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Actomyosin networks play essential roles in many cellular processes,
including intracellular transport, cell division and cell motility, and

exhibit many spatiotemporal patterns. Despite extensive research,

how the interplay between network mechanics, turnover and geometry
leads to these different patterns is not well understood. We focus on

the size-dependent behaviour of contracting actomyosin networksin

the presence of turnover, using a reconstituted system based on cell
extracts encapsulated in water-in-oil droplets. We show that the system
can self-organize into different global contraction patterns, exhibiting
persistent contractile flows in smaller droplets and periodic contractions
inthe form of waves or spiralsinlarger droplets. The transition between
continuous and periodic contraction occurs at a characteristic length scale
thatisinversely dependent onthe network contractionrate. These dynamics
are captured by a theoretical model that considers the coexistence

of different local density-dependent mechanical states with distinct
rheological properties. The model shows how large-scale contractile
behaviours emerge from the interplay between network percolation,
whichis essential for long-range force transmission, and rearrangements
dueto advection and turnover. Our findings thus demonstrate how varied
contraction patterns can arise from the same microscopic constituents,
without invoking specific biochemical regulation, merely by changing

the system geometry.

Active networks composed of actin filaments and motor proteins
areubiquitousin cells, displaying a rich spectrum of dynamic behav-
iours (reviewed in refs. 1-3). In general, actomyosin networks have
a clear bias towards contraction*®, which can be local or extend
throughout the system with sustained or pulsatile temporal dynam-
ics (for example, refs. 6-10). These diverse contractile patterns play
a central role in driving the dynamic behaviours of living cells and

tissues®’, often exhibiting abrupt transitions along the cell cycle
or during development (for example, refs. 6-8). Despite exten-
sive research, the respective roles of the intrinsic self-organized
dynamics of the actomyosin cytoskeleton versus upstream regulation
by various signalling pathways (for example, Rho GTPases) in shaping
these large-scale patterns and the transitions between them often
remain unclear.
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In vitro realizations of systems containing actin filaments,
crosslinkers and myosin motors have been instrumental for uncover-
ingthe properties of actomyosin networks and relating their large-scale
dynamics to the underlying molecular composition' ¢, Most of the
work on reconstituted actomyosin networks has focused on systems
with limited turnover, in which contraction is typically a ‘one-shot’
process™ . Extensive work has shown that the contractile behaviour
inthese systems is primarily dependent on two effective parameters:
the network connectivity and motor activity'>*'”'8, The structure and
connectivity of the network are crucial for long-range transmission
of the motor-generated forces and, hence, dramatically influence
the stress distribution within the network. Moreover, these forces
generate flows and modulate the network structure. This feedback
between force generation and network architecture can generate
different large-scale behaviours including contracting states and
quiescentstatesinwhich the motor-generated forcesarebalanced by the
rigidity of the network’®.

Theintroduction of continuous turnover, with rapid actin assem-
bly and disassembly, inaddition to motor activity, further complicates
theinterplay between network architecture and force generation, facili-
tating aricher spectrum of dynamic behaviours . Importantly, acto-
myosin networksin vivo are typically characterized by rapid turnover
rates, which canbe two orders of magnitude higher than the turnover
rates of purified actin filaments, thanks to a host of auxiliary proteins
involved in stimulating debranching, filament severing and depo-
lymerization®. Theoretical work indicates that the presence of con-
tinuous turnover makes contraction more sustainable' %, facilitating
large-scale connectivity and force transmission even when the network
iscontinuously flowing and rupturing. This canlead to asteady state of
contraction?, but under some conditions, pulsatile contractions are
also predicted”. Despite their importance, our understanding of the
behaviour of actomyosin networks with rapid turnover is still rather
limited. In particular, what determines the characteristic length scales
for contraction (local versus global contraction) as well asits temporal
dynamics (continuous versus pulsatile) in the presence of turnover is
still not well understood.

Inthis Article, we study the contractile behaviour of bulk actomyo-
sin networks with rapid turnover using a reconstituted system based
on cell extracts® . Previous work has shown that bulk actomyosin
networks can exhibit a steady state of contraction in the presence of
turnover® or periodic contractionin the form of large-scale waves” >°,
but what determines the observed mode of contraction remained
unclear. Our reconstituted system enables us to explore the behav-
iour of actomyosin networks across a wide range of conditions and
geometries, and we show that these two apparently distinct modes of
global contraction can arise from the same microscopic constituents
andinteractions, merely by changing the system size. We find that for
different biochemical compositions, the system generically exhibits
a transition from continuous contraction in smaller cells to periodic
contraction in the form of waves or spirals in larger cells. The charac-
teristic length scale for this transition varies between the different
conditions and increases in conditions exhibiting slower contraction.

The size-dependent transition from continuous to periodic
contraction, which we observe under various conditions, was not
predicted by any of the previous theoretical models or agent-based
simulations'®2"**32, To account for this phenomenology, we, thus, pro-
pose anew theoretical model that considers the interplay between the
network percolation required forlong-range force transmissionand the
advection due to the contractile flows driven by the motor-generated
forces. Withinthis model, we take into account the heterogeneities that
developinthe system dueto network assembly, disassembly and advec-
tion, and we consider the coexistence of different density-dependent
mechanical states with distinct rheological properties in different
regions of the system. The contractile behaviour emerges from the
self-organized dynamics of these coexisting local mechanical states.

Importantly, the rapid rates of actin turnover allow the system to
efficiently bridge disjoint network regions and contract globally
even when the contraction initiates locally. We show that our model
accounts for the observed size-dependent transitioninthe contraction
patterns, with a steady-state continuous contraction predicted in
smaller systems and periodic contractions developing when the system
size exceeds athreshold. Altogether, our experimental and theoretical
results show how elaborate self-organized spatiotemporal patterns can
emerge from the interplay between network structure, internal force
generation and geometry, without necessitating additional regulation
through specific signalling processes.

Contraction patterns in actin networks with rapid
turnover

Contracting actin networks are generated in cell-like compartments by
encapsulating cytoplasmic Xenopus egg extractin water-in-oil emulsion
droplets**?>?33 The extract contains actin as well as crosslinking pro-
teins and myosin Ilmotors*, which have been shown to drive network
contraction*”*?, Due to the rapid actin turnover rates (-1 min™)*?, the
system can sustain contracting network flows for hours. Interestingly,
we observed two qualitatively different patterns of global contrac-
tion: (1) continuous contractionand (2) pulsatile, periodic contraction
(Fig.1and Supplementary Video1). Inthe continuous regime, observed
insmaller droplets, the system was essentially in asteady state, as pre-
viously reported®. In this case, the network exhibited a smooth den-
sity distribution that decreased towards the droplet periphery and a
radial velocity profile in whichthe inward network flow speed increased
linearly as a function of the distance from the contraction centre
(Fig.1aand Supplementary Video 2)”. In the pulsatile regime, observed
inlarger droplets, the system exhibited a periodic variationin the form
of concentric waves in both network density and flow speed (Fig. 1c
and Supplementary Video 3)* %, Wavefronts of higher actin density
appeared regularly near the periphery of the droplet and contracted
inward towards the contraction centre (where an aggregate of cellular
debris formed, whose size scaled with the size of the droplet***°)
(Extended Data Fig.1).

The shape of the contracting wavefronts reflects the shape of
the boundaries of the system?®; for example, circular wavefronts
formedinround pancake-shaped droplets (Fig.1c and Supplementary
Video 3), whereas in elongated channels, the wavefronts were straight
and parallel to the channel walls (Extended Data Fig. 2a-cand Supple-
mentary Video 4). In spherical droplets, the contracting wavefronts
formed concentric spherical shells (Extended Data Fig. 2d and Sup-
plementary Video 5). The pulsatile contractions had a characteristic
time period of -1 min, as is evident in the radial kymographs of the
network density and velocity (Fig.1d). We observed qualitatively similar
behaviour in different extract batches, but quantitatively there was
some variation (for example, in wave period and the contraction rate)
between different extracts and also depending on the extract concen-
tration used (60-100%; Methods).

Global, periodic contractions to asingle contraction centre were
observed, even whenthe systemsize became macroscopic (Supplemen-
tary Video 6), as previously reported””?*, What maintains the efficient
recycling of network componentsinthis case? Althoughin smaller drop-
lets diffusive transport can be sufficient, in larger droplets, diffusion
would be prohibitively slow, resulting in the accumulation of network
components at the centre dueto the continuousinward convection by
the contracting network. A potential mechanism for enhancing the
outward recycling of network componentsiis centrifugal fluid flow™**
¥ To study fluid-mediated transport in the system, we introduced
0.5-pm-diameter fluorescent beads, which were sufficiently small not
tobe permanently trapped by the contracting network yetlarge enough
sothatthey couldbe followed by single particle tracking. We observed
coherent non-diffusive bead movements directed both inwards
and outwards (Extended Data Fig. 3 and Supplementary Video 7).

Nature Physics | Volume 20 | January 2024 |123-134

124


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-023-02271-5

a Continuous contraction
lifeact ST
-GFP ~ ‘v
-~ e
v
25 ’ : tt X : - h
50 um um min™ trran
— —
€ Periodic contraction waves
.
VVid
N v’
TR HJJ{‘,
S e 4
— «—
—> -
- -—
P ~
A RS
Tar N
N
? 7TT'T Q X
t 2t
200 |
um min~
— >
@ Periodic contraction spirals
Sy
Cy
W
D
A"
<~
200
um min
— >
g Mixed state
\ i1 J
N \34 Vb
NN
Y
NS
-
P
150
um min
—

Fig.1| Examples of continuous and periodic contraction patternsinactin
networks with rapid turnover. a,c, Spinning-disc confocal images (left; inverted
contrast) and the corresponding velocity fields extracted using optical flow
(right; Methods) of water-in-oil droplets exhibiting continuous contraction

(a; Supplementary Video 2) or periodic contraction in the form of concentric
waves (c; Supplementary Video 3). b, The droplets are sandwiched between

two coverslipsin a pancake-like geometry, and the images are taken at the
droplet midplane (Methods). The solid grey disc at the middle of the droplet
represents an aggregate of particulates, which forms an exclusion zone around
the contraction centre”. d, Radial kymographs showing the periodic variation in
density (top) and network flow velocity (bottom) over time in the droplet shown
inc. e, Spinning-disc confocal image (left) and the corresponding velocity field
(right) of a water-in-oil droplet exhibiting periodic contraction in the form of a
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clockwise spiral (Supplementary Video 8). f, Kymograph showing the angular
variationin velocity over time for the spiral shown in e. The linearly varying
phase of the spiral wavefront as a function of angle generates periodically spaced
parallel diagonal lines in the angular kymograph. g, Spinning-disc confocal image
(left) and the corresponding velocity field (right) of awater-in-oil dropletin
which the contraction centre is off-centre. The actin network exhibits different
contractile behaviours in different regions of the droplet (Supplementary

Video 9). h, Subsequentimages from different regions of the droplet shown in

g depicting the contraction of a wavefront on the far side of the droplet (upper
left box ing) and continuous contraction on the opposite side (lower right box in
g). The droplets shown contain 95-98% Xenopus cell extract supplemented with
lifeact-GFP to visualize the actin network (Methods).

Nature Physics | Volume 20 | January 2024 |123-134

125


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-023-02271-5

The inward-moving beads appeared to be transiently trapped within
the network, being found at higher density near the crest of wavefronts
where the network density was higher and moving radially inwards
with the same velocity as the contracting network. Interestingly, we
observed inward bead movements even in regions where the actin
network density was low and comparable to the background signal
levels, for example near the droplet periphery and in between wave-
fronts, indicating that there was a connected network that was flowing
there eventhough we were unable to directly detect the network there.
Importantly, we also observed transient waves of collective outward
bead motion, with comparable speeds, which we believe reflect the
motion ofthe cytosolic fluid phase (Extended DataFig. 3). The outward
fluid flow exhibited the same periodicity as the contracting network
(Extended Data Fig. 3c), suggesting that the fluid flow was driven by
the contraction of the porous actin network®. Such an outward fluid
flow could promote efficient large-scale transport of network compo-
nentsevenin larger droplets. Additional details on the interpretation
of the bead-tracking experiments can be found in Supplementary
Information.

Interestingly, the periodic contractions can also take the form
of spirals (Fig. 1e and Supplementary Video 8). In this case, the local
network density and velocity exhibited periodic modulations, as with
circular concentric waves, but the wavefront formed a spiral. The
contractile flow was primarily directed inwards, but there was also a
non-zero tangential component along the spiral wavefront (Fig. 1e). We
observed spiralsrotating both clockwise and anticlockwise with similar
probabilities (Extended DataFig. 4), suggesting that the chiral patterns
arose from spontaneous angular symmetry breaking. The spirals could
bestable for multiple rotations (Fig. 1f), but occasionally we observed
transitions between concentric waves and spirals (Extended Data
Fig.4c,d). Thetransitioninto aspiral was typically preceded by an angu-
lar variation in the network density distribution that persisted at the
same location over multiple consecutive wave periods (Extended Data
Fig.4d). These spontaneous angular variations appeared sufficient for
driving the transition between the two types of periodic contraction
patterns, namely concentric waves and spirals.

The continuous and periodic contraction regimes were some-
times observed together within asingle droplet in which the contrac-
tion centre was located asymmetrically (Fig. 1g and Supplementary
Video9).Insuch cases, the periodic contractions occurred onthe side
ofthe droplet where the distance between the contraction centre and
the droplet periphery reached a maximum, whereas the continuous
contraction was apparent on the opposite side (Fig. 1h). These obser-
vations indicate that the pulsatile contractionsinlarger droplets were
not caused by the scaling of biochemical concentrations with droplet
size, but rather that the transition between continuous and periodic
contraction behaviour directly depended on the system geometry,
specifically on the distance between the boundary of the system and
the contraction centre.

Transition from continuous to periodic
contraction

To characterize the size-dependent transition between continuous and
periodic contraction, we observed droplets of different sizes (which
naturally formed in the emulsion-generating process) and assessed
their global contractile behaviour by looking for periodic density modu-
lationsin theradial kymographs (Fig. 2a and Methods). The properties
of the reconstituted actomyosin networks could be modulated by
adding different components of the actin machinery or pharmaco-
logical drugs that modified their activity”. Interestingly, although the
network appearance and properties changed substantially, we observed
a qualitatively similar transition from a continuous contraction in
smaller droplets to periodic contractions in larger droplets under a
range of conditions (Fig. 2 and Supplementary Video 10). The char-
acteristic length scale for the transition from continuous to periodic

contraction, however, shifted depending on the system composition
(Fig. 2b,d). Allcomparative analyses between different conditions were
done with the same batch of extract, but qualitatively the observed
trends were similar in different extracts. For our standard conditions
(80% extract), the characteristic length scale for the transition between
continuousand periodic contractionwas~150 pm (Methods). Enhancing
actin assembly by adding nucleation-promoting factors, such as mbDial,
whichnucleates unbranched actin filaments, or ActA, which activates
the Arp2/3 complex to nucleate branched actin filaments, decreased
the contraction rate? and shifted the transition length to larger values
(Fig. 2b,d,e). Conversely, adding capping protein, which caps grow-
ing actin filaments, increased the contraction rate” and shifted the
transition length to smaller values. Within the periodic regime, the
wave period varied between different conditions (Fig. 2c,g) but did
not have astrong dependence on systemsize (Fig. 2c; see alsoref. 29).
The concentrations of added proteins were chosen to have an appre-
ciable effect on the dynamics of the network and were comparable
to the endogenous concentrations of these actin-related proteins
in the extract™.

We have previously shown that in the continuous contracting
regime, the network undergoes telescopic contraction with nearly
homogeneous, density-independent contraction®. As such, the
contraction of these spatially inhomogeneous networks can be char-
acterized by a single characteristic contraction rate. Although this
contractionrateis anemerging property of the system thatdependsin
anon-trivialmanner on the internal force generation and architecture
of the network, as well as on the system size (Extended Data Fig. 5), it
can nonetheless be measured in a straightforward manner from the
slope of theradial velocity profile (Fig. 2e inset). Interestingly, we found
that for the different conditions examined, the transition length was
inversely correlated with the contraction rate (Fig. 2f).

The characteristic time period in the periodic regime also varied
between different conditions but did not appear tobe correlated with
the contraction rate (Fig. 2e,g). Notably, the wave period was of the
same order of magnitude as the duration of the actin turnover cycle
in the system (-1 min; ref. 23). We hypothesize that the wave period
is primarily dependent on the actin assembly dynamics. To test this
idea, weintroduced a high concentration of phalloidin, whichis a small
actin filament-binding molecule that stabilizes filamentous actinand
prevents its disassembly (Fig. 3a,b). In the presence of 20 uM of phal-
loidin (a concentration comparable to that of the actin subunits in
the system®), the amount of actin monomers available for assembly
was expected to gradually decrease (as phalloidin binds essentially
irreversibly to filaments and sequesters more and more actin subu-
nits), leading to aslowing down of actin assembly. Indeed, initially, we
observed pulsatile contractions in larger droplets as we did in sam-
ples with a rapid turnover. However, over time, the intensity of the
wavefronts diminished, until eventually the contraction died out and
all the filamentous actin accumulated around the contraction centre
(Fig.3a,band Supplementary Video 11), illustrating the importance of
actin turnover for persistent contraction. Similar behaviour has been
observed in a reconstituted actomyosin network with limited turn-
over”. Importantly, we observed that the time period between subse-
quent wavefronts increased whereas the rate of contraction remained
similar (Fig. 3b), indicating that the period depended primarily on the
actinassembly rates. Overall, these observations indicate that although
the quantitative characteristics of the transition from continuous to
periodic contraction vary depending on the system properties, the
appearance of such a transition is a generic, self-organized feature of
contracting actin networks that does not depend on any fine-tuning
of the system parameters but crucially depends on the continuous
network turnover.

The nature of the transition between continuous and periodic
contraction can be visualized by following individual droplets over
extended timescales. The extractis acomplex mixture of components,
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Fig.2 | Transition from continuous to periodic contraction depends on
systemsize and contractionrate. a, Radial kymographs showing the periodic
variation in network density over time for droplets with different compositions
(Supplementary Video 10). The droplets contain 80% Xenopus cell extract
supplemented with lifeact-GFP to visualize the actin network and auxiliary
proteins, from left to right: 1 uM capping protein, none, 0.5 uM mDiaor 1.5 uM
ActA. b, The global contractile behaviour of droplets with different compositions
was determined as a function of the distance between the contraction centre

and the droplet boundary. For each condition, large droplets exhibit periodic
contractions, small droplets exhibit continuous contraction and the transition
length varies as indicated (dashed line). The shaded region corresponds to the
range between the smallest droplet exhibiting periodic behaviour and the largest
droplet showing continuous contraction. ¢, Graphs depicting the wave period

as afunction of size for populations of droplets above the transition length for
the different compositions (asina). The error barsindicate the uncertainty in
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determining the wave period in each droplet (defined as the width of the
best-fitting Gaussian to the peak in the Fourier spectrum; Methods). d, Transition
length estimated from the data shown in b for the different compositions. The
error bars depict the width of the shaded regioninb. e, The contractionratein
the continuous regime for the different compositions. The contraction rate was
measured in small droplets (R < 70 um) from the slope of the radial velocity (v,)
asafunction of distance from the contraction centre” (Inset; Methods). Error
bars and shaded regions in the inset depict the standard deviation (std) between
droplets. f, Inverse contraction rate plotted as a function of the transition length
for the different conditions (data and error bars from d and e). The line depicts
alinear fit. g, The mean wave period + std for a population of droplets in the
periodic regime for the different conditions (datafromc).n=31,38,37 or22in
bandd;n=26,24,11or7incandg;andn=7,7,5and 5in e for samples with
capping protein, none, mDia or ActA, respectively.

which can evolve over time. We typically observed a slow upwards drift
in the contraction rate over time that was more pronounced in some
extracts. Although the source of this time-dependent behaviour was
not characterized well, we could nevertheless harness this gradual

variationinsystem properties to follow the transition between continu-
ous and periodic contraction and characterize the onset of periodic
contractioninasingle droplet (Fig. 3c,d and Supplementary Video 12).
As the contraction rate increased over time (Fig. 3d, right), the
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Fig.3|Dynamics of droplets with changing actin turnover or contraction
rates. a, Spinning-disc confocal images of a droplet containing 85% Xenopus cell
extract supplemented with 20 pM phalloidin to limit actin turnover (Methods).
The droplet exhibits several waves of contraction (left) until eventually most

of the filamentous actin accumulates around the contraction centre (right;
Supplementary Video 11). b, Radial kymograph showing the network density
over time for the droplet shown in a. Multiple wavefronts separated by increasing
time intervals can be seen contracting inwards with similar rates. The dashed
lines denote the mean wavefront velocity. Right, network density along the
vertical shaded region in the kymograph plotted over time showing the decrease
intheintensity of subsequent wavefronts. ¢, Spinning-disc confocal images of
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adroplet exhibiting a transition from continuous contraction (left) to periodic
contractions (right). The droplet contains 98% Xenopus cell extract and was
imaged over 25 min, during which time the contractile behaviour of the droplet
changed gradually (Supplementary Video 12). d, Radial kymograph showing the
variation in density over time for the droplet shown in c. Right, the increasing
contraction rate in the continuous regime is plotted as a function of time.

The appearance of periodic modulations in the density is indicated. The arrows
inband dindicate the time points corresponding to the images showninaand
¢, respectively, and the dashed linesin aand c depict the range of the radial
kymographs.

characteristic transition length to the periodic regime decreased, in
agreement with our observations with varying system composition
(Fig. 2b). As aresult, individual droplets that were initially just below
the transition length and exhibited continuous contraction changed
their global contractile behaviour and transitioned into the periodic
regime (Fig.3c,d). Over time, the continuous network flow first broke
into short intermittent arcs that were not synchronized well in space
ortime. These local modulations became more spatially synchronized,
turning into well-defined wavefronts thatincreasedinamplitude asthe
system moved further away from the transition point.

Modelling contraction of actomyosin networks
with turnover

To understand the observed contractile behaviours and how the sys-
tem can switch from continuous contraction to periodic waves, we
turn to theoretical modelling. The simplest description of a dynamic
contractile actomyosin network, as introduced in ref. 23, posits that
the network assembles and disassembles, behaving effectively as
a highly viscous fluid on long timescales, with an active contractile
(myosin-powered) stress that drives network contraction against its
internalviscous resistance. Although this simple model can account for
the continuous steady-state contraction observed in smaller droplets®,
it cannot generate periodic contractions.

An obvious limitation of this simple formulation is that both the
contractile stress and the effective network viscosity are assumed to
be finite for any density. Previous work has shown that contractions
in actomyosin networks occur only above a minimal threshold for

network connectivity and motor activity"", implying that the network

behaviour at low densities must be qualitatively different. Theoreti-
cally, this transition has been described in terms of percolation models
that consider network connectivity and its interplay with motor activity
(reviewed in ref. 18): the network must be connected (percolated)
for myosin motors to generate long-range contractile forces and at
the same time, the motor activity modulates the network structure.
With continuous actin turnover, this picture must be further modi-
fiedtoincludethe effects of network disassembly and reassembly and
advection generated by persistent network flows.

Here we introduce density dependencies of the contractility and
viscosity into the active fluid model and consider the coexistence of dif-
ferent local mechanical regimes. At low filament density, the network
isnot percolated, and hence, we assume that its effective viscosity will
benegligible and that force propagationinspaceislimited. Taking this
intoaccount, qualitatively, waves could arise through cycles of contrac-
tion and gelation as previously suggested””®: after a contractile wave
sweepsthe network inwards, unconnected filaments and network frag-
mentsreassemble at the droplet periphery. After some time, anew wave
is triggered when the local density increases beyond the contraction
threshold. To generate periodic global waves in this scenario, one must
assumethat thereisalso anintermediate regime where the network s
percolated but not yet contractile. Consider the wake of acontracting
front. As the unconnected network reassembles, the density will first
reach the contraction threshold near the periphery and furthest from
the previous wavefront (since the network there had the longest time
toreassemble). When this happens, the nascent network inthe middle
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(betweenthe centre and the periphery) must be percolated to provide
amechanical connection between the network near the boundary and
the previous wavefront.

The presence of aninterconnected network between subsequent
wavefronts is supported by our experiment with tracer beads, which
were observed to move centripetally inwards, evenin the low-density
regions between wavefronts (Extended Data Fig. 3). There is also a
possibility that a contractile shell develops near the periphery and
contractsinwards due to the contribution of tangential stresses along
the curved wavefront, without a direct mechanical connection to the
centre”. However, this contractile shell mechanism would not explain
the contraction of flat wavefronts as found in the one-dimensional (1D)
capillaries (Extended Data Fig.2a-c), which is why we focus the discus-
sionbelow onthe former mechanism. Nevertheless, in Supplementary
Information, we consider the contractile shell model and show that it
explains several features of the data. Notably, in two dimensions (2D)
or three dimensions (3D), these two mechanisms are not mutually
exclusive; rather, it is likely that the contractile behaviour in higher
dimensions arises from acombination of the contraction of the curved
wavefrontsinwards and their mechanical link to the contraction centre
(see Supplementary Information for details).

The cyclic gelation-contraction mechanismalso provides anintui-
tive explanation for the observed size-dependence of the transition
from continuous to periodic contraction. Since the contractile network
elementsare connected in series, their contractions add up across the
droplet, sothe contractile flow at the periphery increases with droplet
size.Insmaller droplets, theinward flow at the peripheryis slow enough
forassembly toreplenishthe receding network continuously. Inlarger
droplets, however, the inward flow wipes out the network so rapidly
that a finite period of reassembly (without flow) is necessary before
another cycle of contraction caninitiate. Note that thisintuitive expla-
nation for the size-dependent contractile behaviouris also relevant for
the contractile shell model;in fact, it works for any model that displays
telescopic contraction coupled with a finite network assembly rate.

Totest this picture, one needs simulations of a quantitative model.
Webased our model onthe previously suggested state diagram for acto-
myosin networks (reviewed in ref. 18), with some notable differences
(Fig.4a). Thatstate diagram'®, depicted as afunction of two parameters—
network connectivity (an effective measure that depends on network
density, filament lengths, as well as the concentration and properties
of crosslinking proteins) and motor activity—includes four states: an
unconnected ‘gas’, a percolated but non-contracting network, aglobally
contracting network and a locally contracting network. It is reason-
able to assume that the connectivity is an increasing function of actin
density, whereas the motor activity is an increasing function of myosin
density. We, thus, employed a simplified state diagram that depends
onasingle network density field (assuming that both actinand myosin
densities are proportional to this network density) and considered three
density-dependent mechanical regimes (Fig.4a): (I) a‘gas-like’ state with
unconnected network fragments, (II) aconnected but not contracting
state and (Ill) a contracting state. The fourth local contraction regime
emerges as asmall-scale instability in our model (see below).

Importantly, the state diagraminref. 18 is for networks with negli-
gible turnover that are primarily elastic with anirreversible contraction
from aninitial state. The network turnover induces qualitative changes
and allows connected network clusters to dynamically form and break,
implying that the network must fluidize at long timescales (compared
tothe turnover timescale). Moreover, the different mechanical regimes
can coexist in different regions of the system, and the boundaries
betweentheseregions canbe dynamic over time. We, thus, rely onthe
different mechanical states identified previously, but, in contrast to
previous work, we assume that the network is primarily viscous on the
long timescales considered. (We argue in Supplementary Information
thata purely elastic 2D or 3D network would be incompatible with our
data.) Mostimportantly, we examine how the three mechanical regimes

play out dynamically in space and time in the presence of continuous
network turnover and advection.

Our model is based on the conceptually simple hydrodynamic
model of actomyosin networks introduced in ref. 23 that invokes
(1) mass conservationin the presence of network turnover and (2) force
balance. We consider a network with density p flowing with a velocity
u. Mass conservation implies that the network density p changes
due to assembly with rate a, disassembly with rate g and drift with
velocity u: % =a - fp— V- (up). We use the force-balance equation:

uviu + (%y + /l) V(V - u) + VOconr = O, for which we assume that the

total internal stress in the network is the sum of an active isotropic
contractile stress g ,n,; and a passive viscous stress of an isotropic
compressible Newtonian viscous fluid. In the force-balance equation,
the first two terms account for the divergence of this viscous stress,
where p and A are the effective shear and bulk viscosities of the actin
network. The friction due to movement of the actin mesh relative
to the surrounding fluid is negligible®*. We explore this modelin 2D to
approximate the pancake-like geometry of our experimental system
andin1D to approximate the capillary geometry and to gain analytical
insight (see the additional discussion of the mechanics of the network
inSupplementary Information).

We describe the different mechanical regimes of the network at
three density ranges by defining the local network viscosity and active
stress (Fig. 4a): (I) At low density, the network is disconnected, consist-
ing of a gas-like solution of unconnected filaments and small network
fragments diffusing in the solute, so we assume negligible viscosity
and no active force generation. (II) At intermediate densities, the net-
work crosses apercolation transition and becomes interconnected but
not yet contracting. In this regime, the network resists deformation,
so we assume its viscosity is finite but that the contractile stress is
negligible. Note that in Supplementary Information, we consider the
possibility of a solid-like (elastic), rather than a fluid-like (viscous),
interconnected network, and explain that the predicted behaviour
thenis essentially the samein 1D and very differentin 2D or 3D, unless
the network is elastoplastic or has a very low Young’s modulus®-,
Moreover, the likely reason that the network is non-contracting in this
regimeisthatthe active myosinstresses are balanced by elastic stresses
(generating a prestressed state); this is simplified here by ignoring
the elastic stress and assuming negligible active stress. (III) At higher
densities, the networkisbothinterconnected and contracting. Mathe-
matically, we characterize the different regimes as follows: gy =1=0
if p < pra, A > 0if p > pra; Oconer = 0if p < pp3, and Ocony = 0p > 0
if p > py3, where pj, and p,; are the critical densities for network per-
colation and contractility, respectively. Note that p;, < p,3, since the
network must be percolated to contract. The contractile regime can
becharacterized by acontractionrate k, whichis the ratio of the active
stress g, and an effective viscosity 1o, kK = 6¢/no, where ngisafunction
of u, Aand ageometric parameter (Supplementary Information). This
rate, which has dimensions of inverse time, determines the spatial
gradient of the contractile velocity and inverse characteristic time of
the network contraction. In general, the viscosities and contractile
stress are functions of the density within regions Il and Ill of the state
diagram, but for simplicity we approximate themas piece-wise-constant
functions of the density. The contraction rate can also be density-
dependent, but because of this approximation and based on our
observations (Fig. 2e), we take the contraction rate to be a density-
independent constant®,

Toaccount for the boundary conditionsin the system, we assume
no flow atthe dense innermost boundary, where the network sticks to
the aggregate at the droplet centre®>*. We further assume that actin
filaments at the outer boundary of the interconnected network polym-
erize with an effective rate vy, so the free boundary of the network
grows outwards normally to the boundary with rate v,. Thus, if the
mechanical forces move the material points near this boundary with
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Fig. 4 | Modelling the transition between continuous and periodic
contraction. a, Schematic state diagram of the local contractile state as a
function of network connectivity and motor activity adapted from'® (left), and
the simplified state diagram as a function of network density used in our model
(right). b, Graph showing the simulated steady-state density (grey) and velocity
(red) distributions as a function of distance from the contraction centre
determined from 2D simulations in the continuous contraction regime. The
results are shown for the non-dimensionalized variables (Supplementary
Information). ¢, Kymographs showing the modulation of network density (left)
and the corresponding local network state (right) along a radial cross section as a
function of time in the periodic contraction regime, determined from 2D
simulations. d, Graphs showing the density (grey) and velocity (red) distributions
at different time points, as indicated by the arrows in ¢ during awave cycle in the

periodic contraction regime (Supplementary Video 13). Inb and d, the dotted
and dashed horizontal lines indicate the percolation and contraction density
thresholds, respectively. The colours demarcate the regions with unconnected
(green), percolated (purple) and contractile (blue) network. The vertical dotted
lines show the percolated-contractile region boundaries, and vertical solid lines
show the unconnected-percolation region boundaries. e, State diagram of the
global contractile behaviour of the system as a function of the contraction rate
(k) and the system size (R). The system behaviour was simulated for different
values of kand R. For each value of k, the transition radius for which periodic
behaviour was first observed is indicated (asterisks). The line separating the
continuous and periodic contraction regimes was determined from a best fit to
the transition length for different values of the contraction rate

(Ry ~ L.8vg/k + 1.5v9/P).

velocity u, the network boundary moves with a net velocity (u + vg).
The parameter v, reflects the rate of elongation of actin filaments at
the networkboundary andis, thus, proportional to the actin assembly
rate a ~ nvo, wherenis thelocal number of growing filaments per unit
length (in1D) or area (in 2D), providing the density is measured in units
of filament length per unit length (1D) or area (2D), respectively.

We solve the model equations numerically in 2D (Fig. 4) andin 1D
(Extended Data Fig. 6; details in Supplementary Information). In the
simulations, we take experimentally measured values or estimated
realistic values for model parameters, such as the polymerization rate
v and network disassembly rate 3, and varied two key parameters,
namely the radius of the droplet R and the contractionrate k. The model
makes a simple prediction: if the droplet size is smaller than a critical
size, R < R, = cvy/k, where cis a dimensionless parameter of order
unity, then a continuous steady centripetal network flow is maintained
(Fig. 4b,e), as described previously?. However, if the droplet radius

exceeds the critical transition length R, then pulsatile contraction
waves emerge (Fig.4c,e and Supplementary Video 13). Snapshots from
the simulation (Fig. 4d)illustrate the key eventsinawave cycle: (1) Time
t,;: the contracting network recedes away from the droplet boundary
until the periphery of the interconnected network stabilizes at a posi-
tion r;; where the network density is equal to p;, (left boundary of the
greenregioninFig.4d) and the network flows centripetally withspeed
o, balancing the network growth. The position of the boundary
between theinner interconnected network and the unconnected net-
work (purple-green boundary) remains stationary whereas the net-
work density increases over time due to net assembly. (2) Time ¢,: the
connectivity threshold density isreached everywhere, and anew wave
initiates as a mechanical bridge is formed between the contracting
network near the core and the newly assembled region extending to
the droplet periphery. (3) Time t;: the network density reaches the
contractile regime in aregion near the periphery (outer blue region),
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accelerating the wave. (4) Time ¢,: inward contraction of the network
results in a region that is transiently unconnected near the droplet
boundary (greenregion). Note that the outer contractile region (outer
blue region) is flanked at both sides by narrow percolated but
non-contractile regions (purple) at this time. The same model can also
be used to simulate the dynamics of the system when the contraction
rate is gradually increased over time. In this case, a droplet of a
given size can transition from continuous to periodic contraction
(Extended Data Fig. 7b and Supplementary Video 14), as observed
experimentally (Fig. 3c,d).

Theglobal contractile behaviour of the system can, thus, be char-
acterized as afunction of two important factors: the systemsize Rand
the contractionrate k. These can be used to predict a state diagram for
steady/periodic contractile behaviour in the k-R parameter space
(Fig.4e). Thetransitionlength (R,,) is predicted to be inversely propor-
tional to the contraction rate as observed experimentally (Fig. 2f),
whichis easy to understand as follows. In the continuously contracting
case, the interconnected network boundary is stationary and, hence,
flowinginwards witha velocity equal to the growth rate of the network
boundary, v,. Near the transition length, the radial position of the
contracting network boundary is approximately vy/k, whereas the
radial position of the outward interconnected network boundary,
which is alittle farther outwards, is cvg/k where ¢ ~ 1. The outward
interconnected network boundary must be near the dropletinterface,
otherwise the unconnected fragments at the droplet periphery will
periodically assemble and generate periodic contractions. Thus,
R = cvo/k (seethe detailed analysisin Supplementary Information).
This argument further suggests that the wave period should be deter-
mined by the time interval required for the network to assemble from
scratch atthe periphery up to the critical density, whichis of the order
of the network turnover timescale or the inverse disassembly rate
(Supplementary Information). Indeed, model simulations show the
wave periodisafew-fold 1/8 andislargely insensitive to the systemssize
Rand the contractionrate k (Extended Data Fig. 8), as observed experi-
mentally (Fig.2c,g). Furthermore, simulations in which the actin assem-
bly rate is gradually decreased directly show that the time interval
between subsequent wavefronts becomes larger as assembly slows
down (Extended DataFig. 7a), as observed experimentally when actin
subunits are sequestered over time with phalloidin (Fig. 3a,b).

The importance of the assumption that the interconnected
network edge grows due to actin polymerization becomes clear: with-
out it, the contractile network would recede at an ever slowing but
finite speed towards the centre, leaving a small gap with an uncon-
nected region just behind it. This gap would never allow the growing
density at the periphery to connect to the central contracting core,
thus generating a local contraction at the periphery rather than a
global contraction towards the centre. Alternative mechanisms that
could generate a global contraction are also possible. One possibility
is that there are long non-contractile actin bundles permeating the
active network and creating a non-stretchable but easily compressible
cable net, which connects all the actively contractile local domains of
the actomyosin network to ensure global contractions. Another pos-
sibility that could explainthe globalinward contractionindroplets, but
not thewavesin flat capillaries (Extended Data Fig. 2), requires neither
global interconnections nor network edge growth. This possibility is
the contraction of closed actomyosin shells from the periphery due to
the net contribution of tangential stresses along a curved wavefront
(Extended Data Fig. 9)*. We discuss these and additional alternative
models in the Discussion and in Supplementary Information.

Transition from a global to alocal contraction

Previous work on actomyosin networks in the absence of turnover
identified a transition from global contraction that spans the system
size to local contraction, during which the network breaks down into
multiplediscrete clusters'>'>'®, This transition has been shown to occur

at high motor activity accompanied by limited network connectiv-
ity'®". Importantly, in the absence of continuous actin assembly, the
initiation of contraction is anirreversible step; any local contraction
event leads to the failure of the network, which breaks into separate
clusters that cannot be reconnected'®"®. Continuous actin assembly
can facilitate the reformation of mechanical links between distinct
contracting regions, changing the percolation dynamics inthe system
ina qualitative manner, and hence, can lead to richer spatiotemporal
contractile dynamics.

When actin turnover is rapid, the continuous model exhibits
short-range instabilities making the contraction local (see the details
in Supplementary Information). These instabilities are difficult to
simulate in the continuous framework, which is why we turn to a dis-
crete agent-based model that allows usto better explore the transition
between local and global contraction in the presence of rapid turno-
ver (see details in Supplementary Information). As the connectivity
is decreased (or the contraction rate is increased), we find a transition
from global contraction to local contraction clusters (Extended Data
Fig.10), as previously reported for systems lacking turnover>">"*%, At
high connectivity, the system exhibits global contraction, forming a
single system-spanning contracting cluster, which due to the rapid
turnover exhibits a steady state with a continuous centripetal flow*.
At low connectivity, the system breaks into local high-density ‘asters’
characterized by small size and rapid centripetal flow. These appear
at random locations, with large spaces between them that are devoid
of an interconnected network. However, interestingly, we also find
an intermediate regime in which the contraction pattern alternates
repeatedly between alocal and aglobal contraction; the system exhibits
recurrentcycles of contractionintolocal clusters that subsequently get
connected with a dense central and steadily contracting core cluster
(Extended Data Fig. 10). Thus, in this intermediate regime, the con-
traction occurs on a range of length scales. Initially, local contracting
asters emerge in asimilar manner as in the locally contracting regime.
However, since theintercluster regions canreassemble and repeatedly
reachthe percolation threshold, neighbouring clusters canconnect and
subsequently merge with each other. Due to the random fluctuations of
the connectivity, theintermediate contraction regime can beirregular.

Experimentally, we were able toinduce alocal contractioneither by
increasing the myosinactivity (hence, increasing the contractionrate) or
by limiting the filament length (hence, diminishing the network connec-
tivity) (Fig. 5). This was done using either calyculin A, which enhanced
myosin activity by inhibiting myosin-light-chain phosphatase from
dephosphorylating myosin, or by adding capping protein, which capped
the barbed ends of free-growing actin filaments. Adding calyculingen-
erated an intermediate state such that within the same region we saw
alternating behaviours, withlocal contraction to anearby contraction
centre, whichsubsequently merged with other clusters to generate over-
all aglobal contraction pattern (Fig. 5a and Supplementary Video 15).
The contraction pattern became more irregular at higher calyculin
concentrations. Similar behaviour, with repeated transitions between
local and global contractile behaviour, was seen upon the addition of
intermediate levels of capping protein, which reduced network connec-
tivity (Fig. 5b, left, and Supplementary Video 16). Atan even higher cap-
ping protein concentration, the system broke into local clusters (Fig. 5b,
right). Although these clusters could dynamically interact with each
otherand sometimes even merge, under these conditions, the contrac-
tionremained local,and we did not observe any substantial coarsening
or global contraction to a central cluster.

Discussion

Contracting actin networks exhibit a myriad of dynamic behaviours
invivo, including large-scale persistent flows, pulsatile contractions
and local contractions' . Many of these behaviours have been recon-
stituted in vitro, with systems exhibiting global contraction in the
form of continuous flows*?* or periodic waves'>>¥~*°, as well as local
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Fig. 5| Transition from aglobal to alocal contraction. a,b, Spinning-disc
confocal images of water-in-oil droplets containing 80% extract supplemented
with calyculin A (Supplementary Video 15) (a) or capping protein (Supplementary
Video 16) (b). The dynamic contractile behaviour is displayed by overlaying

+ 2 pM capping protein

consecutive frames colour-coded for time (bottom). The addition of calyculin A
or capping protein leads to the formation of local contraction clusters. Insome
cases, the local clusters eventually contract to a global contraction centre, except
atahigh enough concentration of capping protein (b, right).

contraction into clusters'>'**, Here we use a reconstituted system
based on cell extracts that exhibits rapid, physiological actin turnover
rates to explore a wide range of conditions and geometries and reveal
asize-dependent transition from continuousto periodic contraction.

Theappearance of global contraction with different spatiotempo-
ral patterns highlights the subtle interplay between network structure,
contractile force generation and geometry. As discussed previously'®*°,
togenerate and transmit forces across the system, the network must be
percolated, yet these internalforces, inturn, also modulate the network
structure and connectivity. Inthe presence of rapid turnover, the extent
of connected clusters within which forces are efficiently transmitted
becomesadynamic variable. Local clusters can form and contract but
they can also join into an interconnected network, as actin assembly
can form bridges between previously unconnected clusters. In this
context, one has to consider amore dynamic version of the percolation
problem that includes internally generated large-scale advection as
wellas network assembly and disassembly. The contractile behaviour
ofthe system can no longer be summarized by a state diagram depend-
ing on the overall motor activity and network connectivity'>'>%442,
Rather, one hasto consider the geometry of the system and the spatial
inhomogeneities that develop within the system. Our results suggest
that the previously characterized state diagram is still relevant for
describing the local contractile behaviour at the mesoscale. How-
ever, toaccount for the emergent global behaviour of the system, one
has to consider the dynamic evolution of the system into a collection
of regions with distinct mechanical properties. Interestingly, our
work shows that the system size becomes an important factor in
regulating the self-organized patterns that emerge; in particular, our
workreveals a previously unappreciated transition whereby the same
molecular components canself-organize into a persistent flow pattern
or exhibit periodic waves, depending on the overall size of the system.

Recent work shows that similar contraction patterns containing
distinct regions with different rheological properties emerge in cortical

actomyosin networks of living cells. These patterns provide the basis
for anovel motility mechanism in disordered 3D environments*, The
unconnected gas-like state allows for the formation of protrusions at
theleading edge of a cell that can penetrate a disordered environment.
The subsequent actin assembly generates arigid, percolated cortical
network, which is pulled rearwards by myosin-generated contractile
forces at the cell rear. The suggested motility mechanism uses these
rigid cortical regions, which assemble within the irregularly shaped
protrusions, to generate normal forces on the cell environment as the
network is pulled rearwards, thus providing an efficient mechanism
for momentum transfer to propel the cell forwards.

The observed phenomenology in the cortex of these motile cells*,
withlarge-scale self-organized contractile patterns arising froma perco-
lationtransitioninanactive network undergoing continuous advection
and turnover, is strikingly similar to our observations in bulk networks
in vitro. In both cases the interconnected network formed above the
rigidity-percolation transition facilitates long-range force transmission
across the system (which is essential for global contraction) and at the
same time is modulated by the internal advection generated by these
forces. However, the geometry of the systemhas animportantinfluence
ontheproperties of the network. Inthe effective 1D geometry of the corti-
cal networks on the surface of a cylindrical cell or bleb, the network can
flowrearwards asasolid, experiencing negligible stress, before fluidizing
attherear dueto myosin-generated forces. However,ina2D or 3D radially
symmetric contracting network, the converging flow necessarily gener-
atesstressand, hence, the percolated network must be primarily viscous
rather than solid (see more details in Supplementary Information).

The appearance of pulsatile modulation in actomyosin con-
traction is a common theme seen across many cell types in different
contexts (for example, refs. 6,8,10,44). Although in some cases the
function of the pulsatile dynamics is unclear, in other cases the pul-
satile dynamics are essential, enabling large-scale force generation
while maintaining tissue integrity®’ and facilitating cellular functions

Nature Physics | Volume 20 | January 2024 |123-134

132


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-023-02271-5

such as active transport and motility®. Typically, these periodic or
aperiodic waves emerge from complex nonlinear reactionsin coupled
mechano-chemical systems involving regulators of the actomyosin
machinery such as Rho GTPases'>"*>*3*¢_Our work shows that waves
can also emerge in essentially mechanical systems with turnover but
without complex biochemical regulation. In this case, the periodic
dynamics reflect anemerging spatiotemporal pattern that depends on
theinterplay between network contraction and turnover, rather than
biochemical modulation of the actomyosin machinery. The period of
the waves is comparable to theactin turnover timescale, which allows
the network in the wake of a wavefront to reassemble and generate
subsequent contracting wavefronts (Supplementary Information).
Whether such mechanically generated waves naturally arise in living
systems and are functionally relevant remains to be seen.

Theoretically, actomyosin contraction has been studied exten-
sively using microscopic agent-based simulations as well as continuum
hydrodynamic approaches. Several studies have explicitly simulated
microscopic models of actin filaments, myosin motors and crosslink-
ers (both motors and linkers stochastically bind to and unbind from
filaments). Even without turnover, pulsed, geometrically irregular
contraction can emerge because of the positive feedback between the
local network density and the effective contractile stress (due to more
motorsbinding todenser actin arrays)**. Note that repeated irregular
contractions in such systems depend on the stochastic unbinding of
motors and crosslinkers, which effectively dissolves transient network
aggregates and allows contractions to start elsewhere. Large-scale
geometrically irregular pulsed contractions of similar nature appear
in models with actin turnover®*. Interestingly, a couple of models
have shown that such pulsed contractions can, in fact, be suppressed
by actin turnover®>*%,

Other models, albeit not microscopic, have demonstrated that not
justirregular butalso periodic contractions can develop inactomyosin
networks. First, such periodic contractions can be generated by an
effective relaxation oscillator based on the coupling of network turno-
ver with a highly nonlinear stress—-density relation characterized by
botha contractile phase at low network density and arelatively exotic
swelling phase at high density®"*2. Second, travelling contraction waves
appear indense actomyosin structures with myosin strain-dependent
binding/unbinding kinetics*, so in effect, some additional nonlinear
kinetics has to be added to facilitate the existence of such waves. Third,
one canbuild aspatial-temporal oscillator by coupling not just viscous
but also elastic elements to a contractile actomyosin network with
turnover®’, which could be more relevant to supracellular than cellular
systems. Last, but not least, spatial-temporal instabilities in a highly
contractile actomyosin network with turnover, like those predicted by
our model for large contraction rates (Supplementary Information),
were predicted in ref. 51. None of these models, however, addressed
the relationship between the contraction pattern and the geometry
of the system, as done in this work.

Interestingly, our system also exhibits contraction in the form of
spiral wave patterns (Fig. 1e, Extended Data Fig. 4 and Supplementary
Video 8). Dynamic spiral patterns have been observed in several physio-
logical systems, including the actin cortex, and are usually associated
with highly nonlinear excitable systems** or intrinsic chirality at the
molecular scale, which is propagated to cellular scales®**. Although
we have not yet attempted to quantitatively model spiral formation
(our current model is limited to radially symmetric 2D patterns), we
hypothesize that the spiral contraction waves we observe originate from
adifferent and somewhat simpler mechanism. Along each radial direc-
tion, we have shown that the periodic waves are triggered, effectively,
by an‘integrate-and-fire’ oscillator>*: at the beginning of each cycle, the
network density assembles to the percolation/contraction threshold
(‘integrate’ part), which triggers a contraction that wipes out the den-
sity from the periphery (‘fire’ part) and resets the cycle. Each oscillator
is characterized by a phase, namely the timing of the start of the cycle.

There arelateralmechanical connectionsin the network between neigh-
bouringradial directions, so effectively we can consider themas coupled
oscillators. Mathematical models have demonstrated that such coupling
leads, most frequently, to two possible patterns®*: (1) synchronization
of the oscillator phases, which geometrically corresponds to periodic
wavesin the form of concentric contracting circles, which is most often
the case, or (2) anincremental phase shift between nearest-neighbour
oscillators, whichgeometrically corresponds to aspiral patternarising
from some initial conditions. Note that such models predict that the
spiral willdevelop so thatalong eachradial direction the new wave starts
at the periphery exactly when the previous wave crest merges with the
dense network near the centre, which seems to be the case in our system
(Fig.1e,fand Extended Data Fig. 4). Further research will show whether
this coupled oscillator mechanismis behind the spiral contraction waves
and whether these waves have a physiological significance.

Living systems exhibit patterns at different length scales depend-
ing on the mechanism driving their organization. The most prevalent
mechanisms are diffusion-based biochemical pattern formation, such
as Turing patterns, and various mechano-chemical patterns®. Here, we
demonstrate the existence of anemergentlength scale based on coupling
between mechanics, turnover and geometry. This characteristic length
scaledefinesthetransition length above whichthe contractile behaviour
ofthe system changesinaqualitative manner so that periodic behaviour
develops. The size-dependent contractile behaviour thatemerges from
theinterplay between network advection, percolationand force genera-
tion was not appreciated before and highlights the importance of the
system geometry on its self-organized dynamics: the geometry of the
system is not only reflected in the shape of the contracting wavefront
butalsoinits temporal dynamics. More generally, this work provides an
example of the profoundimpact that geometry and boundary conditions
can have on pattern formation processes in cells and tissues.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41567-023-02271-5.

References

1. Field, C. M. & Lenart, P. Bulk cytoplasmic actin and its functions in
meiosis and mitosis. Curr. Biol. 21, R825-R830 (2011).

2. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and
cellular morphogenesis. Trends Cell Biol. 22, 536-545 (2012).

3. Munjal, A. & Lecuit, T. Actomyosin networks and tissue
morphogenesis. Development 141, 1789-1793 (2014).

4. Koenderink, G. H. & Paluch, E. K. Architecture shapes contractility
in actomyosin networks. Curr. Opin. Cell Biol. 50, 79-85 (2018).

5. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into
shape: the mechanics of actomyosin contractility. Nat. Rev. Mol.
Cell Biol. 16, 486-498 (2015).

6. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by
asymmetrical contraction transport PAR proteins to establish
and maintain anterior-posterior polarity in the early C. elegans
embryo. Dev. Cell 7, 413-424 (2004).

7. Lenart, P. etal. A contractile nuclear actin network drives
chromosome congression in oocytes. Nature 436, 812-818 (2005).

8. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions
of an actin-myosin network drive apical constriction. Nature 457,
495-499 (2009).

9. Jodoin, J. N. et al. Stable force balance between epithelial cells
arises from F-actin turnover. Dev. Cell 35, 685-697 (2015).

10. Nishikawa, M., Naganathan, S. R., Julicher, F. & Grill, S. W.
Controlling contractile instabilities in the actomyosin cortex. eLife
6, 19595 (2017).

Nature Physics | Volume 20 | January 2024 |123-134

133


http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02271-5

Article

https://doi.org/10.1038/s41567-023-02271-5

mn.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

Agarwal, P. & Zaidel-Bar, R. Principles of actomyosin regulation
in vivo. Trends Cell Biol. 29, 150-163 (2019).
Backouche, F., Haviv, L., Groswasser, D. & Bernheim-Groswasser,

A. Active gels: dynamics of patterning and self-organization. Phys.

Biol. 3,264 (2006).

Bendix, P. M. et al. A quantitative analysis of contractility in active
cytoskeletal protein networks. Biophys. J. 94, 3126-3136 (2008).
Reymann, A.-C. et al. Actin network architecture can determine
myosin motor activity. Science 336, 1310-1314 (2012).

Kohler, S. & Bausch, A. R. Contraction mechanisms in composite
active actin networks. PLoS ONE 7, e39869 (2012).

Alvarado, J., Sheinman, M., Sharma, A., MacKintosh, F. C. &
Koenderink, G. H. Molecular motors robustly drive active gels to a
critically connected state. Nat. Phys. 9, 591-597 (2013).
Ennomani, H. et al. Architecture and connectivity govern actin
network contractility. Curr. Biol. 26, 616-626 (2016).

Alvarado, J., Sheinman, M., Sharma, A., MacKintosh, F. C. &
Koenderink, G. H. Force percolation of contractile active gels.
Soft Matter 13, 5624-5644 (2017).

Belmonte, J. M., Leptin, M. & Nedelec, F. A theory that predicts
behaviors of disordered cytoskeletal networks. Mol. Syst. Biol. 13,
941 (2017).

McFadden, W. M., McCall, P. M., Gardel, M. L. & Munro, E. M.
Filament turnover tunes both force generation and dissipation

to control long-range flows in a model actomyosin cortex. PLoS
Comput. Biol. 13, €1005811 (2017).

Hiraiwa, T. & Salbreux, G. Role of turnover in active stress

generation in a filament network. Phys. Rev. Lett. 116, 188101 (2016).

Brieher, W. Mechanisms of actin disassembly. Mol. Biol. Cell 24,
2299-2302 (2013).

Malik-Garbi, M. et al. Scaling behaviour in steady-state
contracting actomyosin networks. Nat. Phys. 15, 509-516 (2019).
Pinot, M. et al. Confinement induces actin flow in a meiotic
cytoplasm. Proc. Natl Acad. Sci. USA 109, 11705-11710 (2012).
Abu-Shah, E. & Keren, K. Symmetry breaking in reconstituted
actin cortices. eLife 3, e01433 (2014).

Tan, T. H. et al. Self-organization of stress patterns drives state
transitions in actin cortices. Sci. Adv. 4, eaar2847 (2018).

Ezzell, R. M., Brothers, A. J. & Cande, W. Z. Phosphorylation-
dependent contraction of actomyosin gels from amphibian eggs.
Nature 306, 620-622 (1983).

Field, C. M. et al. Actin behavior in bulk cytoplasmiis cell cycle regulated
in early vertebrate embryos. J. Cell Sci. 124, 2086-2095 (2011).
Sakamoto, R. et al. Tug-of-war between actomyosin-driven
antagonistic forces determines the positioning symmetry in
cell-sized confinement. Nat. Commun. 11, 1-13 (2020).

Sakamoto, R., Miyazaki, M. & Maeda, Y. T. State transitions of a
confined actomyosin system controlled through contractility and
polymerization rate. Phys. Rev. Res. 5, 013208 (2023).

Pohl, T. in Lecture Notes in Biomathematics: Biological Motion,

Vol. 89 (eds Alt, W. & Hoffmann, G.) 85-94 (Springer, 1990).

Alt, W. & Dembo, M. Cytoplasm dynamics and cell motion:
two-phase flow models. Math. Biosci. 156, 207-228 (1999).
lerushalmi, N. et al. Centering and symmetry breaking in confined
contracting actomyosin networks. eLife 9, e55368 (2020).

Wubhr, M. et al. Deep proteomics of the Xenopus laevis egg using
an mRNA-derived reference database. Curr. Biol. 24, 1467-1475
(2014).

Zicha, D. et al. Rapid actin transport during cell protrusion.
Science 300, 142-145 (2003).

Keren, K., Yam, P. T,, Kinkhabwala, A., Mogilner, A. & Theriot, J. A.
Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11,
1219-1224 (2009).

Ideses, Y. et al. Spontaneous buckling of contractile poroelastic
actomyosin sheets. Nat. Commun. 9, 2461 (2018).

38.

39.

40.

4.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

56.

Sadhukhan, P., Schumann, O. & Heussinger, C. Elasto-plastic
response of reversibly crosslinked biopolymer bundles. Eur. Phys.
J. E37,1-9 (2014).

Wollrab, V. et al. Polarity sorting drives remodeling of
actin-myosin networks. J. Cell Sci. 132, jcs219717 (2019).

Bueno, C., Liman, J., Schafer, N. P., Cheung, M. S. & Wolynes, P. G.
A generalized Flory-Stockmayer kinetic theory of connectivity
percolation and rigidity percolation of cytoskeletal networks.
PLoS Compuit. Biol. 18, 1010105 (2022).

Freedman, S. L., Hocky, G. M., Banerjee, S. & Dinner, A. R.
Nonequilibrium phase diagrams for actomyosin networks.

Soft Matter 14, 7740-7747 (2018).

Banerjee, S., Gardel, M. L. & Schwarz, U. S. The actin cytoskeleton
as an active adaptive material. Annu. Rev. Condens. Matter Phys.
1, 421-439 (2020).

Garcia-Arcos, J. M. et al. Advected percolation in the actomyosin
cortex drives amoeboid cell motility. Preprint at https://www.
biorxiv.org/content/10.1101/2022.07.14.500109v1.abstract (2022).
Bement, W. M. et al. Activator-inhibitor coupling between Rho
signalling and actin assembly makes the cell cortex an excitable
medium. Nat. Cell Biol. 17, 1471-1483 (2015).

Allard, J. & Mogilner, A. Traveling waves in actin dynamics and cell
motility. Curr. Opin. Cell Biol. 25, 107-115 (2013).

Staddon, M. F., Munro, E. M. & Banerjee, S. Pulsatile contractions
and pattern formation in excitable actomyosin cortex. PLoS
Comput. Biol. 18, 1009981 (2022).

Mak, M., Zaman, M. H., Kamm, R. D. & Kim, T. Interplay of active
processes modulates tension and drives phase transition in
self-renewing, motor-driven cytoskeletal networks. Nat. Commun.
7,1-12 (2016).

Yu, Q., Li, J., Murrell, M. P. & Kim, T. Balance between force
generation and relaxation leads to pulsed contraction of
actomyosin networks. Biophys. J. 115, 2003-2013 (2018).
Banerjee, D. S., Munjal, A., Lecuit, T. & Rao, M. Actomyosin
pulsation and flows in an active elastomer with turnover and
network remodeling. Nat. Commun. 8, 1121 (2017).

Dierkes, K., Sumi, A., Solon, J. E. O. & Salbreux, G. Spontaneous
oscillations of elastic contractile materials with turnover.

Phys. Rev. Lett. 113, 148102 (2014).

Hannezo, E., Dong, B., Recho, P., Joanny, J.-F. C. & Hayashi, S.
Cortical instability drives periodic supracellular actin pattern
formation in epithelial tubes. Proc. Natl Acad. Sci. USA 112,
8620-8625 (2015).

Naganathan, S. R., Fiirthauer, S., Nishikawa, M., Julicher, F. &

Grill, S. W. Active torque generation by the actomyosin cell cortex
drives left-right symmetry breaking. eLife 3, e04165 (2014).

Tee, Y. H. et al. Cellular chirality arising from the self-organization
of the actin cytoskeleton. Nat. Cell Biol. 17, 445-457 (2015).
Bressloff, P. C. Mean-field theory of globally coupled integrate-and-fire
neural oscillators with dynamic synapses. Phys. Rev. E 60, 2160 (1999).
Bailles, A. 1., Gehrels, E. W. & Lecuit, T. Mechanochemical
principles of spatial and temporal patterns in cells and tissues.
Annu. Rev. Cell Dev. Biol. 38, 321-347 (2022).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2024

Nature Physics | Volume 20 | January 2024 |123-134

134


http://www.nature.com/naturephysics
https://www.biorxiv.org/content/10.1101/2022.07.14.500109v1.abstract
https://www.biorxiv.org/content/10.1101/2022.07.14.500109v1.abstract

Article

https://doi.org/10.1038/s41567-023-02271-5

Methods

Cell extracts, proteins and reagents

Concentrated M-phase extracts were prepared from freshly laid Xeno-
pus laevis eggs as previously described®*>*’. Briefly, Xenopus frogs
were injected with hormones to induce ovulation and the laying of
unfertilized eggs for extract preparation. The eggs from different
frogs were pooled together and washed with 1x MMR (100 mM NacCl,
2 mMKCI, 1 mM MgCl,,2 mM CaCl,, 0.1 MM EDTA and 5 mM Na-Hepes,
pH 7.8),at16 °C. Thejelly envelope surrounding the eggs was dissolved
using 2% cysteine solution (in 100 mM KCI, 2 mM MgCl, and 0.1 mM
CaCl,, pH 7.8). Finally, the eggs were washed with CSF-XB (10 mM
K-Hepes pH7.7,100 mM KCI, 1 mM MgCl,, 5mM EGTA, 0.1 mM Cacl,
and 50 mM sucrose) containing protease inhibitors (10 pg ml™ each
ofleupeptin, pepstatin and chymostatin). The eggs were then packed
using a clinical centrifuge and crushed by centrifugation at 15,000g
for15 minat4 °C. The crude extract (the middle yellowish layer out of
three layers) was collected, supplemented with 50 mM sucrose contain-
ing protease inhibitors (10 pg ml™” each of leupeptin, pepstatin and
chymostatin), snap-frozen as 10 pl aliquots in liquid N, and stored at
-80 °C. Typically, for each extract batch, afew hundred aliquots were
made. Different extract batches exhibited similar behaviour qualita-
tively, but the contraction rate and transition length exhibited some
variation. All comparative analyses between conditions were done
using the same batch of extract, but similar trends were observedinall
extracts examined. The protein composition of Xenopus egg extracts
was previously analysed by quantitative mass spectrometry>*. Based
onthis analysis, the concentrations of actinand related proteinsin our
extracts can be estimated as follows: ~33 pM of actin subunits (includ-
ing cytoplasmic-Gamma, alpha smooth and alpha cardiac isoforms),
~2.0 pM myosin lIA, ~0.2 puM myosin IIB, ~1.4 pM capping protein and
~0.4 pM Arp2/3 complex.

ActA-His was purified from strain JATO84 of Listeria monocy-
togenes (a gift fromJ. Theriot, Stanford University) that expresses a
truncated actA gene encoding amino acids 1-613 witha COOH-terminal
six-histidine tag replacing the transmembrane domain, as described in
refs. 25,57. The capping protein of actin filaments, Capz, which contains
two subunits, a-1and -1, was purified to afinal concertation of 66 pMin
10 mM Tris8, 50 mM NacCl, 0.5 mMdithiothreitol (DTT) and 20% sucrose.
GST-mDiawas purified toafinal concertation of 45 pMin10 mM Tris7.5,
50 mM KCI,1mM EGTA, 1 mM MgCl,, 1mM DTT, 20 mM glutathione
and 15% sucrose. Purified proteins were aliquoted, snap-frozen in lig-
uid N, and stored at -80 °C until use. Calyculin A (Sigma) was added at
0-600 nMto the extract mix. Phalloidin (Invitrogen) wasadded at 20 pM
to the extract mix. For tracking the cytoplasmic flow, red fluorescent
0.5-um-diameter carboxylate modified polystyrene beads (Sigma) were
used. The beads were passivated by incubating with 0.5 mg mI™ BSA in
XB buffer before use. Actin networks were labelled with lifeact-green
fluorescent protein (GFP) (the construct was agift from C.Field, Harvard
Medical School). Lifeact-GFP was purified and concentrated to a final
concentration of 252 uMin100 mMKCl, 1 mM MgCl,, 0.1 mM CaCl,,1mM
DTT and 10% sucrose and stored at —80 °C until use.

Sample preparation
For samples with 80% extract, an aqueous mix was prepared by mix-
ing the following: 8 pl crude extract, 0.5 pl x20 ATP regenerating mix
(150 mM creatine phosphate, 20 mM ATP and 20 mM MgCl,), 0.5 pl
of 10 uM lifeact-GFP and any additional proteins as indicated. The
final volume was adjusted to 10 pl by adding XB buffer (10 mM Hepes,
5mM EGTA, 100 mM KCI, 2 mM MgCl, and 0.1 mM CacCl, at pH 7.8).
For samples with a higher extract concentration (85-98%), the crude
extract was supplemented with a x50 concentrated mix containing
ATP regenerating system and lifeact-GFP to generate the same final
concentrations.

Emulsions were made by adding 3% (v/v) extract mix to degassed
mineral oil (Sigma) containing 4% cetyl PEG/PPG-10/1 dimethicone

(Abil EM90, Evnok Industries) and stirring for 1 min at 4 °C. The
mix was then incubated for an additional 10 min on ice to allow the
emulsions to settle.

Samples were made in chambers assembled from two passivated
coverslips separated by 10-pm or 30-pm-thick double stick tape
(3M), sealed with wax (vaseline:lanolin:paraffin in a 1:1:1 ratio) and
attachedtoaglassslide. For samples with spherical droplets, we used
athicker 400 pm spacer made from multiple layers of 100-um-thick
double-sided sticky tape (3M). When generating macroscopic droplets
(-1cm), 10 pl of the extract mix (without emulsification) was sand-
wiched between passivated coverslips with a 100-pm-thick spacer.
Passivation was done by incubating cleaned coverslipsin asilanization
solution (5% dichlorodimethylsilane in heptane) for 20 min, washing
in heptane, and sonicating twice in doubled-distilled water for 5 min
and oncein ethanol for 5 min. For the capillary experiments, the extract
mix (without making an emulsion) was introduced intoa 50 x 500 pm
rectangular capillary (CM Scientific) through capillary action, and the
capillary ends were sealed with VALAP. Samples were typically imaged
10-60 min after sample preparation.

Microscopy

Emulsions were imaged at room temperature on a Zeiss Observer Z1
confocal microscope fitted with a Yokogawa CSU-X1 spinning disc
using Slidebook software for acquisition (Intelligent Imaging Innova-
tions). Samples were illuminated with a488 nmlaser, and images were
captured at the midplane of the sample so that the network velocity
was mostly within the imaging plane. 3D images of spherical droplets
were captured by acquiringaZ-stack of the droplet and deconvolving
the 3D image using FlJI followed by 3D median filtering. To character-
ize the network properties, images with a high temporal resolution
were obtained with x10 air (numerical aperture (NA) = 0.5), x20 air
(NA =0.75) or x40 oil (NA =1.3) objectives with or without an optovar
(x1.6), depending on the size of the droplets. Images were acquired
ontoa512 x 512 EM-CCD camera (QuantEM; Photometrix) at 0.5 stime
resolution.

Low time resolution images for characterizing the global con-
tractile behaviour in a population of droplets were acquired using
22048 x 2048 CMOS camera (Zyla, Andor) with a x20 air (NA =0.5)
objective.Images were acquired with2 x 2binningat15 stimeinterval
for aduration of 8 min.

Analysis

Network properties of bulk actin network in emulsions. High time
resolution time-lapse videos were acquired at the midplane of asample
to obtain the bulk actin network flows as in ref. 23. Time-lapse videos
were background-corrected, corrected for uneven illumination by
normalizing with flat field corrections and bleach corrected using an
exponential fit to the total image intensity as a function of time.

The velocity fields were extracted from the corrected time-lapse
videos using either an optical flow with areaction termto account for
network turnover using the code adapted from ref. 58 and modified
as described below or particle image velocimetry (PIV) as described
previously?. The optical flow analysis used videos with a 0.5 s time
interval, whereas the PIV analysis was done at 2.5-10.0 s time interval
withadditional averaging of the spatiotemporal correlation function
over 3-40 consecutive frames?. For continuous contraction, both
methodsyielded similar results. However, for the non-steady contrac-
tion, only the optical flow method could be used because the temporal
changes in the velocity field were fast compared to the timescales
used for averaging the spatiotemporal correlation functionin the PIV
method (which are essential for obtaining a reasonable velocity field).

The optical flow analysis was performed on 15 x 15 pixel window.
Consecutive pairs ofimages were first smoothed with a Gaussian filter
(0=1.5 pixels) and subsequently analysed with a reaction term using
the Matlab code provided in’®. The velocity fields were subsequently
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averaged over five consecutive frames (2.5 s) using a 15 x 15 median
filter toreduce noise. For continuous contraction, the velocity field was
further down-sampledto afinal resolution of12.5 sand 15 x 15 pixels by
averaging. The contractionratein the continuous contraction regime
was determined from the slope of the linear fit to the radial velocity as
afunction of distance to the contraction centre™,

Radial kymographs of the density and the velocity fields as a
function of distance from the contraction centre were obtained
by angular averaging. The averaging was done over all angles for
droplets with a symmetric contraction or over a smaller manually
selected angular range otherwise. Angular kymographs (for spiral
videos) were determined by considering the angular variation in a
specified radial range.

Population statistics. The population statistics were acquired from
time-lapse images of droplets with varying sizes at 15 s time intervals
(to capture at least two frames per period in the periodic regime). For
eachdroplet, radial intensity kymographs were obtained as above. The
state of contractionin each droplet was categorized as continuous or
periodic based on manual inspection of the radial kymographs. For
droplets exhibiting periodic density modulations (that s, parallel diag-
onal lines in the radial kymograph), the time period was determined
from analysing the time-dependent intensity variation for a small
radial region (thatis, along a vertical linein the kymograph) using the
built-in Matlab function ‘periodogram’. The periodicity was determined
fromthe position of the most prominent peakin the Fourier spectrum,
estimated from the location of the centre of a best-fitting Gaussian.
The width of the best-fitting Gaussian was used to estimate the error
in the periodicity. The period was determined only for droplets that
remained stationary throughout the video. Droplets that exhibited
irregular density modulations rather thanaclear periodic pattern were
characterized to be in amixed state.

The transition length was determined for various conditions by
considering the contraction state versus size (Fig. 2b). For conditions
with asizerange in which droplets were found exhibiting both continu-
ous and periodic contraction, the transition length (R,,) was defined
to minimize the number of droplets exhibiting periodic contraction
with R <R, and continuous contraction with R > R,,. If there was no
overlap, the transition length was reported as the mean of the sizes of
the smallest droplet exhibiting periodic contraction and the largest
droplet exhibiting continuous contraction.

Tracking tracer beads. The beads were tracked from videos acquired
at1.2 stimeresolution using a Matlab code adapted from the code by
Daniel Blair and Eric Dufresne https://site.physics.georgetown.edu/
matlab/code.html. Asthe network s flowing inwards, we assumed that
theinward-moving beads were transiently trapped within the network,
whereas the outward-moving beads reflected the motion of the fluid
phase within the droplets. To separately analyse the network move-
ment and the fluid flow, the trajectories of the beads were classified as
inward moving, outward moving or stationary based on thresholding
theradial displacements overa 6 s timeinterval. Since the network flow
was telescopic, the threshold was takento be alinearly increasing func-
tionof the distance from the contraction centre (threshold = 0.005 x r).
The instantaneous velocity of each bead was directly extracted from
its trajectory and averaged over five consecutive frames. The radial
profile of the velocity of the inward- and outward-moving beads as a
function of distance from the contraction centre was determined by
averaging the velocities of all the inward- and outward-moving beads
detected within a concentric ring of width 1 um at each radius (typi-
cally 1-5 beads). If there were no beads in a given frame and ring, the
local velocity was set to NaN. The radial inward and outward velocity
kymographs were then smoothed by convolving with a 2D Gaussian
filter (ignoring NaN’s) with 0= 0.8 s in the time domain and 6 =2 pm
inthe radial direction.

Analysis of contraction patterns. The spectral time-lapse (STL)
images for different concentrations of added capping protein and caly-
culin (Fig. 5) were obtained using the STL algorithm®’. The time-lapse
images were masked with either amoments binary mask fromFijiora
manualintensity threshold, and time was colour-coded using the STL
algorithmover 35-50 sasindicated, depending on the rate of network
displacements.

Modelling

To model the actomyosin network, we used a system of transport
(assembly, disassembly and drift) and force-balance (balancing myosin-
generated contractile and crosslinked-actin viscous stresses) equa-
tions. These two partial differential equations, with boundary condi-
tions specifiedin Supplementary Information, determine the network
density and drift velocity, which are both functions of space and time.
In the continuous model, the effective contractile stress and viscos-
ity are functions of the network density as specified in Supplemen-
tary Information. We solved the model numerically, with parameters
obtained from the data, in 1D and in a radially symmetric 2D case.
We also simulated numerically a 1D stochastic agent-based model in
which material nodes of the network appeared and disappeared at
random times and locations with constant rates. Neighbouring node
pairs did not interact if the distance between them was greater than
the percolation length. They stayed at a constant distance from each
other if this distance was less than the percolation length but greater
than the contraction length, and they converged with a constant rate
if their mutual distance was less than the contraction length. Further
detailsare provided in Supplementary Information.

Reporting summary
Furtherinformation ontheresearch designis available in Nature Port-
folio Reporting Summary linked to this article.

Data availability

All the data used to support the findings of this paper are included
in the plots and Supplementary Information. Any further details are
available from K.K. uponrequest.

Code availability

The codes used for dataanalysis are publicly available as follows: Parti-
cleimage velocimetry (PIV): https://github.com/nivieru/dropletsRhoV;
Optical flow: https://ars.els-cdn.com/content/image/1-s2.0-S0006
349516300339-mmc7.txt; Tracer bead tracking: https://site.physics.
georgetown.edu/matlab/code.html; Spectral time-lapse (STL): https://
zenodo.org/record/7663. The Matlab codes used for solving the 1D and
2D partial differential model equations as well as the the 1D discrete
stochastic code are available at: https://github.com/mariyasavinov/
SizeDependentWaves.git.
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Supplementary Text

Continuous model

To model the actomyosin network, we turn to the basic transport (1) and force-balance (2) equations
that have been used previously **:

0 _

a—pza_ﬂp_v.(up) (1)
t

V-oc=0 (2)

Here pis the network density, « is the assembly rate of the network, /3 is the disassembly rate, and i/ is
the network velocity. The first equation is the mass conservation law for the drifting and turning over
network. The velocity here is a dynamic variable that is a function of the spatial coordinate and time and
must be found using Eq. 2. Also, the assembly and disassembly rates need not be constant and can be
functions of the density.

In the second equation, o is the total internal network stress tensor. Usually, the force balance equation
is written in the form: V-0 = i , where { is the effective drag between the network and the fluid in

which the network is immersed. However, we demonstrated earlier %3 that the friction between the
network and fluid is much smaller than the effective contractile and internal viscous forces within the
network, so we use the approximate Eq. 2 instead. For simplicity and in the absence of rheological
measurements, we assume that the network is a very viscous isotropic Newtonian fluid >, albeit
compressible (which is obvious from the variable network density). To be clear, the combination of the
network and solute that it is immersed in is incompressible, but by neglecting the solute fraction we may
consider the network as a simple compressible fluid.

Thus, the components of the total stress tensor are:

ou, Ou, 2
o, =yl —+—=—|-|-u-A|(V-u)o,+o,. 0. 3
i ,U axj ax' (3/'1 j( ) ij contr ~ij ( )

1

contractile

viscous

Here, the last term represents the active myosin-powered contraction, where the scalaro,,,,. is the

contr
magnitude of the contractile stress. The other terms describe the passive stress of the actin network
deformations. 1 and A are the effective shear and bulk viscosities, respectively. Taking the divergence of

the total stress provides us with the force-balance equation:

,quﬁ+[%,u+/1jV(V-ﬁ)+Va =0 (4)

contr



The density dependencies of the viscosities and the contractile stress are crucial for large-scale network
dynamics. A central feature of our model is the consideration of the coexistence of distinct mechanical
regimes characterized by different viscosities and active stress in different regions of the system.

We adopt the state diagram from © in the following interpretation to describe the local state in each
region (Fig. 3a). The state of the network in © is determined by two factors — connectivity and
contractility. We make the following simplifications: 1) the connectivity is proportional to the local actin
network density, o ; 2) the contractile stress is an increasing function of the local myosin density; 3) the
myosin density is an increasing function of the actin network density; 4) myosin kinetics is fast compared
to actin turnover, meaning that the local myosin density adjusts rapidly to the local actin density. This
fourth assumption allows us to describe the system by considering a single network density field. The
behavior of the system is then restricted to a straight line (or a curve) on the state diagram (Fig. 3a) —
passing through the unconnected (1), interconnected (Il) and contractile (1) states, as this single density
varies. This assumption is not necessarily true in our experimental system — myosin kinetics may not be
fast — but qualitatively this would not change the system’s behavior. The main point is that locally the
system is in one of these three distinct mechanical states. Making the simplification of the fast myosin
kinetics allows to consider only one density field explicitly (instead of two) and describe the local state of
the system as a function of the local density.

We assume that the network in the unconnected state has zero viscosities and contractility, in the
interconnected/non-contractile, state — non-zero viscosities and zero contractility, and in the
interconnected/contractile state — non-zero viscosities and contractility. More specifically,

{O P < Pr /I—{O p<p1zo_ :{O P < Py
Hy p>,012’ Ay p>p12’ o Oy P> P

where p;, and p,, are the density thresholds for interconnectedness and contractility, respectively (Fig.

(5)

3a) and p,, < p,;. Note that we assume that above the interconnected/contractile threshold, the

viscosities and contractility are constants. This assumption is not crucial, but greatly simplifies the
model. This density independence also leads to the telescopic character of the contraction % the inward
velocity increases almost linearly as a function of the distance from the contraction center. Note also
that from now on, the force balance equations are applicable only to the interconnected network, for

P> p,, - Wherever p < p,,, the velocity is equal to zero, and the transport equation becomes an

ordinary differential equation as a function of time.

We discuss the boundary conditions for the model in detail below; here, we mention briefly that the
boundary conditions for the force balance equation (Eq. 4) are: 1) zero velocity at the inner boundary of
the interconnected network (at the boundary of the aggregate / exclusion zone that forms at the
contraction center 3); 2) zero normal component of the total stress (Eq. 3) at the outer boundary of the
interconnected network.

We consider two geometries: 1) one-dimensional (1D) or, 2) radially symmetric two-dimensional (2D). In
the 1D case, the force balance equation after integration simply states that the total internal network
stress tensor is equal to a constant. Because of the boundary condition of zero total stress at the outer
boundary of the network, this constant is equal to zero. Thus, in 1D, Egs. 1 and 4 reduce to:

op 0
P o pp-C 6
5 = bp ax(up) (6)



770 Z_Z+ O-contr = 0 ° (7)

4
Herern, = E,uo + 4, is the effective viscosity coefficient in the 1D model, x is the 1D coordinate, u is the

1D network velocity.

(o]
For 0> Oy, Eq. 7 becomes: a =—k —>u=u,—kx, where u,is a constant and k = — . The parameter
un

k is the observable contraction rate. In the unconnected phase, the velocity is simply equal to zero. In

the interconnected/non-contractile state, 0, <0<y, where the viscosity is non-zero but the

ou
contractility is zero, Eq. 7 becomes: — = 0 — u = u, . To summarize, the 1D model becomes:

ox

0 P <P
a_p:a_ﬂp_i(“p)a“: const P <P <Py (8)
ot ox

const — kx P> P

The constants are found from the boundary condition near the center of the droplet, u (0) =0, and the

condition of the continuity of the velocity.

For example, when 0> 0O at 0<x <7y, P, <P < Py at 1, <X<F,,and p, > pat 1, <x<R
(where 7,; and 7, are defined such thatp(r23) = p,; and ,0(1”12) = p,,, respectively), thenu = —kx at

0<x<r,, u=—kryat r, <x<p,,andu=0at 1, <x <R.In principle, there could be multiple

regions of interspersed contractile and interconnected/non-contractile network (see the general
formulas for the 2D case below). In these cases, the extension of Eq. 8 is straightforward.

In 2D, for the radially symmetric case, the transport equation becomes:

op 10
- Bp——— , 9
ot a=hp rar(mp) ©)
while the force balance equation is:
0
H lﬁ ra_u _iz + &4_10 i lﬂ +%:O. (10)
ror\_ or) r 3 or\r or or

Here 7 is the radial coordinate in a polar coordinate system (centered at the center of the exclusion zone
within the droplet), and u (r,t) is the radial component of the velocity. The radial component of the
stress tensor in this case has the form:

ou (2 10
Grr=2y05—(§y0—20j;5(ru)+60. (11)

In 2D, as the active stress is assumed to be piece-wise constant, o =const if OF O, 3, the force

contr

balance (Eq. 10) within each region becomes:



0
J7n 19 ra—u —iz + &4-/10 911 (ru) = 0. Simple calculations allow to re-write the left-
3 or\r or

2

hand side in a particularly convenient form: 7, (6_1;1 la—u—%] =0, where 77, = ilu0 + 4, . The

or- ror r 3
general solution of this equation has the form:u = ar + b/ r, where a and b are arbitrary constants (for
any given time moment) to be found from the boundary conditions. This general form of the velocity
profile is applicable both in the contractile p > p,5 and in the interconnected/non-contractile p;, <
p < p,3 states. In the unconnected phase the velocity is simply zero. Substituting this expression for the
radial velocity into Eq. 11, we obtain the general formula for the radial stress:

2
o, :( ,;10 +2ioja—2y0b/r2+ao.

To summarize, the 2D model becomes:

5 Lo 0 P < P12
a—‘; =a—fp— ;E(rup), u =< (const)r + const/r P12 < p < Pa3 (12)
(const)r + const/r p > Pas

Note that the constants in the expression for the velocities are different in each region (as described
below, they are determined by stitching the results in the different regions while taking into account the
boundary conditions).

Here are the remaining model assumptions and boundary conditions, after which the particular solution
for the 2D velocity profile is outlined further:

1. A boundary condition for the velocity: u(O) =0in1Dor u(ro) =0in 2D, meaning that at its
innermost boundary (of the exclusion zone) the network sticks to the aggregate that forms at
the contraction center 3.

2. Asecond boundary condition: no-stress at the outer interconnected network boundary x=7,in

1D orr=r,in 2D, where 7;, is the point at which the interconnected network ends (so that
p(rlz) =p,)- This is already applied in Eq. 8 for 1D. In 2D, this appears as zero radial stress at the

outer interconnected network boundary: o, (”12) =0.
3. A continuity condition for the velocity: u(x) in1D oru(l’) in 2D are continuous functions for

P> B, . Additionally, in 2D, a continuity condition for the radial stress: a,..(r) is a continuous

function for p > p,,. In 2D, this boundary condition, namely the continuity condition for the
velocity, looks very natural mathematically. However, it is not the only possible boundary
condition from a physical viewpoint. Consider, for example, a situation in which the inner
interconnected/non-contractile network is static; with this continuity condition a contractile ring
enveloping the non-contractile network would not be able to contract, as its centripetal velocity
at the interface with the static non-contractile network has to be zero. Physically, this means
that the non-contractile network mechanically resists contraction, and the centripetal wave
movement is limited by the rate at which the actin density grows and non-contractile network
becomes contractile. Below, we examine a different boundary condition which allows the
contractile ring to contribute to the centripetal wave.



4. At the outer boundary of the interconnected network ( p= g, ), if this network is not in contact
with the droplet’s edge, the network boundary grows at constant rate equal to ,.
Mathematically, the boundary moves with a velocity: u(x) +V,in 1D or u(r) +V,in 2D for x

and 7 such that p(x) :plzorp(r) = p,,, respectively. Physically, the growth of the network

boundary can be explained by the polymerization and elongation of filaments connected to the
network at the edge of the network.

5. «a, the network assembly rate, is assumed to be density dependent, so that the rate saturates
to a constant at larger densities and decreases to a smaller constant at lower densities. Such
density dependent assembly could arise e.g., from the contribution of autocatalytic, Arp2/3-

dependent assembly ’. We use the expression: o = ¢, + (5— 0(0)(1 - exp(—p ! P, )) .

The density dependency of the assembly rate is not critical. Qualitatively, the model works well
without this assumption, but the results are more numerically robust with the assumed density
dependence.

6. [3,the network disassembly rate, is assumed to be a density-independent, scalar, which agrees
with the fit to the data in our previous study 2. Simulations showed that the model-predicted
behavior is insensitive to the disassembly rate becoming a linearly increasing function of density
(which could be the case due to myosin-driven disassembly).

7. We solve the equations in 1D on the domain 0 < x < R, where R is the droplet radius, and in 2D

on i, <r< R.
8. In point 4 above, we assume that at the boundary between the interconnected network and the

unconnected ‘gas’-like phase, the network grows with the free polymerization rate ;). However,

when the interconnected network is in contact with the droplet’s edge, the physics changes: the
polymerization is against a physical boundary (the water-oil interface). We make the simplest
assumption — that filaments pushing against this physical boundary generate a force which is too
small to overcome the effective Darcy friction between the network and fluid (and this friction
by itself is neglected compared to internal stresses in the network). Thus, the tips of the
filaments remain in contact with the droplet’s edge, so the growth rate of the network boundary

against the droplet’s boundary is not V), but a variable that perfectly balances the centripetal
network’s flow.

The particular solution for the velocity profile in 2D depends on the breakdown of the domain#, <r <R
into the different regimes: contractile, interconnected/non-contractile, and unconnected. We consider
the solution in the part of the domain where 7, <r <7, , having defined 7;, as the first point fromr = r,

where p < p;, (the first point where the network is no longer connected). In principle, there can be a
situation in which two interconnected and/or contractile network regions are separated by an
unconnected region. In that case, one must analyze each interconnected region separately. In our
simulations, we encountered cases in which an interconnected but not contractile network is separated
by an unconnected region from another interconnected and contractile region. In this case, the situation
is simple: the velocity in the interconnected/non-contractile region, separated by the unconnected
region from the contractile network, is equal to zero. The analysis becomes nontrivial if there are
multiple contractile networks separated by unconnected networks. In our simulations, we have not
encountered such cases, and so we omit such analysis here.



We consider the case of one interconnected domain 7, <r <17, . We divide this domain into regions
with distinct mechanical states. In region i (i = 1, 2, ..., n), which includes the part of the domain

ri=lt < r < rb*1 the velocity profile is u;(r) = a;7 + b; /7. Note that when i = 1, 7% = 1, and when
i=n,rvtt = 1, . Numerical solutions show that region i = 1 is always contractile, as the density is

always greater than p,3 near the inner boundary of the domain.

The linear system for the coefficients {a;, b;}]=, (total 2n-many) requires 2n equations to be solved.
Two come from the boundary conditions:

uy(ry) = ay19 + by /19 =0 (13)
(zero velocity at the inner boundary) and

(2’:0 +2/10jan —2u,b, /7., neven

o_rr (’/12)202 2 (14)
( ‘;1°+2),0jan—2yobn/lq§+ao, n odd

(no radial stress at the outer boundary). Note that when n is even, the final region is non-contractile and
when n is odd, the final region is contractile.

The remaining equations come from the continuity conditions applied across each point r%*1. For each
i=1,2,..,n—1, velocity continuity requires that

ai.r.i,i+1 + bi/.r.i,i+1 — ai+1ri'i+1 + bi+1/.r.i,i+1 (15)
and continuity of g, requires that

G+EJ a,~b, /(r) =E+ﬁj dy~b /(F) +k, i even

Hy Hy (16)
(l N i] a,=b, 1(r ) +k = (l n ﬁ] a b /(F) i odd
3 u 3 4

Here k = 0,/ 244, is the approximate contraction rate for the 2D model (which turns out to be the same

as that in the 1D case; see below). These make up in total the 2n equations necessary to solve for the
2n-many coefficients for the piece-wise continuous velocity profile. Numerical solutions demonstrate
two interesting features of this system (see Supplementary Video 13 and snapshots from the
simulations in Fig. 3): 1) in the interconnected/non-contractile regions, the velocity profile is relatively
close to being flat. 2) in the contractile regions, the velocity profile is relatively close to being linear, with

aslope equaltok = o, /2,uo multiplied by two factors, both of which are on the order of unity. The first

factor is a function of the two viscosities, A, and 1, (it is of order unity if 4, and £, are of the same order
of magnitude). In what follows, we consider a specific case that gives the simplest result and choose 1,

1 A
= %Ho- Then, the factor(—+—°} in Eq. 16 and in the first factor for the contraction rate become equal
Hy

to unity. In this specific case, also 77, = 2,u0 , and the contraction rates in 1D and 2D are defined in the

same way. The second factor is geometric, explained in the following example:



Suppose there are only two regions: a contractile regime for r, < r < 1,3 and a connected regime for
Ty3 < 1 < 115 (with the remainder of the domain being unconnected). The velocity profile, for the case

2 .
where 4, = FHo/is:
a,r + b/, o <r<r
u(r) = { 1 1/ 0 23
a,r + by /1, T3 ST < Tpy
The linear system outlined previously can be solved to yield the unique coefficient solution:

_ k(rh +rs? Lk (g4
al - _E ﬁ 1] bl - +T0 E ﬁ
1y + 15 1y + 15

kK 1§ — 123° b, = 472 k (1§ — 1p5°
@ = t5\25,2 ) =ty a2
Ty ™12 Ty ™12

Interestingly, since 1y is small compared to R, generally b; will also be small — so the velocity profile in
the contractile regime is nearly linear (moreover, exactly linear as 1, = 0). Numerical solutions confirm

that this is the general case in our system. Thus, a,is the contraction rate. Note that it is equal to k

2 2
riptras®

- . 1 . .
multiplied by the geometric factor E( ) As ¢ K 12, and usually 72,~7,32, this factor is on the

ré+r?,
order of unity. This turns out to be the case in general. In the numerical simulations in 2D, we use the
exact expressions for the velocity profile obtained from the solutions of Egs. 13-16 for the case where

2
Ay = 3Ho

We scale the model equations as follows. The droplet’s radius, R, provides a natural length scale; the
turnover time, 1/ £, is the natural time scale; and the natural density scale is@ / /. We solve the model
equations numerically after non-dimensionalizing the model by using these scales. In 1D, the non-

dimensional model becomes (using the same notations we had for the dimensional variables for the
non-dimensional ones):

op 5 0 P < P
5:(8+(1—g)exp(—p/po))—p—a(up);u: const P, <P< Py (17)
const — kx P> Py
andin 2D:
op 1o 0 P <P
5=(8+(1—g)exp(—p/po))—p—;g(rup);u= (const)r+const/r p,<p<p, (18)
(const)r+const/r  p>p,

The model has six non-dimensional parameters (for which we retain the same notations as for the
dimensional parameters):

ﬂg}_z‘ la— 8}_2, is the gas-connected threshold density (boundary between states | and Il);

dim non—dim

B Py & — P, isthe connected-contractile threshold density (between states Il and I11);
—— ——
dim non—dim

ﬁ /ﬂ - & (where dimensional parameter k = o, /770) is the contraction rate;
dim non—dim

g /o — € isthe low-density gas assembly rate;

dim non—dim



Lo ﬂ la— Py is the density parameter at which the low assembly rate turns into high one;
—— ——

dim non—dim

l’g /(Rﬂ) - ‘:,‘l is the effective growth rate of the percolated network boundary.

dim non—dim

We solve the model drift-reaction equations numerically using standard numerical methods &. The
results are relatively robust to variations of the model parameters. Specifically, we fix several non-

dimensional parameters: £ =0.1, g, =0.5, p,, =0.1, p,, = 0.6. The rationale for these choices is as

follows: as mentioned above, the density dependence of the assembly rate is not critical, but a
reduction in assembly at low density benefits the robustness of the results: the slower assembly ensures
that the contractile density is not reached prematurely before the network interconnects globally, hence
the smallness of parameter & . We want the assembly rate to saturate to a constant at relatively low

densities, comparable to the characteristic density scale, hence the choice of parameter 0, . Our

previous results 2 indicate that the network is interconnected at relatively low densities, so we chose
parameter p,, to be small. We are assuming that the network becomes contractile at densities

comparable to the characteristic density scale, which means choosing parameter ©0,; on the same order
of magnitude as that of parameter 0, . Varying the system size in the non-dimensionalized model is

equivalent to changing V), which is inversely proportional to the radius. To study the behavior of the
model as a function of the contraction rate and system size, we thus varied the remaining model
parameters, kandV,. The results (Fig. 3), indicate that at small contraction rates and droplet’s radii (i.e.

larger V}), the density and velocity evolve to yield stable steady distributions, while at greater

contraction rates and droplet’s radii, periodic waves emerge. The model displays an instability at very
high contraction rates (kon the order of 5 and above), which are indicative of the local contractile
instabilities that are discussed in detail below. The simulations predict that the centripetal velocity has
telescopic character — the velocity of the wave crest is a roughly linear function of the radial distance.

We can numerically solve the same model equations in 1D, to emulate the effective 1D conditions in
flat, elongated capillaries or along cylindrical shells. The numerical 1D solutions (Fig. S9) are qualitatively
similar to the 2D model solutions shown in Fig. 3, with some minor changes in the velocity and density
profiles. Importantly, these results show that unlike the contractile ring model (see below), our model
can adequately explain the periodic contraction observed in flat capillaries (Fig. S2; Supplementary
Video 4) and in the cylindrical cortex of motile cells °. In 1D, the stress is just o = (4u/3 + A) du/dx + Gcontr.
This yields a governing equation in 1D which is just d?u/dx? + docont:/dx = O that has general solution u(x)
= ax + b when Gontr is a constant. Then, the scalar stress in 1D is 0 = (4/3 + A) a + 0o. The solution for the
velocity profile in the 1D case is simple — in contractile regimes, u = —-kx + ¢, where c is some constant
and k = o/ (4u/3 + A). In connected, non-contractile regimes, the velocity is just a constant. Recall that
we also require that the velocity profile is continuous in connected regimes, the velocity is zero at x =0,
and stress is zero at the free boundary of the connected network. Necessarily, the stress must be zero
both in the contractile regime, and in the connected, non-contractile regime. The main difference is that
in the contractile regimes, a nonzero viscous stress identically balances the nonzero contractile stress.
Fig. S9 shows how this would look throughout the wave cycle.



Analytical estimates for the transition length

We can make the following useful rough estimates (in 1D, but they work in 2D as well). Let us consider
the case of the steady flow in a relatively small droplet of a certain radius (to be estimated), for which
the free boundary of the interconnected network is exactly at the droplet’s boundary. We will call the
special radius at which this condition is achieved R, , and show below that it is equal to the transition
length above which we obtain periodic waves. The network density is decreasing with distance away
from the droplet’s center (x=0). The centripetal velocity profile for this case is such that the velocity
increases linearly from the x=0 to a distance r,,, where the density reaches the threshold contractile

density: p(r23) = p,;- Inthe region x < r,;, where the density is above the contractile threshold, the

centripetal velocity profile has a slope equal to the contraction rate k£, and so the centripetal velocity
there is equal to v = kx (with a negative sign, directed to the left), and the maximal value of the
centripetal speed is reached at x = r,;and is equal tov,, = kr, . At greater distances, x > r,,, the

velocity plateaus: v(x) =y = kr23 , because at such distances, the network is interconnected but does

max

not contract.

If the free boundary of the interconnected network is stationary and positioned exactly at the droplet’s
boundary x = R,., two conditions must be satisfied at that boundary: first, the density there has to be

equal to the threshold interconnected density, p(Rt,_) = p,, - Second, the centripetal network velocity

there has to exactly balance the growth rate of the network: V,,, =V, .Thus,v_ = kr:

max 2

;3 =V,,and as

suchr,, =v,/ k. Let us now find the network density profile in the interval r,; < x < R, . The equation

0 0
for the density there is: a—'o =a—-Pp+v,.. 6—’0 For simplicity, we will neglect the density dependence
t X

of the assembly rate and consider it constant. Also, in this outer region the density is well below the
equilibrium density @/ [, so the disassembly term in the density equation can be approximately

0 0 d d a
neglected: Pra+ Vo P at steady state,a + v, Lo , thus—p = ———. Considering that
ot ox dx dx v

max

a
p(r23) = p,,, after integrating, we have: p = p,, ——(x—r23 ) . We usep(R”,) = p,, to obtain the
v

max

a
following formula: p,, = Py, ——(R” —r23). This formula then allows us to calculate the special
v
max

droplet’s radius R, :

1%
R, =ry, Jr%(pz3 —,012) . Considering thatv, = kr,, =v,, 1, =V, /k, this equality can be rewritten

_ Y % . , _ .« .
asR, —;+E(p23 —,0]2) . Finally, based on the assumption that p,, >> p,, and 0,; —CE, where C is

a dimensionless number on the order of unity, we arrive at the very useful estimate:



v Y
R,, =EO+C—O . This estimate predicts that the transition radius R, is inversely proportional to the

contraction rate k and is proportional to the free boundary growth rate v, of the interconnected
network. Fig. 3e shows that the numerical estimate of the transition radius exhibits the predicted

scaling.

Let us now show that the transition length, R, estimated above is the characteristic length scale

tr’
separating the steady contracting flow from the periodic contraction waves. First, we show that if the
droplet’s radius is smaller than the transition radius, R < R

tr’

then a steady centripetal flow persists.
Simulations show that the smaller the droplet, the closer the contractile boundary, 7, , is to the
droplet’s center. This means that the maximal centripetal velocity, equal to k7, , is smaller thanv,in

such droplets, and so the free interconnected network boundary is propped up against the droplet’s
boundary and is able to grow as fast as the centripetal retraction and to keep at the boundary. On the

other hand, if the droplet’s radius is greater than the transition radius, R > R,_, then the contractile

tr?
boundary moves farther away from the droplet’s center. This means that the maximal centripetal
velocity, equal to kr,,, is greater than v, in such droplets, and so the free interconnected network

boundary moves inward. As soon as the retreating interconnected network boundary leaves a gap
between its edge and the droplet’s boundary, the unconnected network fragments start to appear in
this gap. Their density grows, until the interconnected density is achieved, and then after a finite time, a
new centripetal drift begins, generating periodic contraction waves. Simulations confirm this intuition
(Fig S10, Supplementary Video 14).

Period of the pulsatile contraction

The period of the wave is on the order of the turnover time, ~ 1/ £, which is clear from the simulations:

after the previous wave of contraction moves centripetally from the periphery, there is a waiting period
until the next pulse of contraction equal to the time needed to assemble the network density equal to
the critical density threshold. This waiting period is equal to a fraction of the equilibrium density~ o /

divided by the assembly rate: ~ (a / ﬂ) / a ~1/ . Numerical simulations show that the wave period is

weakly dependent on the droplet’s radius (Fig. S11), as observed experimentally under most conditions
(Fig. S7).

These estimates and numerical results are further supported by simulations with decreasing actin
assembly rates (Fig. $12), designed to mimic the experiments with high concentration with phalloidin
(Fig. 2g,h). In these experiments, filamentous actin is slowly taken out of the circulation (due to binding
of phalloidin to filaments, which inhibits their disassembly), which is best modeled by a gradual decrease
of the assembly rate with time. When we simulated this case, we found that the time intervals between
the consecutive waves increase, because each cycle it takes longer to reach the threshold contractile
density (Fig. S12). The result compares well with the experimental data reported in Fig. 2g,h, supporting
our understanding that the wave period is primarily dependent on the characteristic time for network
assembly.

In the presence of added Capping protein that limits filament growth, the filaments become shorter °.
The discrete model suggests that there are local instabilities because connectivity is lower due to shorter
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filaments, as seen experimentally (Fig. 4). Individual asters form and contract locally, delaying the
development of a globally interconnected network. The larger the droplet, the more these local delays
accumulate, likely accounting for the more prominent dependence of the period on the size of the
droplet observed in experiments with Capping protein (Fig. S7).

Note on dimensional parameters and their dependence on biochemical conditions

Above, we discussed the non-dimensional model parameters. The corresponding dimensional
parameters are as follows. The disassembly rate 5 was measured in our previous study ?; it is on the
order of inverse few minutes. The assembly rate &, same as characteristic network density p ~ o / 3,
can only be measured in arbitrary units (see 2), but their dimensional values do not affect the model
behavior, assuming that the percolation and contractile thresholds are not too small and not too great
fractions of the ratior / 5 . The polymerization rate v, which agrees with the model predictions, is on

the order of tenths of micron per second, which is the order of magnitude widely reported in the
literature. Lastly, the contraction rate k£ which is experimentally measured, is on the order of inverse few
minutes. The contraction rate is given by the ratio of the contractile stress and actin network viscosity.
The contractile, myosin-powered, stress varies from ~ 1 Pa to kPa . This would mean that effective
viscosity is on the order of 0.01 to 10 Pax s, comparable to values reported in the literature %13,

The contraction rate k , the transition length R, , and the wave period 7' can be directly measured,
whereas the free boundary growth rate v, cannot. Based on the data for the four different biochemical
conditions reported in Fig. 2, the most interesting conclusion is that if we calculate the product R, x k ,

we find that this product is remarkably robust, barely changing between the conditions (Fig. 2e).
According to the model, v, ~ R, x k , thus we conclude that rate v, is insensitive to the biochemical

perturbations, which makes sense because the polymerization rate depends on little else but actin and
profilin concentrations, which were not varied. Thus, we just need to explain dependence of the
contraction rate k on the biochemical conditions; the transition length R, is simply on the order of v, / k

according to the model. The contraction rate k is the ratio between the contractile stress and network
viscosity. The contractile stress depends on the actin architecture, but in a crude approximation,
viscosity could be even more sensitive to the actin architecture. If so, the data can be understood as
follows: network connectivity decreases with increasing Capping protein concentration, so lower
viscosity explains much higher & in this case. Higher mDia concentration likely means longer, more
overlapping, filaments, as formin compete with Capping protein, and so the viscosity goes up and k goes
down in this case. Finally, adding ActA increases the actin nucleation rate and generates branched
structures, increasing entanglement and viscosity, which leads to a dramatic slowing down of the
contraction rate k .

Contractile ring model

One distinct possibility suggested in ° is that a cortex-like actomyosin shell assembles near the
boundary of the droplet and when the shell becomes contractile, it shrinks centripetally like a
contractile ring in dividing cells. Here, we consider a radially symmetric 2D model that shows this
contractile ring behavior. This model (we refer to it in this section as the contraction ring model), is
exactly the same as the model outlined above and used to produce the simulations for the main text
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(which we refer to in this section as the main model), apart from one different boundary condition.
Specifically, the model equations in both models are identical, describing a contracting network that
experiences both tangential and radial stresses, which arise from a combination of viscous and
contractile stresses, and undergoes turnover. However, we use a different boundary condition at the
interface between the contractile and interconnected/non-contractile network (for brevity, in this
section we refer to the latter as simply interconnected). This interface normally appears at the inner
boundary of the contractile band, and as detailed below, this different boundary condition leads to a
different physical behavior in the two cases. In the main model, we use the velocity continuity condition.
This boundary condition effectively means that the interconnected network resists both compression
and stretch by the contractile network. This, for example, will drastically slow down the contraction of a
ring enveloping the interconnected network in 2D and 3D. However, exactly the same condition allows
for the convergence of a flat contractile band to the center in 1D. In the contractile ring model, we
explore a different boundary condition: zero radial stress at the inner and outer surfaces of the
contractile ring. This means that the interconnected network does not resist either compression or
stretch by the contractile ring. In particular, when contractile ring moves centripetally, it sweeps the
interconnected network in its way and incorporates it into the contractile network inside the ring. Note,
however, that such boundary condition in 1D would not allow the contractile band to contract toward
the contraction center, without interacting with the interconnected network, which would preclude
periodic contraction in 1D. Below, we analyze the stresses in the contractile ring, then compute the
density, width and velocity of the ring, and lastly predict its dynamics over time.

Stresses: Our force balance equationis V * 6 = 0 where the stress tensor g is, 6 =pu(Vu+ Vu') - (2u/3

=NV * ul+ 0cont l. In 2D cylindrical coordinates with radial symmetry, the non-diagonal components of
the stress tensor are zero, oor = 06 = 0, While the diagonal components are:

O = 2U(0u/0r) - (2/3 - N)(1/r)0/Or(ru) + Gcontr, Oee = 21(u/r) - (211/3 - A)(1/r)0/Or(ru) + Geontr-
In this case, the force balance equation V * ¢ =0 becomes:

(4p/3 + A) (0%u/0r?) + (4u/3 + A) [(1/r)Au/Or - u/r?] + O Geontr/Or = 0,

where the second term is the contribution from the tangential part of the stress. This equation has the
following general solution for the velocity: u = ar+b/r, and corresponding radial and tangential stresses
become: o.(r) = (2u/3 + 2\)a - 2pub/r?+ 6o, 0ee = (211/3 + 2N\)a + 2ub/r*+ oo. We found that in the case of a
contractile ring: u(r) = (2/3 + 2A)(oor). As a result, the radial and tangential components of the total
stress are both zero: o, = 0o = 0. (Since b = 0, there is no difference between o, and ogg). In this case,
the contractile stresses in the tangential and radial directions are both equal to oo and the viscous
stresses in both directions are equal to oo. We plot the stresses in (Figs. S13).

Velocity and width of the contractile ring: We use zero radial stress boundary condition at both inner
and outer boundaries of the contractile ring. Physically, this means that the contractile band, moving
centripetally, effortlessly “consumes”, or “collects” all the interconnected network on its way, without
any resistance. In this case, the formulas for the radial stresses at the inner and outer boundaries of the
ring (Ryand Ry, respectively), for the general velocity distribution inside the ring, u = ar+b/r, have the
form: o,(R1) = Aa - Bb/ Ri®+ 00 = 0, 0.(R2) = Aa - Bb/ R+ 00 = 0, where A and B are constants. The only
way both expressions for the stress can be true, regardless of the width of the peak, is if B = 0. Then, the
specific solution for the velocity inside the contractile ring is: u(r) = [0o/(21/3 + 2A)]r for Ri< r < Ry. Thus,
we established that the contractile ring moves centripetally with velocity linearly proportional to its
radius, u = -kr.
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Kinetics of the interconnected network inside the contractile ring: Because of this centripetal velocity
character, movement of the outer boundary of the contractile ring is described by the equation d R,/dt =
-k Rz, and assuming the wave starts from the droplet’s boundary, R;(t) = Rexp(-kt). Now we can
determine the density profile of the network behind the wave, with simplifying assumptions that the
assembly rate is constant and that the interconnected network is stationary. Then, the equation for the

density, 0p / 0t = o — Pp , has the solution: p(t,r) = (0{ / ﬂ)[l —exp(ﬂ(T(r) —t))] . Here T(r) is the

time when the density at radius r is zero. T(r) is determined by the time when the outer boundary of

the previous wave was at this location, i.e. r = Ry(t), which yields: T = (l / k)log(R / r) . Then, we have
the profile for density behind the wave: p(t,r) = (a / ,6’) [1 —exp(—ﬂ((l / k)log(R / r) +t))] .

As the network behind the wave reassembles, it eventually reaches a critical density p,. (we adopt this

notation for the threshold density at which the contraction starts, p,, ), which necessarily happens first

at the outer boundary r = R of the droplet. The question is as follows: is the centripetal movement of the
contractile outer boundary of the ring faster or slower than the rate at which the assembling network at
the front of the ring reaches the critical density? As our calculations show, the movement of the ring
due to contraction, which has velocity v = - kr, is identical to the rate at which the reassembling
interconnected network's density reaches the critical density. If one plots the curve Rexp(-kt), which is
the solution for the wave boundary motion due to contraction, against (r, t) where the reassembled
network density reaches the critical density, one finds that the two are the same.

Width of the contractile ring: Suppose we have a ring with initial width &o with inner boundary R;(t) and
outer boundary Ry(t), which at time t = 0 are located at R - §pand R, respectively. Since both the inner
and outer boundaries have velocities v = - kr, we can easily solve for their trajectories: Ri(t) = (R - do) exp
(-kt), R2(t) = R exp (-kt). Then, the width of the ring is 8(t) = 80 exp (-kt), so the ring narrows over time.

Density of the contractile ring: The density profile within the peak (wave crest) can be calculated when
the assembly rate is constant. The peak density changes due to advection and turnover, as well as from
“collecting” the non-contractile network in front of the centripetally moving peak. The network that is
being collected has just reached the critical density pcr. Over a small time At, paAx amount of the
network is added to the peak. The distance the peak traveled is entirely determined by the motion of
the leading edge of the wave crest. As the peak is very narrow, and the precise density distribution
within it is not important, we spread out the collected network uniformly over the peak. Then, this
contribution to the density within the peak becomes:

[k(R-05,)exp(~kt) p,, | 5, exp(~kt) |At =[(R=3,)/ 3, |kp, At

at each point within the peak, where 5(t) is the current width of the peak. Then, taking this additional
contribution into account, the evolution equation for the density within the peak is given as:

%:%Jra—ﬁp—v-(u(r)p):%+a+(2k—ﬁ)p+kr?)

-
The solution to this PDE is:

a_ (R=8)kp, (2P 4 PN P (o
pler)=| 555+ (ﬂ—;k)é‘o X[ 1= 4 e (ret),
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assuming that the initial density Py = pcr within the peak which is at r =R at t = 0. We plot the resulting
density peak of the contractile ring and its centripetal movement in Fig. S14. Note that all these
calculations are based on the boundary condition stating that the non-contracting network does not
respond to deformations of the contracting network nearby. Small changes in this boundary condition
will generate some deformations, drift and rapid density changes of the non-contracting network in
front of the ingressing ring. However, respective variation of the boundary condition will not change the
model’s solution qualitatively — the ring will still stay narrow as it ingresses; its density will be high; and
its centripetal velocity will remain telescopic.

To plot the kymograph and velocity of the resulting waves, we examine the case when the
interconnected network is slowly advected to the center (due to slow contraction at the center of the
droplet) with a small velocity w. In 2D, the equation for the density of the interconnected network is

then:0p /ot =a - fp— W(@p /or+p/ r) . The solution of this equation is:
p(t,r) = (a/ﬂ)[l—exp(—ﬂt)]—(aw/ﬂzr)[l—exp(—,é’t)] +(awt/ﬂr)exp(—,8t)+

v —

Wi exp (—ﬂt) Lo (r - wt)

where p, (r) =(a/ B)| 1-(1-(Bp, 1))(r/ R)"" .

The slow advection of the interconnected network impacts the width of the contractile ring and the rate
at which the front boundary of the next contractile wave moves inward. It is intuitive that the inner
boundary of the contractile wave Ri(t) must move faster than u = -kR;, because as the regrown
interconnected network slowly flows inward, its density should cross the critical density at least as fast
as u = -kRj (just due to assembly), plus w. Moreover, we expect the speed of the ring’s inner boundary to
be higher than (kRi+ w) in 2D due to the geometry. We plot the computed kymograph and velocity of
the resulting waves in Fig. S14.

One quantitative feature of the observed waves that the contractile ring model predicts better than the
main model is the shape of the wave front. The simulation results (Figs. S13, S14) predict that the wave
crest is narrow and does not widen as it moves centripetally, as observed experimentally (Fig. S1). Lastly,
both main and contractile ring models predict that the centripetal velocity of the peak is almost
perfectly telescopic (the speed grows linearly with radial distance), which agrees with the data well (Fig.
S1f). Note, however, that in the super-large droplets (Supplementary Video 6), the temporal
coordination usually assumed in the contractile shell/ring-type model (i.e. the simultaneous onset of
contractility at all points along the periphery) is not observed. In particular, the ingressing wavefront
sometimes exhibits lobes (Supplementary Video 6), where different regions of the wavefront are out-of-
phase. This argues against the contractile ring model, suggesting that the main model provides a more
likely explanation of the data.

Note about fluid vs solid network

In the model, we assumed that the actomyosin network is a highly viscous fluid. This is well supported
by multiple biophysical experiments that suggest that, on temporal scales longer than ten seconds, the
actin networks behave as a fluid. The reason is that filaments’ turnover and dynamic crosslinking
dissipate all elastic stresses on scales of several seconds. Nevertheless, it is useful to consider the
guestion: can a solid, elastic network explain our observations. The short answer is in quasi-1D, it can, in
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2D —it cannot. Note that the network can be quasi-1D in higher dimensions, if it flows along one
direction only, so the other perpendicular directions can be ignored. This is the case, for example, for a
2D cortical surface in a cylindrical geometry where the flow is directed along the cylinder’s axis (as in °).
However, the cortical network will become effectively 2D if its flow velocity depends nontrivially on both
x- and y-coordinates.

In 1D, if a large segment of the network is pulled at its boundary, then this segment drifts without any
deformations, regardless of whether the network is solid or fluid. Note, that the equations for a viscous
fluid (assuming a certain class of network rheologies) predict a constant velocity in space, anywhere
where the contractile stress is absent, which is exactly the same as for a solid network. Therefore,
whether we assume fluid or solid rheology, in a large part of the space, the network’s behavior will be
the same in the quasi-1D model.

The situation is dramatically different in 2D or 3D. Let us focus on 2D. If the network is viscous, the
viscous stress in the axisymmetric case depends on the velocity gradient (Eg. 11) for the rheology that
we assumed. The centripetal drift can be stress-free for an indefinitely long time simply if the velocity is
distributed as in Eqg. 14 (of course, the density could increase inward, then).

If the network is elastic, however, in the axisymmetric case, let us consider a hollow disc (annulus)
geometry betweenr,and R (7, << R) . Let us denote by U(r) the radial displacement of the network.

oU U
Then, according to elasticity theory, the radial and tangential strains are defined as¢,. = 8—,899 =—
r r
(i). The mechanical equilibrium across the network requires that the stresses satisfy:
oo
5 - +—(0W - agg) =0 (ii). The strain-stress relations are given by Hooke’s Law:
ror
1+v 1+v
g, =——((1-v)o, —vo,). &0 =——((1-v) 04 —vo,, ) {ii)
E E
where £ is the Young modulus and v is the Poisson ratio. Substituting (i) into (iii), and then the result
2
into (ii), we arrive at the equation for the displacement: U + ld—U_ LU =0 (iv). Thisis the so-

2 2
dr rdr r

C
called Euler’s equation, and it has the exact solution: U = C\r +—2 (v) where C, and C, are constants.
r

E E 1 E E 1
Respective formulas for the stresses are: ¢, =——C, ———C, —,0, =——C +——C, — (vi).
l-v l+v “r l-v I+v " r

Let us now consider the following problem: we want to apply a contractile stress, P, to the inner
boundary of the hollow disc, so that this boundary moves centripetally inward toward the central axis.
Thus, U(ro) =—7, (vii). We will use the free radial stress condition at the outer surface: 0, (R) =0

(viii). Using (vii,viii), we can find constants C, and C, . Substituting those into (v,vi) and using the

conditionr, << R, we can find the necessary contractile stress: p ~ and the centripetal

-V
2 (%
displacement of the outersurface:U(R) — = K-

Q

1-v\ R
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The following conclusion can be made from these arguments: the contractile stress would have to be
too great, on the order of the Young modulus of the solid elastic network, for even a minuscule (much
smaller than the inner radius 7, ) displacement of the outer surface. Thus, the centripetal movement of

the 2D elastic solid network would be very ineffective. The centripetal drift of a multidimensional elastic
network would thus require enormous contractile stresses. For a 2D network to contract effectively, it
has to fluidize under stress. The network, of course, does not have to be a simple elasto-viscous medium
to support the observed mechanics and transport in 2D; it can be a ‘cable’ network 4, or elasto-plastic
one °, but the point is that it should resist stretch but be easily compressed.

The effectively 1D cortical network undergoing retrograde flow observed in elongated cylindrical blebs
investigated in ° was found to be characterized by solid mechanics. This rheology benefits the
hypothesized mechanism of cell propulsion through the extracellular matrix, in which a solid
interconnected network assembles within the pores of the extracellular matrix allowing the cell to pull
itself through the matrix. However, if the cell uses several protrusions in different direction, fluidizing
the intracellular network becomes a must for the cell to move consistently; this is also essential at the
cell rear. It seems that an optimal network mechanics would have a hybrid character — solid-like for
extensile deformations and fluid-like for contractile deformations. Then, if the network is pulled at one
end and is undergoing resulting 1D drift through a matrix or on a sticky substrate, the network behaves
as a solid, maintaining its geometry and generating the necessary traction for locomotion. On the other
hand, if the network must flow centripetally in 2D or 3D, then even small contractile stresses fluidize the
network allowing it to contract. Note that fluidization due to the stress is sufficient for such mechanics,
because the stress can simply result from internal forces (e.g., due to myosin), but the fluidization can
also depend on the geometry of the system, i.e., being triggered by the convergence of the flow in 2D or
3D. To summarize, percolation and interconnectedness of the intracellular network is the common
requirement for global cellular movements, while mechanical properties of the network (solid, fluid, or
other rheologies) are probably adapting to specific geometry and mechanics of the environment.

Finally, note that we only posit that purely elastic networks, with a significant stiffness, are incompatible
with our data. There are likely many cases, both in vitro and in vivo, when the networks are elasto-
plastic, or even elastic with very small Young moduli, and such networks would be able to undergo very
significant flows in 3D geometry.

Discrete stochastic model

The continuous model provides physical insight, yet some aspects of pulsatile contraction are easier to
address with a discrete model. The reason is that when contraction is too strong, short-range
instabilities in the network emerge. To illustrate this, let us consider the system of force balance and
transport equations in 1D in the contractile regime, assuming for simplicity that the contractile stress
and viscosity are proportional to the network density:

8 ou op _ 8
B P 0,2 —a - po—L(up).
8x(770p P~ UOIOJ 5 = pp 8X(u/o)

Using the same scaling as above, respective dimensionless equations are:
6( Gu) o, |0p . 0p

0
—| p— |+| L 0, 1—p—
ox pax r

— —(up) Mechanical equilibrium of this system,
B ) ox ot ox
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p=Lu=0,is destabilized if small perturbations of this equilibrium, p =1+ p,u =0+v, starts to grow.
Not far from the equilibrium, the linearized equations for the perturbations,

ov ., dp 0 ov , _
—+ k—p,—p = —p——, have the solutionv = voeﬂ’e”’x,p = poei’e“p‘, ifq2 (/1 +1—k) =0. Thus,
ox ox Ot ox

the perturbation growth rate A is positive even at very short wavelengths (g >> 1) if the contraction
rate k is too high. In such case, the short-range instabilities lead to numerical instabilities in the

continuous model.

We therefore introduce a discrete stochastic model, in which instead of considering a continuous
density, the network is described by a collection of points corresponding to material nodes of the
network. The best way to think about these nodes is to assume that they are focal points of microscopic
contractile actomyosin units. We will only consider the 1D non-dimensional model on the interval
0<x<1, the left and right ends of which correspond to the center and periphery of the droplet,
respectively. The kinetics of the model involve a combination of assembly and disassembly processes.
Assembly is realized by introducing a node with a constant rate a at random locations. Specifically, on
each small-time interval Af, a node is introduced with probability @ X Af . We choose Af small enough to

keep a x At << 1; the node appears at location 7 which is a uniformly distributed random number.
Disassembly occurs by having each existent node disappear with a constant rate b .

The nodes interact with their two nearest neighbors to the left and to the right. The leftmost node
interacts with the left boundary as if the boundary is a stable permanent node. The rightmost node does
not interact with the boundary (stress-free boundary). The nearest neighbor distances between the
nodes correspond roughly to the inverted density in the continuous model. Thus, the density-dependent
network properties in the continuous model are replaced by interaction rules that depend on the
nearest neighbor distance as follows:

1. If the inter-node distance x (for each pair of the neighboring nodes) is smaller than the

contractility threshold 0.

ot ( X < 5;0,,,,) (corresponding to the interconnected and contractile

high density region, 0> 0,;) then there is a contraction event. In such event, the nodes

converge with a constant speed equal to kx where & is a constant contraction rate (on each

small-time interval At , Ax =—kxAt ).

2. Iftheinter-node distance x is between the contractility threshold 56

o and the connectivity

threshold é;om ( é;om <x< é;mect ) (corresponding to the interconnected, but not contractile,
medium density region, 0, <0< ,0,;) then the inter-node distance does not change.

3. Ifthe inter-node distance x is above the connectivity threshold éz,onnw (x> 500,mm )

(corresponding to the unconnected low density region, © < 0},), then the node pair does not
interact.

4. At each time step, the node coordinates are {xl,xz,...,xN,l,xN}, in ascending order. We find all

inter-neighbor-node distances greater than 5comm; these distances separate clusters of nodes,

such that inside each cluster all neighboring node pairs interact, while neighboring clusters do
not interact with each other. After the neighboring distances between the nodes in the cluster
are updated according to rules 1-2, the center-of-mass of the cluster is shifted so that it does
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not move relative to the time moment before the interaction, which ensures frictionless
telescopic actomyosin contraction of network segments with stress free boundary conditions.
5. Rule 4 works for all interacting clusters except the leftmost one. If the leftmost node of this

leftmost cluster is closer to the left boundary than 5;0% , then after the neighboring distances

are changed, the absolute positions of the nodes are shifted so that the boundary (which is a
permanent node 0 in the model) does not shift. If the leftmost node of this leftmost cluster is

farther from the left boundary than 500% , then we apply rule 4 for this cluster.

This discrete stochastic model is a close analogue of the continuous deterministic model. In both
models, the local network behavior is separated into three distinct regimes: 1) no drift at low densities,
in the unconnected regime, 2) drift without spatial convergence at medium densities, in the connected
but non-contractile regime, and 3) drift with convergence at high densities, in the contractile regime.
We found that in the discrete model we do not need to make the boundary of the interconnected
network grow with a small constant rate to generate pulsatile contractions. The reason is that the global
connectedness occurs when all nearest neighbor distances between the nodes are smaller than the
threshold, which can be the case even when the innermost contracting cluster has a moving boundary,
due to the discrete character of the model.

Discrete model shows how continuous contraction, irregular pulsatile (coarsening) contraction and
local contractile asters emerge: Here we use the discrete model to demonstrate the influence of the
interconnected density threshold on the character of the contractile behavior (Fig. S15). We illustrate

the results of the discrete model by fixing the contraction rate & , the domain size (in the non-
dimensional model, the spatial domain always has the domain length equal to unity), the assembly and

disassembly rates (@ and b, respectively), and the parameter 5;0”” responsible for the threshold

contractile density. In the simulations, we varied the parameter 500% , responsible for the threshold
density at which the network becomes interconnected. The simulations shown in Fig. S15a correspond
to large values of the parameter é;om . This case is equivalent to a very low interconnection threshold

density, so even at low densities the network at the periphery (right) is connected to the center (left). In
this case, a continuous steady contraction develops. Similar results are observed in the continuous
model’s simulations (Fig. 3b, Supplementary Video 13). Fig. S15b shows that as the interconnection
threshold becomes closer to the contraction threshold, contractile pulses develop, starting near the
periphery. When the density in the middle of the spatial domain reaches the interconnected threshold,
the contraction rapidly moves the network inward, and then it takes a finite time to rebuild the density
at the periphery. In this regime, which is similar to the periodic wavy contraction in the continuous
model (Fig. 3¢,d, Supplementary Video 13), each global contractile event starts with one or a few local
contractions at the periphery, and after a characteristic random time, these contractions get connected
to the continuously contracting central (left end) core of the network, the whole network globally
converges to the center (left end), and the cycle repeats.

One significant drawback of the discrete model is that there is no true periodicity in such model, for a
fundamental reason. When material nodes appear according to a uniform random distribution, the
distances between them are distributed exponentially, so even when the average node density is low,
there are always a few pairs of nodes with very small distances between them. Thus, the local
contractions at random places always occur. These individual contractions are short ranged, but they
accumulate over time, shifting the growing interconnected clusters randomly. Ultimately, global
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contraction still develops over a characteristic time scale, but the contraction is not strictly

periodic, because the time for bridging over the last unconnected gap in the 1D chain of nodes is
variable. Nevertheless, the discrete model qualitatively reproduces the continuous steady contraction
and the pulsatile global contractions.

Fig. S15c shows a simulation of the discrete model for the case when the connectivity threshold is even
closer to the contractility threshold. As the two thresholds get closer together, the discrete model
predicts coarsening behavior of the network: local contractions merge into larger aggregates, which
eventually, at irregular random time intervals and locations, connect to the droplet’s center (left end of
the interval) and converge there. This predicted behavior resembles the observed contractile pattern
with intermediate amounts of Capping Protein or when myosin action is strengthened by Calyculin (Fig.
4). Lastly, Fig. S15d shows a simulation of the discrete model in the case when the connectivity
threshold is very close to the contractility threshold. In this case, the local contractions become
autonomous and never get connected to the center of the droplet (left end). These contractions
randomly emerge and disappear, with clusters occasionally fusing with each other, and closely
correspond to the contractile local asters observed in samples containing high concentrations of
Capping Protein (Fig. 4b). Physically, these asters originate from local contractile instabilities: as soon as
there is a patch of contractile density, the contraction leaves gaps at both sides of the patch. These gaps
are not filled with nascent network fast enough, and so the contractions appear at random places
transiently creating ‘asters’.

Possible alternative models and arguments against them

To reiterate the principal physical problem arising from our experimental observations: the actomyosin
network exhibits global periodic contraction, but given that the network does not contract everywhere
all the time — how does this contraction become global, if it is initiated by local contractile events? The
model we proposed above is as follows: even when the contractile network rapidly retracts from the
boundary in the beginning of the periodic cycle, the assembly is still, however slow, sufficient to leave a
low-density but interconnected network behind the contracting dense network. Thus, when the
network reassembles to the threshold contractile density at the periphery, the peripheral contraction
does not become autonomous, retracting locally to the droplet’s boundary. Instead, the network
becomes mechanically interconnected throughout the whole volume, making the contraction global. We
favor this model because of its conceptual simplicity and because the predictions it makes explain the
data well. Another possible model that could explain contraction in droplets, but not in flat capillaries, is
the contractile ring model, discussed above. Theoretically, there are other possible mechanisms that can
interconnect local contractions and make the global contractions robust. Below, we consider such
alternative possibilities and arguments against them.

Variant of the model with global interconnected network: One possibility is that there is not one but
two interpenetrative networks — one is contractile, and another is a globally interconnected non-
contractile network, with a low density, that always permeates the droplet. These networks could
interact by friction and steric forces, as in theories of multiphase fluids 6. The globally interconnected
non-contractile network has mechanical properties of the so-called cable networks ** — it can be
compressed almost without resistance but has a very high resistance to stretching (it is basically a net
made of ropes that can be easily coiled but cannot be stretched). Then, we expect a behavior identical
to that predicted by our model. In fact, physically, the two models are very similar. Mathematically
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though, introducing the second network has the disadvantage of an additional complexity, which we
wanted to avoid considering lack of data to discriminate between the two models.

Model with significant friction at low network densities: Another option for keeping the contraction
global is to slow down the retraction of the network from the low-density region in the middle into two
adjacent high-density contractile centers, to allow the density in the low-density region to grow faster
than the outflow. In principle, this could interconnect the local contractions throughout the whole
volume. The simplest mathematical way to implement this idea is to add the Darcy friction between the

ox\ ~ Ox ox

added Darcy friction term appears on the right-hand-side. Such a term could also come from frictional
interaction with the membrane/substrate in cortical networks. In the model that we explored, the
friction coefficient, viscosity and contractile stress are all functions of density:

My» P<P 0, p<p Co» P<P
U(p):{ 0 12,acuntr(p):{ 23’4(/0):{ 0 12
m. P>pPn O, P> Py Ci» P> P,

Here 7, <<1J,,$, >> &, In other words, the network is interconnected, viscous and non-contractile for

a au aacontr
network and the solute in the force balance equation (in 1D): —| 77— |+ —** ={u. Note, that the

intermediate densities, between O, and 0,5, contractile for greater densities, above 0,5, and barely

connected but experiencing great resistance from the solute at low densities, below O, .

Simulations of this model showed that in small droplets there are steady distributions of density and
velocity evolving, while for larger droplets, periodic waves develop (data not shown). The model works
because in small droplets the absolute values of the velocity are smaller, and friction term is negligible;
the network everywhere is interconnected and contracting. In large droplet, even though the new
contraction starts at the periphery, the high friction at low densities prevents the contraction from
depleting the low-density regions so that the reassembling network there can mechanically connects the
contractile regions fast enough to make the contraction global. The problem with this model is that it is
very hard to justify why the network friction would be larger at low network densities.

Mechanosensitive attachment to the boundary: Several models of the actin-adhesion clutch, supported
by some experimental data, predict oscillatory periodic retrograde flow of the actin network in
protrusive cell appendages '’. The models are based on the mechanosensitive property of the actin
network’s adhesion to the substrate: the detachment rate is a rapidly increasing function of the pulling
force. The model works as follows: there is a constant myosin-powered pulling from the rear of the
protrusive cell appendage resisted initially by many firm adhesions. All adhesions are transient, and as
several adhesions detach, the total myosin force per remaining adhesion increases, breaking more
adhesions, and so on. As a result, an avalanche of breaking adhesions creates the so-called slipping state
with rapid retrograde actin flow. Then, however, adhesions start to reattach, slowing the flow. The more
the flow slows down, the smaller the force per adhesion, the more adhesions attach, eventually
switching the system into the so-called gripping state, and the cycle starts again. It is possible, in
principle, that such oscillations would emerge due to mechanosensitive adhesion between the network
in the droplet and the droplet’s boundary. The period of such oscillations would also be on the order of
the network turnover time, simply because this is the characteristic time required to rebuild the
retracted network, which could be the limiting step for the adhesive cycle. However, if this was the case,
then the force of adhesion would be of the same order of magnitude or greater than the centering
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hydrodynamic force 3, and we would see pulsatile movements of the centered aggregate around the
droplet. This is not the case, and so this model is unlikely.

Diffusion-based models: A simple possible explanation for the waves would be the following: the
advection process brings the actomyosin network to the center, then the network’s elements must
disassemble, diffuse to the periphery and reassemble there for the new contraction event to start. It
could be that the time to diffuse to the periphery is the limiting step determining the wave period.
There are two arguments against this scenario: 1) characteristic diffusion coefficient for many
cytoskeletal subunits (actin oligomers, crosslinking proteins etc) is D ~1 um’ / s. The characteristic

diffusion time across the droplet thenis~ R* / D ~ (100um)’ /1um? / s ~10*s , which is two orders of

magnitude longer than the observed period of ~ 100 s. It is thus likely that the recycling of the
cytoskeleton is local rather than global in the system. Indeed, actin recycling are normally buffered by
complex biochemical pathways keeping most of the diffusing actin in non-polymerizable form, which
makes the network turnover local, while keeping the transport global even on centimeter scale, as is
evident from the experiments with the super-large droplets (Supplementary Video 6). 2) The wave
period would increase as square of the droplet’s radius, ~ R* / D according to this model, which is not
the case. This said, global diffusion of cytoskeletal molecules may have some impact on the contractile
behavior, because we do see evidence for gradual reduction in network assembly in the periphery of
larger droplets which manifests itself in a gradual decrease in the intensity of consecutive wave fronts.
This appears to be accompanied by an accumulation of filamentous actin around the contraction center,
indicating that eventually disassembly and/or transport become limiting.

The centrifugal fluid flow could potentially become a dominant mode of actin subunit transport and
explain actin delivery to the periphery. To explain the observed wave period, the centrifugal velocity of
the solute mustbe~ R /T ~300um /100s ~ 3 um /s . While such flow is not out of question, our

observations of tracer beads (Fig. S4) show that the beads move centrifugally only locally, in the vicinity
of centripetally moving wave crests, and so it is unlikely that there is a global centrifugal fluid flow.

There is also a more sophisticated possibility: there are many examples of periodic waves in
mathematical biology models 8. Such waves emerge when spatial diffusion is added to complex
temporal dynamics that have either oscillatory or excitable, or, in general, multi-equilibrium behavior.
Note that several models of actin waves on cells adhering to surfaces are based on these mathematical
concepts . In these cases, periodic modulation of network activity is generated by biochemical
modulation of components of the actin machinery. There are two arguments against this type of model
for the contractile waves: 1) There is no indication for the temporal, global complex oscillatory, excitable
or multi-equilibrium behavior in the droplets (usually, complex interactions with either NPFs, or Rho
GTPases, and/or adhesive complexes on the solid surface are necessary for such dynamics). Moreover,
our results in droplets in which the contraction center is localized asymmetrically which show both
continuous and periodic contraction further argue against the presence of global oscillatory changes in

the system. 2) The wavelength in such modelsis~ /DT , where D is the characteristic diffusion
coefficient, and T is the characteristic time scale. However, 7 ~100 s and DNI,wﬂz /S, and so
N DT ~10um (observed in adhering cell cortex), which is orders of magnitude smaller than what is

observed in our system.

Treadmilling polar filament array model: Lastly, waves were predicted in a 1D mix of treadmilling actin
filaments and myosin motors *° and observed in vitro 1. Those are based on an intricate polarity sorting
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of the filaments and positive feedback between aggregation of the myosin clusters to the treadmilling
actin plus ends and focusing of the plus ends in space. The characteristic length scale in this
phenomenon is the filament’s length, thus such phenomenon is highly unlikely on the scale of tens and
hundreds of microns.

Interpretation of the beads’ tracking experiments

To summarize the results of the beads’ tracking experiments (Fig. S4; Supplementary Video 7), we
observe: a) many centripetally moving beads colocalize with the ingressing wave crests; b) smaller
numbers of centripetally moving beads between the consecutive wave crests; c) centrifugally moving
beads that colocalize with the ingressing wave crests, but never between the consecutive wave crests.
Here is the explanation of how these observations support both the interconnectedness of the low-
density network, and the existence of a centrifugal fluid flow. It is likely that some beads are trapped in
smaller pores of the actin mesh and therefore drift with the network, while other beads float in the fluid
cytosol. Thus, we posit that we observe two sub-populations of beads — one that drifts with the
network, and another which drifts with and diffuses in the fluid permeating the network (Individual
beads can, of course, switch between these two sub-populations).

The fluid fraction of the extract undergoes the so-called Darcy flow, in which a combination of the
conservation of the volume fractions of fluid and network with the mechanical law, according to which
the relative velocity of the fluid relative to the network is proportional to the hydrostatic pressure
gradient, determines the fluid velocity. In our case, the fluid velocity distribution can be predicted
qualitatively without explicitly solving Darcy equations, if one analyzes the physics of the dense, yet
porous, contractile network of the wave crest periodically ingressing to the center of the droplet. If we
assume for simplicity that the low density of the network between the center and wave crest is
constant, the fluid between the center and wave crest cannot drift at all because of the conservation of
the volume fractions of fluid and network, even though the low-density network slowly moves
centripetally. This is because a hydrostatic pressure gradient is generated by the network centripetal
movement pushing the fluid centrifugally relative to the network to keep the fluid static in the lab
coordinate system. However, when the wave crest ingresses, the physics becomes more complex: as the
network is dense in the wave crest, when the wave crest shifts inward, some fluid volume must shift
from the space near the inner boundary of the wave crest to the space near its outer boundary. Thus,
the fluid velocity inside the wave crest must be centrifugal. (This flow is generated by a higher-pressure
gradient induced by the centripetal movement of the higher-density network of the wave crest.) The
bottom line of this analysis is: the fluid fraction in the droplet is stationary between the wave crests and
is centrifugal in the wave crests.

This allows the simple explanation of our three observations: in between wave crests, if a bead move
centripetally, it is likely bound to the network, and because we observe such beads, this provides an
indirect indication for the presence of a low-density network that moves centripetally between the wave
crease and hence that the network is interconnected (Otherwise, the network fragments would diffuse
non-directionally). Many beads in between wave crests float in the fluid, but they do not drift
directionally, because the fluid flow there is negligible. In the wave crests, many beads are trapped in
the high-density network and move centripetally, but some beads float in the fluid, and as the analysis
above predicts, they drift centrifugally. This intermittent centrifugal flow could be a principal part of
recycling of actin monomers and binding proteins to the periphery.
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Supplementary Figures
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Figure S1. Wave front propagation in a droplet with periodic contraction. (a) Spinning disk confocal
images (inverted contrast) of a water-in-oil droplet containing 98% Xenopus cell extract exhibiting

periodic contraction (see Fig. 1b; Supplementary Video 3). Subsequent images show different stages of

wave front propagation as a function of time. (b) Radial kymograph (top) and a zoomed view (bottom)
showing the network density over time for the droplet shown in (a). The crest of the wave fronts is

identified from the kymograph (bottom; dashed lines). (c,d) Radial cross-sections (along the dashed line
in (a)) of the network density (c) and velocity (d) as a function of distance from the contraction center at

24



the different time points depicted in (a). (e) The time-dependent radial position of the wave crest is
depicted for 6 consecutive wave fronts (grey lines), together with the mean wave crest position (black
line). The wave crest was identified from the kymograph as in (b). (f) The inward radial velocity of the
wave crest as a function of distance from the contraction center averaged over 6 consecutive wave
fronts (mean-black line; std- shaded region), with a linear fit (dashed line) showing that the velocity of
the wave crest is essentially telescopic.
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Figure S2. Periodic contraction in an elongated capillary. (a) Schematic illustration of contraction
toward the center of a 5 cm long, 50x500 um rectangular capillary. (b) Spinning disk confocal image (left;
inverted contrast) and the corresponding velocity field (right) of a contracting wave front parallel to the
wall of the capillary, that is moving inward (Supplementary Video 4). The capillary was filled with 80%
Xenopus cell extract and supplemented with lifeact-GFP to visualize the actin network. (c) Kymograph
showing the density variation along a horizontal cross-section of the capillary over time. The periodic
wave fronts that contract toward the center of the capillary are evident.
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Figure S3. Periodic contraction in a spherical droplet. Spinning disk confocal images of a spherical
water-in-oil droplet containing 95% Xenopus cell extract exhibiting periodic contraction (Supplementary
Video 5). 2D cross-sections of the deconvolved 3D image stack (Methods) are depicted along the
equatorial x-y plane (left), and along an orthogonal view parallel to the y-z plane (right; dashed line on
left image). The wave front forms a concentric spherical shell.
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Figure S4. The movement of tracer beads in a droplet exhibiting periodic contraction. (a) Left: Spinning
disc confocal image from a movie of a water-in-oil droplet containing 90% extract labeled with Lifeact-
GFP, and supplemented with 0.5um-diameter fluorescent beads (Supplementary Video 7). Right: An
overlay of the trajectories of tracked beads over a time interval of 30s, classified according to their
movement as inward-moving (green) or outward-moving (magenta; see Methods). Bottom: zoomed
images depicting the actin network wave front and the pattern of bead movements at two consecutive
time points (indicated by arrows in (c)). (b) Schematic illustration showing the inward movement of the
contracting actin network together with the outward movement of the fluid. (c) Radial kymographs
showing the periodic variation in the radial speed of the contracting actin network (left), the inward-
moving beads (middle) and the outward moving beads (right) over time for the droplet shown in (a).
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a Counter-Clockwise Spiral

w
.

50um 200unymin
—

Figure S5. Example of periodic contraction in the form of a spiral rotating counter-clockwise (CCW). (a)
Spinning disk confocal image (left) and the corresponding velocity field (right) of a water-in-oil droplet
containing 98% Xenopus cell extract exhibiting periodic contraction in the form of a CCW spiral. (b)
Kymographs showing the angular variation in the network density and velocity over time for the droplet
shown in (a). The linearly-varying phase of the spiral wave front as a function of angle generates
periodically-spaced parallel diagonal lines (as in Fig. 1e, but in the opposite orientation for a CCW spiral).
Overall, out of 18 stable spirals observed, 10 rotated CW and 8 rotated CCW.
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Figure S6. Transition from concentric waves to spiral. (a) Spinning disk confocal time-lapse images of a
droplet containing 98% Xenopus cell extract that transitions from periodic contraction in the form of
concentric waves (left) to a CW spiral (right). (b) Kymograph showing the angular variation in the
network density over time for the droplet shown in (a). The transition from waves to spiral is apparent
as the horizontal lines (waves) develop into diagonal lines (spiral) at a fixed angle. An angular asymmetry
in the network density is present from the beginning of the movie.
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Figure S7. Periodicity of network contraction with actin associated proteins. Graphs depicting the wave
period as a function of size for droplets above the transition length, which exhibit periodic contraction.
Data is shown for populations of droplets containing 80% Xenopus cell extract supplemented with
auxiliary proteins as indicated (1uM Capping Protein, none, 0.5uM mDia, or 1.5uM ActA). The error bars
indicate the uncertainty in determining the period (see Methods). The period of the waves is largely
independent of droplet size for unsupplemented extract or extract with added mDia or ActA, but
appears to increase as a function of droplet size for extracts supplemented with Capping Protein.
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Figure S8. Contraction rate depends on droplet size. (a) Examples of the radial velocity profiles as a
function of distance from the contraction center for two droplets of different sizes containing 80%
Xenopus cell extract. The radial velocity increases nearly linearly in both droplets, which is a signature of
homogenous density-independent contraction, but the contraction is slower in the larger droplet. (b)
Spinning disk confocal images showing the actomyosin network distribution for the two droplets for
which the radial velocity profiles are depicted in (a). The origin of the observed size-dependent
contraction rate is not clear.
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Figure S9. Numerical solution of the 1D model. A 1D model, identical to the 2D model in the main text,

makes similar qualitative predictions. In particular, the model predicts a transition from continuous

contraction to periodic contraction as the system size is increased. The results of a 1D simulation in the
periodic regime are shown. Four consecutive snapshots of the wave cycle are depicted (top left, bottom

left, top right, bottom right). The graphs in the upper panels show the simulated density (grey) and
velocity (red) distributions as a function of distance from the contraction center (the results are shown

for the non-dimensional variables). The dotted and dashed horizontal lines indicate the percolation and

contraction density thresholds, respectively. The background colors indicate the local regions with
unconnected (green), percolated (purple) and contractile (blue) network densities; the vertical dotted

lines show the percolated-contractile region boundaries and vertical solid lines show the unconnected-

percolation region boundaries. The lower panels depict the contractile and viscous stresses, which
balance each other, corresponding to the density-velocity plot above them. The non-dimensional

parameters used in the simulation are: Py, =0.6; p, =0.1; v, =0.17; £=0.9. The stresses are

normalized by the constant contractile stress magnitude, o.
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Figure S10. Modeling the transition from continuous contraction to waves in a system characterized
by a contraction rate that increases over time. Kymographs showing the evolution of the network
density (left) and the corresponding local network state (center) along a radial cross-section as a
function of time, determined from 2D simulations of the model (Supplementary Video 14). The value of
the contraction rate, k, was gradually increased over time from 0.45 to 0.65/min and then kept constant,
as indicated in the graph on the right. The contraction dynamics transition from continuous contraction
to periodic contraction. The simulation was run taking p, =0.1, p,, =0.6, and

a(p) =0.1+0.9(1—exp(—,0/0.5)) and the following dimensional parameters: V,= 30 um/min, § =

1/min, R = 170 um, over a total time of 50 min. This simulation recapitulates the initiation of periodic
contraction in a droplet that is close to the transition length where the contraction rate is observed to
increase over time (Fig. 2i,j). The values of k and R were chosen to match the droplet shown in Fig. 2i.
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Figure S11. Predicted wave period as a function of system size. The period of waves in the 2D
continuous model as a function of system size was determined from simulations for different values of

the model parameters. The following parameters were used: = 30 um/min, », = 0.1R, pz3 = 0.6,
a(p) = 0.1+0.9<1—exp(—p/ 0.5)) . The other parameters varied between the four simulations as

indicated in each panel. The results show that the period is not sensitive to the system size, connectivity
threshold or the contraction rate, and is inversely proportional to the disassembly rate.
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Figure S12. Modeling the increase in wave period with decreasing actin assembly. Kymographs
showing the evolution of the network density (left) and the corresponding local network state (center)
along a radial cross-section as a function of time, determined from 2D simulations of the model. The
value of the maximal actin assembly rate o was linearly decreased over time from 1 to 0.75/min, as

indicated in the graph on the right. The time interval between successive wave fronts increases until the
contraction ceases. The simulation was run taking p,, =0.1, p,, =0.6, and

a(p) =a, (0.1+0.9(1—exp(—p/0.5))) and the following dimensional parameters: k = 0.8 /min, V)=

30 um/min, B = 1/min, R = 214 um, over a total time of 40 min. The results of this simulation
recapitulate our experimental observations in droplets where phalloidin was added to the extract mix
(Fig. 2g,h). Phalloidin binds actin filaments and inhibit their disassembly, effectively sequestering actin
subunits and reducing actin assembly rates. The values of k and R in the simulation were chosen to
match the droplet shown in Fig. 2g.
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Figure S13. Solution of the 2D contractile ring model. Density profile (left), velocity distribution
(middle), and radial/tangential stresses (right) are shown. The density plots show the assembling density
in front of the contractile ring, the density within the contractile ring, and the density behind the
contractile ring at consecutive time points, from the emergence of the contractile ring at the periphery
to the moment before the ring reaches the boundary of the central zone. The density is shown in units
of the contractility threshold; time is in units of inverted disassembly rate. Note that we assume that as
the ring moves inward, it absorbs the assembling noncontractile network, which is then uniformly
distributed within the ring. The density within the contractile ring follows the same reaction-advection
dynamics otherwise. Note that the predicted velocity scales precisely linearly with the radial distance.
The radial and tangential stresses are the same in this case, and both are normalized by o, the
contractile stress constant. Within the ring, the contractile and viscous stresses are exactly balanced.

The non-dimensional parameters are: 7, =0.1; R=1; initial size of contractile ring at edge, 50 =0.1;

threshold for the connected to contractile density, £, = 1; assembly and disassembly rates, a=1.075

and B=1, respectively; contractile rate, k =0.8.
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Figure S14. Kymograph of the 2D contractile ring. The numerical solutions of the 2D contractile ring
model predict the dynamics of the wave front. Left: A kymograph of the contractile part of the density is
shown (left, shaded in gray), also denoting the front and rear boundaries of the centripetal wave in the
2D contractile ring case. Right: The velocities of these front and rear boundaries of the centripetal wave
are shown as functions of the radial distance, revealing telescopic character of the velocity. Note that
the width of the contractile ring in this case is approximately constant. In the plots, the vertical dashed
line is the boundary of the central contractile region. The radial distance is in the units of the droplet’s
radius; time is in the units of inverted disassembly rate; velocity is in the units of the product of the

disassembly rate and droplet’s radius. The non-dimensional parameters are: % =0.1; R=1; initial size
of contractile ring at edge, 50 =0.05; threshold for the connected to contractile density, 0, = 0.95;
assembly and disassembly rates, @ =1, § =1, respectively; contractile rate, k=0.45; centripetal flow

rate of the interconnected network between the exclusion zone and contractile ring, w=0.004 .
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Figure S15. Different contractile behaviors obtained from simulations of a discrete agent-based model
for different parameter values. The time evolution of the network was simulated using a discrete 1D
model for different values of the connectivity threshold, 560,”%, (see Sl). Kymographs showing the
location of network elements over time depict the different dynamic behaviors obtained including: (a)

continuous contraction, 0,,,,..., =0.14; (b) contraction waves, 9,,,,.., = 0.08; (c) irregular contraction,
o)

e = 0-00, or (d) local cluster formation, O, =0.04. All other non-dimensional model

connect

parameters were kept fixed for all simulations: contraction rate k=0.2, domain size L=1, assembly and
disassembly rates @ =10/ unit time, and b =0.1/unit time, respectively (so on average there are 100
material points with an average distance of 0.01, and a turnover time equal to 10 time units), and

contractility threshold o =0.02.The connectivity threshold, o was changed between

contr connect ?

simulations as indicated, and each simulation was run for a total time equal to 80 time units.
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