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A B S T R A C T   

Chiral actin bundles have been shown to play an important role in cell dynamics, but our understanding of the 
molecular mechanisms which combine to generate chirality remains incomplete. To address this, we numerically 
simulate a crosslinked filopodial bundle under the actions of helical myosin motors and/or formins and examine 
the collective buckling and twisting of the actin bundle. We first show that a number of proposed mechanisms to 
buckle polymerizing actin bundles without motor activity fail under biologically-realistic parameters. We then 
demonstrate that a simplified model of myosin spinning action at the bundle base effectively “braids” the bundle, 
but cannot control compaction at the fiber tips. Finally, we show that formin-mediated polymerization and motor 
activity can act synergitically to compact filopodium bundles, as motor activity bends filaments into shapes that 
activate twist forces induced by formins. Stochastic fluctuations of actin polymerization rates and slower cross 
linking dynamics both increase buckling and decrease compaction. We discuss implications of our findings for 
mechanisms of cytoskeletal chirality.   

1. Introduction 

The cytoskeleton shapes cells, tissues and organs (Fletcher and 
Mullins, 2010). Actin filaments are crucial elements of the cytoskeleton, 
and are polar and chiral right-handed helices with distinct plus and 
minus ends (Jegou and Romet-Lemonne, 2020). Molecular polarity, 
helicity and chirality of actin filaments propagate to cytoskeletal arrays, 
cells, and tissues, which ultimately underlie important left-right asym
metries in development and complex organisms (Inaki et al., 2016). 
However, the mechanisms of this propagation remain largely unclear. 

Two mechanical molecular processes were proposed to be the 
starting points for chirality generation in the cytoskeleton (Naganathan 
et al., 2016; Jegou and Romet-Lemonne, 2020). The first one is based on 
the action of formin, the “leaky capper” protein that stays on the 
growing plus end of the filament, thereby mediating the process of actin 
polymerization (Fig. 1A). Because of actin’s helical structure, formin can 
rotate around the filament axis in the process of growth, or, if formin is 
fixed to a larger structure, an actin filament could rotate by being 
“extruded” from formin (Mizuno et al., 2011), in which case formin 
effectively applies a torque to the filament. The second 

symmetry-breaking process could be triggered by myosin molecular 
motors that in some cases move helically around actin filaments 
(Nishizaka et al., 1993), effectively applying both torque and force. Our 
goal here is to computationally examine how these two pathways of 
chirality emergence act in a small polar actin bundle. 

There is no consensus yet on the chiral action of formins. On the one 
hand, Mizuno et al. observed actin filaments rotating clockwise (CW), if 
viewed from the plus end, when growing with a formin on the plus end 
(Mizuno et al., 2011). This would imply a formin-generated CW torque 
on the filament plus end. On the other hand, no supercoiling was 
observed when long actin filaments grew from formins attached to a 
substrate (Kovar and Pollard, 2004). If there is a formin-generated tor
que, then a sufficiently long filament must supercoil, so this result im
plies no or insignificantly weak torque. To explain this paradox, 
(Shemesh et al., 2005) proposed a mechanism where formins twist actin 
filaments until this twist is no longer energetically favorable, at which 
time a “screw” rotation dissipates the torsional strain. This model was 
expanded in the recent study (Li and Chen, 2022), which considered it in 
tandem with two other possible models of formin-actin interaction. The 
conclusion of that study is that, for some mechanisms, the formin can 
apply a rapidly fluctuating torque on the filament end, and that the net 
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torque would be on the order of 100 pN ⋅ nm (Li and Chen, 2022). 
Moreover, that model (Li and Chen, 2022) predicts that the torque can 
be both CW and counterclockwise (CCW). 

Several reports pointed out that some myosin motors are helical, 
walking around actin filaments along a helical path, so when the motors 
are attached to a larger structure, they not only exert a force on a fila
ment, but also apply torque to it. Tanaka et al. reported that muscle 

myosin could be either a CW or a CCW motor (Tanaka et al., 1992), 
while a later study proposed it to be exclusively CW motor (Nishizaka 
et al., 1993). (In the literature, the terms “right-” and “left-handed”’ are 
often used for the helical motors; here, to avoid confusion, we call them 
CW and CCW (rotating the filament CW and CCW if viewed from plus 
end), respectively. Our view direction will always be from the plus end 
when mentioning CW or CCW rotation, and so we will skip mentioning 
the point of view henceforth.) Myosin V was reported to be a CCW spiral 
motor (Cheney et al., 1993; Ali et al., 2002a), while myosin X was shown 
to be a CCW helical motor that moves helically around actin bundles, 
rather than just single filaments (Sun et al., 2010). Myosin 1D was found 
to be a CCW motor (Lebreton et al., 2018). Twirling of actin by myosins 
II and V was observed in a gliding assay (Beausang et al., 2008). 

These formin and myosin actions are relevant for actin bundle dy
namics in filopodia, which are finger-like bundles which protrude from 
the cell edge and measure several to tens of microns in length and tenths 
of microns in diameter (Jacquemet et al., 2015). They consist of a par
allel bundle of 10 to 30 actin filaments (Jacquemet et al., 2015) cross
linked by fascin (Aratyn et al., 2007) and other crosslinkers. The 
filaments polymerize and grow at the plus ends at the filopodial tip 
(Mallavarapu and Mitchison, 1999), while the bundle undergoes retro
grade flow (away from the tip) driven by myosins at the filopodial base 
(Forscher and Smith, 1988; Aratyn et al., 2007). Filopodia play a variety 
of mechanical and sensory functions (Davenport et al., 1993) and are 
implicated in wound healing (Wood et al., 2002), cancerogenesis 
(Arjonen et al., 2011) and development (Fierro-González et al., 2013). 
Here, we consider slow-growing filopodia, in which electron microscopy 
shows actin filaments that are continuous all the way from the lamelli
podium to the filopodial tip (Svitkina et al., 2003; Li et al., 2023). 

Several examples of chiral filopodial behavior have been reported. 
For example, it was shown that actin filaments in filopodia flow toward 
the cell body, rotating in the CCW direction (Forscher and Smith, 1988). 
Individual filopodia were observed to rotate around their longitudinal 
axes in the CCW direction (Tamada et al., 2010), in a 
myosin-V-dependent way. Adherent filopodia, formed during the 
spreading of cells, tended to change the direction of their extension in a 
chiral fashion, acquiring a left-bent shape, if viewed from above, in a 
myosin X- and formin-dependent way (Li et al., 2023). Most notably, not 
only chiral movements, but also buckling and CCW helical rotation, as 
well as twisting and coiling of the filopodial actin bundle were reported 
(Leijnse et al., 2022). These deformations were myosin-, but not 
formin-dependent (Leijnse et al., 2022). 

In filopodia, formins are at the tip, capping and elongating filaments’ 
plus ends (Mellor, 2010; Alieva et al., 2019). Formins there are a part of 
the “tip complex,” a dense large protein patch that may or may not be 
relatively rigid (Mellor, 2010). Some formin species attach to the 
membrane or cortex by a specialized domain, which in turn is elastically 
connected to the actin-elongating formin domains (Chesarone et al., 
2010). Thus, there is a possibility that formins are mechanically 
restrained and apply a net torque to the growing filament ends. In our 
model, we will examine the possible CCW formin-generated net torque 
(Fig. 1A,B), and then also consider changes in model predictions when 
the torque is CW. 

Various types of myosin motors are found at different parts of filo
podia (Leijnse et al., 2022). For example, there is abundant expression of 
myosin V at the base of filopodia (Evans et al., 1997). There, myosin V 
can be connected to organelles or microtubules (Tamada et al., 2010). 
Myosin II is also located at the base of filopodia (Alieva et al., 2019), 
where it pulls on the bundled filaments (Sheetz et al., 1992; Medeiros 
et al., 2006; Nemethova et al., 2008). At filopodium initiation, myosin X 
molecules are recruited to the membrane near the base (Watanabe et al., 
2010). Later, myosin X (Zhang et al., 2004), as well as integrins (Hu 
et al., 2014) become associated with the membrane and the 
sub-membranous protein coat surrounding the actin bundle (Fig. 1A). 
Leijnse et al. proposed that myosin X associates with integrins and that 
myosin V associates with cargo that is part of the sub-membranous 

Nomenclature 

CW (clockwise). 
CCW (counterclockwise).  

Fig. 1. Model filopodia. (A) Biological schematic. A filopodium is composed of 
long, almost parallel, cross-linked actin filaments emerging from a dense 
lamellipodial network at the base. In the model, the polymerization at the tip is 
driven by formins, which are attached to the membrane/protein tip complex. 
The filopodium is encased in a membrane, which is covered with a dense 
network of membrane-assocated and transmembrane proteins constituting an 
effective “sheath” around the actin bundle. Myosin motors associate with the 
sheath and interact with actin filaments. (B) Modeled mechanics of the bundle. 
We consider a system of fibers (slender inextensible rods), which are connected 
by crosslinks modeled as springs. The branched actin network at the base is 
reduced to a clamped condition, while the action of formin at the tips becomes a 
torque boundary condition (combined with polymerization at a variable rate). 
We model motors with their cargo domains attached to a firm cylindrical 
membrane/protein sheath and motor domains applying forces directed 
tangential to the cylindrical surface, with the main force component perpen
dicular to the bundle axis, and a minor force component downward along the 
axis. (C) Geometries of the two filopodial bundles that we use in this study. We 
consider a five-filament filopodium (right) and a 22-filament filopodium (left). 
The first is used to build intuition about the second, which has a realistic 
number of fibers. Initially, the fibers are connected at the tips by cross links. 
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protein coat (Leijnse et al., 2015a), and that there are effective forces 
between the bundle filaments and integrin- and BAR-connected motors 
on the filopodial sheath. It is thus reasonable to assume that helical 
myosin motors there are associated with relatively rigid structures of the 
filopodial sheath, and that these motors’ powerstrokes are applied to the 
outer filaments of the bundle, oriented diagonally relative to the fila
ment centerlines, with components along the circumference of the 
filopodial bundle that rotate, or spin, the filaments around the filopodial 
axis. In the model, we will consider only CCW myosin-generated net 
torque (Fig. 1A,B), since we need only consider the direction of the 
myosin torque relative to that of formin (for which we consider both 
directions). 

Filopodial actin bundles are wrapped with membrane, which affects 
the bundle mechanics (Pronk et al., 2008; Daniels and Turner, 2013). 
However, the inside of the filopodial membrane “sheath” is densely 
coated with a finely structured polymeric scaffold (Mattila and Lappa
lainen, 2008; Zhao et al., 2011; Linkner et al., 2014) that includes BAR 
domains, dynamin and cortactin copolymerized into ring-shaped com
plexes twined around the actin bundles (Yamada et al., 2013). These and 
other membrane-associated proteins can significantly modulate the 
shape and mechanics of the membrane (Mattila and Lappalainen, 2008). 

The general questions we wish to answer in this study are: how do 
the chiral molecular mechanics of individual filament/myosin/formin 
actors play out on the scale of cytoskeletal arrays, creating collective 
chirality of actin filaments? Would not crosslinking interfere with col
lective chirality (one would imagine that stapling two filaments together 
prevents their rotation)? And, do myosins and formins cooperate or 
inhibit each other’s actions? To address these questions, we numerically 
simulate a crosslinked filopodial bundle under chiral myosin and/or 
formin actions and quantitatively examine the collective buckling and 
coiling response. We find that the myosin spinning action effectively 
“braids” the actin bundle, compacting it, generating buckling, and 
enhancing the crosslinking. Stochastic fluctuations of actin polymeri
zation rates also contribute to filament buckling and bending of the 
bundle. Faster turnover of transient crosslinks removes the constraints 
that give buckling, thereby attenuating it, but at the same time enhances 
coiling and compaction of the bundle. Formin-generated twisting is 
much less effective than myosin-generated spinning in inducing filopo
dial coiling; however, with myosin activity, co-rotating formins are 
essential to give proper bundle compaction. 

2. Materials and methods: computational model 

In a recent combined experimental-theoretical study, the emergence 
of chirality and twist in filopodia was modeled by considering the actin 
bundle as a continuum active polar gel (Leijnse et al., 2022). In our case, 
the relatively small number of filaments and associated molecules in 
filopodia makes a discrete approach, in which filaments are treated as 
elastic rods under the action of motor forces, more appropriate. Suc
cessful mathematical analyses of deformations of bent and twisted rods 
(Stump, 2000) and buckling of actin filaments (Berro et al., 2007) and 
bundles (Martiel et al., 2020) allow us to build a detailed mechanical 
model of a dynamic filopodial bundle. Here, for the sake of biologist 
readers, we explain the computational model, schematic of which is 
shown in Fig. 1A,B mostly in words; the details are described in the 
Supplemental Material (SM). 

Actin filament mechanics: We adopt our published model (Maxian 
et al., 2022) to describe actin filaments as cylindrical, slender, inex
tensible elastic rods undergoing and resisting bending and twisting de
formations. The filaments, which we sometimes call fibers, move, rotate 
and deform under the influence of the following forces and torques:  

- Elastic bending force tends to straighten the filament’s centerline.  
- Elastic twisting force tends to minimize the filament’s twist (relative 

rotation of neighboring cross sections around the centerline).  

- Viscous resistance from the movement of the filament through the 
fluid it is immersed in. 

- Elastic force between neighboring filaments generated by de
formations of the crosslinks that couple pairs of filaments.  

- Steric force between pairs of filaments that are in touch with each 
other, preventing one filament from passing through another.  

- Active force generated by myosin motors, which we will call motor 
force for brevity.  

- Active torques generated by formins. 

Boundary conditions: The filaments at the base, z = 0, are canti
levered into the actin cortex of the cell and clamped, so their positions 
and orientations, as well as the orientations of the filament cross sections 
at the base, do not change in time. This formulation does not contradict 
the possibility of the retrograde flow of actin, because the growth of 
actin network at the lamellipodia leading edge effectively keeps the 
filopodial base at z = 0. The plus ends are free to move and twist. 

Motor forces: As shown in Fig. 1A,B and discussed in the Intro
duction, we assume that helical motors are attached to the effectively 
rigid surface of the filopodial sub-membrane sheath and generate power 
strokes along a helical path on the cylindrical surface of a filament. The 
motors do not have to be immobilized to the sheath; if their cargo do
mains drift along the membrane with friction, this will also result in the 
effective helical force applied to the outer filaments of the bundle. The 
helical force has two components, one of which tries to move the fila
ment retrogradely toward the filopodial base. We typically assume that 
this force component is significantly dampened because of the retro
grade flow of the filopodial bundle (Evans et al., 1997). We discuss this 
in more detail in Section 3.3.2. The dominant force component is 
consequently directed along the circumference of the filopodium, so that 
this force spins the filaments around the long axis of the filopodium (in a 
circular trajectory). At a point x, the force f(mot) can be computed by first 
converting x into cylindrical coordinates (R, θ, z), and using these to 
define a vector tangent to the circle at x, via t = ( − sinθ, cosθ, 0). The 
force density is then given by f (mot) = f (mot)

0 t if R≥ 3Rf∕4 and z ≤ cmL (L is 
the filament length), so that the motors act only on the outer 1/4 and 
bottom cm of the filopodium. Two parameters here defining the motor 
forces include f (mot)

0 , which is the magnitude of the force density in units 
of pN/μm, and cm, the fraction of the filaments on which the motors act. 
As mentioned in the Introduction, we consider motors which spin fila
ments in a CCW direction around the filopodium. 

Motor and formin torque: Depending on the location where motors 
apply force, the filament centerlines can experience torque. In most of 
our simulations, we will assume the motors apply force on the center
line, so that no torque is generated. Where noted, we will instead assume 
motor activity at the filament boundaries, which implies that motors 
exert a torque on the filament centerlines in the CCW direction (same 
direction as the motor forces) of magnitude f (0)

mota, where a is the radius of 
the filaments. In Section 3.3.3, we compare simulations without motor 
torque to those that include it to determine its effect. 

As discussed in the Introduction, it is sensible to model the action of 
formin via a fixed torque at the free end (where formin is bound). On the 
static ends, we use a no-rotation boundary condition, since we assume 
the filaments are clamped to the branched actin network there. In the 
absence of motor torque, the SM shows that the result of these boundary 
conditions is a constant angle of twist per unit length along the filament 
centerline. We reject as unphysical a boundary condition of a fixed 
angular velocity on the free end, and first consider a torque which tries 
to twist the filament in a CCW direction around the centerline, in the 
same direction as the motor spin. We also consider the effect of the 
opposite torque direction. 

Crosslinking: In the model, the crosslinks connecting filament pairs 
are linear springs with finite rest length whose ends connect to the 1D 
centerlines of filaments by completely flexible joints. The crosslinking 
kinetics consist of unbinding with a constant, force-independent, rate, 
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and of possible crosslink binding to any pair of distinct filaments sepa
rated by a distance roughly equal to the crosslink rest length. When a 
crosslink unbinds, both of its ends dissociate from the filaments at once. 

Steric forces: When any two points on distinct filaments become too 
close, we apply a strong, short-range repulsive force that prevents them 
from passing through each other, while not perturbing any dynamics of 
the non-overlapping filaments. 

Modeling actin polymerization: Actin polymerization is modeled 
with elongation of a filament at its plus end with a certain rate L̇. It was 
argued that in filopodia the polymerization is stochastic due to the 
relatively small size of the system and consequent large fluctuations of 
the actin monomer concentration (Lan and Papoian, 2008). One addi
tional source of stochasticity could be persistently different chemical 
conditions of different filament plus ends, i.e. one filament’s end asso
ciated with formin, another one with VASP protein, etc. To account for 
that, we first simulated growth rates constant in time but varying be
tween the filaments. Then, we make the growth rate of each filament a 
random variable: 

dL̇ = KP(L̇0 − L̇)dt + σ dW, (1)  

where the constant KP = 2/s is chosen so that deterministic fluctuations 
relax to the base value L̇0 = 0.5 μm/s on timescales 0.5 s. The noise 
strength σ = 0.05

̅̅̅̅̅̅̅̅̅
2KP

√
is chosen so the (stationary) standard deviation 

of the growth rate is 0.05 μm/s. In simple words, the average rate is the 
same for all filaments, but each filament’s rate independently fluctuates 
in time with certain variance. In the model, we neglect the 
experimentally-observed dependence of the polymerization rate on 
force and torque (Yu et al., 2017. 

Model parameters: The elastic and mechanical parameters char
acterizing actin filaments, crosslinkers, motor and formin forces and 
torques, polymerization rates, crosslinker kinetics and viscous drag co
efficients have all been measured or estimated in experimental litera
ture. The full list of parameters, their values and respective citations are 
gathered in the Supplemental Table. We vary some of the parameters, 
such as formin torque, crosslinker kinetics and variance of the poly
merization rates, to evaluate their effect on the bundle dynamics. The 
model predictions are relatively robust to few-fold changes in other 
parameters. 

Quantification of the filopodial bundle’s shape: In order to 
compare predicted filopodial dynamics and mechanics at different 
model regimes and parameters, we need to quantify the buckling and 
twisting of the filaments. Intuitively, we are interested in three param
eters: the vertical extension of the filaments (in the direction of the 
bundle axis, or z direction), the filaments’ bend, and their twist around 
the bundle axis. To quantify these, we transform the coordinates of each 
fiber from Cartesian to cylindrical, where the origin for the polar grid is 
set by the closest point on the central fiber. This gives a set of co
ordinates (R(s), θ(s), z(s)) for each fiber. The vertical extension can then 
be tracked by looking at z(L, t). The amount of twist can be quantified by 
the number of rotations around the axis of either the filament endpoints, 
(θ(L, t) –θ(L, 0))∕2π, or their midpoints, (θ(L∕2, t) –θ(L∕2, 0))∕2π. To 
study the amount of bend, we compute the curvature of the fibers 
(magnitude of the derivative of the tangent vector with respect to 
arclength) and average the curvature over the whole fiber (in the L2 

norm). We then normalize the curvature by the curvature of a circle of 
radius equal to the initial fiber length L(0), which is 2π∕L(0). Together, 
these statistics convey how bent and twisted the filaments are, and are 
similar to the quantifiers used in (Grason and Bruinsma, 2007; Tee et al., 
2023) to measure chirality and twist. It is also useful to plot the traces or 
trajectories of the fiber endpoints over time projected onto the (x, y) 
plane. 

Numerical procedure for simulating the actin bundle: At each 
computational step, current geometries of all fibers and engaged cross
links are used to compute the elastic bending and twisting forces, steric 
and cross-linking forces, and motor and formin torques. By balancing the 

net forces and torques with viscous resistive forces, the linear and 
angular velocities of the filaments are calculated, and their geometries 
are updated. In addition, the increase of the filaments’ lengths by 
polymerization is calculated, and some of the existing crosslinks are 
dissociated, while new crosslinks are engaged with filament pairs ac
cording to their dynamics. Marching in small time increments from step 
to step evolves the bundle. Here we use a time in seconds, which is a 
natural time scale for the cell-scale forces and viscosities. As discussed in 
the SM, twist equilibrates O (1∕ϵ2) faster than bending (Powers, 2010), 
where ϵ is the fiber aspect ratio. As such, in our simulations twist de
formations, while technically dynamic, are typically in a steady state 
controlled by the amount of the formin twist (see the SM). 

3. Results 

Our results section is laid out as follows: in Section 3.1, we consider 
simulations with formin-mediated polymerization and torque, but 
without motors, demonstrating that there is no collective buckling or 
coiling in this case. We introduce motors without polymerization in 
Section 3.2, demonstrating that filaments in motor-induced coils tend to 
splay out. We combine the two mechanisms in Section 3.3, where we 
demonstrate that the motor-induced bending of fibers combines with 
formin-induced twist to compact bundles. 

3.1. Polymerizing bundles without motors are typically straight 

We first consider simulations of five-filament bundles, in which there 
is a central filament and four parallel peripheral filaments, the minus 
ends of which are located on the vertices of a square (right panel of 
Fig. 1C), with polymerization and no motor activity. We consider two 
potential mechanisms by which filopodia could take on bent shapes: 
filament supercoiling (Bibeau et al., 2023) and unequal polymerization 
rates. 

3.1.1. Actin supercoiling above a critical twist density 
Linear stability analysis of the model equations (see the SM) states 

that the critical twist, above which an actin filament supercoils, corre
sponds to 2.4 360-degree turns of the plus end. We test this prediction 
numerically by applying 2 turns to the plus end and observing that the 
filament relaxes to a straight shape, and then applying 3 turns to the plus 
end and observing that the filament supercoils (Fig. S1). 

Figure S1 shows the complete phase diagram of supercoiling 
behavior as a function of twist density and filament length, which comes 
from (S26) in the SM. The results of (Bibeau et al., 2023), who for small 
applied forces found a supercoiling threshold at roughly 0.2 rotations 
per micron with filaments of length 7–20 μm, validate our physical 
model. According to our estimates, the characteristic formin-generated 
torque NL = 0.1 pN ⋅ μm will result in ≈ 0.4 turns per μm, so formin 
will not generate supercoiling unless filaments become 6 μm long (red 
circle in Fig. S1), which we will not consider here. 

3.1.2. Buckling generated by polymerization, alleviated by transient 
crosslinking 

Another way to get a nontrivial shape of the filopodium is poly
merization with unequal or varying rates. To illustrate this, we first 
consider an extreme case in which the central filament is the only one 
that grows in time. In Fig. S2, we simulate the five-filament bundle with 
the plus ends permanently crosslinked (imitating the filopodial tip 
complex), allowing the central filament to polymerize at rate 1 μm/s 
until it reaches length L = 2 μm. Initially, the central filament grows 
linearly, stretching the crosslinks. When the crosslinking force becomes 
too strong, the central filament buckles (at t = 0.2 s). The buckled fila
ment then drags other filaments with it, which buckles the bundle as a 
whole. 

Interestingly, supercoiling of filaments attenuates this effect. We 
illustrate this in Fig. S3, where we apply a larger amount of twist on the 
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central filament. The increased twist gives supercoiling of the central 
filament, which can then grow in length by increasing the length of 
coiling in the interior of the bundle, rather than buckling and pushing 
the peripheral filaments. 

In Fig. 2, we extend the unequal polymerization concept to the more 
biologically-realistic scenario of filaments with varying polymerization 
rates centered around a constant mean. First, we consider the five- 
filament bundle with permanent crosslinks at the filament plus ends. 
Each filament has a prescribed random growth rate which is drawn at 
t = 0 from a normal distribution with mean 0.5 μm/s and varying 
standard deviation (0.2, 0.1, or 0.05 μm/s), and then does not change in 
time. To prevent fibers from getting too long, we stop fibers from 
lengthening when the length gets longer than double the initial length of 
1 μm. One simulation with growth rate standard deviation 0.1 μm/s is 
shown in Fig. 2A. 

In Fig. 2B, we show the average statistics for filopodia growth with 
the three different standard deviations in the growth rate. The statistics 
confirm the hunch that variance in the growth rates aids curvature. In 
Fig. 2B, we also consider the differences in the trajectories when we 
simulate without any formin torque (ligher colors), versus when the 
formin exerts a torque at the plus ends. We find that having a nonzero 
torque leads to fibers with higher average curvature. However, the effect 
is very slight, which indicates that torque on the fiber endpoint makes 
little difference when the fibers are fairly straight. Indeed, for straight 
fibers the translational force induced by twist is zero (see (S2)), so it 
makes sense that we see little impact on the dynamics in this case. 

3.1.3. Dynamic crosslinking alleviates buckling 
To understand how the bending behavior depends on the cross

linking turnover rate, we fix kon∕koff = 0.02, but vary the values of the 
rates, so that the average number of bound links stays roughly constant 
(at 8–10 links) while the residence time of the links changes. In Fig. 2C, 
we show the same simulation of the buckling bundle as in Fig. 2A, but 
this time with transient CLs with off rate koff = 2.5/s. We note how dy
namic crosslinking alleviates the bending of the peripheral fibers – while 
the red filament still grows faster than the others, the transient nature of 
the links prevents it from taking the peripheral filaments with it. 

To quantify this effect, we repeat the test of the previous section 
(with a mean growth rate of 0.5 μm/s and standard deviation of σ = 0.2 
μm/s), but with transient links. Fig. 2D shows that links with longer 
residence times induce more bending of the filaments. However, even at 
the longest residence time of 0.4 s (koff = 2.5/s), we still observe cur
vature which is 2 to 3 times smaller than the value for permanent 
crosslinkers located at the filopodium tip (green lines in Fig. 2B). Thus, 
transient crosslinkers allow for more variable growth rates without 
strong bending of the central shaft. 

3.2. Motors can effectively braid filaments, aided by transient crosslinking 

Whereas Section 3.1 focused on polymerization without motors, in 
this section we use the five-filament bundle to build intuition about the 
opposite process: motors without polymerization. 

3.2.1. Motors with longer range give efficient braiding and compaction 
We now add to the five-filament bundle an external force density that 

describes the action of helical motors that act near the filopodial 
boundary (the motors cannot reach the central filament). We begin with 
the simplest scenario, filaments without crosslinkers. In this case, Fig. 3A 
shows how the action of the motors rapidly twists the fibers into a braid 
with multiple turns. After the plus end makes about two turns relative to 
the base, the braiding motion is arrested because fiber elasticity and 
steric forces balance the motor turning action. The fundamental dy
namics of the process are unchanged when we add transient cross
linking, since the motors always tend to drive the filaments into the 
braid. 

How is it possible that the fibers are fully braided (and tightly 

wound) at the top, when the motors can only reach the outer quarter of 
the bundle? The explanation (Fig. 3A) is that fibers that reach the motor 
zone on the outside of the bundle are always getting pushed into the 
braid by the combination of motor activity (which twists them radially) 
and inextensibility (which prevents the fibers from stretching), and 
steric repulsion. Thus, once a fiber gets sufficiently wound, this combi
nation of forces draws it into the braid, even as it loses access to the 
motors. Note especially the effect of this in the third frame of Fig. 3A, 
where we see filaments which tend to turn outward initially and are then 
redirected inward by the motors. 

Let us now suppose that the motors can only reach the bottom half of 
the fibers, i.e., cm = 1∕2. In this case (Fig. 3B), the fibers at the bottom 
again start to form a braid, but, when the top half of the fiber relaxes 
outward, there is no motor activity to continue the braiding process and 
the bundle becomes stuck. The final state is a semi-braided state where 
the fiber endpoints sit roughly 0.2 μm away from the central filament 
(see endpoint projection in the right of Fig. 3B), which is twice as far as 
their initial position. Thus motors, while good for twisting and braiding, 
by themselves typically cannot keep the fiber bundles compact. 

3.2.2. Transient crosslinking aids compaction 
Seeing as the filaments in the top half of the bundle in Fig. 3B appear 

to be escaping from each other, it makes sense that crosslinking should 
help keep them together. This is indeed what we see in Fig. 3C, where we 
introduce transient cross linking (with koff = 5/s and kon = 0.1/s) into 
the simulation with motors covering half the length. The endpoint tra
jectories at the right of Fig. 3C show that the fiber endpoints no longer 
linearly escape the bundle, so that in the end only one (the red) of the 
peripheral fibers falls outside of the original boundary. Nevertheless, 
this process is dependent on having crosslinkers which can turn over fast 
enough to find and bind pairs of filaments which are on the verge of 
escape, and is imperfect because eventually the crosslinkers will unbind, 
and fibers will escape. Thus more transient crosslinking aids compac
tion, but is not sufficient to keep the bundle compact. While permanent 
crosslinking at the filament tips is an obvious solution to this problem, 
Section 3.1.2 hints that having more permanent crosslinkers might lead 
to more buckling, which decreases compaction. We study this more 
systematically in Section 3.4, where we give statistics that show an 
optimum for intermediate crosslink binding times. 

3.3. Formins and motors synergize to twist and compress large filopodia 

So far, we have discovered that polymerization gives relatively 
compact bundles of straight filaments, while motor activity gives bent 
bundles which tend to splay outwards in time. To demonstrate that there 
is a synergy between motor-driven bending and formin-generated twist, 
we turn to a larger bundle with 22 fibers (characteristic for filopodia) 
arranged into four rings (1, 3, 6, and 12 filaments). The rings are spaced 
100 nm (the crosslinker rest length) apart, and fibers are positioned with 
uniform spacing around each ring (Fig. 1C). Starting with this initial 
geometry, we perform simulations with both motor activity and poly
merization. The growth rate of each filament is a random variable which 
varies in time according to Eq. (1), tuned so that the standard deviation 
is 0.05 μm/s and the average growth rate of each filament is 0.5 μm/s. 
We also always distribute the motors in the bottom half of the filopo
dium, and use dynamic cross linkers with on rate kon = 0.2/s and off rate 
koff = 10/s. 

What we are interested in is how the motor activity and the torque NL 
= 0.1 pN ⋅ μm that the formin exerts on the fiber tips affect the overall 
chirality of the bundle. Thus, we will consider three sets of simulations: 
one with twisting and no motor activity (Fig. 4B), one with motor ac
tivity and no twisting (Fig. 4C), and one with both twisting and motor 
activity (Fig. 4A). These plots show three time points (t = 0.2, 0.8, and 
2 s); for more time points see the supplementary movies, which show 
both side views and top views, as well as one movie of all three filopodia 
growing at once. 
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Fig. 2. Lower variance in polymerization rates and dynamic crosslinking alleviate buckling. (A) Simulation of the five-filament bundle with unequal polymerization 
rates (drawn at t = 0 from a normal distribution with mean 0.5 μm/s and standard deviation 0.1 μm/s). Cross links at the tip are permanent in this case, and filaments 
are color-coded for visualization. (B) Statistics for five-filament filopodial bundle with the tips of the outer filaments permanently crosslinked to the tip of the central 
filament. The growth rate of each filament is constant in time, but each filament’s growth rate is drawn from a normal distribution with mean 0.5 μm/s and varying 
standard deviation (the values we use are σ = 0.2, 0.1, and 0.05 μm/s). We plot the average z (in μm) coordinate of the filament endpoints and the average filament 
curvature (normalized by the curvature of a circle with the same circumference as the filament length) as functions of time (in seconds). We are considering the mean 
over ten samples, with the error bars showing the standard error of the mean. The lighter colors are when no active torque is applied (NL = 0), while the darker colors 
show the case when formin at the tip of each growing fiber generates a torque with value NL = 0.1 pN ⋅ μm. (C) Simulation of the same bundle as in (A) (with the same 
growth rates), but with transient cross linkers with off rate koff = 2.5/s (mean residence time 0.4 s). (D) Statistics for five-filament filopodial bundle with transient 
crosslinkers. We fix kon∕koff = 0.02, so that the average number of links is roughly constant. Between the simulations, we vary parameter koff (2.5/s – blue curves, 5/s 
– red curves, and 10/s – yellow curves). We plot the average z (in μm) coordinate of the filament endpoints and the average filament curvature (normalized by the 
curvature of a circle with the same circumference as the filament length) as functions of time (in seconds). We are considering the mean over ten samples, with the 
error bars showing the standard error of the mean. 
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As we already observed in the five-filament case, the twisting of the 
filaments at the tips makes little difference if there is no motor activity 
(Fig. 4B). Without motor activity, filaments basically grow straight 
outward, segregating from time to time into mini-bundles by the 

crosslinkers, but there is no discernible chirality. When we add motors, 
but remove twist, we see a braid coming together, but the packing ap
pears fairly loose (Fig. 4C), with filaments growing apart at the top of the 
bundle, as we already saw in the five-filament case (Section 3.2). By 

Fig. 3. Motors acting on filopodium edges effectively braid the fibers, but at the cost of loss of compactness. (A) Time sequence of a five-filament “bundle” (no cross 
links) when the motors act on the edges of the filopodium, and along the whole length of the filaments (cm = 1). Filaments are color-coded for visualization. Time is in 
seconds, distances are in μm. (B) The same time sequence, but when the motors act only along half the length of the fiber (cm = 1∕2). The right-most image shows a 
2D projection of the fiber endpoints over time. The colors correspond to the fiber colors in the images at left, and darker dots show positions at later time points. (C) 
Time sequence when motors act along half length of the fiber (cm = 1∕2), and transient cross linkers act to keep the bundle compact. The right-most image shows a 2D 
projection of the fiber endpoints over time. The colors correspond to the fiber colors in the images at left, and darker dots show positions at later time points. 
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contrast, when we add formin twisting to the motor activity, we see a 
bundle which is significantly tighter and with filaments that are wound 
more around the central fiber (Fig. 4A). 

3.3.1. Positive twist at the tip pushes filaments into the center of the 
filopodium 

To verify that these more compact bundles are not due to random 
chance, we study the final position (at t = 2 s) of the peripheral filament 
plus ends. In Fig. 5A we plot the endpoints of the outer 12 fibers in the 
filopodium across ten simulations, projected onto the (x, y) plane. In 
addition to plotting simulations with CCW formin twist and no motors 
(blue circles) and motors and no twist (black diamonds), we plot sim
ulations with motor activity and twisting. The red squares show when 
the formin torque is applied in the same CCW direction as the motors, 
while the green triangles show the endpoints when the torque is applied 
in the opposite CW direction (Fig. 4D gives an impression of the end 
position of sample simulations). The significant change from a compact 
set of the plus ends’ ending positions (when the torque is in the same 
direction) to a very large outward splaying of the plus ends’ ending 

positions (when the torque is in the opposite direction), shows how 
formin twist in the same (CCW) direction as motor spin is vital in 
maintaining a tight filopodium shape. Indeed, the filopodium with 
motors and twist is actually tighter than without motors. 

To quantify this effect, we define filopodium compaction as the mean 
R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
coordinate of the peripheral fiber endpoints. We compute 

the mean across five simulations (60 total fibers), then repeat across the 
second set of five to generate error bars. Fig. 5B shows how compaction 
changes when we vary the motor/formin twist model. The colors and 
shapes of the symbols correspond to those in Fig. 5A; thus, the mean 
compaction of filopodia with formin twist and no motors is about 0.3, 
while the compaction for formin twist and motors is roughly 0.15. There 
is a small but significant increase in R (decrease in compaction) when we 
introduce motors without the formin twist, on the order of 10–15%. 
Fig. 5C shows a kind of phase diagram of compaction (R) as a function of 
the motor force density f (0)

mot and formin twist NL. As already noted, R is 
smallest (compaction best) when the formin torque and motor force 
have the same sign, and worst when they have opposite signs. The 

Fig. 4. Snapshots of 22-filament bundles with and without motor and twisting activity, showing that motors and twist synergize to generate a compact bundle. 
Crosslinks are shown in yellow, filaments in white, and formins in magenta. The green dots show the clamped ends, which represent the branched actin network 
beneath the filopodium. (A) Time sequence of filopodium growth when there is both formin twisting and motors acting along the half length of the fiber (cm = 1∕2). 
Snapshots are shown at t = 0.2, 0.8, and 2 s. See supplementary movie 1 for full sequence. (B) Time sequence of filopodium growth when there is only formin 
twisting, and no motor activity. Snapshots are shown at t = 0.2, 0.8, and 2 s. See supplementary movie 2 for full sequence. (C) Time sequence of filopodium growth 
when there is only motor activity, and no formin twisting. Snapshots are shown at t = 0.2, 0.8, and 2 s. See supplementary movie 3 for full sequence. (D) Snapshot 
from the end of a simulation (t = 2 s) when formins move in the opposite direction (CW, looking from the tip) from the motors (CCW, looking from the tip). See 
supplementary movie 4 for full sequence. (E) Snapshot from the end of a simulation (t = 2 s) when crosslinks at the tip are permanent (a sort of filopodial tip 
complex; in the simulations, permanent crosslinks connect the plus ends that are the nearest neighbors), while crosslinks below the tip are free to bind and unbind 
transiently. A less compact bundle with more bending and buckling is observed. 
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compaction appears to depend much more strongly on formin torque 
than motor force, which indicates that the twist density of the fibers has 
a strong effect on compaction. 

To understand this effect, we isolate a filament from a simulation 
without twist and compute the twist force: 

f (γ) = γ∂s
(
ψ

(
∂sX × ∂2

s X
) )

= γψ
(
∂sX × ∂3

s X
)

(2)  

when the twist angle ψ = NL∕γ is in its constant steady state (this is how 
the second equality follows from the first). Here γ is the torsional rigidity 
of actin, NL is the formin torque, and X is the 3D curve of the filament 
centerline (see the SM for details). The fiber and the twist force density 
on its top half (where motors do not act) are shown in Fig. 5D. There, we 

see that the twist force is largely directed towards the center of the 
filopodium, as is qualitatively clear from the large bundle simulations. 
Equation (2) also shows why the twist force is only significant when 
motors bend the fibers: the force density is only nonzero when ∂3

s X is 
nonzero. Thus, when fibers are straight, as is the case when motors are 
absent, the twist force is zero, and there is no way for the twist to feed 
back onto the fiber shape. It is necessary for the motors to first bend the 
fibers, and then formin twist can affect the shape. Thus, the motors and 
formins synergize to make the bundle more compact. 

Given that we need strong bending of the fibers by the motors to 
activate the twist force, we might expect a decrease in compaction when 
we decrease the domain of motor activity. In Fig. S4, we show a sample 
filopodium at t = 2 and the corresponding statistics for curvature when 

Fig. 5. Compaction is driven by twist forces activated by bending. (A) The positions of the outer 12 filaments’ tips at t = 2 s, projected onto the (x, y) plane for three 
simulation conditions. Blue circles correspond to twist without motors, black diamonds correspond to motors without twist, and red squares correspond to motors 
with twist. The green triangles correspond to what happens when we reverse the direction of formin twisting. Simulations were repeated 10 times for each parameter 
set. (B) To quantify the data in (A), we define 〈Router〉 as the mean radial coordinate of the endpoints at t = 2. Smaller 〈Router〉 then makes for better compaction. We 
consider simulations with a variety of parameters here. For formins, we use the shorthand “tw” to denote simulations that include CCW formin twist, “no tw” to 
denote simulations that do not include formin twist, and “r tw” to denote simulations that include CW (reverse) formin twist. For the motors, we use “mot” to denote 
motors that apply forces, and ”TMot” to denote motors with both forces and torques applied to the fibers. For motors with torques, we also plot results that include 
membrane confinement as yellow circles. See Fig. S9 for more details on this. (C) Phase diagram of 〈Router〉 as a function of formin torque NL (pN ⋅ μm) and motor 
force density f (0)

mot (pN/μm) (motors only exert force here). Darker blue colors represent better compaction. (D) Shape of an outer filament (in 3D and projection onto 
the (x, y) plane) in the 22-filament filopodium as computed when the motors apply force to the lower half of the bundle, but without the formin twist. We show the 
resulting forces on the upper region of the filament (arrows) generated when we apply formin twist and the twist angle assumes its steady state. The red line (circle in 
the 2D projection) shows the central (z) axis of the filopodium. 
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we drop the motor range to the lower 1/4 of the filaments (from 1/2) 
and outer 1/8 of the circle (from 1/4). We see less bending, and the 
outward splaying that is characteristic of simulations with insufficient 
twist force to give contractility (the compaction statistic is 〈Router〉 =

0.44 ± 0.02). Because this effect comes from the fiber curvature and not 
the formin twist, it is not rescued when we increase the formin twist by a 
factor of two (〈Router〉 = 0.43 ± 0.02 for NL = 0.2 pN ⋅ μm and the smaller 
motor range). However, the right panel of Fig. S4 shows that formin 
twist still draws the filaments inwards, as reversing the direction gives 
much less compaction (〈Router〉 = 0.67 ± 0.01 for NL = –0.1 pN ⋅ μm and 
the smaller motor range). Thus the synergy of formin and motors is still 
there, but its effect is less pronounced when motors do not act as 
strongly to bend the filaments. 

3.3.2. Exploring more realistic helical motor force 
In our simplified model of motor forcing, we assume that motors only 

exert forces in the (x, y) plane perpendicular to the filopodial axis, 
regardless of the orientation of the filament tangent vector. In reality, 
motors generate power strokes along the helical path on filaments, and 
exert forces both tangential to the centerline (towards the base of the 
fiber) and perpendicular to the centerline. The particular balance of this 
force is dictated by the type of motor considered; some motors move 
exactly along the helical pitch of the filament (Norstrom et al., 2010), 
thus exerting the corresponding ratio of force in the normal to tangential 
direction. Most motors, however, do not exactly follow this trajectory, 
sometimes skipping monomers along the filament (Ali et al., 2002b; 
Tominaga et al., 2003), and consequently have a force which is domi
nated by the tangential direction. For the case of a motor walking along 
the helical path, the schematic diagram in Fig. S5 shows how motor 
activity changes when the filament orientation changes. The left panel 
shows the filament in blue with its helical path in yellow. The force that 
the motor exerts is then in the opposite direction of the helical path, and 
contains a direction both normal and parallel to the filament. In the case 
when the filament is vertical (tangent vector in the + z direction), then 
the dominant force is normal to the filament, as we have already 
implemented. But if the filament orientation changes to become more 
horizontal (x direction), the dominant motor force becomes more and 
more downward (–z direction), and there is a corresponding force in the 
–x direction due to the helicity of the filament. Thus, it is possible that 
more realistic treatment of the forces might prevent us from accessing 
the regime where filaments are sufficiently bent to activate twist 
elasticity. 

To explore this, we generalize our procedure for computing motor 
forces as follows: given a point X(s) on the filament, we compute its 
cylindrical coordinates (R, θ, z). We then use these coordinates to 
construct a vector from the filopodial sheath to the filament which 
points in the inward normal direction, r = − (cosθ, sinθ, 0). We make 
this vector orthogonal to the filament by projecting off the tangent 
vector τ(s) direction. The motor force then has two components: f0 in the 
r̂⊥

(s) = r̂(s) × τ(s) direction, and 3f0∕8 in the – τ(s) direction, where the 
ratio is chosen to match the helical pitch of actin filaments (Dominguez 
and Holmes, 2011). 

We perform a set of simulations with this motor forcing, finding that 
the integrity of the bundle is completely destroyed (left panel of Fig. S5), 
because the large downward (–z) and compressive (–τ) forces on outer 
filaments coil them and press to the filopodial base. Actual filopodial 
architectures do not resemble this configuration, and we conclude that 
the retrograde flow must alleviate these forces. The molecular bio
physical basis for this assumption is that the motors are characterized by 
force-velocity relations, and if a filament moves in the direction of the 
motor power strokes, then the motor force decreases. We consider two 
possibilities for the retrograde flow: in the first case, there is a local flow 
in the –τ direction on each filament which eliminates the compressive 
force from the motors in the – τ direction, but not the downward force 
from the r̂⊥

(s) direction. As shown in the middle frame of Fig. S5, 

implementing only the force in the r̂⊥
(s) direction (which still changes 

with the filament orientation) leads to a more ordered bundle, but still 
causes a significant net downward motion on the outer filaments, such 
that they coil around the base in the (x, y) plane. If we instead implement 
a global retrograde flow which cancels the downward forces (any forces 
in the –z direction), we can still retain the compressive forces and get 
reasonable dynamics, shown in the right panel of Fig. S5. Simply put, 
these dynamics contain the same assumptions as our original simula
tions (retrograde flow cancels the force in the –z direction), but have a 
motor forcing in the planar directions which evolves with the motor 
geometry. 

To test whether the changing motor geometry significantly impacts 
our results, we consider simulations with the motor forcing f (mot) =

f (mot)
0 (I − ẑ ẑ)(r̂⊥

− 3∕8τ), so that the motor force depends on the local 
filament orientation, but its downward component is attenuated by the 
retrograde flow. In Fig. S6, we compare the number of rotations around 
the central filament and the amount of compaction for three different 
values of the formin twist, finding that the values we obtain are roughly 
unchanged when we consider this more realistic forcing. Thus, our 
simplified force model does not impact the overall conclusions, provided 
that we assume a retrograde flow cancels potentially large downward 
forces on the filopodium. 

3.3.3. Motor torque and deformable membrane 
So far, we have neglected the possibility that motors also apply 

torque to the filament centerlines. Indeed, if the motor action occurs on 
the fiber boundary rather than the centerline, then motors should exert 
both a force density and torque density on the fibers. In the SM, Fig. 5B 
and Figs. S7–S9, we report our results when we repeat the simulations of 
Section 3.3.1 with the simple change that motor action (along the bot
tom half of the peripheral fibers) also introduces torque in the same 
direction as the motor forces (CCW). The result is that the motor torque 
undoes some of the torque applied by formins, which decreases the 
amount of compaction for a fixed set of parameters. This makes formin 
torque all the more vital to prevent extreme outward movement of the 
filament tips; Fig. 5B shows the compacting effect of formin twist is more 
drastic in the case when we include motor torque (compare pink square 
to gray diamond). With formin and motor torque, the radial coordinates 
of the peripheral filaments are the same at the beginning and end of the 
simulation (0.3 μm). 

Another way to prevent outward motion of the filaments is to confine 
the filopodial bundle by introducing a deformable membrane. We model 
this by introducing a normal force which tends to keep the fibers inside 
of a ring of certain radius. In the SM, Fig. 5B and Fig. S9, we illustrate 
this effect, the result of which is to introduce a ceiling on the final value 
of the compaction radius. Fig. 5B (yellow circles) shows that including 
formin torque still provides additional compaction. 

3.4. Role of transient cross linking and variable growth rates 

To conclude our study, we return to our original assertion that more 
permanent crosslinking and more variable growth rates should impact 
the buckling in the bundle. To study this, we perform the simulations 
with motor and formin torque, as in Section 3.3.3, but with more vari
able polymerization rate or slower crosslink dynamics (see details in 
SM). In Fig. S11, we demonstrate quantitatively that increasing the 
variance in the fiber growth rate or making the crosslink dynamics 
slower (see details in SM) leads to increased buckling. We find that, 
while the trajectories of the outer filaments in the bundle are dominated 
by the motors and therefore do not change substantially, the inner fil
aments tend to buckle more under variable growth rates and more 
permanent crosslinks, in accordance with our observations in Section 
3.1. We also find a correlation between buckling and compaction, as 
compaction tends to correlate with filaments that are not buckled, which 
happens when they all grow at a constant length and have rapidly 
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exchanging crosslinks. 
It is indeed a strange result that transient (rather than permanent) 

crosslinking aids compaction, since permanent crosslinks should act as 
an attractive potential between fibers. We found that the relationship is 
non-monotonic: if there are no crosslinks, the bundles are less compact 
than both the base parameter value and the value for longer crosslink 
residence times. Thus when crosslink residence times are too long, the 
attractive potential can give strange constraints on the trajectories, 
which leads to buckling and poor compaction. At the opposite end of the 
spectrum, filaments without crosslinks do have a small outward 
displacement. There is an optimal crosslink turnover rate when the links 
are on long enough to promote attraction, but not too long to lead to 
buckling. 

As an example of how permanent crosslinks can constrain fiber tra
jectories, we consider a simulation where the crosslinks at the fiber plus 
ends are permanent, mimicking the filopodial tip complex, while 
crosslinks connecting the filaments’ sides can form and break dynami
cally. Fig. 4E shows the resulting filopodium (without twisting motors, 
to be consistent with the other plots in Fig. 4). Comparing to Fig. 4A, we 
observe significantly more bending of the interior fibers and a much 
wider bundle, as the filopodial tip complex provides an additional 
constraint preventing the filaments from being drawn into the middle. In 
addition, the filaments appear more buckled because of the variance in 
the polymerization rate, and there is a direction of bending to the filo
podium, similar to what we saw earlier in five-filament bundles with 
permanent crosslinks. These qualitative conclusions are confirmed 
qualitatively in Fig. S12, where we plot the mean curvature and z co
ordinate in simulations with motor twist and the permanent cross links 
at the fiber endpoints. Compared to the left panels in Fig. S11, which 
show the base parameters, the simulations with permanent CLs at the 
end display more curvature of the inner circles of filaments. 

4. Discussion 

We found that the spinning action by helical motors effectively 
“braids” the actin bundle, compacting it, generating buckling, and 
enhancing the crosslinking. Stochastic fluctuations of actin polymeri
zation rates also contributed to filament buckling and bending of the 
bundle. Faster turnover of transient crosslinks attenuated the buckling 
but could enhance coiling and compaction of the bundle. Interestingly, 
formin-generated twisting alone was much less effective than myosin- 
generated spinning in inducing filopodial braiding and compaction, 
but formin action helped the motors to compact the bundle once 
braided. Indeed, we found that in the absence of confining membrane 
forces, co-rotating formin action is necessary to maintain a compact 
bundle. 

Our model prediction that myosin action, as opposed to formin ac
tivity, is the key for coiling the filopodium, is in agreement with the 
observation that the molecular activities of myosin V and X are involved 
in rotation of filopodia whereas the formin mDia1 does not play a role in 
the observed rotations (Leijnse et al., 2022). We note though that for
mins may not rotate or twist filaments (Kovar and Pollard, 2004), which 
could be an alternative explanation of why perturbations of formin re
ported in (Leijnse et al., 2022) did not inhibit the chiral filopodial 
structure. Another observation from our simulations – that buckling of 
several filaments that grow faster than others can create an actin loop 
and respective bulge at the filopodial tip – could be relevant to similar 
experimentally-observed structures (Li et al., 2023). The mechanisms 
we discussed here could also be relevant to processes that trigger chiral 
tilting of actomyosin fibers in adherent cells (Tee et al., 2015). Some of 
these mechanisms are very similar to microtubule/kinesin interactions 
generating chirality of the mitotic spindle (Novak et al., 2018). 

One of the model predictions – that faster crosslink turnover en
hances coiling and compaction in the filopodium – is nontrivial and 
probably could be tested in future experiments. The two main cross
linkers in filopodia are α-actinin and fascin (Courson and Rock, 2010). 

Here we tested crosslinking with very rapid kinetics on the scale of 
several cycles of binding/unbinding per second, which is characteristic 
of α-actinin (Wachsstock et al., 1994). Another principal crosslinker in 
filopodia, fascin, has much slower kinetics with the turnover cycle on 
the scale of 10 s (Aratyn et al., 2007), which implies that the bundle 
chirality could be sensitive to the concentration ratio between ubiqui
tous crosslinkers, and could explain why bundle chirality is not uni
versally observed. A simple prediction of the longer residence time is 
that we should observe more buckling in filopodia crosslinked by fascin 
compared to α-actinin. Another interesting prediction for the future is 
that the filopodial bundle chirality is the same as that of the helical 
myosin motors: if the motors spin filaments CW (CCW), then the bundle 
will coil CW (CCW), respectively. The predicted effect of formin depends 
on the relative helicity of the motors and formin: if formin-generated 
torque rotates filaments in the same direction as the motors, then the 
bundle will be tighter; if the formin torque is opposite to the motor 
spinning action, then the bundle will be more disheveled. The most 
straightforward way to test the model predictions would be (difficult) in 
vitro experiments, for example growing actin bundles in micro-wells 
(Colin et al., 2023) with crosslinkers in the solute and with myosins 
and formins coating different parts of the micro-well surface. 

What could be the possible roles of the spinning and twisting actions 
of the myosins and formins, respectively, and of the resulting coiling and 
buckling of the filopodial bundles? One very suggestive role, based on 
the simulations, is the compaction of the bundle, which likely means 
greater mechanical stability. Mechanical stability of the bundle is, in 
fact, affected by coiling even without compaction (Daniels and Turner, 
2013). Another possibility is that the spinning action could result in 
rotation of the filopodia around axes not coinciding with bundle axes, as 
was observed in (Tamada et al., 2010), which could allow filopodia 
scanning over a greater area around the cell edge. Some filopodia fold 
back into the cell leading edge and contribute to construction of con
tractile bundles in the lamella (Nemethova et al., 2008), and in that way 
pre-established filopodial chirality could trigger larger scale chirality of 
the cell cortex by interaction with other cytoskeletal structures of the 
cortex. Coiling and buckling in the filopodial bundle can induce pulling 
and traction at the tip (Leijnse et al., 2015b). The mechanism of chirality 
emergence that we explored is but one possibility, and there is likely a 
diverse inventory of chirality propagation mechanisms, even for just 
actin bundles. An unknown mechanism, not relying on either myosins or 
formins, is responsible for a chiral rotation of Listeria propelled by a 
polarized actin tail (Robbins and Theriot, 2003). Turning of long filo
podia to the left (Tamada et al., 2010; Li et al., 2023) is not explained by 
the mechanisms that we considered. General thermodynamic arguments 
demonstrated that when chiral filaments are bundled, a macroscopic 
twist is generated in the bundle (Grason and Bruinsma, 2007). It was 
shown theoretically that crosslink binding to actin filaments along he
lical patches on the filaments generates intrinsic torques, which wind 
the bundle superhelically about its central axis (Heussinger and Grason, 
2011; Grason, 2015). Recently, a detailed simulation with 
monomer-scale resolution confirmed that torsional compliance in a 
finite-width filament can induce chirality in the structure of a cross
linked bundle (Floyd et al., 2022). It was experimentally observed that 
small rigid actin-binding proteins change the twist of filaments in a 
concentration-dependent manner, resulting in small, well defined 
bundle thickness up to 20 filaments (Claessens et al., 2008), which, 
accidentally or not, is on the order of the filament number in filopodium. 
Finally, actin bundling by counterions is also predicted to generate 
chirality (Mohammadinejad et al., 2012). 

Adding factors that we ignored in the model will predict even more 
nontrivial chiral behaviors. These factors include, but are not limited to: 
1) mechanical coupling of twisting and bending, even for a single fila
ment (De La Cruz et al., 2010); 2) complex structure and mechanics of 
the filopodial protein tip complex (Cheng and Mullins, 2020); 3) formin 
sensing both force and torque during actin filament polymerization (Yu 
et al., 2017); 4) multi-stack structure of the fast-growing filopodial 
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bundle (Medalia et al., 2007; Breitsprecher et al., 2011). Inclusion of 
these factors into the model and scaling up the simulations will allow us 
to address the open question about how chirality propagates to the 
cellular (Tee et al., 2015; Zaatri et al., 2021) and multicellular scales 
(Yashunsky et al., 2022; Tee et al., 2023). 
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1 Mathematical model of actin filaments and forces

In this work, we model actin filaments as inextensible Euler beams which are subject to bending

and twisting forces. The numerical method we choose is based on previous work by some of us

[18], which developed a spectral discretization for such filaments. In this section, we summarize

our previous work and highlight a few small changes.

We let X(s) be a parameterization of the filament centerline, and introduce an operator K [X(·)]

which parameterizes the space of inextensible filament motions. The translational velocity can be

written in terms of such motions as

U(s) = UMP +

∫ s

L/2

(
Ω(s′)× τ (s′)

)
ds′ := (K [X(·)]α) (s) (S1)

where UMP is the velocity of the filament midpoint and α = (Ω,UMP) represents the translational

degrees of freedom. In continuum, the dynamics of the centerline are then governed by the saddle-

1



point system −Mtt K

K∗ 0

λ

α

 =

Mtt

(
f (κ) + f (γ) + f (ext)

)
0

 , (S2)

where f (κ) = −κ∂4sX, f (γ) = γ∂s
(
ψ
(
∂sX× ∂2sX

))
.

The first equation says that the total velocity is obtained by multiplying the total force density,

which is composed of the constraint force λ, the bending force f (κ), the twisting force f (γ), and any

external forcing f (ext), by the mobility Mtt . The twisting force f (γ) is related to the fiber position

X and the twist density ψ = ∂sθ, where θ(s) is the angle of twist of the cross-sectional material

frame relative to the twist-free Bishop frame [2]. Here, for simplicitly, we have also neglected the

so-called rotation-translation and translation-rotation mobilities [18], which take into account the

translational velocity induced by torque and rotational velocity induced by force, so that we only

couple twist to translation through the twist force f (γ), similar to other studies of rod mechanics

[31, 12]. The second equation in (S2), K∗λ = 0, enforces the principle of virtual work, which says

that the constraint forces λ perform no work with respect to all inextensible motions. As discussed

in [18, Sec. III(A)], this constraint is equivalent to setting λ = ∂s (Tτ ), for some line tension T (s)

[27].

The twist density on the filament centerline evolves via an auxiliary set of equations. The total

parallel torque is given by

n∥ = γ∂sψ + n(ext), (S3)

where the first term is the parallel torque due to twisting, and the second one represents externally-

applied torques (e.g., from motors or crosslinkers). The twist-density ψ then evolves according to

the equation

∂tψ = ∂sΩ
∥ − (Ω · ∂sτ ) = ∂sΩ

∥ −
(
Ω⊥ · ∂sτ

)
(S4)

where Ω∥ = mrr

(
n∥τ

)
· τ , (S5)

is the parallel rate of rotation, the perpendicular rate Ω is obtained from the solution of (S2), and

mrr represents the mobility (inverse of drag) relationship between (parallel) torque and (parallel)

angular velocity.

Our simulations use a clamped end at the filopodium base (s = 0),

X(s = 0) = X0, ∂sX(s = 0) = τ 0, Ω∥(s = 0) = 0, (S6)
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where X0 and τ 0 are the fixed endpoint position and tangent vector, respectively. At the clamped

end, we assume that the parallel angular velocity is zero,

Ω∥(s = 0) = mrrγ∂sψ(0) = 0 → ∂sψ(0) = 0. (S7)

The s = L is more delicate. There, we assume that a clamped formin exerts a fixed torque NL on

the fiber,

NL = γψ(L) → ψ(L) = NL/γ, (S8)

while the position of the fiber end is free,

∂2sX(s = L) = 0, ∂3sX(s = L) = 0. (S9)

Based on (S8), we see that our fixed torque BC is equivalent to formin exerting a fixed twist at the

s = L end that is constant in time. At steady state (see Section 2), this corresponds to a constant

twist along the fiber, or a constant rotation of the cross section per unit length. Since the twist per

unit length is constant, adding length via polymerization then increases the twist angle at the plus

(formin-bound) end, meaning that monomers are added at a fixed angle of twist without affecting

the rest of the filament [25, 10]. An alternative boundary condition is to assume that formin exerts

a fixed angular velocity on the s = L end, in which case ∂sψ(L) ≡ ψL. This boundary condition

gives no steady state and only specifies twist up to a constant, i.e., it only specifies rotation up to

an unknown angle per unit length. For this reason, we reject it as unphysical.

In this work, we are interested in capturing the qualitative behavior of the filaments, but not

necessarily the quantitative hydrodynamics. Because of that, we will neglect all hydrodynamic

interactions between filaments (and between far-away parts of a single filament), and any coupling

between rotation and translation. For the purposes of this study, we only want to capture the

qualitative separation of scales between bending and twisting. Because of this, we use the local

drag mobilities [22]

Mtt(s) =
ln
(
ϵ−2

)
8πµ

(
I + ∂̂sX(s)∂̂sX(s)

)
, mrr =

1

4πµa2
, (S10)

where a is the filament radius and ϵ(t) = a/L(t) is the filament aspect ratio. Here the translational

mobility Mtt is a 3× 3 matrix on each filament point, which expresses the fact that the resistance

in the tangential direction is half that in the perpendicular direction. The rotational mobility mrr

is a scalar that relates parallel torque n∥ to rotational velocity Ω∥. These mobilities are the minimal

number of quantities necessary to capture the separation of scales (twist equilibrates O
(
ϵ−2

)
-fold

faster than force).
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Because all quantities are ultimately discrete in simulations, we discretize the continuum curve

X(s) using a set ofNx Chebyshev nodes, which we denote by X. These nodes define an interpolating

function, which can be used at any point to obtain the position X(s) (see [17, Sec. 1] or [13, Sec. 6.1]

for an explanation of our discretization). Once we have a spatial discretization, the saddle point

system (S2) becomes a discrete matrix equation that we solve at each time step. To make our

time-marching scheme stable for larger time steps, we treat the bending force implicitly; see [13,

Sec. 6.4] for more details.

1.1 Crosslinking

To compute crosslinking forces between pairs of filaments, we use the methodology described in

[17, Sec. 6] to transform forces on a grid of uniformly spaced points along the filaments to forces

on the Chebyshev grid. The forces can then be converted to the force density f (CL) by multiplying

by an inverse weights matrix.

For the uniform points, we resample the filament X(s) at Nu uniformly-spaced locations, ob-

taining a vector X of sites where crosslinks are bound. The relationship between the two is given

by

X = R(u)X ↔X{p} = R
(u)
{p,:}X, (S11)

where R(u) is the resampling matrix and R
(u)
{p,:} is its pth row.

Denoting the uniform points connected by the crosslink with X
(i)
{p} and X

(j)
{q}, we have the

displacement

r =X
(i)
{p} −X

(j)
{q} = R

(u)
{p,:}X

(i) −R
(u)
{q,:}X

(j) (S12)

with r = ∥r∥. Then, let us postulate the crosslink energy and force,

E(r) = Kc

2
(r − ℓc)

2 (S13)

∂E
∂r

= Kc (r − ℓc) , (S14)

respectively, between the two uniform points, where Kc is the spring constant for the crosslink

(units force/length) and ℓc is the rest length. The corresponding force on filaments i and j can

then be obtained by differentiating the energy

F
(i)
{a} = −∂E

∂r

∂r

∂X
(i)
{a}

F
(j)
{b} = −∂E

∂r

∂r

∂X
(j)
{b}

F
(i)
{a} = −∂E

∂r
r̂R

(u)
{p,a} F

(j)
{b} =

∂E
∂r

r̂R
(u)
{q,b}. (S15)
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Note that in the energy (S13), the crosslinks are linear springs that connect to the filaments by

flexible joints, so possible bending forces are ignored. Also, the crosslinks bind, effectively, to the

1D contour of a filament, so potential effects from the specific distribution of binding sites along

the helical grooves of the filaments are also ignored.

1.1.1 Dynamic crosslinks

To implement dynamic crosslinking, we use a simplified version of the algorithm described in [16].

Each filament is discretized into Nu = 41 binding sites. We assume that crosslinkers have rest

length ℓc, and can stretch at most by a length ∆ℓ = 2
√
kBT/Kc. Thus, at each time step, we find

all pairs of uniform sites on distinct fibers separated by a distance between ℓc−∆ℓ and ℓc+∆ℓ, and

assign to each pair a binding rate kon in units of 1/s.1 We also assign each already bound link an

unbinding rate of koff. This gives a set of reactions and rates, which we simulate at each time step

using Gillespie’s next reaction method [1, 5]. To simplify the algorithm, we assume that unbound

links will not rebind in a single time step, and that bound links will not unbind in a single time

step. Our previous work had a more detailed model where each end of a crosslinker is distinct; here

we simply treat the crosslink as one entity that is bound or unbound.

1.2 Steric forces

We compute steric interaction forces using the method described in [14, Sec. 9.2]. In brief, the

steric interaction energy between filaments i and j can be written as

E(ij) =

∫ L

0

∫ L

0
Ê
(
r
(
s(i), s(j)

))
ds(i) ds(j), (S16)

r
(
s(i), s(j)

)
=

∥∥∥X(i)
(
s(i)

)
− X(j)

(
s(j)

)∥∥∥ ,
where Ê is the potential density function

Ê(r) = E0
a2

erf
(
r/(δ

√
2)
)

(S17)

dÊ
dr

=
E0
a2δ

√
2

π
exp

(
−r2/

(
2δ2

))
,

where the Gaussian is truncated at rmax = 4δ, and E0 = 4kBT [26] is the magnitude of the steric

force, which leaves δ = a is the parameter that controls the Gaussian decay.

1Technically, the CL on rate should have units of 1/(length×time) to be discretization independent. This is

actually complex when the filament length changes in time, so we simply choose a value that gives a characteristic

number of engaged crosslinks for a given discretization.
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To determine the forces, we compute the double integral (S16) for energy via upsampling the

position to a high-resolution Chebyshev grid, then differentiate to get force. Similar to the cross-

linking force, we denote the upsampled points via X = EX. The double integral can then be

evaluated and differentiated via

E =
∑
k

∑
j

Ê
(∥∥∥X{k} −X{j}

∥∥∥)wkwj (S18)

=
∑
k

∑
j

Ê
(∥∥EkpX{p} −EjqX{q}

∥∥)wkwj

F
(i)
{a} = − ∂E

∂X
(i)
{a}

= −
∑
k

∑
j

∂Ê
∂r

(rkj) r̂kjEkawkwj . (S19)

The last equation gives the force at Chebyshev node a on filament i, and is a function of the

integration weights wk and wj of points k and j on the upsampled grid. In this work, we use

Nu = 101 upsampling points to compute the steric forces on the filaments, and the points we

choose are at arclength coordinates s = 0,∆su, . . . , L, where ∆su = L/(Nu−1) is the spacing. The

corresponding weights are w = ∆su/2,∆su, . . .∆su,∆su/2, so that the first and last point have a

weight of 1/2, in accordance with the trapezoid rule. Note that the sum (S19) can be computed

efficiently via a neighbor search (rangesearch in Matlab).

1.3 Numerical method for polymerization

To model linear polymerization of a filament X(s) at the s = L end, we use the following algorithm:

1. Sample the Chebyshev interpolants X(s = L) and ∂sX(s = L) to obtain the position and

tangent vector at s = L. Let XL denote the position and τL denote the normalized tangent

vector.

2. Add an additional point to the matrix of Chebyshev nodes,

X̃ =

 X

XL + L′(t)∆tτL

 . (S20)

3. Reparameterize the filament by its new length. That is, the new set of evaluation points in s

is given by s̃ = (s, L+ L′(t)∆t) /(L+ L′(t)∆t) and goes from zero to one.

4. Let R be the matrix that evaluates the Chebyshev interpolant defined by the arclength points

s at s̃. Then set X = R†X̃ to obtain the positions at the Chebyshev nodes at the next time

step. This resamples the filament at the nodes s, but in the new parameterization.
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5. The parameter s is no longer an arclength parameter, but is the distance in reference arclength

coordinates. The new arclength parameter is given by

s∗(s, t) = L(t)/L(0)s.

Thus, at the next time step, we can solve all the equations in coordinates of Section 1 via

the transformation ∂/∂s∗ = (L0/L(t)) ∂/∂s, i.e., by scaling all differentiation and integration

operations appropriately.

We note that a similar reparameterization algorithm was employed in [20, Sec. 2.5] to model

polymerization. However, in that work, the authors used the chain rule to write

∂tX = ∂tX|s∗ + s
L′(t)

L(t)
∂sX, (S21)

so that the first term can be obtained using an inextensible algorithm, and the second term added

on afterwards. We found this formulation to be highly unstable numerically because each point

locally extends in a direction according to its tangent vector. Because of this, numerical instabilities

in tangent vector directions tend to be amplified. Our approach is more physical, because it models

the addition of monomers at the s = L end, which happens along the direction corresponding to

the last tangent vector. As (S21) suggests, we also first solve the equations of Section 1 to evolve

the filament positions (inextensible in the s∗ coordinate frame), then add the polymerization at the

end of the time step.

1.4 Parameters

Throughout this study, we use the parameters in Table 1.
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Parameter Definition Value Notes/Reference

κ Filament bending modulus 0.068 pN·µm2 Bend persistence length = 17 µm [6]

γ Filament twist modulus 0.041 pN·µm2 Twist persistence length = 10 µm [3]

a Filament radius 4 nm [7]

L Filament length 1–2 µm For nascent filopodia [9]

ℓc Crosslink rest length 100 nm [15, 16]

Kc Crosslink stiffness 100 pN/µm [15, 16]

NL Formin torque 0.1 pN· µm [10]

µ Suspending fluid viscosity 1 Pa·s [11]

kBT Thermal energy 4.1× 10−3 pN·µm

kon Crosslinker on rate 0.05–0.2 s−1 Chosen to give characteristic # of CLs

koff Crosslinker off rate 2.5–10 s−1 [29]

f
(mot)
0 Motor force magnitude 50 pN/µm estimated from the data of [19, 28]

L̇ Actin polymerization rate 0.5 µm/s Mean value; estimated from [8]

N Number of tangent vectors 20

∆t Time step size [5× 10−5,2× 10−4] s

Table 1: Parameters for our simulation study.
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2 Formin-generated twist and supercoiling

This section provides a linear stability analysis of the behavior that leads to actin supercoiling.

Because twist equilibrates much faster than bending, we can say that the twist evolution equation

(S4) is in a steady state, so that it obeys the two-point boundary value problem

∂2sψ = 0 ∂sψ(0) = 0 ψ(L) = NL/γ. (S22)

This boundary value problem has the obvious solution

ψ ≡ ψ(L) = NL/γ, (S23)

for the twist profile. The constant twist (S23) implies that the angle of rotation of the fiber

θ =
∫
ψ(s) ds = ψs, is linear along the fiber.

Armed with this, we can perform a stability analysis on the fiber evolution equation. To do this,

we linearize the evolution equation (S2) around a straight fiber X0(s) = (0, 0, s), then substitute

the constant ψ from (S23). Setting X = X0 + δX⊥, where δX is a perpendicular perturbation, we

get the linearized dynamics (to first order in δ in the perpendicular direction)

∂tX⊥ =
ln
(
ϵ−2

)
8πµ

(
−κ∂4sX⊥ + γψ

(
∂sX0 × ∂3sX⊥

))
. (S24)

We now follow the technique of [31] by mapping X⊥ = (X,Y,∼) to the complex plane, so that the

complex number h = X + iY represents the degrees of freedom, and ∂sX0 × ∂3sX⊥ = i∂3sh. The

transformed evolution equation (S24) becomes

∂th =
ln

(
ϵ−2

)
8πµ

(
−κ∂4sh+ iγψ∂3sh

)
. (S25)

For linear stability analysis, we set h(s, t) = eωtξ(s), which gives the two point eigenvalue problem

ωξ =
ln
(
ϵ−2

)
8πµ

(
−κξ(4) + iγψξ′′′

)
(S26)

ξ′′(0, L) = 0 ξ′′′(0, L) = 0.

Our goal here is to find ψ such that the perturbation is linearly unstable. Similar to [31], we expect

that, at the critical ψ = ψcrit, the twisting torque ∼ γψ will be equal to the bending torque ∼ κ/L.

As such, we look for a critical value of ψcrit = cκ/(Lγ) such that there exists an eigenvalue ω in

(S26) with positive real part. This can be done numerically using Chebfun [21, 4], an open-source

software for numerical computation with functions, which gives

ψcrit ≈ 1.41
2π

L

κ

γ
. (S27)
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Converting this to a number of turns, we find that Nt,crit = Lψcrit/(2π) = 1.41(κ/γ). For actin

filaments, κ ≈ 17 pN·µm2 [6], while γ ≈ 10 pN·µm2 [3]. This gives a critical number of turns

Nt,crit = 2.4 for actin filaments of given length. If a filament is twisted less than that, it remains

straight; if it is twisted more, it supercoils.

A similar stability analysis to the one here was also conducted for a clamped filament being

spun at one end [31], and a twisted closed loop [30, 24].

3 Supplemental modeling results

3.1 Motor torque

If the motor action occurs on the fiber boundary rather than the centerline, then motors should

exert both a force density f
(0)
mot and torque density nm = f

(0)
mota on the fiber. It is helpful to first

consider how the torque by motors changes the profile of twist on the peripheral fibers. When the

motors apply a torque along the bottom half of the fiber, they rotate the filament cross section there

in the same direction as formin. Fig. S7 shows the effect of this over time; the angle of rotation

at the bottom of the filopodium becomes more and more positive, which means the twist becomes

more negative, and is no longer constant along the centerline. Thus, while the twist remains positive

at the tip in accordance with the boundary condition induced by formin, the effect of the motor

torque is to reduce the twist along the rest of the fiilament. Fig. S8 shows that changing the torque

induced by formin simply shifts the endpoint/boundary condition for twist at the plus end. Our

expectation is therefore that twist from motors will make twist more negative, which will reduce

the force driving the fibers inward. This is indeed the case; as shown in Fig. 5B, the amount of

compaction in simulations with motor twist is always less than for simulations that do not include

motor torque, and the least compact bundle is one with reverse formin twist and CCW motor

torque.

3.2 Confining membrane as a cap on outward growth

We mostly simulate the simpler case of the motors acting on the filopodial bundle from a rigid

cylindrical filopodial sheath. Here we consider, approximately, the case of deformable membrane

by following the formalism in [23]. The mechanical energy of the cylindrical membrane envelope

around the filopodial bundle (of radius R and length L) is equal to E = L[(πκ/R) + 2πγR]. Here

κ is the membrane rigidity (κ ∼ 10kBT ), and γ is the membrane tension (γ ∼ 0.001kBT/nm
2).
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This energy reaches minimum at given L for radius R0 =
√
κ/2γ ∼100 nm. At this radius,

the cylindrical walls of the membrane do not exert any inward force on the actin bundle. Also,

the absence of buckling by the membrane (which tries to decrease L and therefore exerts some

potentially buckling force) was shown in [23]. Let us consider the case when the radius is greater

than R0. Then, approximately, the bending term in the membrane energy can be neglected, and

the membrane tension is opposed by the elastic force from deforming the 12 outer filaments of the

filopodial bundle. By the Laplace Law, the effective outward pressure from the filament bundle onto

the circumference of the membrane cylinder, per unit length of the membrane cylinder, is equal to

P = γ/R. Thus, the force per filament, per unit length of the filament, is f = 2πRP/12 ∼ γ/2 ∼

0.0005kBT/nm
2 ∼ 1pN/µm. Computing the force accurately requires numerically minimizing the

elastic energy of the bundle together with mechanical energy of the membrane, but these are very

involved numerical calculations [23], so here we limit the analysis to using an approximate constant

restraining force from the membrane.

Therefore, to simulate membrane confinement, we add a force proportional to the inward normal

vector at each filament point n(s) = (− cos (θ(s)),− sin (θ(s)), 0) in the region where the motors

act (the outer 1/4 of the filopodium, defined by the initial configuration; see Section 2 for the

definition of θ(s)). This corresponds to any radial coordinates exceeding 225 nm. In Fig. S9,

we show the results of simulations with membrane force, in particular the endpoint positions of

the peripheral filaments, projected onto the xy plane in the same way as Fig. 5A. We observe

significantly more compaction when the confinement force is included, regardless of the value of

formin torque. Interestingly, simulations with no formin torque or reverse formin torque show

that the endpoints form a tight circle of radius approximately 225 nm (which is the beginning of

the confining region), which suggests that membrane forces in this case provide a “ceiling” on the

expansion of the bundlle. By contrast, when formin torque is in the same direction as motors, the

synergistic effect is again observed, and the endpoints position themselves anywhere from 0 to 0.2

in radial coordinates. We quantify this by adding to Fig. 5B the mean outer radius when membrane

forces are included (yellow circles on the plot). There we see that, even with the extra confinement,

the radial coordinates with formin torque in the proper direction are still about 30% lower than

those with no formin torque or formin torque in the reverse direction. Thus the synergistic effect

of formin and motors is still present, but reduced by the membrane providing a cap on outward

displacement.
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3.3 Role of transient cross linking and variable growth rates

To study the effect of cross-linking and growth rates, we perform the same sets of simulations as in

Section 3.3.3 (i.e., with motor and formin torque), but with the polymerization rate four times more

variable (standard deviation 0.2 µm/s) or the crosslink dynamics four times as slow (kon = 0.05/s,

koff = 2.5/s). Unlike in simulations with five fibers, here we expect the location of a fiber (in terms

of which ring it sits in) to be important for determining the statistics of its motion (since, e.g.,

motors can only act along the outer 25% of the bundle, which means they can only act along the

outer circle of fibers initially). In Figs. S10–S12, we therefore segregate our statistics by ring or

circle, showing the central fiber in blue, the smaller circle of 3 fibers in red, the middle circle of 6

fibers in yellow, and the largest outer circle of 12 fibers in purple.

Our first observation is in Fig. S10, where we show the number of rotations each circle of

fibers makes around the central fiber in simulations that include (left) formin twist and simulations

that do not (right). We see little change in the trajectory of the midpoints in this case, but a

significant increase in the number of rotations the inner circle endpoints make around the central

fiber. The increase in rotation comes from the tightening of the bundle in the formin twist case.

When the bundle is tighter at the top, more crosslinks can bind the top halves of interior fibers

to the rotating outer fibers, increasing the overall rotation of the inner ring. Indeed, the average

number of crosslinks is increased by roughly 20% (from 45.3± 0.3 to 52.2± 0.1) when we account

for formin twist.

Similar to the five-filament bundle, we find that increasing the variance in the fiber growth rate

or making the crosslink dynamics slower both lead to increased buckling in fiber positions. To

demonstrate this quantitatively, we perform a set of simulations with motor and formin torque,

but increase the polymerization rate variance from 0.05 to 0.2 (for more variable growth rate), or

decrease the crosslink on and off rates by a factor of 4 (to kon = 0.05/s and koff = 2.5/s). In Fig.

S11, we plot the mean L2 curvature and z coordinate of each circle of filaments. We find that,

while the trajectories of the outer filaments are dominated by the motors and therefore do not

change substantially, the inner filaments tend to buckle more under variable growth rates and more

permanent crosslinks, in accordance with our observations in Section 3.1. We also find a correlation

between buckling and compaction, as might be expected from the five-filament visual in Fig. 2A:

the mean radius of the outer filaments is 0.29 ± 0.01 for the base parameters, 0.32 ± 0.06 for the

more variable growth rate, and 0.38 ± 0.05 for the slower CLs. We found that the relationship
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between crosslinking and compaction is non-monotonic: if there are no crosslinks, the compaction

is 0.44 ± 0.01, which is less compact than both the base parameter value and the value for longer

crosslink residence times.

Movie legends: Movies of 22-filament bundles with and without motor and twisting activity,

showing that motors and twist synergize to generate a compact bundle. Crosslinks are shown in

yellow, filaments in white, and formins in magenta. The green dots show the clamped ends, which

represent the branched actin network beneath the filopodium. The left side of the movie shows a

side view, while the right side shows a top view (in this case, the filaments appear to move outward

because of the perspective of the observer).

Movie 1: CCW Motors and CCW formin twisting.

Movie 2: No motors, but CCW formin twisting.

Movie 3: CCW Motors, but no formin twisting.

Movie 4: CCW Motors, with CW formin twisting (opposite direction).
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Figure S1: Supercoiled actin filaments. Top plot: behavior of perturbed filaments for 2 absolute twisted

rotations (relaxing to straight) and 3 rotations (supercoiling). Bottom: Phase diagram for supercoiling as a

function of the fiber length L and twist. For comparison, we plot the data from [3], where the supercoiling

threshold was estimated at roughly 0.2 rotations per micron with filaments of length 7–20 µm (for small

applied forces).
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Figure S2: Initial simulation of fiber buckling with polymerization and permanent crosslinking at filament

tips. The central filament polymerizes with rate 1 µm/s on 0 ≤ t ≤ 1 s, after which the configuration relaxes.

18



Figure S3: Buckling in a bundle due to polymerization, but with added twist along the fiber centerline

using the (unrealistic) torque NL = 0.5 pN·µm. Polymerization occurs only for the middle green filament,

with L̇ = 1 µm/s on 0 ≤ t ≤ 1 s. Arrows show the material frame vectors. Based on our linear stability

analysis, we expect supercoiling when the filament length reaches ≈ 1.2 µm.
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Figure S4: Effect of decreasing the range of motor activity to the lower quarter (cm = 1/4, from cm = 1/2)

and the outer 1/8 (from 1/4) of the filopodium. Left panel: a snapshot of the filopodium at t = 1. Middle

panel: the mean curvature on each of the four rings of filaments. Right panel: the endpoint positions at

t = 2 with different values of the formin torque in pN·µm (similar to Fig. 5A).

20



  
Figure S5: More detailed model of motor forces and resulting simulations. Top panel: defining the

directions. The filament is shown as a blue cylinder, with the helical groove (where motors act) in yellow. The

corresponding forces can be along both the normal and compressive directions (left), normal direction only

(middle), or normal and compressive with downward force projected off (right). Bottom panel: simulation

results (configurations at t = 1.5 s) considering these three different force models.
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Figure S6: Statistics for simulations with fiber-orientation-dependent (or frame-dependent) forcing, as

in the rightmost plot in Fig. S5. The left panel shows the compaction for simulations with CCW formin

twist (left), no formin twist (middle), and CW formin twist (right), comparing our default simulations

with constant forcing to the simulations with frame-dependent forcing. The rightmost plot shows the most

significant difference between the two (reverse formin twist), where we see less rotation of the outer fibers

when the force is frame-dependent (dotted lines) vs. when it is constant in time (solid lines).

Figure S7: Twist (left, in rotations per µm) and angle of rotation (right, in rotations relative to the

endpoint) over time on an outer fiber in the 22-filament bundle. This simulation has a formin torque

NL = 0.1 pN·µm and motor torque density nm = 0.2 pN.
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Figure S8: Twist (left, in rotations per µm) and angle of rotation (right, in rotations relative to the

endpoint) on an outer fiber in the 22-filament bundle at t = 1 s with different parameter values for the

formin torque NL (units pN·µm) and motor torque density nm (units pN).

Figure S9: Endpoint position of peripheral filaments with membrane confinement. We show sets of sim-

ulations with motor force and torque and varying values of the formin twist, according to the title (units

pN·µm). In each case, we project the endpoints of the peripheral filaments onto the xy plane, exactly as in

Fig. 5A. In each plot, the yellow circles are simulations with confining force (intended to model the mem-

brane), and the symbols of other colors are simulations without the confining force.
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Figure S10: Number of rotations of each circle of filaments around the central filament in the 22-filament

bundle. Simulations at left include motor force and torque, as well as formin torque, while simulations at

right do not include formin torque. MP = midpoint, EP = endpoint.
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Figure S11: Bending of filaments in 22-filament bundle as a function of polymerization rate variance and

cross linking rate. Top: Mean L2 curvature of filaments, normalized by the curvature of a circle with the

same circumference. Bottom: endpoint z coordinate over time. Each statistic is reported by “circle” in the

bundle; blue represents the central filament, red the next circle out (3 fibers), yellow the following circle

outwards (6 fibers), and purple the outermost circle (12 fibers). The outer circle has high curvature and

smaller z coordinate because of motor action. From left to right, we show results for simulations with the base

parameters (with motor and formin twisting), a four times larger standard deviation in the polymerization

rate, and four times smaller on/off rates for the CLs.
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Figure S12: Bending of filaments in 22-filament bundle with the filopodial tip complex. Left: Mean L2

curvature of filaments, normalized by the curvature of a circle with the same circumference. Right: endpoint

z coordinate over time. Compared to the base parameters (left column in Fig. S11), there is more curvature

and buckling with the tip complex.
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