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Figure 2: CARL-G architecture diagram. We describe the method in detail in Section 3.

for the 8-th node. Let N(D) be a function that returns the set of
neighbors for a given node D (i.e., N(D) = {E | (D, E) ∈ E}).

Let C be the set of clusters, C8 ⊆ V be the set of nodes in the 8-th
cluster, and 2 = |C| be the number of clusters. For ease of notation,
letU ∈ [1, 2]= be the set of cluster assignments, whereUD is the
cluster assignment for node D. Let - =

1
2

∑
D∈V hD be the global

centroid and -8 =
1

| C8 |

∑
D∈C8 hD be the centroid for the 8-th cluster.

2.1 Graph Neural Networks

A Graph Neural Network (GNN) [22, 33, 74] typically performs
message-passing along the edges of the graph. Each iteration of the
GNN can be described as follows [49]:

h
(:+1)
D = Update

(: )
(
h
(: )
D ,Aggregate(: ) ({h

(: )
E ,∀E ∈ N(D)})

)
,

(1)
where Update and Aggregate are di�erentiable functions, and

h
(0)
D = xD . In this work, we opt for simplicity and use Graph Convo-

lutional Networks (GCNs) [33] as the default GNN. These are GNNs
where Update consists of a single MLP layer, and Aggregate is
the mean of a node’s representation with its neighbors. Formally,
each iteration of the GCN can be written as:
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ª®
¬
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2.2 Cluster Validation Indices

Clustering is a class of unsupervised methods that aims to partition
the input space into multiple groups, known as clusters. The goal of
clustering is generally to maximize the similarity of points within
each cluster while minimizing the similarity of points between
clusters [64]. In this work, we focus on centroid-based clustering
algorithms like :-means [37] and :-medoids [40].

Cluster Validation Indices (CVIs) [2] estimate the quality of a par-
tition (i.e., clustering) bymeasuring the compactness and separation
of the clusters without knowledge of the ground truth clustering.

Note that these are di�erent from metrics like Normalized Mu-
tual Information (NMI) [12] or the Rand Index [46], which require
ground truth information of cluster labels. Many di�erent CVIs
have been proposed over the years and extensively evaluated [2, 50].

Arbelaitz et al. [2] extensively evaluated 30 di�erent CVIs over a
wide variety of datasets and found that the Silhouette [47], Davies-
Bouldin* [32], and Calinski-Harabasz (also known as the VRC: Vari-
ance Ratio Criterion) [7] indices perform best across 720 di�er-
ent synthetic datasets. The VRC has also been shown to be e�ec-
tive in determining the number of clusters for clustering meth-
ods [7, 16, 38, 50]. As such, we focus on the silhouette index (the
best-performing CVI) and VRC (an e�ective CVI — especially for
choosing the number of clusters) in this work.

2.2.1 Silhoue�e. The silhouette index computes the ratio of intra-
cluster distance with respect to the inter-cluster distance of itself
with its nearest neighboring cluster. It returns a value in [-1, 1],
where a value closer to 1 signi�es more desired and better dis-
tinguishable clustering. The silhouette index [47] is de�ned as
Sil(C) = 1

=

∑
D∈V B (D), where:

B (D) =
1 (D) − 0(D)

max{0(D), 1 (D)}
, (3)

and

0(D) =
1

|CUD
| − 1

∑
E∈ (CUD −{D})

Dist(hD ,hE) , (4)

1 (D) = min
8≠UD

1

|C8 |

∑
E∈C8

Dist(hD ,hE) . (5)

The runtime of computing the silhouette index for a given node
is $ (=), which can be expensive if calculated over all nodes. We
discuss this issue and a modi�ed solution later in Section 3.1.

2.2.2 Variance Ratio Criterion. The VRC [7] computes a ratio be-
tween its intra-cluster variance and its inter-cluster variance. Its
intra-cluster variance is based on the distances of each point to
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its centroid, and its inter-cluster variance is based on the distance
from each cluster centroid to the global centroid. Formally,

VRC(C) =
= − 2

2 − 1

∑
C: ∈C |C: |Dist(-: , -)∑

C: ∈C
∑
D∈C: Dist(hD , -)

. (6)

For the purposes of this paper, we use Euclidean distance, i.e.,
Dist(a, b) = ∥a − b ∥2.

3 PROPOSED METHOD

3.0.1 Problem Formulation. Given a graph � and its node-wise
feature matrix ^ ∈ R=×5 , learn node embeddings hD ∈ R3 for
each node D ∈ V without any additional information (e.g. node
class labels). The learned embeddings should be suitable for various
downstream tasks, such as node classi�cation and node clustering.

3.0.2 CARL-G. We propose CARL-G, which consists of three main
steps (Figure 2). First, a GNN encoder Enc(·) takes the graph as
input and produce node embeddings N = Enc(^ ,G). Next, a multi-
layer perceptron (MLP) predictor network Pred(·) takes the em-
beddings by GNN and produces a second set of node embeddings
` = Pred(N ). We then perform a clustering algorithm (e.g., :-
means) on ` to produce a set of clusterings C. It is worth noting
that the clustering algorithm does not have to be di�erentiable.
Finally, we compute a cluster validation index (CVI) on the cluster
assignments and backpropagate to update the encoder’s and pre-
dictor’s parameters. After training, only the GNN encoder Enc(·)
and its produced embeddings N are used to perform downstream
tasks, and the predictor network Pred(·) is discarded (similar to
the prediction heads in non-contrastive learning work [31, 34, 60]).

3.1 Training CARL-G

As aforementioned in Section 2.2, we evaluate the silhouette in-
dex [47] and the VRC [7] as learning objectives. In order to use them
e�ectively, we must make slight modi�cations to the loss functions.
First, we must negate the functions since a higher score is better
for both CVIs, and we typically want to minimize a loss function.
Second, while Sil(C) = 1 and VRC(C) → ∞ are theoretically ideal,
we �nd this is generally not true in practice. This is because the
clustering method may miscluster some nodes and fully maximiz-
ing the CVIs will push the misclustered representations too close
together, negatively impacting a classi�er’s ability to distinguish
them. To bound the maximum values of our loss, we add gSil and
gvrc — the target silhouette and VRC indices, respectively. The
silhouette-based and VRC-based losses are then de�ned as follows:

!Sil = |gSil − Sil(C)| , !vrc = |gvrc − VRC(C)| , (7)

where gSil ∈ [−1, 1] is the target silhouette index and gvrc ∈ [0,∞)

is the target VRC.
Upon careful inspection of Equation (3), we can observe that

the computational complexity for the silhouette is $ (=2), while
the complexity of VRC is only $ (=2), where 2 ≪ =. This is a criti-
cal weakness in using the silhouette, especially when the goal is
to avoid a quadratic runtime (the typical drawback of contrastive
methods). Backpropagating on this loss function would also result
in quadratic memory usage because we have to store the gradients
for each operation. To resolve this issue, we leverage the simpli�ed

silhouette [26], which instead uses the centroid distance. The sim-
pli�ed silhouette has been shown to have competitive performance
with the original silhouette [62] while being much faster — running
in$ (=2) time. As such, we also try the simpli�ed silhouette, which
can be written as:

B′ (D) =
1′ (D) − 0′ (D)

max{0′ (D), 1′ (D)}
, (8)

where 8 = UD is the cluster assignment for D and

0′ (D) = Dist(D, -8 ) , 1′ (D) = min
C:≠C8

Dist(D, -8 ) , (9)

We use the same loss function as !Sil (Equation (7)), simply substi-
tuting B′ (D) for B (D) (see Section 2.2.1), and name it !sim.

3.2 Clustering Method

:-means. We primarily focus on :-means clustering for this
framework due to its fast linear runtime (although we do brie�y ex-
plore using :-medoids in Section 4.3.2 below). The goal of :-means
is to minimize the sum of squared errors—also known as the inertia
or within-cluster sum of squares. Formally, this can be written as:

argmin
C

2∑
8=1

∑
G∈C8

Dist(x, -8 ) . (10)

Finding the optimal solution to this problem is NP-hard [13], but
e�cient approximation algorithms [36, 52] have been developed
that return an approximate solution in linear time (see Section 5).
While :-means is fast, it is known to be heavily dependent on its
initial centroid locations [3, 6], which can be partially solved via
repeated re-initialization and picking the clustering that minimizes
the inertia.

Poor initialization is typically not a large issue in :-means use
cases since the end goal is usually to compute a single clustering
so we can simply repeat and re-initialize until we are satis�ed.
However, since we generate a new clustering once per epoch in
CARL-G, poor initialization can result in a large amount of variance
between epochs.

To minimize the chance of poor centroid initialization occurring
during training, we carry the cluster centroids over between epochs.
The centroids will naturally update after running :-means since
the embeddings ` changes each epoch (after backpropagation with
CVI-based loss).

3.3 Theorectical Analysis

To gain a theoretical understanding of why our framework works,
we compare it to Margin loss — a fundamental contrastive loss func-
tion that has been shown to work well for self-supervised represen-
tation learning [22, 68]. We show that CVI-based loss (especially
silhouette loss) has some similarity to Margin based loss, which
intuitively explains the success of CVI-based loss. In addition, we
show that CVI-based loss has the advantages of (a) lower sensitivity
to graph structure, and (b) no negative sampling required.

3.3.1 Similarity analysis of CVI-based loss and Margin loss. Both
Margin loss and CVI-based loss fundamentally consist of two terms:
one measuring the distance between neighbors/inter-cluster points
and onemeasuring the distance between non-neighbors/inter-cluster
points. This similarity allows us to analyze basic versions of our
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proposed silhouette loss and margin loss in the context of node
classi�cation and show that they are identical in both of their ideal
cases. We further analyze the sensitivity of these losses with respect
to various parameters of the graph to examine the advantages and
disadvantages of our proposed method. To do this, we �rst de�ne
the mean silhouette and margin loss functions:

De�nition 3.1 (Mean Silhouette). We de�ne the mean silhouette
loss (removing the hyperparameter gSil, focusing on the numerator
(un-normalizing the index) and replacing min with the mean) as
follows:

!ms (D) = −(1ms (D) − 0(D)) = 0(D) − 1ms (D) , (11)

where

1ms (D) =
1

2 − 1

∑
9≠8

1

|C9 |

∑
E∈C9

Dist(hD ,hE) . (12)

De�nition 3.2 (Margin Loss). We de�ne margin loss as follows:

ml(D) =
1

|N(D) |

∑
E∈N(D )

Dist(hD ,hE) (13)

−
1

|V −N(D) − {D}|

∑
C∉N(D )

Dist(hD ,hC ) .

It is worth noting that this margin loss di�ers from the max-
margin loss traditionally used in graph SSL [68]. We simplify it
above in De�nition 3.2 by removing the max function for ease of
analysis.

Let L be the set of true class labels, and LD be the class label for
a node D ∈ V . We de�ne the expected inter-class and intra-class
distances as follows:

E [Dist(hD ,hE)] =

{
U, if LD = LE ;

V, otherwise,
(14)

where U, V ∈ R+. Next, let

% ((D, E) ∈ E) =

{
?, if LD = LE ;

@, otherwise,
(15)

i.e., G follows a stochastic block model with a probability matrix
% ∈ [0, 1]2×2 of the form:

% =



? @ @ @

@

@

@ ?


. (16)

Note that @ does not necessarily equal 1 − ? . Finally, we de�ne the
inter-class clustering error rate n and intra-class clustering error
rate X as follows:

% (CD ≠ CE |LD = LE) = n ; (17)

% (CD = CE |LD ≠ LE) = X . (18)

Claim 1. Given the above assumptions, the expected value of the

simpli�ed silhouette loss approaches that of the margin loss as ? →

1, @ → 0, and n, X → 0.

Proof. To �nd E [!B (D)], we �rst �nd E [0(D)] and E [1B (D)]:

E [0(D)] =
U

2
−
nU

2
+ XV −

XV

2
; (19)

E [1B (D)] =
nU

2
+ V − VX −

V

2
+
XV

2
; (20)

E [!B (D)] = E [0(D)] − E [1B (D)] (21)

= −
2nU

2
−
2XV

2
+
V

2
+
U

2
− V + 2XV .

Next, we take its limit as n, X → 0:

lim
n,X→0

(
−
2nU

2
−
2XV

2
+
V

2
+
U

2
− V + 2XV

)
=

V

2
+
U

2
− V . (22)

To �nd E [ml(D)], we �rst �nd the expected value of its left and
right sides:

E


1

N(D)

∑
E∈N(D )

Dist(hD ,hE)


=
U?

2
+ V@ −

V@

2
; (23)

E


1

|V −N(D) − {D}|

∑
C∉N(D )

Dist(hD ,hC )


(24)

=
U

2
−
U?

2
+ V − V@ −

V

2
+
V@

2
. (25)

Substituting them back in, we get

E [ml(D)] =
2U?

2
+ 2V@ −

2V@

2
−
U

2
+
V

2
− V . (26)

Taking its limit as ? → 1, @ → 0, we �nd

lim
?→1,@→0

(
2U?

2
+ 2V@ −

2V@

2
−
U

2
+
V

2
− V

)
(27)

=
2U

2
−
U

2
+
V

2
− V =

U

2
+
V

2
− V . (28)

∴ lim
?→1,@→0

E [ml(D)] = lim
n,X→0

E [!B (D)] . (29)

□

Since the two loss functions are identical in their ideal cases, one
may wonder: Why not use margin loss instead? Well, the silhouette-
based loss has two key advantages:

3.3.2 Lower sensitivity to graph structure. The margin loss is min-
imized as ? → 1 and @ → 0. However, ? and @ are attributes of
the graph itself, making it di�cult for a user to directly improve
the performance of a model using that loss function. On the other
hand, the mean silhouette depends on n and X , the inter/intra-class
clustering error rates, instead. Even on the same graph, a silhouette-
based loss can likely be improved by either choosing a more suitable
clustering method or distance metric. This greatly increases the
�exibility of this loss function.

3.3.3 No negative sampling. Negative sampling is required for most
graph contrastive methods and often requires either many sam-
ples [24] or carefully chosen samples [67, 69]. This is costly, of-
ten costing quadratic time [60]. The primary advantage of non-
contrastive methods is that they avoid this step [4, 60]. The sim-
pli�ed silhouette avoids this issue by only working in the = × 3

embedding space instead of the = × = graph. It also contrasts node
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representations against centroid representations instead of against
other nodes directly.

4 EXPERIMENTAL EVALUATION

We evaluate 3 variants of CARL-G: (a) CARL-GSil — based on the
silhouette loss in Equation (7), (b) CARL-GVRC — based on the VRC
loss in Equation (7), and (c) CARL-Gsim — based on the simpli�ed
silhouette loss in Equation (8). We evaluate these variants on 5
datasets on node classi�cation and thoroughly benchmark their
memory usage and runtime. We then select the best-performing
variant, CARL-Gsim, and evaluate its performance across 2 additional
tasks: node clustering, and embedding similarity search.

4.0.1 Node Classification. A common task for GNNs is to classify
each node into one of several di�erent classes. In the supervised
setting, this is often explicitly optimized for during the training
process since the GNN is typically trained with cross-entropy loss
over the labels [22, 33] but this is not possible for graph SSLmethods
where we do not have the labels during the training of the GNN. As
such, the convention [4, 34, 60, 61, 79] is to train a logistic regression
classi�er on the frozen embeddings produced by the GNN.

Following previous works, we train a logistic regression model
with ℓ2 regularization on the frozen embeddings produced by our
encoder model. We compare against a variety of self-supervised
baselines, including both GNN-based and non-GNN-based: Deep-
Walk [45], RandomInit [61], DGI [61], GMI [44], MVGRL [24],
GRACE [79], G-BT [4], AFGRL [34], and BGRL [60]. We also eval-
uate our method against two supervised models: GCA [80] and
a GCN [33]. We follow [34, 60] and use an 80/10/10 train/valida-
tion/test, early stopping on the validation accuracy. We re-run
AFGRL and BGRL using their published code and weights (where
possible) on that split1. Finally, we use node2vec results from [34]
and the reported results of the other baseline methods from their
respective papers. See Section 4.4 for implementation details.

4.0.2 Node Clustering. Following previous graph representation
learning work [24, 34, 41], we also evaluate CARL-G on the task
of node clustering. We �t a :-means model on the generated em-
beddings N using the evaluation criteria from [34] — NMI and
cluster homogeneity. Following [34], we re-run our model with
di�erent hyperparameters (the embeddings are not the same as
node classi�cation) and report the highest clustering scores. Due
to computational resource constraints, we choose to only evaluate
CARL-Gsim, the overall best-performing model. We report the scores
of the baselines models from [34].

4.0.3 Similarity Search. Following [34], we evaluate our model on
node similarity search. The goal of similarity search is to, given a
query nodeD, return the: nearest neighbors. In our setting, the goal
is to return other nodes belonging to the same class as the query
node. We evaluate the performance of each method by computing
its Hits@: — the percentage of the top : neighbors that belong to
the same class. Similar to [34], we evaluate our model every epoch
and report the highest similarity search scores. We use : ∈ {5, 10}
and use the scores from [34] as baseline results.

1The o�cial BGRL implementation online uses an 80/0/20 split compared to the
80/10/10 split mentioned in [60], so we re-run their trained models on an 80/10/10 split.
Most results are similar but we get slightly di�erent results on Amazon-Computers.

GRACE GCA BGRL AFGRL CARL-Gsim

WikiCS
NMI 0.428 0.337 0.397 0.413 0.471

Hom. 0.442 0.353 0.416 0.430 0.491

Computers
NMI 0.479 0.528 0.536 0.552 0.558

Hom. 0.522 0.582 0.587 0.604 0.607

Photo
NMI 0.651 0.644 0.684 0.656 0.701

Hom. 0.666 0.658 0.700 0.674 0.718

Co.CS
NMI 0.756 0.762 0.773 0.786 0.790

Hom. 0.791 0.797 0.804 0.816 0.815

Co.Physics
NMI OOM OOM 0.557 0.729 0.771

Hom. OOM OOM 0.602 0.735 0.776

Table 2: Node clustering performance in terms of cluster NMI

and homogeneity. CARL-Gsim outperforms the baselines on

4/5 datasets.

4.1 Evaluation Results

4.1.1 Node Classification Performance. We show the node classi-
�cation accuracy of our three proposed methods along with the
baseline results in Table 5. CARL-GSil generally performs the best of
all the evaluated methods, with the highest accuracy on 4/5 of the
datasets (all except Wiki-CS). CARL-Gsim generally performs simi-
larly to CARL-GSil, with similar performance on all datasets except
Wiki-CS and Amazon-Photos, and still outperforms the baselines
on 4/5 datasets. CARL-GVRC is the weakest-performing method of
the three methods. It only outperforms baselines on 2/5 datasets.
Since CARL-Gsim is much faster than CARL-GSil (see Section 3.1
and Figure 4a) without sacri�cing much performance, we focus on
CARL-Gsim for the remainder of the evaluation tasks.

4.1.2 Node Clustering Performance. We evaluate CARL-Gsim on
node clustering and display the results in Table 2. We �nd that
it generally outperforms its baselines on 5/5 datasets in terms of
NMI and 4/5 datasets in terms of homogeneity. CARL-Gsim and AF-
GRL [34] both encourage a clusterable representations by utilizing
:-means clustering as part of their respective training pipelines.

4.1.3 Similarity Search Performance. We evaluate CARL-Gsim on
similarity search in Table 6, where it roughly performs on par with
AFGRL, the best-performing baseline. This is surprising, as AFGRL
speci�cally optimizes for the similarity search task by using :-NN
as one of the criteria to sample neighbors.

4.2 Resource Benchmarking

We benchmark the 3 variants of our proposed method against
BGRL [60] (the best-performing baseline), AFGRL [34] (the most
recent baseline), G-BT [4] (the fastest baseline), and GRACE [79] (a
strong contrastive baseline). We time the amount of time it takes
to train each of the best-performing node classi�cation models.
We remove all evaluation code and purely measure the amount of
time it takes to train each method, taking care to synchronize all
asynchronous GPU operations. We use the default values in the
respective papers for AFGRL and BGRL: 5,000 epochs for AFGRL
and 10,000 epochs for BGRL.We use 50 epochs forCARL-G, although
our method converges much faster in practice.

We also measure the GPU memory usage of each method. We
use the hyperparameters by the respective paper authors for each







CARL-G: Clustering-Accelerated Representation Learning on Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Method Wiki-CS Amazon-Computers Amazon-Photos Coauthor-CS Coauthor-Physics

Traditional

Raw Features 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
node2vec [20] 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04
DeepWalk [45] 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
DeepWalk [45] + Feat. 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09

GNN SSL

Random-Init [61] 78.95 ± 0.58 86.46 ± 0.38 92.08 ± 0.48 91.64 ± 0.29 93.71 ± 0.29
DGI [61] 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.09
GMI [44] 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM
MVGRL [24] 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GRACE [79] 80.14 ± 0.48 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM
G-BT [4] 76.65 ± 0.62 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17
AFGRL [34] 78.52 ± 0.72 89.55 ± 0.36 92.91 ± 0.26 93.14 ± 0.23 OOM
BGRL [60] 79.98 ± 0.10 89.90 ± 0.19 93.17 ± 0.30 93.34 ± 0.13 95.77 ± 0.05

Proposed
CARL-GVRC 78.81 ± 0.49 88.90 ± 0.39 93.31 ± 0.36 93.18 ± 0.31 95.92 ± 0.14
CARL-Gsim 79.58 ± 0.60 90.14 ± 0.33 93.37 ± 0.37 93.36 ± 0.39 95.96 ± 0.09
CARL-GSil 79.73 ± 0.44 90.14 ± 0.34 93.44 ± 0.32 93.37 ± 0.33 95.97 ± 0.14

Supervised
GCA [80] 78.35 ± 0.05 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03
Supervised GCN [33] 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

Table 5: Table of node classi�cation accuracy. Bolded entries indicate the highest accuracy for that dataset. Underlined entries

indicate the second-highest accuracy. OOM indicates out-of-memory.

GRACE GCA BGRL AFGRL CARL-Gsim

WikiCS
Hits@5 0.775 0.779 0.774 0.781 0.789

Hits@10 0.765 0.767 0.762 0.766 0.775

Computers
Hits@5 0.874 0.883 0.895 0.897 0.881
Hits@10 0.864 0.874 0.886 0.889 0.871

Photo
Hits@5 0.916 0.911 0.925 0.924 0.922
Hits@10 0.911 0.905 0.920 0.917 0.917

Co.CS
Hits@5 0.910 0.913 0.911 0.918 0.916
Hits@10 0.906 0.910 0.909 0.914 0.914

Co.Physics
Hits@5 OOM OOM 0.950 0.953 0.953

Hits@10 OOM OOM 0.946 0.949 0.950

Table 6: Performance on similarity search. Surprisingly,

CARL-G performs fairly well on this task, despite not being

explicitly optimized for this task (unlike AFGRL, which uses

KNN during training).

Clustering for E�cient GNNs. There also exists work that uses
clustering to speed upGNN training and inference. Cluster-GCN [11]
samples node blocks produced by graph clustering algorithms and
speeds up GCN layers by limiting convolutions within each block
for training and inference. However, it is worth noting that it com-
putes a �xed clustering, rather than updating the clustering jointly
with our model (unlike CARL-G). FastGCN [10] does not explic-
itly cluster nodes but uses Monte Carlo importance sampling to
similarly reduce neighborhood size and improve the speed of GCNs.

E�cient :-means. Over the years, many variants and improve-
ments to :-means have been proposed. The original method pro-
posed to solve the :-means assignment problem was Lloyd’s algo-
rithm [36]. Since then, several more e�cient algorithms have been
developed. Bottou and Bengio [5] propose using stochastic gradient
descent for �nding a solution. Sculley [52] further builds on this
work by proposing a:-means variant that usesmini-batching to dra-
matically speed up training. Finally, approximate nearest-neighbor

search libraries like FAISS [29] allow for e�cient querying of near-
est neighbors, further speeding up training.

6 CONCLUSION

In this work, we are the �rst to introduce Cluster Validation Indexes
in the context of graph representation learning. We propose a novel
CVI-based framework and investigated trade-o�s between di�erent
CVI variants. We �nd that the loss function based on the simpli�ed
silhouette achieves the best overall performance to runtime ratio.
It outperforms all baselines across 4/5 datasets in node classi�ca-
tion and node clustering tasks, training up to 79× faster than the
best-performing baseline. It also performs on-par with the best
performing node similarity search baseline while training 1,500×
faster. Moreover, to more comprehensively understand the e�ec-
tiveness of CARL-G, we establish a theoretical connection between
the silhouette and the well-established margin loss.
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A APPENDIX

A.1 Full Proof of Equivalency to Margin Loss

Proof. For ease of analysis, we work with the simpli�ed sil-
houette loss (De�nition 3.1) and the non-max margin loss (De�-
nition 3.2). Let L be the set of class labels, and LD be the class
label for node D. Let CD be the cluster assignment for node D, and
2 = |� | be the number of clusters/classes. We de�ne the expected
inter-class and intra-class distances as follows:

E [Dist(hD ,hE)] =

{
U if LD = LE

V otherwise
, (31)

where U, V ∈ R+. Next, let

% ((D, E) ∈ E) =

{
? if LD = LE

@ otherwise
, (32)

i.e., G follows a stochastic block model with a probability matrix
% ∈ [0, 1]2×2 of the form:

% =



? @ @ @

@

@

@ ?


. (33)

Note that @ does not necessarily equal 1 − ? . We de�ne the inter-
class clustering error rate n and intra-class clustering error rate X
as follows:

% (CD ≠ CE |LD = LE) = n (34)

% (CD = CE |LD ≠ LE) = X . (35)

To �nd E [BB (D)], we �rst �nd E [0(D)] and E [1B (D)]:

E [0(D)] = E


1

|C8 | − 1

∑
E∈ (C8−{D})

Dist(hD ,hE)


(36)

= EE [Dist(hD ,hE) |CD = CE] (37)

= % (LD = LE) · % (CD = CE |LD = LE) (38)

· EE [Dist(hD ,hE) |CD = CE ∧ LD = LE]

+ % (LD ≠ LE) · % (CD = CE |LD ≠ LE)

· EE [Dist(hD ,hE) |CD = CE ∧ LD ≠ LE]

=

(
1

2

)
(1 − n)U +

(
1 −

1

2

)
XV (39)

=
U

2
−
nU

2
+ XV −

XV

2
(40)

and

E [1B (D)] = E


1

2 − 1

∑
9≠8

1

|� 9 |

∑
E∈C9

Dist(hD ,hE)


(41)

= E9≠8


1

|� 9 |

∑
E∈C9

Dist(hD ,hE)


(42)

= EE [Dist(hD ,hE |CD ≠ CE)] (43)

= % (LD = LE) · % (CD ≠ CE |LD = LE)· (44)

EE [Dist(hD ,hE) |CD ≠ CE ∧ LD = LE]

+ % (LD ≠ LE) · % (CD ≠ CE |LD ≠ LE)

· EE [Dist(hD ,hE) |CD ≠ CE ∧ LD ≠ LE] =

(
1

2

)
nU +

(
1 −

1

2

)
(1 − X)V

=
nU

2
+ V

(
1 − X −

1

2
+
X

2

)
(45)

=
nU

2
+ V − VX −

V

2
+
XV

2
. (46)

Now, we can �nd E [BB (D)]:

E [BB (D)] = E [1B (D)] − E [0(D)] (47)

=
nU

2
+ V − VX −

V

2
+
XV

2
−

(
U

2
−
nU

2
+ XV −

XV

2

)
(48)

=
nU

2
+ V − VX −

V

2
+
XV

2
−
U

2
+
nU

2
− XV +

XV

2
(49)

=
2nU

2
+
2XV

2
−

V

2
−
U

2
+ V − 2XV . (50)

Taking its limit as n, X → 0, we �nd

lim
n,X→0

(
−
2nU

2
−
2XV

2
+
V

2
+
U

2
− V + 2XV

)
=

V

2
+
U

2
− V . (51)

We similarly break down the margin loss into two terms:

E


1

N(D)

∑
E∈N(D )

Dist(hD ,hE)


(52)

= EE [Dist(hD ,hE) | (D, E) ∈ E] (53)

= % (LD = LE) · % ((D, E) ∈ E|LD = LE) (54)

· EE [Dist(hD ,hE) | (D, E) ∈ E ∧ LD = LE]

+ % (LD ≠ LE) · % ((D, E) ∈ E|LD ≠ LE)

· EE [Dist(hD ,hE) | (D, E) ∈ E ∧ LD ≠ LE]

=

(
1

2

)
U? +

(
1 −

1

2

)
V@ (55)

=
U?

2
+ V@ −

V@

2
(56)

and

E


1

|V −N(D) − {D}|

∑
C∉N(D )

Dist(hD ,hC )


(57)

= EE [Dist(hD ,hE) | (D, E) ∉ E] (58)

= % (LD = LE) · % ((D, E) ∉ E|LD = LE) (59)

· EE [Dist(hD ,hE) | (D, E) ∉ E ∧ LD = LE]

+ % (LD ≠ LE) · % ((D, E) ∉ E|LD ≠ LE)

· EE [Dist(hD ,hE) | (D, E) ∉ E ∧ LD ≠ LE]

=

(
1

2

)
(1 − ?)U +

(
1 −

1

2

)
(1 − @)V (60)

=
U

2
−
U?

2
+ V − V@ −

V

2
+
V@

2
. (61)
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