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ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation
distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However,
with standard FOD computation methods, accurate estimation of FODs requires a large number of measurements that usually
cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method
to map as few as six diffusion-weighted measurements to the target FOD. To train the model, we use the FODs computed
using multi-shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep
learning method, using significantly fewer measurements, achieves comparable or superior results to standard methods such as
Constrained Spherical Deconvolution. We demonstrate the generalizability of the new deep learning method across scanners,
acquisition protocols, and anatomy on two clinical datasets of newborns and fetuses. Additionally, we compute agreement
metrics within the HARDI newborn dataset, and validate fetal FODs with post-mortem histological data. The results of this study
show the advantage of deep learning in inferring the microstructure of the developing brain from in-vivo dMRI measurements
that are often very limited due to subject motion and limited acquisition times, but also highlight the intrinsic limitations of dMRI
in the analysis of the developing brain microstructure. These findings, therefore, advocate for the need for improved methods
that are tailored to studying the early development of human brain.

Introduction
Early brain growth is characterized by rapid and complex structural and functional developments that are vulnerable to various
genetic and environmental factors. The influence of early brain development and disorders on the brain health later in life has
received growing interest1–5. Magnetic Resonance Imaging (MRI) is a non-invasive method for assessing these developments
in vivo. Diffusion MRI (dMRI), specifically, offers a means to assess the micro-structure of the white matter using the diffusion
of water molecules as a proxy measure6, 7. However, application of dMRI to study the developing brain has been limited due
to motion, limited scan time, and low signal-to-noise ratio (SNR)8–10. Despite these limitations, prior works have shown the
potential of dMRI to probe the early brain development. For instance, several studies11–13 have used spatiotemporal changes
in Fractional Anisotropy (FA), Mean Diffusivity (MD) and different cortical morphology indices to characterize the normal
brain development. Recent availability of large high-quality datasets such as those collected under the developing Human
Connectome Project (dHCP)14, 15 present a unique opportunity to enhance our understanding of the developing brain. These
datasets include dense multi-shell measurements. As such, derived dMRI quantities can be considered as reference values or
gold standards to which derived metrics from more constrained clinical datasets, which usually do not exceed 15 diffusion
measurements with a single low b-value (500−750s/mm2), can be compared.

The prevailing way of extracting diffusion properties from the diffusion signal involves a model, typically a diffusion
tensor imaging (DTI) model16. More complex models such as the multi-shell multi-tissue constrained spherical deconvolution
(MSMT-CSD)17, 18 aim to reconstruct Fiber Orientation Distribution Functions (FODs) that allow depiction of more intricate
white matter configurations such as fiber crossings. These models require densely sampled multi-shell data. The output of all of
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these models can be studied directly, i.e. by computing metrics such as FA or MD from the diffusion tensor or the apparent
fiber density19 from the FOD. Alternatively, they can be further processed globally to reconstruct the fiber tracts20, 21 that are
responsible for transmitting action potentials between different regions of the brain.

In general, mapping the acquired diffusion signal to an interpretable and informative diffusion metric requires a prior
model. Conventional estimation methods do not provide feedback regarding which measurements are more informative for
estimating the given model. Differently, deep neural networks can treat the problem as a single learnable task that can be
optimized via back-propagation, by directly learning a mapping between the diffusion signal and the target diffusion quantity.
Hence, bypassing the sub-optimal model fitting step that can be sensitive to noise. Golkov et al.22 proposed the first deep
learning (DL) model that directly estimated diffusion kurtosis23 and neurite orientation dispersion and density measures24 from
a small number of diffusion measurements in adult brains. They showed a drastic decrease in scanning time with limited loss in
accuracy. Since then several other works have explored DL methods in adult brains as to directly estimate diffusion scalars
or model reconstruction (FODs). For instance, with superDTI25, accurate predictions of tensor maps using a neural network
were achieved using only six diffusion measurements. This model was robust to various noise levels and could depict lesions
present in the dataset. Kopper et al.26, employed a 2D convolutional neural network (CNN) in a classification approach to
predict the orientation of fibers, while Lin et al.27 utilized a 3D CNN to predict FODs based on a small neighborhood of the
diffusion signal. Karimi et al.28 used a multi-layer perceptron to predict FODs. To leverage correlations between neighboring
voxels,29 used a two-stage Transformer-CNN to map 200 measurements to 60 measurements, followed by predicting FODs.
Nonetheless acquiring such a large number of measurements is difficult and frequently infeasible for noncooperative cohorts,
such as neonates or fetuses.

The challenge of acquiring useful dMRI data from newborns and fetuses who tend to unpredictably move during long
and loud dMRI acquisitions is exacerbated by the low signal available from the small size of the immature and developing
brain compartments, the low resolution of dMRI, and the rapid and large changes that occur to the brain microstructure across
gestation and early after birth.

These complex maturation processes that are unfolding during gestation include the development of major fiber bundles,
namely limbic and projection fibers during the first trimester30. For instance, the internal capsule experiences intricate
microstructure alterations as a result of the intertwining of multiple fiber pathways that initiate development during different
periods of gestation. In the second trimester, association fibers start developing and become evident at the third trimester.
Specifically, the superior longitudinal fasciculus exhibits accelerated growth during this phase and continues to undergo
substantial development even beyond the time of birth31. The radial coherence within the telencephalic wall gradually
diminishes with gestational weeks (GW). Furthermore, the regional radial coherence within the deep subplate zone starts to
vanish around 26 GW. This regional loss of radial coherence aligns temporally with the previously reported emergence of long
association cortico-cortical tracts32.

These dynamic changes and the other aforementioned problems of this sensitive population, added to B0 and B1 in-
homogeneities, pose additional challenges for learning-based methods for FOD estimation such as those reviewed above.
Therefore, in this study we aimed to investigate the use and generalizability of deep learning to estimate the microstructure of
the developing brain in newborns and fetuses.

To the best of our knowledge, these learning-based FOD estimation methods have not yet been critically evaluated for
fetal populations and in non-research protocols of newborns. In this study, we demonstrate that a deep convolutional neural
network with a large field of view (FOV) can accurately estimate FODs using only 6-12 diffusion-weighted measurements.
Firstly, we show, on N=465 subjects from the dHCP dataset, that a deep learning approach can achieve a level of accuracy that
is comparable to the accuracy of the state-of-the-art methods, while reducing the required number of measurements by a factor
of ∼21-43. Secondly, we present evidence of a low agreement among standard FOD estimation methods for these age groups.
Thirdly, we show the generalizability of deep learning methods on two out-of-domain clinical datasets of 26 in vivo fetuses and
neonates that were scanned with different scanners and acquisition protocols. Finally, we assess for the first time, the deep
learning generated fetal FODs with post-mortem histological data of corresponding gestational weeks.

Results
Research dMRI acquisitions of neonates
We trained our deep learning model (DLn) on dMRI data from neonates. FODs estimated with the MSMT-CSD method using
280 diffusion-weighted and 20 b0 measurements were used as estimation target. We refer to MSMT-CSD estimations as ground
truth (GT). The input to DLn consists of 6 diffusion-weighted measurements normalized with one b0 measurement. After
training, the network was applied on independent test data.

Qualitatively, the FODs estimated by DLn were very similar to those estimated by MSMT-CSD using 300 measurements in
3 shells (Figure 1). We also compared our results with those of CSD using 148 measurements. CSD overestimates the number
of peaks in the regions outside of deep white matter. Although estimating the 45 FOD coefficients using 6 measurements is an
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under-determined problem, for the sake of comparison we present the CSD estimated FODs with the six measurements as those
used for DLn (CSD-6 in Figure 1). CSD-6 results show significant errors even in the location of major white matter tracts such
as the corpus callosum.

GT DLn CSD-6CSD

Figure 1. Qualitative high level comparison between, from left to right, the MSMT-CSD GT using the 300 multi-shell
samples, the deep learning method DLn using six b = 1000 s/mm2 measurements and one b0, and CSD using 128
measurements of b = 2600 s/mm2 and 20 b0 images. Also shown on the right CSD-6, i.e. CSD with the same measurements
that the DL method used. Axial, coronal and sagittal views are shown from top to bottom and the background images
correspond to fractional anisotropy (FA) extracted from diffusion tensors estimated with all b = 1000 s/mm2 measurements.

Quantitative assessment
On N=320 independent test subjects from the dHCP dataset, DLn showed low estimation error (with respect to the MSMT-CSD
GT) in terms of several metrics compared to the various standard estimation methods. We assessed the reproducibility of the GT
by applying MSMT-CSD on subsets of the measurements from the same subject. Specifically, we split the 300 measurements
into two disjoint subsets of 150 multi-shell measurements and applied MSMT-CSD on each subsets to compute two independent
FOD estimations, which we denote with GS1 and GS2. GS1 and GS2 can be viewed as two high-quality scans of the same
subject, conducted with a similar protocol.

As depicted in Figure 2, the DLn model has lower error rates on apparent fiber density (AFD)19 of 0.178 (±0.083) with
respect to the GT, which is close to the corresponding gold standard difference of 0.064 (±0.034), compared to all other
techniques. The other methods, namely Constrained Spherical Deconvolution (CSD)17 using 148 measurements, Constant
Solid Angle33 (CSA), and the Sparse Fascicle Model (SFM) using all 300 measurements, displayed elevated error rates (both in
terms of means and standard deviations) than the DLn model. It is noteworthy that statistically significant differences were
observed between the DLn and the other methods with p ≤4.8−11 based on paired t-test with Bonferroni correction for multiple
comparisons.
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Figure 2. Apparent fiber density error with respect to the MSMT-GT for the different methods, along with the agreement
between the two gold standard datasets (∆GS) that is shown as an upper bound error. The different baseline methods used are
Constrained Spherical Deconvolution (CSD)17, using 128 gradient directions (b-value of 2600 s/mm2) and 20 b0 images;
Constant Solid Angle33 (CSA) and the Sparse Fascicle Model (SFM) model34 using all available 300 measurements. DLn
method, with less than an order of magnitude in the number of samples (six b=2600 s/mm2 samples) and one b0 image)
achieves the lowest error by a high margin.

Peaks count and orientations were also estimated from the FOD generated by all methods. We first identified a low level
of agreement rate (AR) for multiple fibers within the MSMT-CSD GT (∆GS) as can be shown in Figure 3 (a). The AR was
extracted from the confusion matrix of the estimated number of peaks (Table 1, details in Methods section). For instance, the
1-peaks AR was 88.2%, while 46.7% and 47.2% were observed for 2-peaks and 3-peaks, respectively. Our proposed method,
DLn, achieved an agreement of 77.5%, 22.2%, and 8% for 1-peaks, 2-peaks, and 3-peaks, respectively, which was globally
the closest to the agreement between the gold standards when compared to other methods. Although the single-fiber model
(SFM) produced a relatively high level of agreement for 1-peaks with the ground truth (GT) at 84.6%, the agreement decreased
to 4.6% and 2.5% for 2-peaks and 3-peaks, respectively. In contrast, the constrained spherical deconvolution (CSD) model
achieved the lowest 1-peaks AR at 21.7%. This model showed a bias towards the estimation of multiple peaks, with 78% of the
voxels modeled as having two or three peaks, which could be explained by the high b-value (b = 2600 s/mm2) that contains
high levels of noise.

The relatively low agreement observed for voxels with multiple intravoxel fiber orientations might be attributed to their
incongruence across the GT, resulting in the absence of a consistent pattern to be learned by the neural network. In fact,
this is supported by the modest agreement between the two gold standards (∆GS) where both the subjects and the number of
measurements are the same, with only the gradient directions varying and already resulting in a drop of more than 50% in
multiple fibers depiction. It is noteworthy that the agreement between different methods such as CSD versus CSA, SFM versus
CSA, CSD versus DLn, among others, was also low. The confusion matrices for ∆GS agreement and the different methods can
be found in Table 1.

Our analysis, presented in the table of Figure 3 (b), quantifies the angular error for different FOD methods. Our proposed
learning model achieves an error rate that is comparable to GS1 and GS2. However, SFM and CSA methods demonstrate a
higher error rate for single- and two-fiber voxels, whereas CSD outperforms the other techniques by achieving the lowest error
rate. This could be attributed to the low AR observed for CSD, which reduces the error computation to a smaller subset of
common voxels between the ground truth and CSD, as indicated in Figure 3 (a). The table of Figure 3 (b) also displays the
number of measurements and the b-values that each method used. Notably, the angular error exhibits a nearly linear increase
for voxels containing one, two, or three fibers. It is worth noting that training a network with 15 directions instead of 6 did not
lead to a noticeable improvement in the results.

Finally, we explored the correlation with the quality control (QC) metrics provided by dHCP and the error metrics for ∆GS,
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∆GS CSD CSA SFM DLn

#Fibers 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 72.3 4.79 0.31 16.7 11.7 47.8 34.7 27.7 13.9 83.7 0.45 1.82 70.47 5.16 0.59
2 4.27 11.0 1.87 0.51 2.55 14.4 2.28 9.46 5.76 10.2 0.53 0.32 11.4 5.57 5.15
3 0.26 1.57 3.60 0.07 0.37 5.80 0.85 2.57 2.83 2.70 0.09 0.12 3.27 2.38 0.59

Table 1. Confusion matrices for number of peaks agreement (in %), normalized over all population. From left to right: gold
standards GS1 vs. GS2, followed by the different methods CSA, CSD, SFM and DLn compared to the GT MSMT-CSD. Each
confusion matrix reports the average result for 320 test subjects (except SFM with 56 subjects).
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Figure 3. (a) Agreement rates, extracted from confusion matrices as defined in the Methods section, for different methods
compared to the MSMT-CSD GT and for the agreement between the gold standard subsets. From right to left, the deep learning
method using six measurements and b0, SFM and CSA using 300 multishell samples, CSD using 148 measurements and the
agreement between the two gold standard (∆GS) mutually exclusive subsets using each 150 samples. (b) Mean and standard
deviation of angular error between GT (MSMT-CSD) and the different methods. ∆GS refers to GS1 and GS2 agreements. The
number of measurements (M) and the b-values used are also reported. All results were statistically significant compared to
∆GS (p ≤9e−10). Our method achieves results comparable to the agreement rate ∆GS while using six measurements. It is
worth noting that CSD is achieving slightly lower error because it misses more than 3 times GT-true single fiber voxels and
more than two times GT-true two-fiber voxels, as can be seen in its low agreement rate in (a).

DLn, and CSD. The different error measures showed no correlation to QC metrics, i.e. SNR, outlier-ratio, nor scan age (Figure
10 in Supplementary Material for DLn) except for the motion as estimated by the SHARD35 pipeline. The more motion was
estimated the higher the correlation to a lower agreement rate and a higher AFD error across subjects for the intra-agreement
metrics of the MSMT-CSD GT (∆GS) and both methods (DLn and CSD) as can be shown in Figure 4. Statistical interaction
analysis did not show however any significant difference in the way DLn and CSD are influenced by motion (p = 0.8, p = 0.18
and p = 0.11 for single, two and three fibers respectively). Given that the motion was compensated35, we hypothesize that
subjects with strong initial motion have still an increased residual motion after correction.

Uncertainty
Using wild bootstrap (NWBS=60) on the six input directions of the 88 volumes of b = 1000 s/mm2 volumes, we have computed
uncertainty maps using normalized standard deviation (please see Methods section). Figure 5 shows these maps compared to
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Figure 4. Agreement rate for voxels containing one, two, and three fibers, and apparent fiber density (AFD) error for the inter
agreement between the gold standard datasets (∆GS), deep learning method (DLn) and CSD, as a function of motion
parameters (average translation and rotation parameters) for N=320 subjects. A negative correlation is generally observed with
agreement rate (Spearman’s rank correlation coefficients shown in the figure with corresponding p-value). Similarly, a positive
correlation with AFD error can be seen on the (b) panel. Other quality control (QC) metrics (Outlier ratio, Signal-to-noise ratio)
and scan age didn’t exhibit any trend with the prediction accuracy (See Figure 10 in Supplementary Materials). Interaction
analysis showed that CSD and DLn were not significantly affected by motion (p ≥ 0.11).

FA, where both images were applied a white matter mask. We can appreciate low uncertain regions in the highly anisotropic
regions such as corpus callosum (body, splenium and genu) and internal capsules. In fact, this is in line with the results (Figure
3) where the DLn model is less prone to errors in single coherent fiber populations as was previously studied in diffusion tensor
imaging36–38. Hence, since these uncertainty maps do not need any ground truth and can express an increased correlation with
erroneous predictions39, they can be used as an informative proxy to error detection, in case enough gradient directions are
available for bootstrap.

Generalizability to clinical datasets
Neonates dMRI
The network DLn trained on dHCP neonates was tested on 15 clinical newborns using six b0-normalized input volumes of b
= 1000 s/mm2 as can be seen in Figure 6. As for the dHCP newborns, we can see the absence of high magnitude FODs in
non-white matter regions, as opposite to noise-sensitive CSD (estimated using all 30 b = 1000 s/mm2 diffusion measurements
and 5 b0 volumes) that displays several false positive crossing fibers. These false crossings can also be noticed in some known
single fiber areas such as the internal capsules as can be depicted in subject 1 of Figure 6.

In-utero fetal dMRI
We tested the proposed deep learning model, DL f , on 11 fetuses and compared it to CSD. In the absence of dMRI ground truth,
we qualitatively evaluate the results. We have summarized the results for different anatomical regions in Table 2. We point out
the frequency on which DL f or CSD was depicted as better or in which they seem equivalent. The evaluation was conducted by
an experienced developmental neuroanatomist and was based on former knowledge from histology.
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Figure 5. From top to bottom: three dHCP test subjects of respectively 43, 42 and 40 weeks. Uncertainty maps, computed
using coefficient-normalized standard deviation of 60 bootstrapped gradient directions as described in the Methods section, are
shown on the right. On the left, corresponding FA maps calculated from the diffusion tensor, that highlights regions of high
anisotropy. Low uncertainty can be seen in such regions as the corpus callosum or the cortico-spinal tract, where the network
has lower prediction errors. A white matter mask was applied to all images.

This qualitative assessment relied on visually inspecting FOD maps in ROIs. We selected ROIs within regions whose tissue
components are relatively known during early development. Specifically, these ROIs included: i) regions in the proximity of
the frontal crossroad C2, ii) corpus callosum, iii) cortical plate (in the insula, superior temporal gyrus, prefrontal cortex), iv)
subplate (precentral gyrus and sulcus and prefrontal cortex) v) internal capsule, vi) cerebral peduncles, and vii) intermediate
zone (regions containing geniculocortical fibers, regions containing callosal fibers). Figure 7 depicts some of the aforementioned
ROIs within two example subjects across the two methods on the corresponding FOD maps.

Overall, DL f performed better than CSD in predicting fiber orientation across most regions. Specifically, upon visual
inspection, the regions surrounding the frontal crossroad region C2, genu of corpus callosum, intermediate zone containing
callosal fibers, and prefrontal cortical plate were better defined using DL f . It is worth noting CSD systematically outperformed
DL f for cerebral peduncles and internal capsules on coronal sections. For the purpose of the current article, we added two
slides to Figure 8 showing corresponding histology slices stained with GFAP (stains glial fibrillary acidic protein) or SMI 312
(stains highly phosphorylated axonal epitopes of neurofilaments)40. The criteria for evaluation included orientation, magnitude,
and coherence of FODs. Specifically, in regions of corpus callosum32, cerebral peduncles, intermediate zone containing
geniculocortical or callosal fibers, and internal capsule we expected high coherence with high magnitude, and orientation
along or perpendicular to the main brain axes32, 41. In contrast, within ROIs in the proximity of the frontal C2 crossroad42,
we expected decreased coherence, with low magnitude and ambiguous orientation with FOD maps. Finally, the magnitudes,
orientation, and coherence within the cortical plate and subplate ROIs were based on diffusion30, 41 and histological descriptions
of underlying microstructure43. As depicted in Figure 8, DL f successfully defines the mediolateral orientation below the sulcus
and rostrocaudal orientation of fibers in the gyrus.
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DLn CSD CSDDLn

Subject 1

Subject 2

Figure 6. Qualitative comparison for two clinical newborn subjects (subject 1 and subject 2 of 41.8 and 38.1 weeks
respectively) between the deep learning method DLn (trained on dHCP dataset) using six b = 1000 s/mm2 measurements and
one b0, and CSD using 30 measurements and 5 b0 images. The background images are the corresponding fractional anisotropy
(FA) maps.

Fetal brain region DL f Tied CSD
Frontal crossroad region 10 0 1
Genu of corpus callosum 11 0 0
Cortex of Insula 2 5 4
Posterior limb of internal capsule 7 2 2
Cortex of superior temporal gyrus 6 2 3
Subplate of the precentral gyrus 4 0 7
Internal capsule 3 0 8
Cerebral peduncles 1 1 9
Intermediate zone, genuculocortical 4 3 4
Intermediate zones, callosal 10 0 1
Prefrontal subplate 6 4 1
Prefrontal cortical plate 8 2 1
Count per ROI 7 1 3
Count per subject 9 0 2

Table 2. Comparison between the preferred method (DL f , CSD, or tied) for different regions of interest (ROI) in assessing the
validity of the fibers in neurotypical fetal brains.
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DLf CSD 
Example subject 1

Example subject 2

Frontal Crossroad Area C2

Genu of Corpus Callosum

Posterior Limb of Internal Capsule

Cortical Plate of Superior Temporal Gyrus

Genu of Corpus Callosum

Frontal Crossroad Area C2

Cortical Plate of Insula

Posterior Limb of Internal Capsule
Intermediate Zone Splenium of Callosum

Cortical Plate of Superior Temporal Gyrus

Axial Slices

Figure 7. Qualitative assessment: Visual inspection of ROIs within FOD maps for two example subjects computed with DL f
and CSD. ROIs were selected based on the knowledge of microstructure from histology and immunohistochemistry.
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      *sulcus


a.

a.

b.
c.

Coronal Slices

DLf CSDHistology

Figure 8. Qualitative assessment: Panel (iii.) shows a slice of a 40 GW fetal brain stained with SMI 312 directed against
highly phosphorylated axonal epitopes of neurofilaments40, with rostral ROIs marked with an orange rectangle. This section is
an example of coronal sections which were taken into consideration for the assessment of accuracy for our (i) DL f and (ii) CSD
method. Note the compactness of stained regions (marked with asterisks (*) in the magnified panels above figure iii. suggesting
the mediolateral orientation of axonal fibers below the sulcus and rostrocaudal orientation with fanning of fibers within the
gyrus. Corresponding regions are marked as (a.) within the FOD maps of both methods. Panel (iv.) shows another example of
the coronal sections (40 GW fetal brain stained with GFAP) with 2 ROIs marked with red rectangles (e.g., the proximity of
frontal crossroad area C2 (b.) and corpus callosum (c.)) that were taken into consideration for the assessment of accuracy for
our (i) DL f and (ii) CSD method. Note the compactness of GFAP-stained regions in red rectangles suggesting the orientation
of axons in these regions in the magnified panels below.
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Discussion
In this study, we showed the effectiveness of deep neural networks in microstructure estimation of the developing human brain.
Quantitative evaluation was performed on the highly controlled research oriented dHCP dataset where we show using several
metrics that with six uniform measurements44, a carefully trained network can achieve performance level on par with the
standard methods such as CSD. In particular, apparent fiber density19, a measure that is sensitive to fiber partial volume fraction
was best estimated with the deep learning model.

We have additionally shown the out-of-domain generalization of the model to fetal and newborn clinical datasets, despite
acquisition and anatomical gaps with respect to the training dataset. In fact, transferring knowledge from rich research oriented
datasets (multiple b-values, multiple gradient directions, high magnetic field strength)14, 45 to clinical datasets can be a winning
strategy for developing cohorts such as from pre-terms to fetuses28, 46 that cannot afford prolonged acquisition times because of
increased motion, maternal discomfort and the sensitivity of this population. Moreover, to the best of our knowledge, this is
the first diffusion MRI study to assess deep learning outputs with histology in the pediatric population, and the second across
populations47.

Another important aspect of this study is the low agreement in estimating multiple intra-voxel fibers within the ground
truth multi-shell multi-tissue CSD, hampering deep learning methods from learning consistent crossing fibers across different
subjects. This highlights the need for acquisitions and reconstruction methods that are physically and anatomically informed,
and tailored to the developing brain48. The data preprocessing has also an impact on the quality of the reconstruction. We have
found an intra-agreement difference between two pipelines35, 49 that reached 16% and 23% for the agreement rate, and 15◦and
10◦, for two and three fibers estimation18 respectively. Hence our simple and efficient strategy of splitting dMRI datasets
into two independent subsets and computing their agreement for different metrics can provide a method to assess consistency
of preprocessing pipelines. Lastly, we have shown that uncertainty maps computed using wild bootstrap can be a proxy for
voxel-wise error detection.

Recently, fiber orientation distribution function prediction using deep learning has received growing interest spanning
several goals that go beyond the objective of directly learning FODs from raw data or its spherical harmonics representation27–29.
For instance a recent study aimed at mapping 3T dMRI data to 7T FODs50, while another work simultaneously learned FODs
from all radial combinations of multi-shell data using spherical convolutions51. This last study can be particularly interesting
to increase the generalizability of our work to multiple b-values. In fact, our model generalization from pre-term to fetuses
is also due to the proximity of the two acquired b-values for training and evaluation (b = 400 s/mm2 and b = 500 s/mm2,
respectively). In contrast, our network has failed predicting coherent FODs of a different fetal dataset acquired at b = 700
s/mm2, likely because of the lower SNR and contrast difference, despite training our network on b0-normalized images. This
limitation can partly be explained by specific response functions that were learned by the network. Hence, strategies enhancing
generalization51 and data harmonization52 can be adapted for future work.

Another limitation of this study is the absence of pathological datasets, which we aim to include in future work. We also
intend to incorporate in the neural network, convolutions and deconvolutions that take into account the spherical property of the
diffusion signal (angular dimension) such as roto-translation equivariant convolutions53. Moreover, as there is no consensus on
the diffusion protocol of fetal brain diffusion imaging45, 54–57, we want to explore optimal gradient tables that recover the most
accurate white matter representation.

Methods
Data
Research dMRI acquisition protocol in neonates
We used the data from the third release of the publicly available dHCP dataset 1. Scans were performed on a 3T Philips Achieva
system with a customized 32-channel neonatal head coil. The protocol employed a TE of 90ms, TR of 3800ms, a multiband
factor of 4, a SENSE factor of 1.2, a Partial Fourier factor of 0.855, a 1.5mm in-plane resolution, and 3mm slice thickness with
1.5mm slice overlap14. The diffusion gradient scheme used four shells {0,400,1000,2600} s/mm2 with 20, 64, 88, and 128
samples, respectively. The slice order was interleaved with a factor of 3 and a shift of 2. Data were processed and reconstructed
with the SHARD35, 58 pipeline that included denoising, Gibbs ringing suppression, distortion correction and motion correction.
The resolution of the processed data is 1.5 mm3 isotropic with a field of view of 100×100×64 voxels.

Two subsets were extracted from the SHARD-processed dataset, (i) 465 subjects with postmenstrual age range [26.71,
45.14] weeks (mean±std = 39.75±3.05 weeks), and (ii) a group of 77 pre-term subjects with postmenstrual ages ranging from
26.71 to 38.0 weeks (mean±std = 34.79±2.52 weeks). We generated a white matter mask by combining the White Matter and
the Brainstem labels provided by the dHCP with the voxels where Fractional Anisotropy (FA) was greater than 0.25. Finally,
the dHCP labels were resampled from T2-w resolution (0.5 mm3 isotropic) to 1.5 mm3 resolution.

1https://www.developingconnectome.org/data-release/third-data-release/
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Clinical dMRI acquisitions in neonates
We retrospectively used data from 15 newborns at a postmenstrual age between [38.14, 48] weeks (mean±std=41.25±2.34
weeks), while they were in natural sleep and scanned using Siemens Trio or Skyra MRI machines at 3T. The imaging protocol
included acquiring five b0 images and 30 diffusion-weighted images with b = 1000 s/mm2. The TR-TE values used were
3700-104 ms, and the voxel size was 2 mm isotropic. The images were resampled to 1.5 mm3 isotropic resolution.

Clinical dMRI acquisitions in fetuses
A total of 11 fetuses each scanned at a gestational age between [24, 38.71] weeks (mean±std=28.89±4.6 GW) were included in
this study. All subjects were scanned using a 3T Siemens Skyra MRI scanner, with one b0 and 12 diffusion-sensitized images
at b = 500 s/mm2, with a TR of 3000–4000 ms and a TE of 60 ms. The diffusion scans were repeated between 2 to 5 times
during acquisitions, and one of the scans with the least amount of fetal motion was chosen for the analysis. Preprocessing
of the data was performed to correct for noise59 and bias field inhomogeneities60. Registration of the images to a T2 atlas61

was carried out using rigid transformation, and b-vectors were subsequently rotated accordingly. The resulting images were
upsampled from 2×2×3−4 mm3 to 1.5 mm3. Ethical approval for this study on neonatal and fetal MRI scans was granted by
the Institutional Review Board Committee at Boston Children’s Hospital.

Histological post-mortem fetuses
Neonatal post-mortem human brain specimens without evident pathological changes are part the Zagreb Collection of Human
Brains62. Tissue was obtained during regular autopsies either after spontaneous abortions, or after the death of prematurely
born infants at the clinical hospitals associated to the University of Zagreb, School of Medicine. After fixation in 4%
paraformaldehyde (PFA), tissue was embedded in paraffin. Sections were cut in coronal plane and proceeded with routine
immunohistochemistry protocol. In brief, after deparaffinization and 0.3% hydrogen peroxide treatment, sections were
incubated in blocking solution: 3% bovine serum albumin BSA and 0.5% Triton x-100 (Sigma, St. Louis, MO) in 0.1M
PBS. Next, sections were incubated with primary antibodies (anti-GFAP, Dako, z-0334, 1:1000; anti-SMI-312 [panaxonal
anti-neurofilament marker], Biolegend, 837904, 1:1000) at room temperature overnight. Following washes, sections were
incubated with secondary, biotinylated antibodies according to manufacturer’s protocol (Vectastain ABC kit, Vector Laboratories,
Burlingame, CA). Staining was developed using 3,3-diaminobenzidine (DAB) with enhancer (Sigma, St. Louis, MO) and slides
were coverslipped (Histomount mounting medium, National Diagnostics, Charlotte, NC). Finally, staining was visualised by a
high-resolution digital slide scanner NanoZoomer 2.0RS (Hamamatsu, Japan). Tissue sampling was performed in agreement
with the Declaration of Helsinki, 2000, previously approved by the Institutional Review Board of the Ethical Committee,
University of Zagreb, School of Medicine.

Model
Our study employed two different neural networks, one for inference on neonates (DLn) and another for inference on fetuses
(DL f ). DLn was trained on newborn subjects using six single-shell (b = 1000 s/mm2) measurements, and DL f was trained
on pre-term subjects using twelve single-shell (b = 400 s/mm2) measurements. To make the model independent on gradient
directions, we projected the signal onto spherical harmonics basis (SH) with SH-Lmax order 2 and 4 for DLn and DL f ,
respectively, to predict the fiber orientation distribution (FOD) represented in the SH basis with SH-Lmax order 8. The latter is
composed of 45 coefficients (45 channels for the network) and was generated using 300 multi-shell measurements obtained
using MSMT-CSD18. These measurements were distributed over three shells with b-values of 400,1000,2600 s/mm2 and had
64, 88, and 128 samples, respectively, along with 20 b0 (b = 0 s/mm2) images. The input measurements for the model were
based on the scheme proposed by Skare et al.44, which minimized the condition number of the diffusion tensor reconstruction
matrix.

Network architecture
The deep convolutional neural network can be seen in the yellow box of Figure 9. It aims at directly learning a cascade of
features (i.e. feature maps) from the input data that can predict the target FODs, namely the 45 SH coefficients. These features
are randomly selected in the beginning and are gradually learned, after each iteration, by minimizing the error between the
ground truth FODs and the predicted FODs by the network. The network architecture resembles that of U-Net63 with two main
modifications. Firstly, the network has extensive short and long-range residual connections, which provide more context to
subsequent layers. This design choice is particularly important given the low dimensionality of our input (6 channels) compared
to the output (45 channels). Secondly, the conventional max-pooling operations in the contracting path have been replaced with
stride-2 convolutions to enable downsampling as a learnable step that is specific to each layer. The first block is set to 36 feature
maps that are doubled after each contracting block. Each layer is composed of convolutions that are followed by Rectified
Linear Unit (ReLu)64 activation functions, followed by a dropout65 layer. For the output layer, neither ReLu nor dropout were
applied.
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Figure 9. Schematic illustration of the proposed deep learning framework for predicting the Fiber Orientation Distribution
(FOD). The input to the network consists of 3D patches derived from 6 diffusion measurements, which are normalized with b0.
The network predicts the spherical harmonic coefficients (of order SH-Lmax = 8) of the FOD for the input patch. Two example
patches are shown in blue and red. The network trained on pre-term newborns takes 12 instead of 6 measurements.

Training strategies
The input data was first normalized by b0 to improve network convergence and to reduce b-value dependency. Data were split
into training, validation and test sets: for DLn, 109, 36 and 320 subjects, respectively; for DL f , 58, 19, pre-terms and 11 fetal
subjects, respectively. To ensure balanced patch selection per batch, the number of FOD peaks (extracted using Dipy66) was
used as a criterion. The central voxel of each patch was restricted to be in the generated white matter mask and to have one
peak in 2

3 of the batch and more than one peak in 1
3 of the batch. This condition ensured that empty patches were not selected.

The patch size was empirically varied in {83, 163, 363, 483} voxels (no performance increase was observed for patches bigger
than 163, so all networks used 163 voxels). At testing, the method employed a sliding window technique to sequentially process
all non-empty patches.

We used Adam optimizer67 to minimize the ℓ2 norm loss function between the predicted 45 spherical harmonic (SH)
coefficients and the ground truth fiber orientation distribution (FOD) SH coefficients. Since the order of the magnitude of
the coefficients depends on which SH-order the coefficient belongs to, we have used pre-defined weights to penalize small
coefficients. These weights were inversely proportional to the order of the magnitude of the coefficient in the GT. Namely,
these weights were proportional to the first SH coefficient and were around 2.5, 4, 7.5 and 20 for coefficients of SH order 2, 4, 6
and 8, respectively. However, no gain was observed with this scheme so all coefficient weights were set to 1.

The batch size was set to 27 for DLn and 9 for DL f , and the initial learning rate was set to 10−4. The learning rate was
decreased by a factor of 0.9 whenever the validation loss did not improve after one epoch. The total number of training epochs
was 10000, and a dropout rate of 0.1 was used in all layers to reduce overfitting and improve generalization. In DL f , Gaussian
noise (µ = 0, σ = 0.025) was injected to the input training data to encourage robustness to noise in fetal data. Moreover, small
rotations (uniformly from [−5◦,+5◦]) were applied to improve the robustness of the model to minor uncorrected movements
due to small differences in scanning field of view and fetal head motion.

Implementation details
All models were implemented using TensorFlow (1.6) and run on an NVIDIA GeForce GTX A6000 on a Linux machine with
125 GB of memory and 20 CPU cores. Convergence of each model took approximately 40 hours. Testing takes less than 1
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minute per subject on the same machine. Code will be made publicly available.

Evaluation
Quantitative evaluation has been carried out for DLn predictions compared to the GT MSMT-CSD. Moreover, three state-of-the-
art techniques were computed as baseline models, namely: Constrained Spherical Deconvolution (CSD) method17, using 128
gradient directions from the highest shell (b-value of 2600 s/mm2) and 20 b0 images; Constant Solid Angle model33 which is
referred to as CSA; and the Sparse Fascicle Model (SFM)34 for which the default regularization parameters were employed.
The latter was only applied on 57 dHCP subjects as it takes a significant time to be run (around 7 hours per subject).

DLn, using 6 b0-normalized diffusion measurements, was also tested on the clinical neonate dataset and compared against
CSD using all measurements (35). Similarly, DL f using 12 b0-normalized diffusion samples was tested and evaluated against
CSD. Because clinical datasets do not have densely sampled (multiple-shell) measurements that can be considered as high
quality ground truth, only qualitative evaluation was performed.

Agreement within ground truth (∆GS∆GS∆GS)
We applied MSMT-CSD on two mutually exclusive subsets of the 300 measurements from the dHCP dataset. We denote the
estimation results from these two subsets with GS1 and GS2, and the difference between these with ∆GS. Each subgroup
consists of 150 samples at b ∈ 0,400,1000,2600 s/mm2 with 10, 32, 44, and 64 scans respectively. Both GS1 and GS2 can be
regarded as independent high-quality scans of the same subject with a similar protocol, i.e., the same b-values and the same
number but different gradient directions. Hence, any discrepancies between them with respect to diffusion metrics can be
considered as an error upper bound of errors between the different methods and the full GT.

Quantitative performance on dHCP dataset
We conducted a quantitative validation by evaluating the performance of different fiber orientation distribution (FOD) estimation
methods. The validation was based on three metrics, namely, the number of peaks, angular error, and the apparent fiber
density (AFD)19. The number of peaks was computed for the FODs predicted by the network and those estimated by various
methods (GT, GS1, GS2, CSD, CSA, and SFM). We set up a maximum number of 3 peaks, a mean separation angle of 45◦,
and a relative peak threshold of 0.5. The choice of these parameters was guided by the work of Schilling et al.68, which
demonstrated the limitations of current diffusion MRI models in correctly estimating multiple fiber populations and low angular
crossing fibers. We compared the different models based on confusion matrices and the agreement rate (AR) that is extracted
from the latter. AR was defined for each number of peaks p as:

AR =
Ap

ΣDp
(1)

where Ap represents the percentage of voxels where both methods agree on p number of peaks and Dp denotes the
percentage of voxels where at least one of the two methods predicts p and the other predicts p′ (p ̸= p′). This metric hence
captures intuitively the rate of concordance between two methods.

Mean angular error was also computed for voxels containing the same number of estimated peaks. For voxels with
multiple fibers, we extracted the corresponding peaks between the selected method and the GT (or the agreement between
GS1 and GS) by computing the minimum angle between all configurations, namely 4 configurations for 2 peaks and 9 for 3
peaks. We subsequently eliminated those peaks and applied the same algorithm recursively until all peaks are matched. We also
compared the error related to the apparent fiber density (FOD amplitude) along with the agreement between GS1 and GS2. We
performed a statistical validation using paired t-test corrected for multiple comparisons with Bonferroni method to compare the
errors of the different methods with respect to GT and the difference between GS1 and GS2.

The different error measures were correlated to quality control (QC) metrics provided by the SHARD pipeline of dHCP35.
Namely, Signal-to-Noise Ratio that is calculated from denoising residuals; (2) Motion metrics, i.e. translation and rotation
quantifying subject activity during scan and (3) Outlier ratio, as detected in slice-to-volume reconstruction35. We averaged
both translation and rotation metrics to have one metric that we label as motion. We have also added the age of scan to the
different QC metrics to check for any potential correlation. We have performed this analysis for the GT MSMT-CSD to assess
the consistency of the dataset across the QC metrics.

Qualitative assessment of clinical datasets
Detailed assessment was performed for the FODs generated on the clinical fetal dataset by an expert fetal neuroanatomist (LV).
The images were blinded and the method used to reconstruct the maps was masked for the reader. The 12 ROIs were selected
based on the anatomical knowledge (previously reported in Kunz et al. 201469). Next, the corresponding slices of volumes
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reconstructed with both methods were placed side by side and FODs were inspected in each ROIs using MRView70. Based on
the visual inspection and taking into the consideration coherence, orientation, and magnitudes, the ROIs were marked as ’better
with DL f ’, ’better with CSD’, or equal. After examining all the brains, we generated the table and counted ROIs and subjects
where DL f outperformed CSD, CSD outperformed DL f or tied.

Uncertainty estimation
A metric that expresses an increased likelihood on erroneous predictions can be very valuable in the absence of ground truth.
Uncertainty in that sense can be used for that aim. Post-hoc uncertainty using wild bootstrap that has been used in diffusion
tensor imaging71–73 was the method of choice that was most suited to our study. We randomly selected 6 gradient directions
(NWBS=60) from the 88 samples of the b = 1000 s/mm2 shell from the dHCP data. The 6 directions were constrained to have a
condition number44 of at most 2 to guarantee that the b-vectors are minimally uniformly distributed. We then computed for
each voxel, the standard deviation of the predicted FODs of the NWBS bootstrapped volumes (Equation 2). Given that FOD
coefficients have different orders of magnitude, this standard deviation was normalized by the norm of the FOD (Equation 3).
Specifically, for each voxel we calculate σnorm that we define as our uncertainty measure from:

σ =
1

NWBS

NWBS

∑
i=1

||FODi −µ||2 where µc =
1

NWBS

NWBS

∑
i=1

FODi,c and c ∈ {1,45} (2)

σnorm =
σ

m j
where m j =

1
45

45

∑
c=1

∣∣∣∣FOD j,c
∣∣∣∣ and j ∈ {1,NWBS} (3)
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Figure 10. Agreement rate (AR) and angular error (AE) for single, two and three fibers, and apparent fiber density (AFD)
error for the deep learning method (DLn), as a function of quality control (QC) metrics (Outlier ratio, Signal-to-noise ratio) and
scan age for N=320 subjects. No correlation is generally observed between the QC metrics and the error rates.
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