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A B S T R A C T   

Convolutional neural networks (CNN) have demonstrated good accuracy and speed in spatially registering high 
signal-to-noise ratio (SNR) structural magnetic resonance imaging (sMRI) images. However, some functional 
magnetic resonance imaging (fMRI) images, e.g., those acquired from arterial spin labeling (ASL) perfusion fMRI, 
are of intrinsically low SNR and therefore the quality of registering ASL images using CNN is not clear. In this 
work, we aimed to explore the feasibility of a CNN-based affine registration network (ARN) for registration of 
low-SNR three-dimensional ASL perfusion image time series and compare its performance with that from the 
state-of-the-art statistical parametric mapping (SPM) algorithm. The six affine parameters were learned from the 
ARN using both simulated motion and real acquisitions from ASL perfusion fMRI data and the registered images 
were generated by applying the transformation derived from the affine parameters. The speed and registration 
accuracy were compared between ARN and SPM. Several independent datasets, including meditation study (10 
subjects × 2), bipolar disorder study (26 controls, 19 bipolar disorder subjects), and aging study (27 young 
subjects, 33 older subjects), were used to validate the generality of the trained ARN model. The ARN method 
achieves superior image affine registration accuracy (total translation/total rotation errors of ARN vs. SPM: 1.17 
mm/1.23◦ vs. 6.09 mm/12.90◦ for simulated images and reduced MSE/L1/DSSIM/Total errors of 18.07% / 
19.02% / 0.04% / 29.59% for real ASL test images) and 4.4 times (ARN vs. SPM: 0.50 s vs. 2.21 s) faster speed 
compared to SPM. The trained ARN can be generalized to align ASL perfusion image time series acquired with 
different scanners, and from different image resolutions, and from healthy or diseased populations. The results 
demonstrated that our ARN markedly outperforms the iteration-based SPM both for simulated motion and real 
acquisitions in terms of registration accuracy, speed, and generalization.   

1. Introduction 

Arterial spin labeling (ASL) is a noninvasive magnetic resonance 
imaging (MRI) technique to measure cerebral blood flow (CBF) (Detre 
et al., 1992; Williams et al., 1992) with naturally existing arterial blood 
water as an endogenous tracer. ASL imaging acquires pairs of images: a 
labeled image and a control image. Labeled images are obtained by 
magnetically labeling arterial blood water with radiofrequency pulses 
from the MRI scanner, while control images are without labeling of 
blood water. Labeled and control images are acquired in a temporally 
interleaved fashion. Subtraction of labeled images from controls images 

is a relative measure of perfusion proportional to CBF (Detre et al., 1992; 
Williams et al., 1992). The ASL signal-to-noise ratio (SNR) is inherently 
low because the signal from labeled blood is only about 1% of the full 
tissue signal. 

To improve SNR, a series of labeled-control image pairs are normally 
acquired. They are averaged to generate CBF maps or used to produce 
functional connectivity maps. However, subject head movements and 
physiological motions (such as cardiac pulsation and respiratory mo
tion) can cause misalignment of ASL time series (Ye et al., 2000), which 
can severely affect the quality of further measurements. Therefore, ac
curacy of image realignment (motion correction across ASL time series) 
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is crucial for robust CBF and functional connectivity measurements. For 
real time applications, the speed of image realignment across a time 
series of images is very important. 

Many conventional image realignment algorithms, such as those 
from Statistical Parametric Mapping (SPM) (Friston et al., 1995), 
FMRIB’s Linear Image Registration Tool (FLIRT) (Jenkinson et al., 2002; 
Jenkinson and Smith, 2001), and Automated Image Registration (AIR) 
(Woods et al., 1998; Woods et al., 1998), have been developed and 
applied to register ASL time series images. The image realignment al
gorithms search for an affine transformation with a set of parameters to 
optimize pixel correspondence between a pair of fixed (target) and 
moving (source) images by maximizing a similarity measure of spatial 
correspondence between images. Conventional ASL image realignment 
optimization algorithms are often inaccurate and computationally 
expensive because the ASL time series has limited SNR and these con
ventional algorithms are typically solved using iterative algorithms. 

Recently, deep learning techniques have been used for 3D medical 
image realignments (or affine image registration) and achieved com
parable performance to iterative algorithms when applied to anatomical 
images, such as chest CT images, cardiac cine MRI images, prostate ul
trasound images, and T2-weighted MRI images (Balakrishnan et al., 
2018; de Vos et al., 2019). The deep learning-based realignment 
methods are mostly supervised because they rely on the known 
ground-truth (or affine) transformation information (Liao et al., 2017; 
Miao et al., 2016; Chee and Wu, 2018; Hu et al., 2018). For instance, one 
obtained training examples using conventional image registration 
methods and used convolutional neural networks (CNN) and rein
forcement learning to predict small steps towards optimal realignment 
via affine registration (Liao et al., 2017); another synthesized training 
examples by applying combinations of rotation, translation, and scaling 
(affine transformation parameters) to the moving image and trained the 
CNN to regress affine parameters hierarchically (Miao et al., 2016) or at 
the same time directly (Chee and Wu, 2018); or used training images 
with manually annotated anatomical labels and trained the CNN to 
predict displacement fields to align multiple labeled corresponding 
structures (Hu et al., 2018). Deep learning has been employed in su
pervised 3D affine multi-modal image registration in different ways: 
predict affine transformation parameters by adopting pretrained 2D 
VGG-19 networks for feature extraction and fully connected regression 
networks (Kori and Krishnamurthi, 2019), using a pretrained VGG-type 
CNN network, training it first on a large number of synthetic images, and 
then refining using a small number of real images (Zheng et al., 2017), 
training a model to predict the image of one modality from that of 
another modality of the same subject and registering the predicted 
image and fixed image from the same modality (Liu et al., 2019), using a 
fully connected network to determine the control points and then CNN 
for feature detection (Zou et al., 2019). However, conventional image 
alignment methods are typically unsupervised because ground-truth 
transformations are not available. Unsupervised medical image regis
tration methods have been explored but they are mainly applied to 
deformable 3D medical image registration (Balakrishnan et al., 2018; de 
Vos et al., 2019). Although deep learning-based affine image registration 
is sometimes used as the first step, its efficacy is not evaluated as a 
separate metric. In addition, the performance of deep learning-based 
affine image registration has not been evaluated in ASL images, or 
low-SNR functional images in general, which is a stronger test of their 
potential utility. Here, we aim to assess the feasibility and efficacy of an 
unsupervised deep learning method for realigning ASL time series by 
simulating affine registration, training a model based on a real ASL 
dataset and investigating generalization of the trained model to different 
ASL datasets. 

2. Methods 

We modeled a CNN-based linear registration of 3D ASL difference 
images, which we named an affine registration network (ARN). The ARN 

has a pair of 3D moving and 3D fixed images as input and aims to output 
affine registration parameters between the two. It aims to minimize the 
difference between the fixed image and the moved image after applying 
the affine transformation to the moving image. The ARN contains 
several CNN layers with gradually reduced image resolutions to derive 
useful low-resolution features and two fully connected layers. 

2.1. ARN architecture 

The ARN is composed of an encoder CNN followed by a fully con
nected network, as shown in Fig. 1. The network has the 3D moving 
image and the fixed image (each as grayscale ASL difference image) as 
input by concatenating them as a two-channel image. In this study, the 
input size is 128×128×40×2. The encoder CNN contains one convolu
tion layer and four CNN blocks. The convolution layer has a kernel size 
of 4 × 4 × 4 and stride size of 1 × 1 × 1. Each of the four CNN blocks 
consists of a Rectified Linear Unit (ReLU) activation layer, a 3D 
convolution layer, and a batch normalization layer. For the four CNN 
blocks, the stride sizes of the first three convolution layer are 2 × 2 × 2, 
while the last convolution layer is 2 × 2 × 1. Twenty channels are 
applied in each convolutional layer. Hierarchical features are captured 
by these CNN layers with different spatial resolutions. The output of the 
encoder CNN is flattened and is passed as input to one fully connected 
layer (linear layer and ReLU layer) with 250 nodes. Another fully con
nected layer outputs 6–12 nodes (linear layer only). We used 6 nodes in 
the study because the non-aligned MRI images (specifically ASL perfu
sion images here) are from subject motion, involving only translations (3 
parameters) and rotations (3 parameters). The moved image is gener
ated by applying the affine transformation (see Affine Transformation 
section) from the learned 6 parameters to the moving image and inter
polating the 3D mesh grid via trilinear interpolation based on 8 neigh
boring voxels. 

Fig. 1. ARN network architecture for affine image registration. The input layer 
has both the 3D fixed image and moving image (each as 128 × 128 × 40 matrix) 
by concatenating them as a two-channel image (input size as 128 × 128 × 40 ×

2). The ARN network has a encoder CNN and a fully-connected neural network 
(FNN). The CNN contains one convolution layer and four CNN blocks. These 
convolution layers have kernel size of 4 × 4 × 4. Each of four CNN block 
consists of a Rectified Linear Unit (ReLU) activation layer, a 3D convolution 
layer, and a batch normalization layer. The output size and stride size of each 
CNN layer are listed on the bottom and top of the layer (shown as a rectangle). 
Twenty channels are applied in each convolutional layer. The output of the 
encoder CNN is flattened and is passed into FNN. The FNN contains two fully 
connected layers, in which they have 250 nodes (linear layer and ReLU layer) 
and 6 nodes (linear layer only), respectively. 
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2.2. Affine transformationThe application order of translation and 
rotation matrices affects values of the affine transformation matrix. To 
compare with the state-of-the-art linear registration method — SPM, we 
used the same application order of translation and rotation matrices. Let us 
call 6 parameters from the ARN output p(1), p(2), …, p(6). Specifically, 
the affine transformation matrix M is defined as the translation matrix T 
multiplied by rotation matrix R: 

M = T*R (1) 

T =

⎡

⎢
⎢
⎣

1 0 0 p(4)

0 1 0 p(5)

0 0 1 p(6)

0 0 0 1

⎤

⎥
⎥
⎦ (2)    

2.3. Loss function 

The ARN was trained in an unsupervised way by minimizing the loss 
between moved images and fixed images. The total loss was calculated 
from three loss functions between the fixed and moved image. The 
relative weights of the three loss functions were determined empirically. 
Their definitions are as follows. 

2.4. MSE loss 

Mean squared error measures the average squared difference be
tween the predicted image (moved image) and the actual image (fixed 
image). 

MSE loss =
1
n

∑n

i=1
(F − M)

2 (4)  

where n is the total number of voxels of input images F and M, F is the 
fixed image and M is the moved image. 

2.5. Pixel-wise L1 loss 

The pixel-wise L1 loss function describes the pixel level difference 
between the fixed image F and the moved image M. 

L1 loss =
∑n

i=1
|F − M| (5)  

2.6. Pixel-wise structural dissimilarity loss 

The dissimilarity loss utilizes the structure similarity index (SSIM) 
(Woods et al., 1998) to calculate the dissimilarity of two volumes which 
will help to generate clearer motion boundaries. 

DSSIM loss =
1
n

∑n

i=1
(1 − SSIM(F, M)) (6)  

2.7. Total loss 

The total loss is calculated as 

Ltotal = MSE + λ1⋅L1 + λ2⋅DSSIM (7)  

λ1 and λ2 are the loss weights which control the relative importance of L1 
loss and dissimilarity loss. We set the range of λ1 and λ2 from 0 to 2000 
with an increment of 100 and compare the total loss on the test data for 
each pair of λ1 and λ2 after training has converged. The best results were 
achieved with λ1 = 100 and λ2 = 1000. 

2.8. Experiments 

2.8.1. Dataset 
We evaluated the performance of the ARN method using a simulated 

ASL dataset and a real brain ASL dataset and tested the generality of the 
ARN method with several ASL datasets from our previous projects. All 

experiments were performed in Python using Tensor Flow on an Nvidia 
RTX 2080Ti GPU and an Intel® Core™ i7–8700 K 3.7 GHz CPU with 6 
cores and 64GB of internal memory. 

2.8.2. Real imaging data 
Dynamic pseudo-continuous arterial spin labeling (PCASL) perfusion 

(Dai et al., 2008) MRI images, with a 2 s of labeling duration and 1.8 s of 
post-labeling delay, from 20 subjects (33.3 ± 4.6 yrs old, 8 females) 
were obtained from our previous study (Dai et al., 2016). Each subject 
was acquired with a time series of 39 3D PCASL perfusion images 
(temporal resolution of 30 s, total acquisition time of 20 min). All 3D 
perfusion images were acquired with a 3D stack of spirals rapid acqui
sition with refocused echoes (RARE) imaging sequence. Each 3D ASL 
control or label image was acquired with three interleaved/segmented 
spirals (in-plane spatial resolution of 3.64 mm). To reduce the effect of 
physiological noises and head motion, we applied heavy background 
suppression to suppress gray white matter, fat, and CSF signals to less 
than 0.3% of the fully relaxed signal by using the algorithm in Maleki 
et al. (2012) and Dai et al. (2011). We determined the pulse timings of 
background suppression pulses by minimizing the sum of squared dif
ferences between theoretical magnetization and target magnetization 
(specifically, zero for CSF and fat and 0.3% for gray matter and white 
matter). This heavy background suppression causes both control and 
label images to have relatively low signals. Therefore, we choose to 
register 3D ASL difference images, control images minus adjacent label 
images, (each with 6 TRs, a temporal resolution of 30 s), instead of 
registering control and label images separately. 3D ASL difference im
ages were reconstructed and interpolated into a 128 × 128 matrix for 
each of 40 slices with a nominal spatial resolution of 1.88 × 1.88 × 4 
mm3. For each subject, any 3D ASL difference image was randomly 
chosen from 39 ASL time series as the fixed image, each of the other 38 
ASL difference images (from other time points) was used as a moving 
image and formed 38 pairs of images together with the fixed image. We 
used 5-fold cross validation in order to evaluate the performance of the 
ARN model for unseen subjects. All 20 subjects were randomly divided 
into 5 folds, in which each fold has 4 subjects. For the ith (1 ≤ i ≤ 5) 
partition, the ith fold (4 subjects, 152 pairs of images) served as the test 
set and the remaining 4 folds served as the training set (16 subjects, 608 
pairs of images). 

R =

⎡

⎢
⎢
⎣

1 0 0 0
0 cos(p(3)) sin(p(3)) 0
0 − sin(p(3)) cos(p(3)) 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

cos(p(2)) 0 sin(p(2)) 0
0 1 0 0

− sin(p(2)) 0 cos(p(2)) 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

cos(p(1)) sin(p(1)) 0 0
− sin(p(1)) cos(p(1)) 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (3)   
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2.8.3. Simulated motion 
The ground-truth translation and rotation parameters are unknown 

for any pair of real MRI images. To quantify the accuracy of these six 
parameters derived from the ARN model, we simulated subjects’ motion 
by applying random translations and rotations to the fixed image. We 
used the same above-mentioned ASL dataset (Dai et al., 2008) with 20 
subjects and 39 3D ASL images from each subject. For each subject, 34 
3D ASL images were randomly chosen from 39 time points as fixed 
images. Twenty subjects have 680 fixed images in total. For each fixed 
image, a moving image was generated by applying an affine trans
formation with 6 parameters (x, y, and z translations in a range of [− 2, 
2] voxels, x, y, and z rotations in a range of [− 5◦, 5◦] with a uniform 
distribution for each of six parameters). From 680 simulated pairs of 
images, 510 pairs of images were randomly chosen as training data, and 
the other 170 pairs of images were used for testing. 

2.8.4. Datasets for testing generalizability of the ARN model 
Three datasets with ASL time series in our previous projects were 

used to test generalizability of the ARN model. The datasets were ac
quired to evaluate the changes of ASL functional connectivity before and 
after meditation (meditation dataset) (Zhang et al., 2021), the deficits of 
ASL functional connectivity and low frequency fluctuation in bipolar 
disorder compared to normal controls (bipolar disorder dataset) (Dai 
et al., 2020), the changes of perfusion and functional connectivity in 
older adults compared to young adults (aging dataset) (Li et al., 2020; 
Zhang et al., 2022). For the meditation dataset (Zhang et al., 2021), 10 
subjects (19.20 ± 0.28 yrs old, 4 females) were assessed using GE 3T 
MR750 scanner at the Cornell University MRI facility before and after 
meditation training with a time series of 49 3D PCASL perfusion images 
(temporal resolution of 20 s, total acquisition time of 17 min), in which 
each 3D image was a 128 × 128 × 40 matrix with an interpolated spatial 
resolution of 1.88 × 1.88 × 4 mm3. For the bipolar disorder dataset (Dai 
et al., 2020), 19 bipolar disorder subjects (33.53 ± 9.60 yrs old, 9 fe
males) and 26 normal controls (31.23 ± 10.80 yrs old, 14 females) were 
assessed using GE Signa HDxt scanner at the MRI research center of Beth 
Israel Deaconess Medical Center with a time series of 26 3D PCASL 
perfusion images (temporal resolution of 20 s, total acquisition time of 9 

min), in which each 3D image was with the same interpolated spatial 
resolution as the meditation dataset. For the aging dataset (Zhang et al., 
2022), 33 young adults (30.82 ± 11.56 yrs old, 23 females) and 27 older 
adults (68.63 ± 4.84 yrs old, 15 females) were assessed using GE 3T 
MR750 scanner at the Cornell University MRI facility with a time series 
of 29 3D PCASL perfusion images (temporal resolution of 20 s, total 
acquisition time of 10 min), in which each 3D image was with the same 
interpolated spatial resolution as the meditation dataset. No training 
was performed on the ARN model. Using the trained ARN model, 600 
pairs of moving and fixed images (approximately same number of pairs 
randomly chosen from each subject) for each group of every dataset 
were used to test the performance of the ARN model. 

2.8.5. Comparison with SPM affine registration 
Statistical parametric mapping (SPM12) is one of the most popular 

neuroimage registration tools (Friston et al., 1995). Realignment is the 
affine image registration method in SPM based on iterative algorithms. 
It was used to compare with the performance of the ARN method in 
terms of accuracy and speed. To evaluate whether the accuracy of the 
ARN method is dependent on the degree of head motion, we calculated 
the relative reduction of total loss from ARN with respect to SPM across 
three ranges of head motion. Because no ground truth of head motion in 
real datasets and more accuracy in the ARN method, we use six motion 
parameters from the ARN method to estimate the degree of head motion. 
Specifically, framewise displacement (FD) was calculated from these six 
parameters as an index to represent head motion (Power et al., 2012). 
Based on FD values from the subgroups of each dataset, we divided 
small, medium, and large head motions with equal number of FD values. 

3. Results 

3.1. Performance of ARN and SPM on simulated images 

3.1.1. Comparison of loss between ARN and SPM 
For the simulated motion, the MSE loss, L1 loss, and DSSIM loss 

between the moved images and the fixed images from the SPM affine 
registration and the proposed ARN are shown in Fig. 2a–c. Specifically, 

Fig. 2. Comparisons of three types of loss from ARN and SPM affine registration for simulated motion and real 3D perfusion imaging acquisition. (a) MSE loss (shown 
as its square root), (b) pixel-wise L1 loss, (c) DSSIM loss, and (d) running time using simulated 3D perfusion data; and (e) MSE loss (shown as its square root), (f) 
pixel-wise L1 loss, and (g) DSSIM loss, (h) running time using real perfusion data were compared between ARN and SPM. 
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the MSE loss, L1 loss, DSSIM loss, and total loss from the ARN affine 
registration was 28.03 ± 10.90%, 19.77 ± 18.17%, 6.20 ± 61.94%, 
39.74 ± 17.13% less than the corresponding loss from the SPM affine 
registration using the test data, which are significantly smaller (p <
10− 6, p < 10− 6, p = 0.0015, p < 10− 6), respectively. These results show 
that ARN can provide more accurate affine image registration on 
simulated imaging data. 

3.1.2. Comparison of the errors in affine parameters derived from ARN and 
SPM 

The predicted 6 affine parameters generated from the ARN and SPM 
are compared with the parameters that are used to generate moving 
images from the ground-truth parameters. Compared with the ground- 
truth parameters, the errors of the 6 parameters generated from the 
ARN are significantly smaller than those from the SPM (p < 10− 4) with a 
mean error of 9.5 times smaller in the test data (Table 1). This implies 
that ARN can predict motion parameters much closer to the ground 
truth. 

3.1.3. Comparison of registration speeds between ARN and SPM 
The running time for registering a pair of test images from ARN and 

SPM is also listed in Fig. 2d. The average running time of ARN is 5.7 
times less than that of SPM. It takes ARN less than half a second to 
register a pair of unseen images. Although the training time of ARN is 
about 11 h on the current computing environment, it can be performed 
prior to the registration task. 

3.2. Performance of ARN and SPM on real ASL perfusion MRI images 

For the real ASL perfusion MRI imaging acquisition, the MSE loss, L1 
loss, and DSSIM loss between the moved images and the fixed images 
from the SPM affine registration and the proposed ARN are also shown 
in Fig. 2e–g. Specifically, the MSE loss, L1 loss, and DSSIM loss from the 
ARN affine registration were 18.07 ± 2.48%, 19.02 ± 1.77%, 0.04 ±
1.58% less than the corresponding loss from the SPM affine registration 
using the test data, which are significantly smaller (p < 10− 6, p < 10− 6) 
for the MSE loss and L1 loss, respectively. This demonstrates that ARN 
can provide more accurate affine image registration on real ASL imaging 
acquisition, which is consistent with its performance on simulated 
motion. 

The running time for registering a pair of real ASL perfusion MRI 
images on the test data from ARN and SPM is also listed in Fig. 2h. On 
average, ARN achieves 4.4 times faster speedup compared to SPM. It 
takes ARN half a second to register a pair of unseen images. Comparison 
of ARN and SPM affine registration for an example image pair is shown 
in Fig. 3. 

3.3. Performance of ARN and SPM on three ASL MRI validation datasets 

The three ASL validation datasets further corroborate markedly 
improved accuracy of the ARN model in affine ASL image registration 
compared to the current state-of-the-art SPM method. The MSE, L1, 
DSSIM, and total losses between moved and fixed images from both SPM 
and ARN and the statistical differences between these two methods are 
shown in Table 2. For the meditation dataset (n = 10 with measurements 
twice), the MSE loss, L1 loss, DSSIM loss, and total loss from ARN are 
16.58 ± 3.62%, 15.16 ± 2.21%, 1.23 ± 1.31%, 23.44 ± 4.49% less 
compared to SPM. For the bipolar disorder dataset (n = 45), the MSE, L1, 
DSSIM, and total losses from ARN are 13.61 ± 1.91%, 14.58 ± 1.46%, 
0.33 ± 0.71%, 21.15 ± 2.55% less in the normal control group (n = 26) 
and 14.46 ± 1.98%, 15.25 ± 1.44%, 0.38 ± 0.68%, 22.32 ± 2.62% less 
in the bipolar disorder group (n = 19) compared to SPM, respectively. 
For the aging dataset (n = 60), the MSE loss, L1 loss, DSSIM loss, and 
total loss from ARN are 28.81 ± 8.27%, 20.34 ± 4.33%, 0.32 ± 1.00, 
35.77 ± 7.99% less in the young age group (n = 33) and 34.79 ±

10.46%, 24.13 ± 5.45%, 0.11 ± 1.12%, 40.39 ± 9.51% less in the older 
age group (n = 27) compared to SPM, respectively. For all the sub
groups, ARN exhibited significantly smaller MSE loss, L1 loss, and total 
loss compared to SPM (Table 2). Significantly smaller DSSIM loss was 
only observed in the meditation dataset. Relative reduction of total loss 
in ARN (to SPM) in the older age group is significantly higher than that 
in the young age group (p < 0.0001) and relative reduction in the bipolar 
disorder patient group is slightly higher than that in the control group (p 
< 0.0001). The running time of ARN for the affine image registration of 
a pair of ASL images is similar to that reported in Fig. 2 for three vali
dation datasets (not shown). 

These results demonstrate that the markedly improved performance 
of the ARN method relative to SPM can be generalized to different ASL 
image datasets, which were acquired with different scanners, image 
resolutions, healthy aging and diseased populations and different mag
nitudes of movement and realignment. 

The summary of six motion parameters (three translation and three 

Table 1 
Absolute errors of six affine parameters derived from ARN and SPM compared to 
the corresponding ground truth parameters for simulated data.   

Parameter errors from 
training 

Parameter errors from 
testing  

ARN SPM ARN SPM 

x-translation 0.51±0.37 3.35±2.41 0.50±0.36 2.89±2.23 
y-translation 0.43±0.37 3.42±2.31 0.46±0.37 2.97±2.21 
z-translation 

total-translation 
0.17±0.14 
1.11±0.88 

0.22±0.18 
6.99±4.9 

0.21±0.14 
1.17±0.87 

0.23±0.17 
6.09±4.61 

x-rotation 0.18±0.12 3.78±2.58 0.49±0.36 3.58±2.56 
y-rotation 0.17±0.14 3.94±2.67 0.39±0.30 3.75±2.67 
z-rotation 

total-rotation 
0.12±0.08 
0.47±0.34 

5.40±3.09 
13.12±8.34 

0.35±0.31 
1.23±0.97 

5.57±3.13 
12.90±8.36 

*The absolute error of each parameter is defined as the absolute value of the 
difference between the derived parameter and ground-truth parameter. The 
translation parameters are in millimeters and the rotation parameters are in 
degrees. 

Fig. 3. Representative real ASL images from inferior to superior slices (column 
1 to 5) from ARN and SPM affine registration. (a) moving (source) image, (b) 
fixed (target) image, (c) moved (registered) image from ARN, (d) moved 
(registered) image from SPM, (e) difference image between fixed and moving 
image, (f) difference between fixed image and moved image from ARN, and (g) 
difference between fixed image and moved image from SPM. (g) and (f) were 
smoothed with 4 mm full width half maximum (FWHM) Gaussian kernel for 
clearer comparison. The scale bars are shown on the right. 
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rotation parameters) derived from ARN for the subgroups of each 
dataset is shown in Table 3. The demographic information for each 
subgroup is also shown in the Table. Significantly larger head motion (p 
< 10− 4) was observed on the meditation dataset, which may be caused 
by longer duration compared to the other two datasets. We also 
observed significantly larger head motion in older adults compared to 
young adults (p < 10− 3) and slightly larger head motion in bipolar 
disorder patients compared to controls although it was not statistically 
significant (p = 0.12). FD values from ARN and SPM showed significant 
correlation (p < 10− 6). The accuracy of ARN relative to SPM for small, 
medium, and large range of head motions is shown in Fig. 4. In general, 
the improvement of ARN accuracy from SPM is smaller for large head 
motion compared to small motion. However, the larger improvement of 
ARN accuracy relative to SPM in older adults (vs. young adults) benefits 
from the motion range of the trained ARN model (FD of 4.05 ± 1.91 
mm) closer to that of the older age group (FD of 4.13 ± 1.35 mm) than of 
the young age group (FD of 3.86 ± 0.80 mm) despite degraded 

performance of ARN from the large range of head motion (Fig. 4e). The 
slightly larger improvement of ARN accuracy relative to SPM in bipolar 
disorder patients (vs. controls) also benefits from closer motion range 
with the trained ARN model. 

4. Discussion 

We have presented a CNN-based framework, ARN, for unsupervised 
learning of 3D affine ASL image registration. The ARN exploits a com
bined loss function based on three types of loss functions (MSE loss, L1 
loss, and DSSIM loss) between fixed and moved image pairs to derive six 
affine parameters. In this case, six parameters that are required for su
pervised training, are not needed for unsupervised training. Also, in the 
real ASL MRI image registration, six parameters are not available for any 
pairs of acquired images. The proposed ARN can achieve more accurate 
affine image registration results for real ASL MRI datasets. We have also 
demonstrated that the improved affine image registration accuracy from 

Table 2 
Affine registration comparisons from ARN and SPM for the four loss values between the fixed and moved images on the test data of the model dataset and three ASL 
validation datasets.  

Datasets 
(subgroup) 

Performance Fixed and Moved from ARN Fixed and Moved from SPM P values 

Model ̅̅̅̅̅̅̅̅̅̅
MSE

√ 242.80±43.09 296.04±49.70 < 0.0001  
L1 187.07±31.91 230.89±38.35 < 0.0001  
DSSIM 0.87±0.033 0.87±0.034 0.86  
Total loss ( × 104) 8.03±2.17 11.41±2.89 < 0.0001 

Meditation ̅̅̅̅̅̅̅̅̅̅
MSE

√ 99.12±66.54 118.79±78.70 < 0.0001 
L1 70.98±13.22 83.61±15.03 < 0.0001 
DSSIM 0.83±0.025 0.84±0.030 < 0.0001  
Total loss ( × 104) 1.78±0.57 2.33±0.77 < 0.0001 

Bipolar disorder (control group)  ̅̅̅̅̅̅̅̅̅̅
MSE

√ 135.96±67.30 157.15±75.55 < 0.0001 
L1 104.05±13.89 121.75±15.77 < 0.0001 
DSSIM 0.89±0.036 0.90±0.036 0.23  
Total loss ( × 104) 2.98±0.59 3.78±0.73 < 0.0001 

Bipolar disorder (patient group)  ̅̅̅̅̅̅̅̅̅̅
MSE

√ 136.70±69.80 159.51±78.65 < 0.0001 
L1 104.82±15.20 123.62±17.52 < 0.0001 
DSSIM 
Total loss ( × 104) 

0.90±0.040 
3.08±0.64 

0.91±0.042 
3.87±0.79 

0.23 
< 0.0001 

Aging 
(young age group) 

̅̅̅̅̅̅̅̅̅̅
MSE

√ 84.30±74.08 114.88±88.79 < 0.0001 
L1 58.71±17.69 73.36±20.70 < 0.0001 
DSSIM 0.83±0.037 0.83±0.040 0.34  
Total loss ( × 104) 1.38±0.71 2.14±0.99 < 0.0001 

Aging 
(older age group)  

̅̅̅̅̅̅̅̅̅̅
MSE

√ 82.58±104.46 114.13±124.67 < 0.0001 
L1 49.79±23.79 64.91±28.40 < 0.0001 
DSSIM 0.89±0.039 0.89±0.041 0.71  
Total loss( × 104) 1.27±1.31 2.04±1.82 < 0.0001 

*Total loss = MSE + 100 L1+1000 DSSIM. 

Table 3 
The demographic information, absolute value of six affine parameters derived from ARN, and framewise displacement for different validation datasets and the dataset 
for building the ARN model. The translation parameters are in millimeters and the rotation parameters are in degrees.   

Parameters from ARN   

Meditation BD* control BD patient Young Older ARN Model 

# of subjects 10 × 2⊥ 26 19 33 27 20 
Female/Male 4/6 14/12 9/10 23/10 15/12 8/12 
Age 19.20±0.28 yrs 31.23±10.89 yrs 33.53±9.68 yrs 30.82±11.56 yrs 68.63±4.84 yrs 33.3 ± 4.6 

yrs 
x-translation 0.46±0.15 0.22±0.12 0.23±0.11 0.29±0.14 0.35±0.27 0.44±0.34 
y-translation 0.80±0.29 0.39±0.22 0.41±0.20 0.56±0.29 0.67±0.54 0.51±0.35 
z-translation 2.62±0.24 2.26±0.19 2.27±0.17 2.42±0.25 2.51±0.44 2.68±1.61 
x-rotation 0.13±0.05 0.06±0.04 0.07±0.03 0.09±0.05 0.11±0.09 0.11±0.12 
y-rotation 0.23±0.06 0.15±0.04 0.16±0.04 0.19±0.06 0.21±0.10 0.10±0.10 
z-rotation 0.40±0.05 0.47±0.05 0.47±0.03 0.39±0.08 0.38±0.09 0.27±0.21 
FD+ 4.54±0.73 3.46±0.56 3.52±0.52 3.86±0.80 4.13±1.35 4.05±1.91 

* BD stands for bipolar disorder. ⊥ × 2 means that each subject had two measurements (before and after 2-month meditation practice). +FD represents framewise 
displacement in millimeters. BOLD fonts represent significance differences in FD. FD values in the Meditation participants are significantly larger than those in other 
groups. FD values in the older adults are significantly larger than young adults. FD values in the BD patients are slightly larger than BD controls.  
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ARN can be generalized (without need of further training) to ASL 
datasets with different image resolutions, from different MRI scanners, 
from different age groups, with different degrees of head motion, and 
with patient and healthy control groups. 

We also used simulated 3D ASL imaging data to verify the source of 
more accurate image registration results from ARN because the ground- 
truth 6-parameter affine registration parameters are known in this case. 
Results from the simulated data demonstrated that the outperformed 
affine image registration results from ARN emerge from more accurate 
estimation of six affine parameters. We observed relatively less 
improvement of affine registration quality from ARN compared to SPM 
in real 3D ASL MRI images than in simulated ASL images. These are 
expected because many noise sources, such as MRI instrumental noises, 
physiological noises, and fluctuations from brain networks, appeared in 
the real MRI images inevitably. Not only marked improving accuracy, 
ARN also outperforms the registration speed by 4 to 5 times compared to 
SPM. 

The ARN can be generalized to 12 parameter affine image registra
tion. If an application has scaling and skew between a pair of images, 6 
additional parameters (3 parameters for scaling on x, y, z directions and 
3 skew parameters for skewing on xy, xz, and yz directions) can be added 
into the output of ARN (Fig. 1); the transformation matrix (Equation 1) 
can be revised by incorporating the scaling and skew matrix. We con
strained the model to 6-parameter affine image registration in ASL 
image alignment because the brain images that are acquired from the 
MRI scanner at different time points primarily involve just translations 
and rotations. 

This study is not without limitations. First, all the ASL imaging data 
were acquired with multiple-segment 3D imaging and heavy suppres
sion of background tissue signals. For the ASL images without or with 
less background suppression, motion between label and control may be 
a bigger registration issue than that with our background suppressed 

time series. Second, all the ASL image time series did not have severely 
altered perfusion patterns, such as those from tumor or stroke imaging. 
Third, we did not test the longitudinal ASL image registration at 
different time points. Perfusion patterns, such as those during the stroke 
recovery, may have changed over time and the affected perfusion pat
terns would pose challenges for the ARN method. Therefore, studies on 
image registration of ASL image time series acquired with single-shot 2D 
or 3D image acquisitions and/or with less background suppression and 
ASL image time series/longitudinal images with abnormal perfusion 
patterns are warranted to validate the ARN method. 

Conclusion 

We present a deep learning-based ASL image registration method for 
unsupervised affine image registration, that requires no ground-truth 
transformation parameters and anatomical landmarks. The method 
achieves superior image affine registration accuracy and 4 to 5 times 
faster speed compared to the state-of-the-art 3D affine image 
registration. 

Data and code availability statement 

Raw data were generated from MRI scanner. Reconstruction soft
ware is vendor’s proprietary product. Sharing of derived data will be 
supported by direct request to the PIs for different data sets. Before 
sharing data the PIs will make sure that all data are free of identifiers 
that could directly or indirectly link information to an individual or 
vulnerable group and that all sharing is compliant with institutional and 
IRB policies. 

Fig. 4. Reduction of total loss in ARN relative to SPM for small, medium, and large head motions from all subgroups of real datasets: (a) participants from all 5 test 
folds, (b) meditation participants, (c) BD controls, (d) BD patients, (e) older adults, and (f) young adults. * stands for 0.01 < P < 0.05, ** stands for 0.001 < P < 0.01, 
*** stands for P < 0.001, compared to the small range of motion. BD represents bipolar disorder. 
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