.5 0.5 1
3000 5 0.15 0.3 0.25 0 0.5 0.5 1
3000 5 0.15 0.3 0.5 0 0.5 0.5 1
3000 5 0.15 0.3 0.75 0 0.5 0.5 1
3000 5 0.15 0.3 1 0 0.5 0.5 1
3000 3 0.15 0.5 0.8 0.5 0.5 0 0.5
3000 3 0.15 0.5 0.8 0.4 0.2 0.4 0.6
3000 3 0.15 0.5 0.8 0.33 0.33 0.34 0.67
3000 3 0.15 0.5 0.8 0 0.5 0.5 1
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Fig. 8. Sensitivity analysis.

Lastly, the overall effect of ¢; in (15) is analyzed by varying
the split contributions of every CAV C, i*, and i* + 1 involved
in each maneuver. It can be seen that the effect on varying
;i does not impact the average number of maneuvers for each
run. However, it can be observed from the throughput analysis
that the behavior is linear with the highest throughput obtained
when ¢ 0. Such high throughput, however, comes at the
expense of slightly higher maneuver times. This phenomenon is
consistent with Theorem 1 in Chen et al. (2022) where CAV i*
can only accelerate or maintain its speed, thus making its possible
disruption contribution negligible.

6. Conclusions

We have developed a decentralized optimal control frame-
work for multiple cooperating CAVs that combines the “vehicle-
centric” objective of minimizing the maneuver time and energy
consumed by all cooperating CAVs and the “system-centric” ob-
jective of minimizing throughput disruption in the fast lane. Our
analysis includes the selection of an optimal cooperation pair of
CAVs within a neighboring candidate set that minimizes a disrup-
tion metric for the fast lane traffic flow to ensure it never exceeds
a given threshold. Simulation results show the effectiveness of
the proposed controllers with improvements of up to 16% and
90% in average throughput and maneuver time respectively when
compared to maneuvers with no vehicle cooperation. Ongoing

10

work aims to perform multiple maneuvers simultaneously while
still minimizing traffic disruption. An important next step is to
extend our analysis to a mixed-traffic setting with both CAVs
and human-driven vehicles (HDVs). Future work will incorporate
more complex models and investigate how to bridge the gap
between modeling and real-world execution.

Appendix. Analytical OCP solution

A.1. CAV C trajectory Hamiltonian analysis

The solution of the OCP (17) for CAV C can be analytically
obtained by standard Hamiltonian analysis. To simplify the ex-
pression of the objective, we set the parameters oy = w;/wy,
a, = w,/w, where wy,, are the adjustable non-negative
weights in (17). The Lagrange multipliers w1, t2, i3, (4, (5 are
positive when their corresponding constraints are active and be-
come 0 when the constraints are inactive. Note that the problem
has an unspecified terminal time tf, and the terminal condition
for t; is contained in the objective. As in Bryson (2018), the
terminal cost is given as @ = %[vc(tf) — vﬂo,,,]2 which is not
an explicit function of time, and the transversality condition for
(17) is

(@ + H)le=ty = H(Xc(t), Ae(t), uc(t))le=y =0,
with the costate boundary conditions

0P
)‘)é(tf) = (@)h:rf =0,
0P
A(tr) = (E)h:[f = oy [ve(ty) — Vaowl

The Euler-Lagrange equations are given as

(A1)

= —MUs,

= —AC + 13 — 4 — QUs,

and the necessary condition for optimality is
oH ;
— = uc(t) + Ae(t) — w1 + 2 = 0.
BUC
A.1.1. Control, state, safety constraints inactive

In this case, the constraints in (6) are inactive for all t € [to, tf],
and we have u; = pup = pu3 = pug = us = 0. Applying the
Euler-Lagrange equations in (A.2), we get AX = —us = 0 and

AL = —A¥(t), which imply that A¥ = a and A} = —(at + b),
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respectively. The parameters a, b here are integration constants.

From (A.3), we have
uc(t)+ A¢(t) =0, (A4)

and uc(t) = —A¢(t) = at+b. Moreover, considering the boundary
condition of the costate vector at time t;, we have

XX
)»’é(l’f) =

— iz, =0, A5
aX |t—[f ( )
which indicates that A{(t) = a = 0 for all t € [to, tf], and we
get Al(t) = —b and uc(t) = b for all t € [to, t;]. Furthermore,

we have o, [vow — ve(tf)] = b according to the costate boundary
condition.

From (A.1), the transversality condition gives the following
relationship

1
fué(tf) + o + )»)é(tf)vc(tf) + )»g(tf)Llc(tf) =0, (A.6)

2
and recalling that uc(t) = b, it follows that b = +./2«; and
uc(t) = +4/2a;. Consequently, we obtain the following optimal
solution for t € [to, t71:

ui(t) = b = /20, (A7)

VE(t) = vo £ V204 (t — to), (A.8)
1

XE(0) = xc(to) + volt — to) £ v/ 20(t — to)’. (A.9)

Furthermore, the costate condition and (A.8) provide the terminal
time tf as

v w T 2
6= to+ (Vow = Vo) F v2ar: (A.10)
o,/ 20

Observe that in this case, the optimal control input is a time-
invariant acceleration. The sign of the optimal control uf(t) de-
pends on the initial speed vc(to).

A.1.2. Some constraints active

Define X¢(t;) as the terminal position of CAV C if uc(t) = 0 for
all t € [to, tr], and xc(tf) as the actual terminal position of CAV C.
Then, we can specify several cases depending on the relationship
between X¢(t;) and xc(tr). Following the same analysis as in Chen
et al. (2022), there only exist three feasible cases under which the
safety constraints are satisfied:

Case 1: Rc(ff) < Xc(tf) < Xu(tf) — ¢

If Xc(tr) < xc(tf), then ug(t) > 0 and uc(t) —20; is
infeasible. For uc(t) = +/2a¢, we consider whether the velocity,
acceleration, and safety constraints are active or not.

Firstly, we consider the control constraint. Since uc(t) = +/2a;
is a constant acceleration which only depends on «;, we can
easily compare it with uc max and uc min. If v/20; > Uc max, then
UA(t) = Uc max; If v/20; < Uc max, then the acceleration constraint
will never be activated in this case.

Secondly, we consider the velocity constraint. Since CAV C
accelerates to vp,, With constant acceleration uc(t) = J2a;, we
only need to compare vc(tf) to vgey,. Since the desired velocity
Vfiow has to satisfy v, < vc max and we have uc(t) > 0, it follows
that the velocity constraint will never be activated in this case.

Finally, we check the safety constraint. Suppose at time t; €
[to, ty) the safety constraint is active under uc(t) = +/20;. Then,
Xc(t1) = xy(t1) — [pvc(tr) + €]. At time t;, the position of CAV
C satisfies xi(t;) < xy(t;) — [pvc(t;) + €], and we must have
ve(t; ) > vy to activate the safety constraint. With the continuity
of xc(t), ve(t) and uc(t) > 0, the position of CAV C at time tfr
should satisfy x:(t;") > xy(t])—[pvc(t;)+e]. With uc(t) > 0, we
will eventually have xc(t) > xy(t)—[@vc(t)+¢] forall t € (t1, t7],

11
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which contradicts the safety condition (6). Therefore, the safety
constraint will never be activated for all t € [to, t;] in this case.

Observe that in the analysis of Case 1, we apply uc(t) = +/2a;
to check all constraints and have not determined the value of «;.
Therefore, if «/2c; > Uc.max and the acceleration constraint is
activated, we apply uc max instead. Then, the difference between
ve(tr) and vg,,, will be larger, so the speed and safety constraints
will not be activated.

Case 2: xc(ty) < Xc(ty) < xy(ty) — é¢

If xc(tr) < Xc(tr), then ug(t) < 0 and uc(t) = /2a; will be
infeasible in this case. With the same analysis as in Case 1, vc(t)
decelerates from vg to vfo., hence ve(t) will not reach ve min Since
Vflow Satisfies vow > ve min. Moreover, the safety constraint will
not be activated for a reason similar to the one in Case 1.

Case 3: xc(ty) < xy(ty) — 8¢ < xc(tf)

For xc(tf) < xy(tr) — 8¢ < Xc(tr), then u(t) = —/2a;. We can
check if the control constraint will be activated for all t € [to, tf].
Thus, we only consider the speed and safety constraints next.

Firstly, suppose only the speed constraint is active. Proceeding
as in Case 1, the maximum speed constraint will not be acti-
vated. We only need to check if the minimum speed constraint

is activated or not. Assume CAV C reaches v, at tq, then t;

Umin — V(& L.
to + M. However, after CAV C enters the minimum

speed—constraoi[rtled arc, there is no hard terminal constraint to let
C exit this arc.

Secondly, suppose only the safety constraint is activated at
time t; € [to, tr). We then have xc(t;) = xuy(tz) — [pvc(tz) + €l.
To activate the safety constraint, we must have vc(t; ) > vy and
xc(ty) < xy(t; )—[pvc(tz)+¢]. To guarantee safety, vc(tj) should
satisfy vc(t2+ ) < wy, otherwise, the safety constraint will be
violated by the continuity of xc(t) and vc(t). Therefore, we have
ve(tz) = vy, which is equivalent to vo+uc(t; —ty) = vy and t; can

Vy — U
be calculated as t; =ty + v % Since uc(t) = —+/20; < 0 for

all t € [to, t;] and uc(t) <0 forcall t € [to, tr], then ve(t) < vy for
all t e (t, tr] if t; < t, and the constraint will not be activated
againin t € (t, tr]. If t; > t7, then the safety constraint will be
inactive for all t € [to, t;]. However, it is impossible to get t, > tf,
since vy < vy, Otherwise there is no reason for CAV C to change
its lane.

Lastly, if the two constraints are active, we need to figure out
the activation order. If the minimum speed constraint is activated
first with vmin < vy, the safety constraint will not be activated
for all t € (ti, tr]. Since the safety constraint is only activated
instantaneously at t, < t;, the two constraints being active is
equivalent to only the minimum speed constraint being active.

From the analysis above, we have proved that the safety
constraint may only be activated instantaneously at t, < ¢ for
Vy < Vfow, Which can be omitted, and then enter the minimum
speed constrained arc. For t € (ti, tf], there are two possible
trajectories for CAV C. One is to maintain vmi,, then tf = t; for
optimality (otherwise, the time component in (A.11b) increases
while the other two remain fixed). Another trajectory is to ac-
celerate again at t3 < t7. If the safety constraint is inactive for
all t € (t3, ], e, xy(t) — xc(t) > Sc(vc(t)), Vt € (t3, tr], then
the problem becomes unconstrained again, which is the same
as Case 1. However, this trajectory will not be optimal because
it contains unnecessary deceleration during [to, t;] without the
safety constraint being activated for all t e [to, tf] and causes
increased energy consumption. Therefore, the optimal trajectory
for CAV C is to have the safety constraint activated at some
ty < tr. If t4 < tr, then we have vc(t) = vy for all t € [ty, t7],
otherwise the safety constraint will be violated or the trajectory
will be again suboptimal. The total cost is increasing for t from t,
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to ty since it causes additional time and energy without increasing
speed. To achieve optimality, we conclude that t; = t;.

Therefore, the inequality constraint xy(t) — xc(t) = Sc(vc(t))
for all t € [to, ] is equivalent to xy(tr) — xc(tr) = 8c(vc(tr)) and
the OCP for CAV C can be rewritten as

- ) ) 1,
min — (vc(ty) — vaow)” + ar + —ug(t) | dt (A.11a)
truc(t) 2 o 2
st xc(t) = ve(t), vc(t) = uc(t), (A.11b)
Ucpy, < Uc(t) < Ucpy, VE € [to, 7] (A11¢)
Uepin < Vc(t) < Vg VE € [to, 7], (A11d)
XU(tf) - XC(tf) = (SC(UC(tf))s 0= fr < Tax (A.11e)

where the difference between (17) and (A.11) is that the safety
constraint for CAV C with respect to vehicle U becomes a strict
equality constraint at the terminal time t;. The reason is that we
have proved that the safety constraint may be activated instanta-
neously at t; and will never be activated again after t, so that the
safety constraint for all t € [to, t;) becomes redundant. Moreover,
equality holds to save any unnecessary deceleration of CAV C. For
this revised OCP, its Hamiltonian becomes

HOxG, e, 1) = S 2000+ e+ RE(0vc(t) +
A(B)uc(t) 4 p(uc, min — uc(t)) + pa(uc(t) — e max)
+u3(ve,min — ve(t)) + pa(ve(t) — ve max)s (A.12)

the costate boundary conditions become

0P
)‘)((j(tf) = (a)h:tf =da,
0P
A(ty) = (E)h:tf = ay[vc(ty) — vaowl,

a is a constant, and the Euler-Lagrange equations are given as

- oH
Ae=——=0,
BXC
v oH X
Ae = vl —A¢ + 13 — Ha. (A.13)
Uc

(1) No Constraint Active. If no constraint is active for all t €
[to. tr], then all Lagrange multipliers g1, 2, (3, 4 are 0. Thus,
(A.13) gives A% = 0, AL = —A%,i.e, AX = a, AY = —(at+b), where
a, b are integration constants. With the same necessary condition
for optimality in (A.3), we have

uc(t) + A¢(t) =0, (A.14)

which implies uc(t) —Ag(t) at + b. Hence, the speed
and position trajectories of CAV C will be expressed as vc(t) =
1at> + bt + ¢ and xc(t) sat® 4+ Ibt* + ct + d, where
a, b, c, d are integration constants. In addition, the transversality
condition (A.1) gives the following relationship:

1
5ug(rf) +ar + At )ve(ty) + AL(t Juc(ty) = 0. (A.15)

Combining all the boundary conditions above and the initial
conditions of to, v2, vy, Vo, &, &y, Xc(to), Xu(to), the following
six equations hold:

aty +b = oy (Vow — velty)),

1
ve(ty) = 5atf2 + bty +c,

1
velty) = 5atg + bty +c,

12
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1
ar + avc(ty) = E(atf + b)Y, (A.16)
1 1
xc(to) = gatg + Emg +cto+d,
1 1
xy(te) — c(ue(ty)) = Eatf3 + 5brf2 + cty +d. (A17)

Thus, the unknown variables a, b, c, d, t; can be obtained by
solving (A.17). It is also easy to show that a has to be non-
negative, and b has to be non-positive. If both a, b are positive,
then CAV C will never decelerate, which violates the terminal
conditions for xc(tf) < Xc(tf). If both a, b are negative, then
CAV C will keep decelerating, which violates the optimality in
the unconstrained case. If a is negative, b is positive, this means
that CAV C will accelerate over [to, t;] where t; —%, then
decelerate. If t; > t;, which means CAV C keeps accelerating for
all t € [to, t;], then the terminal constraint xc(t;) < Xc(ty) will
be violated. If t; < t;, which means CAV C accelerates in [tp, t1],
then decelerates in [tq, tf], which violates the optimality in the
unconstrained case.

(2) Safety Constraint Active Only. In this case, we can show
that the safety constraint will be activated at most once instan-
taneously during [to, t;). First, note that with the initial condition
vc(to) < vpow and the terminal position xc(tr) < xy(ty) — 8¢ <
Xc(tr), CAV C cannot keep accelerating over [to, t;], otherwise we
will get Case 1. If the safety constraint is activated at t;, then
ve(ty) = vy; otherwise, if vc(t;) > vy, then from the continuity
of velocity, the safety constraint will be violated at t;", whereas
if vc(t;) < vy, then the safety constraint will not be activated
at t;. Considering the value of ty, if t; > tf, then it follows that
indeed the safety constraint will be activated at most once. On the
other hand, if t; < ty, there are two possible trajectories for CAV
Cint € [ty, tr]. One is to travel at constant speed such that the
safety constraint is activated for all ¢ € [ty, tf] with ve(t) = vy.
However, to achieve optimality, t; should be exactly equal to tf
because the objective function in (A.11b) is monotonically in-
creasing over [ty, ty] with the same terminal speed cost. Another
trajectory is to exit the safety-constrained arc at t, < t;. However,
to guarantee safety, C still has to decelerate at t,, then accelerate
at some t3 such that t; < t3 < t; to satisfy the terminal position
constraint xy(tr) — xc(tf) = 8c(vc(tr)). However, decreasing the
length of the safety-constrained arc will decrease the objective,
hence the optimal solution is to have t; = t,.

Therefore, having shown that the safety constraint will be
activated at most once instantaneously during [fo, tr), we now
only need to consider whether the speed and control constraints
are active as discussed in the remaining cases below.

(3) Control Constraint Active Only. The analysis in (1) indicates
that the acceleration is non-decreasing, so the minimum control
constraint will not be activated if it is inactive at the initial
time. Firstly, we assume only the maximum control constraint
is activated. Suppose u(t) reaches up. at time t;. Then uc(t) =
at + b for t € [to, t1], uc(t) = umax for t € [t, tr] and t; can be
computed by at; + b = up,x with the obtained coefficients a, b
from (A.17). Moreover, xc(t1), vc(ty) can also be obtained and we
can express the terminal speed as

ve(tr) = ve(tr) + Umax(ty — t1), (A.18)
and the terminal position
vy(ty — to) — 8(vc(ty)) (A.19)

1
= Xc(t) + ve(t )ty — 0) + S umax(ty — by )?

to solve for the terminal time ;.
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If only the minimum control constraint is activated, since the
acceleration is non-decreasing, the entry point of the constrained
arc is tg, and suppose t; is the exit point of the constrained arc.
Similarly, we have the following six equations:

aty; + b = upin,
aty + b = oy [Vow — ve(tr)l,

1
Eatf + btz + C = VUnmin,

1 1
—at; + 5btz2 +cty+d=

. (A.20)

1
xc(to) + vc(to)(t2 — to) + iumin(tZ — 1),

1 1
Eatf3 + 5brf2 + cty +d = xu(ty) — 8(vc(ty)),

1
Sat + b)Y + a; + avc(ty) — (at; + b)* =0,

to solve for a, b, c, d, t,, t;.

Finally, if the minimum and maximum constraints are both
activated, suppose the exit point for the minimum constraint
is 71, and the starting point for the maximum constraint is ..
Then u(t) = Umin, t € [to, T1), u(t) = at + b, t € [11, T2] and
U(t) = Umax, t € (12, tr]. Therefore, 7y is the same as t, in the
above case, and we now calculate 7, and t; by using aty+b = tmax
with

Xc(T2)+ve(n)(ty — 12) (A21)

1
+ Eumax(tf — 1) = xy(ty) — 8(vc(ty))

1
ve(r2) = 5%2 + b1y +c,

1 1
Xc(‘L'z) = Eatg —+ Ebtzz + cty + d

so that we can solve for 1o, tf, where a, b, ¢, d are obtained from
the Egs. (A.20).

(4) Speed Constraint Active Only. From the terminal position,
we know that CAV C includes both a deceleration and acceler-
ation trajectory segment. Since the safety constraint will never
be activated in [to, tf) and we have vgo, < Umax, the maneuver
will be completed before the maximum constraint is activated.
Hence, we only need to check whether the minimum speed vy,
is reached. Suppose t; is the starting point of such a constrained
arc and t; is the exit point. Then, u(t) = at +b for t € [to, t1), and
u(t) = 0 for t € [tq, t;]. We can compute t; through at; + b =0
and further express the velocity and position of CAV C at t; as

1
ve(ty) = 5at12 + bt; +c,

1 1
xc(ty) = gaﬁ + 5btl2 +cty +d, (A.22)

where the coefficients a, b, c, d are obtained by (A.17). Hence, we
can solve the following six equations

ait, + b] =0,
1 2
ialtz + b1ty + €1 = Unmin,

(A.23)

altf + b] = Olu(vﬂow - UC(tf))»

1 1
—ait; + Eblrf + ¢ty + di = xc(t1) + vmin(tz — 1),

6

1 1
Eaﬂﬁ + Ebltfz + city + dv = xy(ty) — (ve(ty)),
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1
i(a]tf + b1 + o + ajue(ty) — (arty +by)* =0

to obtain ay, by, ¢1, d1, £, t7.

(5) Control and Speed Constraints Active. Based on the speed
constraint analysis above, the maximum speed will not be
reached during [to, tf]. Therefore, there are only three cases that
could occur if we have control and speed constraints active, i.e., (i)
Umin, Umin active, (ii) Umax, Umin active, (iii) Umin, Vmin and Umax
active.

(i) Umin, vmin active: First, we need to check which constraint
will be activated first. If vy, is reached, this indicates that the
acceleration decreases to 0, and the acceleration has to be positive
to exit the vy, constrained arc. Hence, up;, is reached first at
t1 > to, then reaches vy, at t; > t1. Notice that for t € [tg, t1),
the control constraint has the same performance as in (3), so we
use (A.20) to get the CAV C trajectory for t € [ty, t1] directly.

At time t,, we have the interior constraint N(vc(t)) = vmin —
Uc(tz) =0, and

_ IN
AL(L) = A6 + 7=t

oN
H(t;)=H(t]) — 7 — |i=t, ,
(&) =H(t]) at|t_t2
where 7 is a Lagrangian multiplier. Based on (A.24), we have
() = AL(E), A(t) = AL )—m, and H(t; ) = H(t]"). Hence,
we have

1, o b
Eu%(tz )+ o + A8 Jue(ty ) + ALty Juc(ty)

(A.24)

= %u%(t;) + a4+ At Jue(t)) + ALt uc(t)).
Since the state variables are continuous, we have v¢(t; ) = vc(t;r ),
xc(t, ) = xc(t)) and uc(t,) = 0. Moreover, the optimality condi-
tion gives uc(t; ) = —Ag(t; ). Thus, we can calculate uc(t, ) =0
according to (A.25), i.e., uc(t;) = 0. Letting the exit point be ts,
combining the optimality and transversality conditions, we have
the following six equations

(A.25)

1
501['32 + b1tz + €1 = Umin,

1 1
galt;” + Eblti + cit3 + di = xc(t2) + vmin(ts — &),

aits + bl =0,

1 1
galtﬁ + 2 bitf +aaty + di = xu(ty) = 8(ve(ty),

aity + by = y(va — ve(ty)),

2@ty +byP + B+ anelty) — (@it + by =0 (A26)
to solve for ay, by, ¢1, dy, t3, ty. Note that using the coefficients
a,b,c,d in (A.20) and the known t;, we can similarly calculate
t, from at, + b = 0, and vc(ty), xc(t2).

(ii) Umax, Umin active: In this case, the optimality of the solution
determines that vy, has to be reached before .y, otherwise,
vmin Will not be reached or the solution will not be optimal. For
the minimum speed constraint being activated first, suppose t;
is the entry point of the minimum velocity-constrained arc, t;
is the corresponding exit point, and t3 is the entry point of the
acceleration constraint. For t € [tg, t1), the trajectories of CAV C
have the same performance as in (4), i.e, uc(t) = at + b, t €
[to, t]), Uc(t) =0,t € [t, tz), and Uc(t) = at + b],t € [ty, t3),
where tq, tp, a, b, a;, b; can be calculated from (A.22) and (A.23).
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In addition, t3 can be computed from a;t3 + by = Umax, and we
can further obtain vc(t3), xc(t3).

For the terminal position constraint, the states at the terminal
time t; should satisfy the following equation:

1
Xe(t3) + velt)ty — t3) + S timax(ly — t3)

xy(to) + vy(ty — to) — Puc(ty) — 6,

which provides the solution for ;.

(iii) Umin, vmin and umax active: regarding the activation order
of the three constraints, tUmin, Umin, and Umax, proceeding as in the
previous cases, Uni, Will be activated first to reach vp;,, then CAV
C accelerates from vpmin tO Vgow, and then uma is activated. We
can directly combine the results of cases (i) and (ii) to get the
complete trajectory for CAV C in this case.

A similar analysis can be performed for the solutions for CAVs
i and i+ 1, thus we omit the details for the Hamiltonian analysis
corresponding to (18), (19), and (20).
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