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Convolutional neural networks (CNN) have demonstrated good accuracy and speed in spatially registering high
signal-to-noise ratio (SNR) structural magnetic resonance imaging (sMRI) images. However, some functional
magnetic resonance imaging (fMRI) images, e.g., those acquired from arterial spin labeling (ASL) perfusion fMRI,
are of intrinsically low SNR and therefore the quality of registering ASL images using CNN is not clear. In this
work, we aimed to explore the feasibility of a CNN-based affine registration network (ARN) for registration of
low-SNR three-dimensional ASL perfusion image time series and compare its performance with that from the
state-of-the-art statistical parametric mapping (SPM) algorithm. The six affine parameters were learned from the
ARN using both simulated motion and real acquisitions from ASL perfusion fMRI data and the registered images
were generated by applying the transformation derived from the affine parameters. The speed and registration
accuracy were compared between ARN and SPM. Several independent datasets, including meditation study (10
subjects x 2), bipolar disorder study (26 controls, 19 bipolar disorder subjects), and aging study (27 young
subjects, 33 older subjects), were used to validate the generality of the trained ARN model. The ARN method
achieves superior image affine registration accuracy (total translation/total rotation errors of ARN vs. SPM: 1.17
mm/1.23° vs. 6.09 mm/12.90° for simulated images and reduced MSE/L1/DSSIM/Total errors of 18.07% /
19.02% / 0.04% / 29.59% for real ASL test images) and 4.4 times (ARN vs. SPM: 0.50 s vs. 2.21 s) faster speed
compared to SPM. The trained ARN can be generalized to align ASL perfusion image time series acquired with
different scanners, and from different image resolutions, and from healthy or diseased populations. The results
demonstrated that our ARN markedly outperforms the iteration-based SPM both for simulated motion and real
acquisitions in terms of registration accuracy, speed, and generalization.

1. Introduction

Arterial spin labeling (ASL) is a noninvasive magnetic resonance
imaging (MRI) technique to measure cerebral blood flow (CBF) (Detre
et al., 1992; Williams et al., 1992) with naturally existing arterial blood
water as an endogenous tracer. ASL imaging acquires pairs of images: a
labeled image and a control image. Labeled images are obtained by
magnetically labeling arterial blood water with radiofrequency pulses
from the MRI scanner, while control images are without labeling of
blood water. Labeled and control images are acquired in a temporally
interleaved fashion. Subtraction of labeled images from controls images
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is a relative measure of perfusion proportional to CBF (Detre et al., 1992;
Williams et al., 1992). The ASL signal-to-noise ratio (SNR) is inherently
low because the signal from labeled blood is only about 1% of the full
tissue signal.

To improve SNR, a series of labeled-control image pairs are normally
acquired. They are averaged to generate CBF maps or used to produce
functional connectivity maps. However, subject head movements and
physiological motions (such as cardiac pulsation and respiratory mo-
tion) can cause misalignment of ASL time series (Ye et al., 2000), which
can severely affect the quality of further measurements. Therefore, ac-
curacy of image realignment (motion correction across ASL time series)
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is crucial for robust CBF and functional connectivity measurements. For
real time applications, the speed of image realignment across a time
series of images is very important.

Many conventional image realignment algorithms, such as those
from Statistical Parametric Mapping (SPM) (Friston et al., 1995),
FMRIB’s Linear Image Registration Tool (FLIRT) (Jenkinson et al., 2002;
Jenkinson and Smith, 2001), and Automated Image Registration (AIR)
(Woods et al., 1998; Woods et al., 1998), have been developed and
applied to register ASL time series images. The image realignment al-
gorithms search for an affine transformation with a set of parameters to
optimize pixel correspondence between a pair of fixed (target) and
moving (source) images by maximizing a similarity measure of spatial
correspondence between images. Conventional ASL image realignment
optimization algorithms are often inaccurate and computationally
expensive because the ASL time series has limited SNR and these con-
ventional algorithms are typically solved using iterative algorithms.

Recently, deep learning techniques have been used for 3D medical
image realignments (or affine image registration) and achieved com-
parable performance to iterative algorithms when applied to anatomical
images, such as chest CT images, cardiac cine MRI images, prostate ul-
trasound images, and T2-weighted MRI images (Balakrishnan et al.,
2018; de Vos et al,, 2019). The deep learning-based realignment
methods are mostly supervised because they rely on the known
ground-truth (or affine) transformation information (Liao et al., 2017;
Miao et al., 2016; Chee and Wu, 2018; Hu et al., 2018). For instance, one
obtained training examples using conventional image registration
methods and used convolutional neural networks (CNN) and rein-
forcement learning to predict small steps towards optimal realignment
via affine registration (Liao et al., 2017); another synthesized training
examples by applying combinations of rotation, translation, and scaling
(affine transformation parameters) to the moving image and trained the
CNN to regress affine parameters hierarchically (Miao et al., 2016) or at
the same time directly (Chee and Wu, 2018); or used training images
with manually annotated anatomical labels and trained the CNN to
predict displacement fields to align multiple labeled corresponding
structures (Hu et al., 2018). Deep learning has been employed in su-
pervised 3D affine multi-modal image registration in different ways:
predict affine transformation parameters by adopting pretrained 2D
VGG-19 networks for feature extraction and fully connected regression
networks (Kori and Krishnamurthi, 2019), using a pretrained VGG-type
CNN network, training it first on a large number of synthetic images, and
then refining using a small number of real images (Zheng et al., 2017),
training a model to predict the image of one modality from that of
another modality of the same subject and registering the predicted
image and fixed image from the same modality (Liu et al., 2019), using a
fully connected network to determine the control points and then CNN
for feature detection (Zou et al., 2019). However, conventional image
alignment methods are typically unsupervised because ground-truth
transformations are not available. Unsupervised medical image regis-
tration methods have been explored but they are mainly applied to
deformable 3D medical image registration (Balakrishnan et al., 2018; de
Vos etal., 2019). Although deep learning-based affine image registration
is sometimes used as the first step, its efficacy is not evaluated as a
separate metric. In addition, the performance of deep learning-based
affine image registration has not been evaluated in ASL images, or
low-SNR functional images in general, which is a stronger test of their
potential utility. Here, we aim to assess the feasibility and efficacy of an
unsupervised deep learning method for realigning ASL time series by
simulating affine registration, training a model based on a real ASL
dataset and investigating generalization of the trained model to different
ASL datasets.

2. Methods

We modeled a CNN-based linear registration of 3D ASL difference
images, which we named an affine registration network (ARN). The ARN
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has a pair of 3D moving and 3D fixed images as input and aims to output
affine registration parameters between the two. It aims to minimize the
difference between the fixed image and the moved image after applying
the affine transformation to the moving image. The ARN contains
several CNN layers with gradually reduced image resolutions to derive
useful low-resolution features and two fully connected layers.

2.1. ARN architecture

The ARN is composed of an encoder CNN followed by a fully con-
nected network, as shown in Fig. 1. The network has the 3D moving
image and the fixed image (each as grayscale ASL difference image) as
input by concatenating them as a two-channel image. In this study, the
input size is 128x128x40x2. The encoder CNN contains one convolu-
tion layer and four CNN blocks. The convolution layer has a kernel size
of 4 x 4 x 4 and stride size of 1 x 1 x 1. Each of the four CNN blocks
consists of a Rectified Linear Unit (ReLU) activation layer, a 3D
convolution layer, and a batch normalization layer. For the four CNN
blocks, the stride sizes of the first three convolution layer are 2 x 2 x 2,
while the last convolution layer is 2 x 2 x 1. Twenty channels are
applied in each convolutional layer. Hierarchical features are captured
by these CNN layers with different spatial resolutions. The output of the
encoder CNN is flattened and is passed as input to one fully connected
layer (linear layer and ReLU layer) with 250 nodes. Another fully con-
nected layer outputs 6-12 nodes (linear layer only). We used 6 nodes in
the study because the non-aligned MRI images (specifically ASL perfu-
sion images here) are from subject motion, involving only translations (3
parameters) and rotations (3 parameters). The moved image is gener-
ated by applying the affine transformation (see Affine Transformation
section) from the learned 6 parameters to the moving image and inter-
polating the 3D mesh grid via trilinear interpolation based on 8 neigh-
boring voxels.

1x1x1
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L — 250 — 6
8x8x5
16x16x5
= 32x32x10
é ' Moving 64x64x20
d 128x128x40
m
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Fig. 1. ARN network architecture for affine image registration. The input layer
has both the 3D fixed image and moving image (each as 128 x 128 x 40 matrix)
by concatenating them as a two-channel image (input size as 128 x 128 x 40 x
2). The ARN network has a encoder CNN and a fully-connected neural network
(FNN). The CNN contains one convolution layer and four CNN blocks. These
convolution layers have kernel size of 4 x 4 x 4. Each of four CNN block
consists of a Rectified Linear Unit (ReLU) activation layer, a 3D convolution
layer, and a batch normalization layer. The output size and stride size of each
CNN layer are listed on the bottom and top of the layer (shown as a rectangle).
Twenty channels are applied in each convolutional layer. The output of the
encoder CNN is flattened and is passed into FNN. The FNN contains two fully
connected layers, in which they have 250 nodes (linear layer and ReLU layer)
and 6 nodes (linear layer only), respectively.
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2.2. Affine transformationThe application order of translation and
rotation matrices affects values of the affine transformation matrix. To
compare with the state-of-the-art linear registration method — SPM, we
used the same application order of translation and rotation matrices. Let us
call 6 parameters from the ARN output p(1), p(2), ..., p(6). Specifically,
the affine transformation matrix M is defined as the translation matrix T
multiplied by rotation matrix R:

M =T*R (1)
10 0 p@)
o 1 0 p5)
=10 0 1 o) @
000 1
1 0 0 0 cos(p(2)) 0 sin(p(2)) 0
R 0 cos(p(3)) sin(p(3)) O 0 1 0 0
0 —sin(p(3)) cos(p(3)) 0] | —sin(p(2)) 0 cos(p(2)) O
0 0 0 1 0 0 0 1

2.3. Loss function

The ARN was trained in an unsupervised way by minimizing the loss
between moved images and fixed images. The total loss was calculated
from three loss functions between the fixed and moved image. The
relative weights of the three loss functions were determined empirically.
Their definitions are as follows.

2.4. MSE loss

Mean squared error measures the average squared difference be-
tween the predicted image (moved image) and the actual image (fixed
image).
1< 5
MSE loss = — F-M
oss = — E ( )

i=1

(€3]

where n is the total number of voxels of input images F and M, F is the
fixed image and M is the moved image.

2.5. Pixel-wise L1 loss

The pixel-wise L; loss function describes the pixel level difference
between the fixed image F and the moved image M.

Ly loss = Z |F — M| (5)

i=1
2.6. Pixel-wise structural dissimilarity loss

The dissimilarity loss utilizes the structure similarity index (SSIM)
(Woods et al., 1998) to calculate the dissimilarity of two volumes which
will help to generate clearer motion boundaries.

1
DSSIM loss = =~y (1 —SSIM(F, M))

i=1

(6)

2.7. Total loss

The total loss is calculated as
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L,(,m/ = MSE+ j.l'Ll + j.zDSSIM (7)
A1 and A, are the loss weights which control the relative importance of Ly
loss and dissimilarity loss. We set the range of A; and Ay from 0 to 2000
with an increment of 100 and compare the total loss on the test data for
each pair of A; and A after training has converged. The best results were
achieved with A; = 100 and A, = 1000.

2.8. Experiments

2.8.1. Dataset

We evaluated the performance of the ARN method using a simulated
ASL dataset and a real brain ASL dataset and tested the generality of the
ARN method with several ASL datasets from our previous projects. All

o = 3
Op g 10 3
0 0 01

experiments were performed in Python using Tensor Flow on an Nvidia
RTX 2080Ti GPU and an Intel® Core™ i7-8700 K 3.7 GHz CPU with 6
cores and 64GB of internal memory.

2.8.2. Real imaging data

Dynamic pseudo-continuous arterial spin labeling (PCASL) perfusion
(Dai et al., 2008) MRI images, with a 2 s of labeling duration and 1.8 s of
post-labeling delay, from 20 subjects (33.3 + 4.6 yrs old, 8 females)
were obtained from our previous study (Dai et al., 2016). Each subject
was acquired with a time series of 39 3D PCASL perfusion images
(temporal resolution of 30 s, total acquisition time of 20 min). All 3D
perfusion images were acquired with a 3D stack of spirals rapid acqui-
sition with refocused echoes (RARE) imaging sequence. Each 3D ASL
control or label image was acquired with three interleaved/segmented
spirals (in-plane spatial resolution of 3.64 mm). To reduce the effect of
physiological noises and head motion, we applied heavy background
suppression to suppress gray white matter, fat, and CSF signals to less
than 0.3% of the fully relaxed signal by using the algorithm in Maleki
et al. (2012) and Dai et al. (2011). We determined the pulse timings of
background suppression pulses by minimizing the sum of squared dif-
ferences between theoretical magnetization and target magnetization
(specifically, zero for CSF and fat and 0.3% for gray matter and white
matter). This heavy background suppression causes both control and
label images to have relatively low signals. Therefore, we choose to
register 3D ASL difference images, control images minus adjacent label
images, (each with 6 TRs, a temporal resolution of 30 s), instead of
registering control and label images separately. 3D ASL difference im-
ages were reconstructed and interpolated into a 128 x 128 matrix for
each of 40 slices with a nominal spatial resolution of 1.88 x 1.88 x 4
mm?. For each subject, any 3D ASL difference image was randomly
chosen from 39 ASL time series as the fixed image, each of the other 38
ASL difference images (from other time points) was used as a moving
image and formed 38 pairs of images together with the fixed image. We
used 5-fold cross validation in order to evaluate the performance of the
ARN model for unseen subjects. All 20 subjects were randomly divided
into 5 folds, in which each fold has 4 subjects. For the ith (1 <i < 5)
partition, the ith fold (4 subjects, 152 pairs of images) served as the test
set and the remaining 4 folds served as the training set (16 subjects, 608
pairs of images).
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2.8.3. Simulated motion

The ground-truth translation and rotation parameters are unknown
for any pair of real MRI images. To quantify the accuracy of these six
parameters derived from the ARN model, we simulated subjects’ motion
by applying random translations and rotations to the fixed image. We
used the same above-mentioned ASL dataset (Dai et al., 2008) with 20
subjects and 39 3D ASL images from each subject. For each subject, 34
3D ASL images were randomly chosen from 39 time points as fixed
images. Twenty subjects have 680 fixed images in total. For each fixed
image, a moving image was generated by applying an affine trans-
formation with 6 parameters (%, y, and z translations in a range of [—2,
2] voxels, X, y, and z rotations in a range of [—5°, 5°] with a uniform
distribution for each of six parameters). From 680 simulated pairs of
images, 510 pairs of images were randomly chosen as training data, and
the other 170 pairs of images were used for testing.

2.8.4. Datasets for testing generalizability of the ARN model

Three datasets with ASL time series in our previous projects were
used to test generalizability of the ARN model. The datasets were ac-
quired to evaluate the changes of ASL functional connectivity before and
after meditation (meditation dataset) (Zhang et al., 2021), the deficits of
ASL functional connectivity and low frequency fluctuation in bipolar
disorder compared to normal controls (bipolar disorder dataset) (Dai
et al., 2020), the changes of perfusion and functional connectivity in
older adults compared to young adults (aging dataset) (Li et al., 2020;
Zhang et al., 2022). For the meditation dataset (Zhang et al., 2021), 10
subjects (19.20 + 0.28 yrs old, 4 females) were assessed using GE 3T
MR750 scanner at the Cornell University MRI facility before and after
meditation training with a time series of 49 3D PCASL perfusion images
(temporal resolution of 20 s, total acquisition time of 17 min), in which
each 3D image was a 128 x 128 x 40 matrix with an interpolated spatial
resolution of 1.88 x 1.88 x 4 mm®. For the bipolar disorder dataset (Dai
et al., 2020), 19 bipolar disorder subjects (33.53 + 9.60 yrs old, 9 fe-
males) and 26 normal controls (31.23 + 10.80 yrs old, 14 females) were
assessed using GE Signa HDxt scanner at the MRI research center of Beth
Israel Deaconess Medical Center with a time series of 26 3D PCASL
perfusion images (temporal resolution of 20 s, total acquisition time of 9
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min), in which each 3D image was with the same interpolated spatial
resolution as the meditation dataset. For the aging dataset (Zhang et al.,
2022), 33 young adults (30.82 + 11.56 yrs old, 23 females) and 27 older
adults (68.63 + 4.84 yrs old, 15 females) were assessed using GE 3T
MR750 scanner at the Cornell University MRI facility with a time series
of 29 3D PCASL perfusion images (temporal resolution of 20 s, total
acquisition time of 10 min), in which each 3D image was with the same
interpolated spatial resolution as the meditation dataset. No training
was performed on the ARN model. Using the trained ARN model, 600
pairs of moving and fixed images (approximately same number of pairs
randomly chosen from each subject) for each group of every dataset
were used to test the performance of the ARN model.

2.8.5. Comparison with SPM affine registration

Statistical parametric mapping (SPM12) is one of the most popular
neuroimage registration tools (Friston et al., 1995). Realignment is the
affine image registration method in SPM based on iterative algorithms.
It was used to compare with the performance of the ARN method in
terms of accuracy and speed. To evaluate whether the accuracy of the
ARN method is dependent on the degree of head motion, we calculated
the relative reduction of total loss from ARN with respect to SPM across
three ranges of head motion. Because no ground truth of head motion in
real datasets and more accuracy in the ARN method, we use six motion
parameters from the ARN method to estimate the degree of head motion.
Specifically, framewise displacement (FD) was calculated from these six
parameters as an index to represent head motion (Power et al., 2012).
Based on FD values from the subgroups of each dataset, we divided
small, medium, and large head motions with equal number of FD values.

3. Results
3.1. Performance of ARN and SPM on simulated images

3.1.1. Comparison of loss between ARN and SPM

For the simulated motion, the MSE loss, L1 loss, and DSSIM loss
between the moved images and the fixed images from the SPM affine
registration and the proposed ARN are shown in Fig. 2a—c. Specifically,

Simulated Motion
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Fig. 2. Comparisons of three types of loss from ARN and SPM affine registration for simulated motion and real 3D perfusion imaging acquisition. (a) MSE loss (shown
as its square root), (b) pixel-wise L1 loss, (c) DSSIM loss, and (d) running time using simulated 3D perfusion data; and (e) MSE loss (shown as its square root), (f)
pixel-wise L1 loss, and (g) DSSIM loss, (h) running time using real perfusion data were compared between ARN and SPM.
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Table 1
Absolute errors of six affine parameters derived from ARN and SPM compared to
the corresponding ground truth parameters for simulated data.

Parameter errors from Parameter errors from

training testing
ARN SPM ARN SPM
x-translation 0.51+0.37  3.35+2.41 0.50+0.36  2.89+2.23
y-translation 0.43+0.37 3.42+2.31 0.46+0.37 2.97+2.21
z-translation 0.17+0.14 0.22+0.18 0.21+0.14 0.23+0.17
total-translation ~ 1.11+0.88  6.99+4.9 1.17+0.87  6.09+4.61
x-rotation 0.18+0.12  3.78+2.58 0.49+0.36  3.58+2.56
y-rotation 0.17+0.14 3.94+2.67 0.39+0.30 3.75+2.67
z-rotation 0.12+0.08  5.40+3.09 0.35+0.31  5.57+3.13
total-rotation 0.47+0.34  13.1248.34 1.2340.97  12.90+8.36

*The absolute error of each parameter is defined as the absolute value of the
difference between the derived parameter and ground-truth parameter. The
translation parameters are in millimeters and the rotation parameters are in
degrees.

the MSE loss, L1 loss, DSSIM loss, and total loss from the ARN affine
registration was 28.03 + 10.90%, 19.77 £ 18.17%, 6.20 + 61.94%,
39.74 £ 17.13% less than the corresponding loss from the SPM affine
registration using the test data, which are significantly smaller (p <
1076, p <1075, p = 0.0015, p < 10~9), respectively. These results show
that ARN can provide more accurate affine image registration on
simulated imaging data.

3.1.2. Comparison of the errors in affine parameters derived from ARN and
SPM

The predicted 6 affine parameters generated from the ARN and SPM
are compared with the parameters that are used to generate moving
images from the ground-truth parameters. Compared with the ground-
truth parameters, the errors of the 6 parameters generated from the
ARN are significantly smaller than those from the SPM (p < 10~*) with a
mean error of 9.5 times smaller in the test data (Table 1). This implies
that ARN can predict motion parameters much closer to the ground
truth.

3.1.3. Comparison of registration speeds between ARN and SPM

The running time for registering a pair of test images from ARN and
SPM is also listed in Fig. 2d. The average running time of ARN is 5.7
times less than that of SPM. It takes ARN less than half a second to
register a pair of unseen images. Although the training time of ARN is
about 11 h on the current computing environment, it can be performed
prior to the registration task.

3.2. Performance of ARN and SPM on real ASL perfusion MRI images

For the real ASL perfusion MRI imaging acquisition, the MSE loss, L1
loss, and DSSIM loss between the moved images and the fixed images
from the SPM affine registration and the proposed ARN are also shown
in Fig. 2e-g. Specifically, the MSE loss, L1 loss, and DSSIM loss from the
ARN affine registration were 18.07 + 2.48%, 19.02 + 1.77%, 0.04 +
1.58% less than the corresponding loss from the SPM affine registration
using the test data, which are significantly smaller (p < 1075, p < 1075)
for the MSE loss and L1 loss, respectively. This demonstrates that ARN
can provide more accurate affine image registration on real ASL imaging
acquisition, which is consistent with its performance on simulated
motion.

The running time for registering a pair of real ASL perfusion MRI
images on the test data from ARN and SPM is also listed in Fig. 2h. On
average, ARN achieves 4.4 times faster speedup compared to SPM. It
takes ARN half a second to register a pair of unseen images. Comparison
of ARN and SPM affine registration for an example image pair is shown
in Fig. 3.
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a Moving image

b Fixed image

C Moved image from
ARN

d Moved image from
SPM

€ Difference between §
(a) and (b)

f Difference between
(b) and (c)

g Difference between
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300

Fig. 3. Representative real ASL images from inferior to superior slices (column
1 to 5) from ARN and SPM affine registration. (a) moving (source) image, (b)
fixed (target) image, (c) moved (registered) image from ARN, (d) moved
(registered) image from SPM, (e) difference image between fixed and moving
image, (f) difference between fixed image and moved image from ARN, and (g)
difference between fixed image and moved image from SPM. (g) and (f) were
smoothed with 4 mm full width half maximum (FWHM) Gaussian kernel for
clearer comparison. The scale bars are shown on the right.

3.3. Performance of ARN and SPM on three ASL MRI validation datasets

The three ASL validation datasets further corroborate markedly
improved accuracy of the ARN model in affine ASL image registration
compared to the current state-of-the-art SPM method. The MSE, L1,
DSSIM, and total losses between moved and fixed images from both SPM
and ARN and the statistical differences between these two methods are
shown in Table 2. For the meditation dataset (n = 10 with measurements
twice), the MSE loss, L1 loss, DSSIM loss, and total loss from ARN are
16.58 + 3.62%, 15.16 + 2.21%, 1.23 + 1.31%, 23.44 + 4.49% less
compared to SPM. For the bipolar disorder dataset (n = 45), the MSE, L1,
DSSIM, and total losses from ARN are 13.61 & 1.91%, 14.58 + 1.46%,
0.33 + 0.71%, 21.15 + 2.55% less in the normal control group (n = 26)
and 14.46 + 1.98%, 15.25 + 1.44%, 0.38 + 0.68%, 22.32 + 2.62% less
in the bipolar disorder group (n = 19) compared to SPM, respectively.
For the aging dataset (n = 60), the MSE loss, L1 loss, DSSIM loss, and
total loss from ARN are 28.81 + 8.27%, 20.34 + 4.33%, 0.32 + 1.00,
35.77 + 7.99% less in the young age group (n = 33) and 34.79 +
10.46%, 24.13 + 5.45%, 0.11 + 1.12%, 40.39 + 9.51% less in the older
age group (n = 27) compared to SPM, respectively. For all the sub-
groups, ARN exhibited significantly smaller MSE loss, L1 loss, and total
loss compared to SPM (Table 2). Significantly smaller DSSIM loss was
only observed in the meditation dataset. Relative reduction of total loss
in ARN (to SPM) in the older age group is significantly higher than that
in the young age group (p < 0.0001) and relative reduction in the bipolar
disorder patient group is slightly higher than that in the control group (p
< 0.0001). The running time of ARN for the affine image registration of
a pair of ASL images is similar to that reported in Fig. 2 for three vali-
dation datasets (not shown).

These results demonstrate that the markedly improved performance
of the ARN method relative to SPM can be generalized to different ASL
image datasets, which were acquired with different scanners, image
resolutions, healthy aging and diseased populations and different mag-
nitudes of movement and realignment.

The summary of six motion parameters (three translation and three
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Table 2
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Affine registration comparisons from ARN and SPM for the four loss values between the fixed and moved images on the test data of the model dataset and three ASL

validation datasets.

Datasets Performance Fixed and Moved from ARN Fixed and Moved from SPM P values
(subgroup)
Model MSE 242.80+43.09 296.04+49.70 < 0.0001
L1 187.07+31.91 230.89+38.35 < 0.0001
DSSIM 0.87+0.033 0.87+0.034 0.86
Total loss ( x 10%) 8.03+2.17 11.41+2.89 < 0.0001
Meditation MSE 99.12+66.54 118.79+78.70 < 0.0001
L1 70.98+13.22 83.61+15.03 < 0.0001
DSSIM 0.83+0.025 0.84+0.030 < 0.0001
Total loss ( x 10%) 1.78+0.57 2.33+0.77 < 0.0001
Bipolar disorder (control group) MSE 135.96+67.30 157.15+75.55 < 0.0001
L1 104.05+13.89 121.75+15.77 < 0.0001
DSSIM 0.89+0.036 0.90+0.036 0.23
Total loss ( x 10%) 2.98+0.59 3.78+0.73 < 0.0001
Bipolar disorder (patient group) MSE 136.70+69.80 159.51+78.65 < 0.0001
L1 104.82+15.20 123.62+17.52 < 0.0001
DSSIM 0.90-£0.040 0.91+0.042 0.23
Total loss ( x 104) 3.08+0.64 3.87+0.79 < 0.0001
Aging MSE 84.30+74.08 114.88+88.79 < 0.0001
(young age group) L1 58.71+17.69 73.36+20.70 < 0.0001
DSSIM 0.83+0.037 0.83+0.040 0.34
Total loss ( x 10%) 1.38+0.71 2.14+0.99 < 0.0001
Aging MSE 82.58+104.46 114.13+£124.67 < 0.0001
(older age group) L1 49.79+23.79 64.91+28.40 < 0.0001
DSSIM 0.89+0.039 0.89-+0.041 0.71
Total loss( x 10%) 1.27+1.31 2.04+1.82 < 0.0001

*Total loss = MSE + 100 L14+-1000 DSSIM.

rotation parameters) derived from ARN for the subgroups of each
dataset is shown in Table 3. The demographic information for each
subgroup is also shown in the Table. Significantly larger head motion (p
< 10~*) was observed on the meditation dataset, which may be caused
by longer duration compared to the other two datasets. We also
observed significantly larger head motion in older adults compared to
young adults (p < 107%) and slightly larger head motion in bipolar
disorder patients compared to controls although it was not statistically
significant (p = 0.12). FD values from ARN and SPM showed significant
correlation (p < 107%). The accuracy of ARN relative to SPM for small,
medium, and large range of head motions is shown in Fig. 4. In general,
the improvement of ARN accuracy from SPM is smaller for large head
motion compared to small motion. However, the larger improvement of
ARN accuracy relative to SPM in older adults (vs. young adults) benefits
from the motion range of the trained ARN model (FD of 4.05 + 1.91
mm) closer to that of the older age group (FD of 4.13 + 1.35 mm) than of
the young age group (FD of 3.86 + 0.80 mm) despite degraded

Table 3

performance of ARN from the large range of head motion (Fig. 4e). The
slightly larger improvement of ARN accuracy relative to SPM in bipolar
disorder patients (vs. controls) also benefits from closer motion range
with the trained ARN model.

4. Discussion

We have presented a CNN-based framework, ARN, for unsupervised
learning of 3D affine ASL image registration. The ARN exploits a com-
bined loss function based on three types of loss functions (MSE loss, L1
loss, and DSSIM loss) between fixed and moved image pairs to derive six
affine parameters. In this case, six parameters that are required for su-
pervised training, are not needed for unsupervised training. Also, in the
real ASL MRI image registration, six parameters are not available for any
pairs of acquired images. The proposed ARN can achieve more accurate
affine image registration results for real ASL MRI datasets. We have also
demonstrated that the improved affine image registration accuracy from

The demographic information, absolute value of six affine parameters derived from ARN, and framewise displacement for different validation datasets and the dataset
for building the ARN model. The translation parameters are in millimeters and the rotation parameters are in degrees.

Parameters from ARN

Meditation BD* control BD patient Young Older ARN Model
# of subjects 10 x 2+ 26 19 33 27 20
Female/Male 4/6 14/12 9/10 23/10 15/12 8/12
Age 19.20+0.28 yrs 31.23410.89 yrs 33.534+9.68 yrs 30.82+11.56 yrs 68.631+4.84 yrs 33.3+4.6

yrs

x-translation 0.46+0.15 0.224+0.12 0.23+0.11 0.29+0.14 0.35+0.27 0.44+0.34
y-translation 0.80+0.29 0.3940.22 0.41+0.20 0.56+0.29 0.674+0.54 0.514+0.35
z-translation 2.62+0.24 2.26+0.19 2.27+0.17 2.4240.25 2.51+0.44 2.68+1.61
x-rotation 0.134+0.05 0.06+0.04 0.07+0.03 0.09+0.05 0.114+0.09 0.114+0.12
y-rotation 0.234+0.06 0.1540.04 0.16+0.04 0.19+0.06 0.2140.10 0.1040.10
z-rotation 0.40-£0.05 0.4740.05 0.47+0.03 0.39+0.08 0.384+0.09 0.2740.21
FD* 4.54+0.73 3.46+0.56 3.52+0.52 3.86+0.80 4.13+1.35 4.05+1.91

* BD stands for bipolar disorder. ~ x 2 means that each subject had two measurements (before and after 2-month meditation practice). "FD represents framewise
displacement in millimeters. BOLD fonts represent significance differences in FD. FD values in the Meditation participants are significantly larger than those in other
groups. FD values in the older adults are significantly larger than young adults. FD values in the BD patients are slightly larger than BD controls.
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Fig. 4. Reduction of total loss in ARN relative to SPM for small, medium, and large head motions from all subgroups of real datasets: (a) participants from all 5 test
folds, (b) meditation participants, (c) BD controls, (d) BD patients, (e) older adults, and (f) young adults. * stands for 0.01 < P < 0.05, ** stands for 0.001 < P < 0.01,
*** stands for P < 0.001, compared to the small range of motion. BD represents bipolar disorder.

ARN can be generalized (without need of further training) to ASL
datasets with different image resolutions, from different MRI scanners,
from different age groups, with different degrees of head motion, and
with patient and healthy control groups.

We also used simulated 3D ASL imaging data to verify the source of
more accurate image registration results from ARN because the ground-
truth 6-parameter affine registration parameters are known in this case.
Results from the simulated data demonstrated that the outperformed
affine image registration results from ARN emerge from more accurate
estimation of six affine parameters. We observed relatively less
improvement of affine registration quality from ARN compared to SPM
in real 3D ASL MRI images than in simulated ASL images. These are
expected because many noise sources, such as MRI instrumental noises,
physiological noises, and fluctuations from brain networks, appeared in
the real MRI images inevitably. Not only marked improving accuracy,
ARN also outperforms the registration speed by 4 to 5 times compared to
SPM.

The ARN can be generalized to 12 parameter affine image registra-
tion. If an application has scaling and skew between a pair of images, 6
additional parameters (3 parameters for scaling on X, y, z directions and
3 skew parameters for skewing on xy, xz, and yz directions) can be added
into the output of ARN (Fig. 1); the transformation matrix (Equation 1)
can be revised by incorporating the scaling and skew matrix. We con-
strained the model to 6-parameter affine image registration in ASL
image alignment because the brain images that are acquired from the
MRI scanner at different time points primarily involve just translations
and rotations.

This study is not without limitations. First, all the ASL imaging data
were acquired with multiple-segment 3D imaging and heavy suppres-
sion of background tissue signals. For the ASL images without or with
less background suppression, motion between label and control may be
a bigger registration issue than that with our background suppressed

time series. Second, all the ASL image time series did not have severely
altered perfusion patterns, such as those from tumor or stroke imaging.
Third, we did not test the longitudinal ASL image registration at
different time points. Perfusion patterns, such as those during the stroke
recovery, may have changed over time and the affected perfusion pat-
terns would pose challenges for the ARN method. Therefore, studies on
image registration of ASL image time series acquired with single-shot 2D
or 3D image acquisitions and/or with less background suppression and
ASL image time series/longitudinal images with abnormal perfusion
patterns are warranted to validate the ARN method.

Conclusion

We present a deep learning-based ASL image registration method for
unsupervised affine image registration, that requires no ground-truth
transformation parameters and anatomical landmarks. The method
achieves superior image affine registration accuracy and 4 to 5 times
faster speed compared to the state-of-the-art 3D affine image
registration.
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