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ABSTRACT ACM Reference Format:

Self-supervised learning on graphs has made large strides in achiev-
ing great performance in various downstream tasks. However, many
state-of-the-art methods suffer from a number of impediments,
which prevent them from realizing their full potential. For instance,
contrastive methods typically require negative sampling, which is
often computationally costly. While non-contrastive methods avoid
this expensive step, most existing methods either rely on overly
complex architectures or dataset-specific augmentations. In this
paper, we ask: Can we borrow from classical unsupervised machine
learning literature in order to overcome those obstacles? Guided by
our key insight that the goal of distance-based clustering closely
resembles that of contrastive learning: both attempt to pull repre-
sentations of similar items together and dissimilar items apart. As a
result, we propose CARL-G — a novel clustering-based framework for
graph representation learning that uses a loss inspired by Cluster
Validation Indices (CVIs), i.e., internal measures of cluster quality
(no ground truth required). CARL-G is adaptable to different clus-
tering methods and CVIs, and we show that with the right choice
of clustering method and CVI, CARL-G outperforms node classifi-
cation baselines on 4/5 datasets with up to a 79x training speedup
compared to the best-performing baseline. CARL-G also performs
at par or better than baselines in node clustering and similarity
search tasks, training up to 1,500x faster than the best-performing
baseline. Finally, we also provide theoretical foundations for the
use of CVI-inspired losses in graph representation learning.
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1 INTRODUCTION

Graphs can be used to represent many different types of relational
data, including chemistry graphs [9, 21], social networks [39, 53],
and traffic networks [14, 59]. Graph Neural Networks (GNNs) have
been effective in modeling graphs across a variety of tasks, such
as for recommendation systems [18, 25, 48, 58, 68, 76], graph gen-
eration [17, 56, 70], and node classification [23, 28, 60, 73, 77, 79].
These GNN are traditionally [33] trained with a supervised loss,
which requires labeled data that is often expensive to obtain in
real-world scenarios. Graph self-supervised learning (SSL), a re-
cent area of research, attempts to solve this by learning multi-task
representations without labeled data [4, 27, 30, 60, 79].

Most of these existing graph SSL methods can be grouped into ei-
ther contrastive or non-contrastive SSL. Contrastive learning pulls
the representations of similar (“positive”) samples together and
pushes the representations of dissimilar (“negative”) samples apart.
In the case of graphs, this often means either pulling the represen-
tations of a node and its neighbors together [22] or pulling the rep-
resentations of the same node across two different augmentations
together [71]. Graph contrastive learning methods typically use
non-neighbors as negative samples [68, 79], which can be costly.
Non-contrastive learning [4, 34, 54, 60] avoids this step by only
pulling positive samples together while employing strategies to
avoid collapse.

However, all of these methods have some key limitations. Con-
trastive methods rely on a negative sampling step, which has an
expensive quadratic runtime [60] and requires careful tuning [66].
Non-contrastive methods often have complex architectures (ex. ex-
tra encoder with exponentially updated weights [31, 34, 60]) and/or
rely heavily on augmentations [4, 60, 72, 75]. Lee et al. [34] shows
that augmentations can change the semantics of underlying graphs,
especially in the case of molecular graphs (where perturbing a
single edge can create an invalid molecule).

Upon further inspection, we observe that the behavior of con-
trastive and non-contrastive methods is somewhat similar to that
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Proposed Baseline Methods
CARL-G* || AFGRL [34] | BGRL [60] | G-BT [4] | GRACE [79] | MVGRL [24]
Avoids Negative Sampling v v v v X X
Augmentation-Free v 4 X X X X
Single Encoder 4 X X 4 X X
Single Forward Pass per Epoch v X X X X X

Table 1: Comparison of different self-supervised graph learning methods. *: We use CARL-Ggpy as the representative method

since it is the best-performing across all of the criteria.
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Figure 1: Comparison of our proposed methods with other
baselines with respect to node classification accuracy and
speedup on the Amazon-Photos dataset. See Figure 3 for results
on the other datasets.

of distance-based clustering [64]—both attempt to pull together
similar nodes/samples and push apart dissimilar ones. The primary
advantage of using clustering over negative sampling is that we
can work directly in the smaller embedding space, preventing ex-
pensive negative sampling over the graph. Furthermore, there have
been decades of research exploring the theoretical foundations of
clustering methods and many different metrics have been proposed
to evaluate the quality of clusters [7, 15, 32, 47]. These metrics have
been dubbed Cluster Validation Indices (CVIs) [2]. In this work,
we ask the following question: Can we leverage well-established
clustering methods and CVIs to create a flexible, fast, and effective
GNN framework to learn node representations without any labels?

It is worth emphasizing that our goal is not node clustering
directly—it is self-supervised graph representation learning. The
goal is to develop a general framework that is capable of learning
node embeddings for various tasks, including node classification,
node clustering, and node similarity search. There exists some sim-
ilar work. DeepCluster [8] trains a Convolutional Neural Network
(CNN) with a supervised loss on pseudo-labels generated by a clus-
tering method to learn image embeddings.

AFGRL [34] uses clustering to select positive samples in lieu
of augmentations for graph representation learning and applies
the general BGRL [60] framework to push those representations
together. SCD [57] searches over different hyperparameters to ob-
tain a clustering where the silhouette score is maximized. However,
to the best of our knowledge, there is no existing work in self-
supervised representation learning that directly optimizes for CVIs,
which, as we elaborate below, presents us with tremendous poten-
tial in advancing and accelerating the state of the art.
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We fill this gap by proposing the novel idea of using Cluster
Validation Indices (CVIs) directly as our loss function for a neural
network. In conjunction with advances in clustering methods [35,
43, 51, 52], CVIs have been improved over the years as measures of
cluster quality after performing clustering and have been shown
for almost 5 decades to be effective for this purpose [2, 7, 47, 50].

Our proposed method, CARL-G, has several advantages over ex-
isting graph SSL methods by virtue of CVI-inspired losses. First,
CARL-G generally outperforms other graph SSL methods in node
clustering, clustering, and node similarity tasks (see Tables 2, 5
and 6). Second, CARL-G does not require the use of graph augmen-
tations — which are required by many existing graph contrastive
and non-contrastive methods [4, 31, 34, 60, 72, 79] and can inad-
vertently alter graph semantics [34]. Third, CARL-G has a relatively
simple architecture compared to the dual encoder architecture of
leading non-contrastive methods [31, 34, 60], drastically reducing
the memory cost of our framework. Fourth, we provide theoretical
analysis that shows the equivalence of some CVI-based losses and a
well-established (albeit expensive) contrastive loss. Finally, CARL-G
is sub-quadratic with respect to the size of the graph and much
faster than the baselines, with up to a 79x speedup on Coauthor-CS
over BGRL [60] (the best-performing baseline).

Our contributions can be summarized as follows:

e We propose CARL-G, the first (to the best of our knowledge)
framework to use a Cluster Validation Index (CVI) as a neural
network loss function.

e We propose 3 variants of CARL-G based on different CVIs,
each with its own advantages and drawbacks.

e We extensively evaluate CARL-Gg;y — the best all-around
performer — across 5 datasets and 3 downstream tasks, where
it generally outperforms baselines.

e We provide theoretical insight on CARL-Ggpy’s success.

e We benchmark CARL-Gg;y against 4 state-of-the-art models
and show that it is up to 79 x faster with half the memory
consumption (with the same encoder size) compared to the
best-performing node classification baseline.

2 PRELIMINARIES

Notation. We denote a graph as G = (V,8). V is the set of
n nodes (ie, n = [V]) and & C V X V is the set of edges. We
denote the node-wise feature matrix as X € R/ , where f is the
dimension of raw node features, and its i-th row x; is the feature
vector for the i-th node. We denote the binary adjacency matrix as
A € {0,1}™" and the learned node representations as H € R"*4,
where d is the size of latent dimension, and h; is the representation
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KDD ’23, August 6-10, 2023, Long Beach, CA, USA

X L . ) CVI based loss = k-means (Z
(6. X) Initialize k-means using same centroids C eans (Z)
— _ @, pulled closer *,

H = Enc(G,X) O \}
[Essssuss] { /X\.
e _ pushed apart
e, (., | X
Encoder Pred|ctor : Clustering ’
(GNN _ o) I T < eens
@)
Use for downstream  Only used for training /
tasks o o
Graph & Node Features
N Clustering Assignment
Similarity Search Node Classification
Query: @ crrrrrrm) @ o —()
1) @i @ rrrrn—s (1)
2) @ o @ rrr— (1)

3) @ o
4) @ o

5@

e —

e e e e e e e e e e e,
Ne———————

@ —©
@ —©

—

I
I
|
I
|
I
|
I
I
|
J

Figure 2: CARL-G architecture diagram. We describe the method in detail in Section 3.

for the i-th node. Let N(u) be a function that returns the set of
neighbors for a given node u (i.e., N(u) = {v|(u,v) € E}).

Let C be the set of clusters, C; C V be the set of nodes in the i-th
cluster, and ¢ = |C| be the number of clusters. For ease of notation,
let U € [1,c]" be the set of cluster assignments, where U, is the
cluster assignment for node u. Let p = % Yluey hy be the global
centroid and y; = ﬁ 2uec; hu be the centroid for the i-th cluster.

2.1 Graph Neural Networks

A Graph Neural Network (GNN) [22, 33, 74] typically performs
message-passing along the edges of the graph. Each iteration of the
GNN can be described as follows [49]:
R — Uppare®) (hgk>,AGGREGATE<’<> (h%) o e N(u)})) ,
1
where UPDATE and AGGREGATE are differentiable functions, and
h,(lo) = xy. In this work, we opt for simplicity and use Graph Convo-
lutional Networks (GCNs) [33] as the default GNN. These are GNN's
where UPDATE consists of a single MLP layer, and AGGREGATE is

the mean of a node’s representation with its neighbors. Formally,
each iteration of the GCN can be written as:

hy

veN@muiuy VIN@I - N(@)]

2.2 Cluster Validation Indices

Clustering is a class of unsupervised methods that aims to partition
the input space into multiple groups, known as clusters. The goal of
clustering is generally to maximize the similarity of points within
each cluster while minimizing the similarity of points between
clusters [64]. In this work, we focus on centroid-based clustering
algorithms like k-means [37] and k-medoids [40].

Cluster Validation Indices (CVIs) [2] estimate the quality of a par-
tition (i.e., clustering) by measuring the compactness and separation
of the clusters without knowledge of the ground truth clustering.

th+1) - o| wk+D)

@
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Note that these are different from metrics like Normalized Mu-
tual Information (NMI) [12] or the Rand Index [46], which require
ground truth information of cluster labels. Many different CVIs
have been proposed over the years and extensively evaluated [2, 50].

Arbelaitz et al. [2] extensively evaluated 30 different CVIs over a
wide variety of datasets and found that the Silhouette [47], Davies-
Bouldin* [32], and Calinski-Harabasz (also known as the VRC: Vari-
ance Ratio Criterion) [7] indices perform best across 720 differ-
ent synthetic datasets. The VRC has also been shown to be effec-
tive in determining the number of clusters for clustering meth-
ods [7, 16, 38, 50]. As such, we focus on the silhouette index (the
best-performing CVI) and VRC (an effective CVI — especially for
choosing the number of clusters) in this work.

2.2.1 Silhouette. The silhouette index computes the ratio of intra-
cluster distance with respect to the inter-cluster distance of itself
with its nearest neighboring cluster. It returns a value in [-1, 1],
where a value closer to 1 signifies more desired and better dis-
tinguishable clustering. The silhouette index [47] is defined as

Si(C) = % Duey s(u), where:
_ b(w) —a(w)
s(u) = max{a(u),b(u)}’ ®)
and
1
a(uy) = —— Dist(hy, hy), 4)
ICatl =1 e et tun)
b(u) = min |_, Z DisT(hy, hy) . (5)

The runtime of computing the silhouette index for a given node
is O(n), which can be expensive if calculated over all nodes. We
discuss this issue and a modified solution later in Section 3.1.

2.2.2  \Variance Ratio Criterion. The VRC [7] computes a ratio be-
tween its intra-cluster variance and its inter-cluster variance. Its
intra-cluster variance is based on the distances of each point to
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its centroid, and its inter-cluster variance is based on the distance
from each cluster centroid to the global centroid. Formally,

—¢ Xceec |CkIDisT(pg, )
1 ZCkEC ZuECk DIST(hua”) ’

VRC(C) = ©

c—

(6)

For the purposes of this paper, we use Euclidean distance, i.e.,
Dist(a,b) = ||a - b||,.

3 PROPOSED METHOD

3.0.1 Problem Formulation. Given a graph G and its node-wise
feature matrix X € R™/ learn node embeddings h,, € RY for
each node u € V without any additional information (e.g. node
class labels). The learned embeddings should be suitable for various
downstream tasks, such as node classification and node clustering.

3.0.2 CARL-G. We propose CARL-G, which consists of three main
steps (Figure 2). First, a GNN encoder Enc(-) takes the graph as
input and produce node embeddings H = Enc(X, A). Next, a multi-
layer perceptron (MLP) predictor network PRED(-) takes the em-
beddings by GNN and produces a second set of node embeddings
Z = PrReED(H). We then perform a clustering algorithm (e.g., k-
means) on Z to produce a set of clusterings C. It is worth noting
that the clustering algorithm does not have to be differentiable.
Finally, we compute a cluster validation index (CVI) on the cluster
assignments and backpropagate to update the encoder’s and pre-
dictor’s parameters. After training, only the GNN encoder Enc(-)
and its produced embeddings H are used to perform downstream
tasks, and the predictor network PReD(-) is discarded (similar to
the prediction heads in non-contrastive learning work [31, 34, 60]).

3.1 Training CARL-G

As aforementioned in Section 2.2, we evaluate the silhouette in-
dex [47] and the VRC [7] as learning objectives. In order to use them
effectively, we must make slight modifications to the loss functions.
First, we must negate the functions since a higher score is better
for both CVIs, and we typically want to minimize a loss function.
Second, while S1L(C) = 1 and VRC(C) — oo are theoretically ideal,
we find this is generally not true in practice. This is because the
clustering method may miscluster some nodes and fully maximiz-
ing the CVIs will push the misclustered representations too close
together, negatively impacting a classifier’s ability to distinguish
them. To bound the maximum values of our loss, we add 75, and
tyre — the target silhouette and VRC indices, respectively. The
silhouette-based and VRC-based losses are then defined as follows:

™

where 7g;;, € [—1,1] is the target silhouette index and zygc € [0, o)
is the target VRC.

Upon careful inspection of Equation (3), we can observe that
the computational complexity for the silhouette is O(n?), while
the complexity of VRC is only O(nc), where ¢ < n. This is a criti-
cal weakness in using the silhouette, especially when the goal is
to avoid a quadratic runtime (the typical drawback of contrastive
methods). Backpropagating on this loss function would also result
in quadratic memory usage because we have to store the gradients
for each operation. To resolve this issue, we leverage the simplified

Lsy, = |rsy, — S1L(C)] , Lygc = |tvre = VRC(C)] ,

2039

William Shiao et al.

silhouette [26], which instead uses the centroid distance. The sim-
plified silhouette has been shown to have competitive performance
with the original silhouette [62] while being much faster — running
in O(nc) time. As such, we also try the simplified silhouette, which
can be written as:

, b'(u) —a’(u)
sS(u) = ————+—+—,
max{a’(u), b’ (u)}

where i = U, is the cluster assignment for u and

®)

a’ (u) = Dist(u, p;j), b’(u) = min Dist(w, p;), (9)
Cr#Ci

We use the same loss function as Lg;; (Equation (7)), simply substi-

tuting s’ (u) for s(u) (see Section 2.2.1), and name it Lgpy.

3.2 Clustering Method

k-means. We primarily focus on k-means clustering for this
framework due to its fast linear runtime (although we do briefly ex-
plore using k-medoids in Section 4.3.2 below). The goal of k-means
is to minimize the sum of squared errors—also known as the inertia
or within-cluster sum of squares. Formally, this can be written as:

ZC: Z DisT(x, y;) .

i=1 xeC;

arg min (10)

C
Finding the optimal solution to this problem is NP-hard [13], but
efficient approximation algorithms [36, 52] have been developed
that return an approximate solution in linear time (see Section 5).
While k-means is fast, it is known to be heavily dependent on its
initial centroid locations [3, 6], which can be partially solved via
repeated re-initialization and picking the clustering that minimizes
the inertia.

Poor initialization is typically not a large issue in k-means use
cases since the end goal is usually to compute a single clustering
so we can simply repeat and re-initialize until we are satisfied.
However, since we generate a new clustering once per epoch in
CARL-G, poor initialization can result in a large amount of variance
between epochs.

To minimize the chance of poor centroid initialization occurring
during training, we carry the cluster centroids over between epochs.
The centroids will naturally update after running k-means since
the embeddings Z changes each epoch (after backpropagation with
CVI-based loss).

3.3 Theorectical Analysis

To gain a theoretical understanding of why our framework works,
we compare it to Margin loss — a fundamental contrastive loss func-
tion that has been shown to work well for self-supervised represen-
tation learning [22, 68]. We show that CVI-based loss (especially
silhouette loss) has some similarity to Margin based loss, which
intuitively explains the success of CVI-based loss. In addition, we
show that CVI-based loss has the advantages of (a) lower sensitivity
to graph structure, and (b) no negative sampling required.

3.3.1 Similarity analysis of CVI-based loss and Margin loss. Both
Margin loss and CVI-based loss fundamentally consist of two terms:
one measuring the distance between neighbors/inter-cluster points
and one measuring the distance between non-neighbors/inter-cluster
points. This similarity allows us to analyze basic versions of our
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proposed silhouette loss and margin loss in the context of node
classification and show that they are identical in both of their ideal
cases. We further analyze the sensitivity of these losses with respect
to various parameters of the graph to examine the advantages and
disadvantages of our proposed method. To do this, we first define
the mean silhouette and margin loss functions:

Definition 3.1 (Mean Silhouette). We define the mean silhouette
loss (removing the hyperparameter zs;,, focusing on the numerator
(un-normalizing the index) and replacing min with the mean) as
follows:

Lys(u) = —(bus(u) — a(w)) = a(u) — bys(u), (11)
where
bus hy,hy).
W= — 2, G U;,. DisT( ) 12)

Definition 3.2 (Margin Loss). We define margin loss as follows:

1
ML(1) = ) UE%‘EM) Dist(hy, hy) (13)
1
TN ] g D)

1¢N(u)

It is worth noting that this margin loss differs from the max-
margin loss traditionally used in graph SSL [68]. We simplify it
above in Definition 3.2 by removing the max function for ease of
analysis.

Let L be the set of true class labels, and £, be the class label for
anode u € V. We define the expected inter-class and intra-class
distances as follows:

a, if Ly, =2Ly;
E [Dist(hy, hy)] = 14
[Drst(hu. ho)l {ﬂ, otherwise, (1)
where a, f € R*. Next, let
if _ )
P((w0) € &) = {P’ i Lu = Lo (15)
q, otherwise,

i.e., G follows a stochastic block model with a probability matrix
P € [0,1]°%¢ of the form:

(16)

P
Note that g does not necessarily equal 1 — p. Finally, we define the

inter-class clustering error rate € and intra-class clustering error
rate § as follows:

P(Cy # Co| Ly =Ly) =€;
P(Cu = Cv|£u * Lv) =

(17)
(18)
Claim 1. Given the above assumptions, the expected value of the

simplified silhouette loss approaches that of the margin loss as p —
1,q — 0, ande,§ — 0.
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Proor. To find E [Lg(u)], we first find E [a(u)] and E [bs(u)]:
ﬁ

Efa(uw)] = % - < 455 - (19)
E[bs<u>]=7+ﬁ—ﬁ5—§+¥; (20
E[Ls(w)] =E [a(w)] - [bs(u)] (21)

_Zea 2B, ﬂ — B+258.
C c

Next, we take its limit as €, — 0:

lim (—26—“ b /3 —B+25p| = /3 +2-5. @
€,0—0 c C C

To find E [ML(u)], we first find the expected value of its left and
right sides:

NL > Dist(huho)| = 22+ pg - L -
) Suy ¢ ¢
1
E Z DisT(hy, hy) (24)
V=N - (&,
a_ap B Ba
==-Lip-pg-L+=2. (25
T AP+ (25)
Substituting them back in, we get
2ap 2hq I
E = yopg -2 4B _p. 2
) ==L r2pg-H -2 )
Taking its limit as p — 1,q — 0, we find
. ﬁq a b
| 2
p—)ifl(;—m C + ﬁ (4 c 'B ( 7)
2a a a
NN ﬁ Lop e
c ¢ c ¢
o lim E [ML(u)] E [Ls(w)] . (29)
p—1,qg—0
O

Since the two loss functions are identical in their ideal cases, one
may wonder: Why not use margin loss instead? Well, the silhouette-
based loss has two key advantages:

3.3.2  Lower sensitivity to graph structure. The margin loss is min-
imized as p — 1 and ¢ — 0. However, p and q are attributes of
the graph itself, making it difficult for a user to directly improve
the performance of a model using that loss function. On the other
hand, the mean silhouette depends on € and 6, the inter/intra-class
clustering error rates, instead. Even on the same graph, a silhouette-
based loss can likely be improved by either choosing a more suitable
clustering method or distance metric. This greatly increases the
flexibility of this loss function.

3.3.3  No negative sampling. Negative sampling is required for most
graph contrastive methods and often requires either many sam-
ples [24] or carefully chosen samples [67, 69]. This is costly, of-
ten costing quadratic time [60]. The primary advantage of non-
contrastive methods is that they avoid this step [4, 60]. The sim-
plified silhouette avoids this issue by only working in the n X d
embedding space instead of the n X n graph. It also contrasts node
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representations against centroid representations instead of against
other nodes directly.

4 EXPERIMENTAL EVALUATION

We evaluate 3 variants of CARL-G: (a) CARL-Gg;;, — based on the
silhouette loss in Equation (7), (b) CARL-Gyrc — based on the VRC
loss in Equation (7), and (c) CARL-Ggpy — based on the simplified
silhouette loss in Equation (8). We evaluate these variants on 5
datasets on node classification and thoroughly benchmark their
memory usage and runtime. We then select the best-performing
variant, CARL-Ggpy, and evaluate its performance across 2 additional
tasks: node clustering, and embedding similarity search.

4.0.1 Node Classification. A common task for GNNs is to classify
each node into one of several different classes. In the supervised
setting, this is often explicitly optimized for during the training
process since the GNN is typically trained with cross-entropy loss
over the labels [22, 33] but this is not possible for graph SSL methods
where we do not have the labels during the training of the GNN. As
such, the convention [4, 34, 60, 61, 79] is to train a logistic regression
classifier on the frozen embeddings produced by the GNN.
Following previous works, we train a logistic regression model
with ¢, regularization on the frozen embeddings produced by our
encoder model. We compare against a variety of self-supervised
baselines, including both GNN-based and non-GNN-based: Deep-
Walk [45], Randomlnit [61], DGI [61], GMI [44], MVGRL [24],
GRACE [79], G-BT [4], AFGRL [34], and BGRL [60]. We also eval-
uate our method against two supervised models: GCA [80] and
a GCN [33]. We follow [34, 60] and use an 80/10/10 train/valida-
tion/test, early stopping on the validation accuracy. We re-run
AFGRL and BGRL using their published code and weights (where
possible) on that split!. Finally, we use node2vec results from [34]
and the reported results of the other baseline methods from their
respective papers. See Section 4.4 for implementation details.

4.0.2 Node Clustering. Following previous graph representation
learning work [24, 34, 41], we also evaluate CARL-G on the task
of node clustering. We fit a k-means model on the generated em-
beddings H using the evaluation criteria from [34] — NMI and
cluster homogeneity. Following [34], we re-run our model with
different hyperparameters (the embeddings are not the same as
node classification) and report the highest clustering scores. Due
to computational resource constraints, we choose to only evaluate
CARL-Ggpyy, the overall best-performing model. We report the scores
of the baselines models from [34].

4.0.3  Similarity Search. Following [34], we evaluate our model on
node similarity search. The goal of similarity search is to, given a
query node u, return the k nearest neighbors. In our setting, the goal
is to return other nodes belonging to the same class as the query
node. We evaluate the performance of each method by computing
its Hits@k — the percentage of the top k neighbors that belong to
the same class. Similar to [34], we evaluate our model every epoch
and report the highest similarity search scores. We use k € {5,10}
and use the scores from [34] as baseline results.

The official BGRL implementation online uses an 80/0/20 split compared to the
80/10/10 split mentioned in [60], so we re-run their trained models on an 80/10/10 split.
Most results are similar but we get slightly different results on Amazon-Computers.
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GRACE GCA BGRL | AFGRL CARL-Ggy

Wikics NMI | 0428 0337 0397 | 0413 0.471
Hom. | 0442 0353 0416 | 0.430 0.491
comouters | NMI | 0479 0528 0536 | 0552 0.558
P Hom. | 0522 0582 0587 | 0.604 0.607
NMI | 0651 0644 0684 | 0.656 0.701

Photo
Hom. | 0666 0658 0700 | 0.674 0.718
oS NMI | 0756 0762 0773 | 0.786 0.790
: Hom. | 0791 0797 0804 | 0.816 0.815
Co.Physics | NMI | OOM  OOM 0557 | 0729 0.771
Py Hom. | OOM OOM 0602 | 0.735 0.776

Table 2: Node clustering performance in terms of cluster NMI
and homogeneity. CARL-Ggy outperforms the baselines on
4/5 datasets.

4.1 Evaluation Results

4.1.1 Node Classification Performance. We show the node classi-
fication accuracy of our three proposed methods along with the
baseline results in Table 5. CARL-Ggy;, generally performs the best of
all the evaluated methods, with the highest accuracy on 4/5 of the
datasets (all except Wiki-CS). CARL-Ggpy generally performs simi-
larly to CARL-Ggyy, with similar performance on all datasets except
Wiki-CS and Amazon-Photos, and still outperforms the baselines
on 4/5 datasets. CARL-GyRc is the weakest-performing method of
the three methods. It only outperforms baselines on 2/5 datasets.
Since CARL-Ggpy is much faster than CARL-Gg;; (see Section 3.1
and Figure 4a) without sacrificing much performance, we focus on
CARL-Ggy for the remainder of the evaluation tasks.

4.1.2  Node Clustering Performance. We evaluate CARL-Ggpy on
node clustering and display the results in Table 2. We find that
it generally outperforms its baselines on 5/5 datasets in terms of
NMI and 4/5 datasets in terms of homogeneity. CARL-Ggy and AF-
GRL [34] both encourage a clusterable representations by utilizing
k-means clustering as part of their respective training pipelines.

4.1.3  Similarity Search Performance. We evaluate CARL-Ggpy on
similarity search in Table 6, where it roughly performs on par with
AFGRL, the best-performing baseline. This is surprising, as AFGRL
specifically optimizes for the similarity search task by using k-NN
as one of the criteria to sample neighbors.

4.2 Resource Benchmarking

We benchmark the 3 variants of our proposed method against
BGRL [60] (the best-performing baseline), AFGRL [34] (the most
recent baseline), G-BT [4] (the fastest baseline), and GRACE [79] (a
strong contrastive baseline). We time the amount of time it takes
to train each of the best-performing node classification models.
We remove all evaluation code and purely measure the amount of
time it takes to train each method, taking care to synchronize all
asynchronous GPU operations. We use the default values in the
respective papers for AFGRL and BGRL: 5,000 epochs for AFGRL
and 10,000 epochs for BGRL. We use 50 epochs for CARL-G, although
our method converges much faster in practice.

We also measure the GPU memory usage of each method. We
use the hyperparameters by the respective paper authors for each
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Figure 3: Runtime v.s. accuracy plots. CARL-Ggpy, CARL-Ggyy, and CARL-Gyrc are our proposed methods. Speedup is relative to
the slowest baseline (AFGRL). AFGRL and GRACE run out of memory on Coauthor-Physics.

dataset, which is why the methods use different encoder sizes. Note
that the encoder sizes greatly affect the runtime and memory usage
of each of the models, so we report the layer sizes used in Table 3.
Our benchmarking results can be found in Figures 4a and 4b.

Computers  Photos Co-CS Co-Phy Wiki
AFGRL [512] [512] [1024] OOM [1024]
BGRL [256,128]  [256,128] [512,256] [256,128] [512,256]
G-BT [256,128]  [512,256] [512,256] [256,128] [512,256]
GRACE [256,128]  [256,128] [512,256] [256,128] [512,256]
CARL-Gspy [512,256]  [512,256] [512,256] [512,256] [512,256]
CARL-Gsyp [512,256]  [512,256] [512,256] [512,256] [512,256]
CARL-Gyrc  [512,256]  [512,256] [512,256] [512,256] [512,256]

Table 3: GCN layer sizes used by the encoder for each method.
The layer sizes greatly affect the amount of memory used by
each model (shown in Figure 4b).

4.2.1 CARL-G is fast. In Figure 4a, we show that CARL-Ggy is much
faster than competing baselines, even in cases where the encoder is
larger (see Table 3). BGRL is the best-performing node classification
baseline, and CARL-Ggyy is about 79x faster on Coauthor-CS, and
57x faster on Coauthor-Physics. AFGRL is by far the slowest
method, requiring much longer to train.

4.2.2  CARL-G works with a fixed encoder size. We find that CARL-G
works well with a fixed encoder size (see Table 3). Unlike AFGRL,
BGRL, GRACE, and G-BT, we fix the encoder size for CARL-G across
all datasets. This has practical advantages by allowing a user to
fix the model size across datasets, thereby reducing the number of
hyperparameters in the model. We observed that increasing the
embedding size also increases the performance of our model across
all datasets. This is not true for all of our baselines — for example,
[34] found that BGRL, GRACE, and GCA performance will often
decrease in performance as embedding sizes increase. We limited
our model embedding size to 256 for a fair comparison with other
models.

4.2.3 CARL-Ggp uses much less memory for the same encoder size.
When the encoder sizes of baseline methods are the same, CARL-Ggpy
uses much less memory than the baselines. The GPU memory us-
age of CARL-Ggyy is also much lower than (about half) the memory
usage of a BGRL model of the same size. This is because BGRL
stores two copies of the encoder with different weights. The sec-
ond encoder’s weights gradually approach that of the first encoder
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during training but still takes up twice the space compared to single-
encoder models like CARL-Ggpy or G-BT [4].

4.2.4 CARL-Gsp’s runtime is linear with respect to the number of
neighbors. In Section 3.1, we mention that the runtime of CARL-Ggyy,
the silhouette-based loss, is O(n?). This was the motivation for us
to propose CARL-Ggpy — the simplified-silhouette-based loss which
has an O(nc) runtime instead.

4.3 Ablation Studies

We perform an ablation and sensitivity analysis on several aspects
of our model. First, we examine the sensitivity of our model with
respect to c—the number of clusters. Second, we examine the effect
of using k-medoids instead of k-means. Finally, we try to inject
more graph structural information during the clustering stage to
see if we are losing any information.

4.3.1  Effect of the number of clusters. We perform sensitivity anal-
ysis on ¢ — the number of clusters (see Figures 5a and 5b). We
find that, generally, the accuracy of our method goes up as the
number of clusters increases. As the number of clusters continues
to increase, the accuracy begins to drop. This implies that, much
like traditional clustering [50], there is some “sweet spot” for c.
However, it is worth noting that this number does not directly cor-
respond to the number of classes in the data and is much higher
than c for all of the datasets. DeepCluster [8] also makes similar
observations, where they find 10,000 clusters is ideal for ImageNet,
despite there only being 1,000 labeled classes.

4.3.2 k-medoids v.s. k-means. We Table 4: k-medoids w/

study the effect of using k-medoids CARL-Ggpy.

instead of k-means as our clus-

tering algorithm. Both algorithms Dataset | Accuracy A
are partition-based clustering meth- gzmz:ters (1);*;
ods [64] and have seen optimizations Co.Phy 007

in recent years [51, 52]. We find that Photos -0.11

the k-means-based CARL-Ggpy gener-
ally performs better across all 4 of the evaluated datasets. The
differences in node classification accuracy are shown in Table 4.

4.3.3  Does additional information help? It may appear as if we are
losing graph information by working only with the embeddings. If
this is the case, we should be able to improve the performance of
our method by injecting additional information into the clustering
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the least amount of memory used. CARL-Ggy uses the same amount of memory but is slightly slower. Note that not all of the
baselines use the same encoder size—see Table 3 for encoder sizes.

9849 [ 95.95 to use the split and downstream tasks from [34]. We also use the
L 05.00 official implementation of AFGRL [34]. We perform 50 runs of
Bayesian hyperparameter optimization on each dataset and task
for each of our 3 methods. The hyperparameters for our results are
available at that link. All of our timing experiments were conducted
92:8 1 on Google Cloud Platform using 16 GB NVIDIA V100 GPUs.
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While our proposed framework has been shown to be highly effec-
tive in terms of both training speed and performance across the 3
tasks, there are also some limitations to our approach. One such
limitation is that we use hard clustering assignments, i.e., each node
is assigned to exactly one cluster. This can pose issues for multi-
label datasets like the Protein-Protein Interaction (PPI) [81] graph

dataset. One possible solution to this problem is to perform soft

(a) Acc. on Amazon-Photos. (b) Acc. on Coauthor-Physics.

Figure 5: Node classification accuracy of CARL-Ggy on
Amazon-Photos and Coauthor-Physics with a different num-
ber of clusters.

step. We can do this by modifying the distance function of our clustering and use a weighted average of CVIs for second/tertiary
clustering algorithm to the following: cluster assignments, but this would require major modifications to
DisT(hy, hy) = A |hy — holly + (1 - )D (30) our method, and we reserve an exploration of this for future work.

wNy) = u v w0

where D is the all-pairs shortest path (APSP) length matrix of G. 5 ADDITIONAL RELATED WORK

This allows us to inject node neighborhood information into the
clustering algorithm on top of the aggregation performed by the
GNN. However, we find there is no significant change in perfor-
mance for low A and performance decreases for high A. This helps
confirm the hypothesis that the GNN encoder is able to successfully
embed a sufficient amount of structural data in the embedding.

Deep Clustering. A related, but distinct, area of work is deep
clustering, which uses a neural network to directly aid in the clus-
tering of data points [1]. However, the fundamental goal of deep
clustering differs from graph representation learning in that the
goal is to produce a clustering of the graph nodes rather than just
representations of them. An example of this is DEC [63], which uses
a deep autoencoder with KL divergence to learn cluster centers,

4.4 Implementation Details
which are then used to cluster points with k-means.

For fair evaluation with other baselines, we elect to use a stan-

dard GCN [33] encoder. Our focus is on the overall framework Clustering for Representation Learning. There exists work that
rather than the architecture of the encoder. All of our baselines uses clustering to learn embeddings [8, 65, 78]. Notably, DeepClus-
also use GCN layers. Following [34, 60], we use two-layer GCNs ter [8] trains a CNN with standard cross-entropy loss on pseudo-
for all datasets and use a two-layer MLP for the predictor net- labels produced by k-means. Similarly, [65] simultaneously per-
work.-We implement our model with PyTorch [42] and PyTorch forms clustering and dimensionality reduction with a deep neural
Geometric [19]. A copy of our code is publically available at https: network. The key difference between those models and our pro-
//github.com/willshiao/carl-g. We adapt the code from [55], which posed framework is that we use graph data and CVI-based losses
contains implementations of BGRL [60], GRACE [79], and GBT [4] instead of traditional supervised losses.
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‘ Method Wiki-CS Amazon-Computers Amazon-Photos Coauthor-CS Coauthor-Physics
Raw Features 71.98 + 0.00 73.81 = 0.00 78.53 + 0.00 90.37 + 0.00 93.58 + 0.00
Traditional node2vec [20] 71.79 + 0.05 84.39 + 0.08 89.67 £ 0.12 85.08 + 0.03 91.19 + 0.04
DeepWalk [45] 74.35 + 0.06 85.68 + 0.06 89.44 + 0.11 84.61 + 0.22 91.77 £ 0.15
DeepWalk [45] + Feat.  77.21 +0.03 86.28 + 0.07 90.05 + 0.08 87.70 = 0.04 94.90 + 0.09
Random-Init [61] 78.95 + 0.58 86.46 + 0.38 92.08 + 0.48 91.64 + 0.29 93.71 + 0.29
DGI [61] 75.35 £ 0.14 83.95 + 0.47 91.61 + 0.22 92.15 + 0.63 94.51 + 0.09
GMI [44] 74.85 + 0.08 82.21 £ 0.31 90.68 + 0.17 OOM OOM
GNN SSL MVGRL [24] 77.52 + 0.08 87.52 £ 0.11 91.74 + 0.07 92.11 £ 0.12 95.33 + 0.03
GRACE [79] 80.14 + 0.48 89.53 + 0.35 92.78 + 0.45 91.12 +£ 0.20 OOM
G-BT [4] 76.65 £+ 0.62 88.14 + 0.33 92.63 + 0.44 92.95 + 0.17 95.07 = 0.17
AFGRL [34] 78.52 +0.72 89.55 + 0.36 92.91 + 0.26 93.14 + 0.23 OOM
BGRL [60] 79.98 £ 0.10 89.90 + 0.19 93.17 £ 0.30 93.34 + 0.13 95.77 £ 0.05
CARL-GyRrC 78.81 + 0.49 88.90 + 0.39 93.31 £ 0.36 93.18 + 0.31 95.92 + 0.14
Proposed | CARL-Ggpy 79.58 + 0.60 90.14 + 0.33 93.37 + 0.37 93.36 + 0.39 95.96 = 0.09
CARL-Ggyp 79.73 + 0.44 90.14 + 0.34 93.44 + 0.32 93.37 +£ 0.33 95.97 £ 0.14
Supervised GCA [30] 78.35 + 0.05 88.94 + 0.15 92.53 £ 0.16 93.10 = 0.01 95.73 + 0.03
Supervised GCN [33] 77.19 £ 0.12 86.51 + 0.54 92.42 + 0.22 93.03 + 0.31 95.65 + 0.16

Table 5: Table of node classification accuracy. Bolded entries indicate the highest accuracy for that dataset. Underlined entries
indicate the second-highest accuracy. OOM indicates out-of-memory.

| GRACE GCA BGRL AFGRL | CARL-Ggy
wikics | His@5 | 0775 0779 0774 0781 0.789
Hits@10 | 0765 0767 0762  0.766 0.775
Computers Hits@5 0.874 0.883  0.895 0.897 0.881
P Hits@10 0.864 0.874  0.886 0.889 0.871
Photo Hits@5 0.916 0.911  0.925 0.924 0.922
Hits@10 0.911 0.905  0.920 0.917 0.917
Cocs | Hits@s | 0910 0913 0911 0918 0.916
' Hits@10 | 0906 0910 0909  0.914 0.914
Co.Physi Hits@5 OOM OOM  0.950 0.953 0.953
OFIYSICS | Hits@10 | OOM ~ OOM  0.946  0.949 0.950

Table 6: Performance on similarity search. Surprisingly,
CARL-G performs fairly well on this task, despite not being
explicitly optimized for this task (unlike AFGRL, which uses
KNN during training).

Clustering for Efficient GNNs. There also exists work that uses
clustering to speed up GNN training and inference. Cluster-GCN [11]
samples node blocks produced by graph clustering algorithms and
speeds up GCN layers by limiting convolutions within each block
for training and inference. However, it is worth noting that it com-
putes a fixed clustering, rather than updating the clustering jointly
with our model (unlike CARL-G). FastGCN [10] does not explic-
itly cluster nodes but uses Monte Carlo importance sampling to
similarly reduce neighborhood size and improve the speed of GCNGs.

Efficient k-means. Over the years, many variants and improve-
ments to k-means have been proposed. The original method pro-
posed to solve the k-means assignment problem was Lloyd’s algo-
rithm [36]. Since then, several more efficient algorithms have been
developed. Bottou and Bengio [5] propose using stochastic gradient
descent for finding a solution. Sculley [52] further builds on this
work by proposing a k-means variant that uses mini-batching to dra-
matically speed up training. Finally, approximate nearest-neighbor
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search libraries like FAISS [29] allow for efficient querying of near-
est neighbors, further speeding up training.

6 CONCLUSION

In this work, we are the first to introduce Cluster Validation Indexes
in the context of graph representation learning. We propose a novel
CVI-based framework and investigated trade-offs between different
CVI variants. We find that the loss function based on the simplified
silhouette achieves the best overall performance to runtime ratio.
It outperforms all baselines across 4/5 datasets in node classifica-
tion and node clustering tasks, training up to 79x faster than the
best-performing baseline. It also performs on-par with the best
performing node similarity search baseline while training 1,500
faster. Moreover, to more comprehensively understand the effec-
tiveness of CARL-G, we establish a theoretical connection between
the silhouette and the well-established margin loss.
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A APPENDIX =P(Ly =Ly) 'P(Cu # CylLy = Lv) (44)
A.1 Full Proof of Equivalency to Margin Loss Ey [D1sT(hy, ho)|Cy # Co A Lu = Lo]
Proor. For ease of analysis, we work with the simplified sil- +P(Ly # L) - P(Cy # Col Lu # Lo)
houette loss (Definition 3.1) and the non-max margin loss (Defi-
nition 3.2). Let £ be the set of class labels, and £, be the class - By [D1sT(hy, ho)|Cy # Co A Lu # Lo] = (_) ea+ (1 - _) (1-9)p
label for node u. Let Cy, be the cluster assignment for node u, and s
¢ = |C| be the number of clusters/classes. We define the expected -2y Jij (1 -56--+ ) (45)
inter-class and intra-class distances as follows: ¢ ﬁc 5;
if £, = =Sap-ps-LaL (46)
E [Dist(hy, hy)] = {“ lfﬂf” Lo (31)
potherwise Now, we can find E [ss(u)]:
where a, f € R*. Next, let
E [ss(u)] = E [bs(w)] - E [a(u)] (47)
p ifLy=2L, ,B 5,8 a  ea op
P ((u, E) = s 32 - = Z_Z -z
(o) € &) { otherwise (32) - +ﬁ ps ~ ¢ c +0p ¢ (48)
i.e., G follows a stochastic block model with a probability matrix +B—pS— ﬂ 5ﬁ X, 5B+ ﬂ (49)
P € [0,1]°%¢ of the form: 255 ﬁ c
Zea 2 a
P9 9 9 =t L. th-p. (50)
q Taking its limit as €, 6 — 0, we find
p=| . . (33)
T lim (—26—“ b /3 ﬁ+25/3) b2 s 1)
q p €,0—0 C c I
Note that g does not necessarily equal 1 — p. We define the inter- We similarly break down the margin loss into two terms:
class clustering error rate € and intra-class clustering error rate §
as follows: B Nzu) Z DisT(ha o) (52)
P(Cy # Cy|lLyu=Ly) =€ (34) veN(u)
P(Cy =CylLu # Lo) =6. (35) =B, [DisT(hy, ho)|(1,0) € E] (53)
To find E [ss(u)], we first find E [a(u)] and E [bs(u)]: = P(Lu=Lo) - P((w0) € 8| Ly = Lo) (54)
- By [Dist(hy, hy)|(u,0) € E A Ly = Ly]
1 .
Ela(u)] = | —— Dist(hy ho)|  (36) +P(Ly# Lo) - P((w0) € BlLy # L)
ICil -1 ve(Comtu}) - By [D1st(hy, hy)|(u,0) € E A Ly # L]
=Ey [Dist(hy, hy)|Cy = Cy] (37) — (1) ap + (1 _ l)ﬂq (55)
=P(Ly=Ly)  P(Cy = Col Ly = Ly) (38) ¢ ¢
By [D1sT(hy, hy)|Cu = Co A Ly = Lo] - + Bq — @ (56)
+P(Ly # Lo) - P(Cu = Col Lu # Lo) ¢ ¢
By [D1sT(hu ho)|Cu = Co A Lu # Lo] and
1) 1
=1|- (l—e)(x+(l——) 5ﬂ (39) E 1 D h h 57
(c V=N - Wl & 15t ) 67
a /3
i s (40) = By [Dst(hu, ho)|(u,0) ¢ E] (58)
and = P(Lu = Lu) -P((u, U) ¢ 8|-£u = Lv) (59)
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Re-substituting the terms into the margin loss equation, we get

1
El——— > Dist(hyh,) (62)
IN(w)| e Nw)
1
——————— " Dist(hyhy)
[V =N@ -l &,
1
=E|—— Z Dist(hy, hy) (63)
IN(w)] o N )
1
~E|m————— > Dist(hy,h)
V=N -l &
o e Ba_(a_ap o B P4
~Lapg- (2L appg- L B o
a a o
=P pg PG g BP
C C c C Cc Cc
S0 g2 P g (66)
[ [ C c
Taking its limitas p — 1,q — 0:
im (2P _ g _a B
p—}ir(l;—w c * zﬁq c c * c ﬂ (67)
SN N (68)
Cc (5 (4 Cc c
o lim E[mu(w)] = lim E[Ls(w)] . (69)
p—14—0 €50
O

A2

Our analysis in Appendix A.1 aims to show that the more traditional
margin-based losses and silhouette-based losses are sensitive to

Meaning of Ideal Conditions

different parameters and their equivalence in the best-case scenario.

Here, we briefly summarize what each of those ideal conditions
means:
e p — 1: We approach the case where an edge exists between
each node of the same class.
e g — 0: We approach the case where an edge never exists
between nodes of different classes.
e ¢ — 0: We approach the case where we always place two
nodes in the same cluster if they are the same class.
e § — 0: We approach the case where we never place two
nodes in the same cluster if they are in different classes.
Essentially, the ideal case for a margin-loss GNN is p — 1 and

q — 0. Conversely, the ideal case for CARL-G is € — 0, — 0.

As we mentioned in Section 3.3, silhouette-based loss relies on
the clustering error rate rather than the inherent properties of the
graph. We show that a margin-loss GNN is exactly equivalent to a
mean-silhouette-loss GNN under the above conditions; however,
it also follows that some equivalence can also be drawn between
them for different non-ideal values of p, g, €, and §, but we feel such
analysis is out of the scope of this work.
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A.3 Additional Experiment Details

We ran our experiments on a combination of local and cloud re-
sources. All non-timing experiments were run on an NVIDIA RTX
A4000 or V100 GPU, both with 16 GB of VRAM. All timing ex-
periments were conducted on a Google Cloud Platform (GCP) in-
stance with 12 CPU Intel Skylake cores, 64 GB of RAM, and a 16
GB V100 GPU. Accuracy means and standard deviations are com-
puted by re-training the classifier on 5 different splits. The code
and exact hyperparameters for this paper can be found online at
https://github.com/willshiao/carl-g.

Method | Dataset Max GPU Memory Mean CPU Memory Training Time Layer Sizes
Amazon-Computers 2,637 2,671 8,311.94 [512]
. Amazon-Photos 1,221 2,615 4,659.91 [512]
AFGRL Coauthor-CS 5,537 3,038 19,533.74 [1024]
Wiki-CS 4,177 2,647 16,185.56 [1024]
Amazon-Computers 1,081 2,289 387.03 [256,128]
Amazon-Photos 615 2,267 284.29 [256,128]
BGRL Coauthor-CS 2,637 2,722 1,032.14 [512,256]
Coauthor-Physics 4,769 3,362 1,270.93 [256,128]
Wiki-CS 1877 2,240 720.37 [512,256]
Amazon-Computers 2,100 2,910 8.97 [512,256]
Amazon-Photos 1,032 2,875 9.29 [512,256]
CARL-Gg;y | Coauthor-CS 1,325 3,352 13.07 [512,256]
Coauthor-Physics 3,405 3,998 27.11 [512,256]
Wiki-CS 1816 2,857 15.64 [512,256]
Amazon-Computers 2,100 3,435 172.26 [512,256]
Amazon-Photos 1,032 3,320 30.13 [512,256]
CARL-Gsyp, Coauthor-CS 4,682 4,273 832.25 [512,256]
Coauthor-Physics 10,074 4,882 524.27 [512,256]
Wiki-CS 1816 3,392 217.63 [512,256]
Amazon-Computers 2,100 2,875 9.15 [512,256]
Amazon-Photos 1,032 2,843 6.04 [512,256]
CARL-Gygc | Coauthor-CS 1,325 3,320 7.57 [512,256]
Coauthor-Physics 3,405 3,964 17.22 [512,256]
Wiki-CS 1816 2,826 4.08 [512,256]
Table 7: Performance of various methods.
A.4 Dataset Statistics
Dataset || Nodes Edges Features Classes
Wiki-CS 11,701 216,123 300 10
Coauthor-CS 18,333 163,788 6,805 15
Coauthor-Physics 34,493 495,924 8,415 5
Amazon-Computers 13,752 491,722 767 10
Amazon-Photos 7,650 238,162 745 8

Table 8: Statistics for the datasets used in our work.

A.5 Training Time

/

Number of Clusters

Figure 6: Training time versus number of clusters for
CARL-Gg;yy on Coauthor-Physics. As expected (see Sec-
tion 3.1), the training time is linear with respect to the num-
ber of clusters.
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