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Abstract: This paper proposes a uniqueness Shapley measure to com-
pare the extent to which different variables are able to identify a subject.
Revealing the value of a variable on subject ¢ shrinks the set of possible
subjects that ¢t could be. The extent of the shrinkage depends on which
other variables have also been revealed. We use Shapley value to combine
all of the reductions in log cardinality due to revealing a variable after some
subset of the other variables has been revealed. This uniqueness Shapley
measure can be aggregated over subjects where it becomes a weighted sum
of conditional entropies. Aggregation over subsets of subjects can address
questions like how identifying is age for people of a given zip code. Such
aggregates have a corresponding expression in terms of cross entropies. We
use uniqueness Shapley to investigate the differential effects of revealing
variables from the North Carolina voter registration rolls and in identify-
ing anomalous solar flares. An enormous speedup (approaching 2000 fold
in one example) is obtained by using the all dimension trees of Moore and
Lee (1998) to store the cardinalities we need.
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1. Introduction

An individual data point, such as one representing a person, can often be identi-
fied by specifying even a small subset of its variables. For instance, a large frac-
tion of US residents are uniquely identified by just their date of birth, zip code,
and gender (Sweeney, 2000, Golle, 2006). The website https://amiunique.
org/ will examine some signature variables in your browser and report whether
you are uniquely identified among the millions of participants. See Gémez-Boix,
Laperdrix and Baudry (2018) for a description.
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Variables are not equally powerful for the purpose of identifying an individual,
and the variables that provide the most information for one person might not
be very informative for another. It can also happen that two or more variables
specified together can be much more identifying than we might surmise given
their individual strengths for identifying people. The joint specification can also
be less informative due to associations between variables such as near duplicates.

In this paper we propose a way to measure how important a variable is for
identifying one specific subject in a set of data. Our definition of importance
is based on Shapley value from economic game theory (Shapley, 1953). An im-
portant variable is one that, when revealed for a subject, greatly reduces the
number of subjects who could match it. This measure takes account of which
other variables might also have been revealed, and so it depends on the full joint
distribution in the data set not just one or a few marginal distributions of the
data. It does not assume that any set of variables necessarily provides a unique
identification of the subject, as might fail to happen for twins.

The game theoretic formulation provides a principled way to aggregate subject-
specific importances to variable importance measures for the whole data set or
for subsets of special interest, using the additivity property of Shapley value.
The measure is an extension of the cohort Shapley measure that Mase, Owen
and Seiler (2019) use to quantify variable importance for black box functions.

Other things being equal, a more identifying variable is one that is more worth
concealing for privacy purposes, or more valuable for personalization. That said,
our measure is not designed for settings like differential privacy (Dwork, 2008)
where one seeks privacy guarantees. We use it instead for exploratory purposes.

An outline of the paper is as follows. Section 2 introduces our notation, re-
views Shapley value and defines the uniqueness Shapley values of each input
variable for a given subject. Variables with greater Shapley value are more iden-
tifying. Section 3 shows that the uniqueness Shapley value can be related to an
entropy measure. When aggregated to an entire data set, the uniqueness Shapley
value for variable j is a weighted sum of the conditional empirical entropies of
variable j given all subsets of variables not including j. When we aggregate only
over a proper subset of subjects the resulting Shapley value expression replaces
entropies by cross-entropies linking the empirical distribution on the subset to
the full data set. A naive implementation of aggregated uniqueness Shapley
value will have a cost that is quadratic in the number of subjects. Section 4 de-
scribes the all dimension trees of Moore and Lee (1998) that we have found to
give an enormous speedup making the difference between feasible and infeasible
computation in some of our examples. Section 5 explores a solar flare dataset
from Dua and Graff (2017). We treat solar regions with the most extreme and
potentially dangerous flares as anomalies and then, as a step towards explaining
those anomalies, look at which variables most identify them. Section 6 looks at
voter registration data from the state of North Carolina. We compare the extent
to which race, age, gender and other variables serve to identify voters. Section 7
gives conclusions and discusses some further issues.
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2. Notation and background

We suppose that there are d categorical variables measured on each of n subjects.
Subject 7 is described by a vector x; with components x;; € X for j =1,...,d.
The set of all subjects is denoted 1:n and the set of all variables is 1:d.

To begin, suppose that there is a target subject ¢t € 1:n, and we want to know
what variables identify subject ¢. For every subset of variables u C 1:d let x;,
be the tuple (x;;)jeu. Then we define the cohort

C(u) =Ci(u) ={i € Iin | &y = T},

of all subjects i who match subject ¢ on every variable in the set u. By convention,
C¢(2) = 1:n and no cohort is empty because they all include t. The size of a
cohort is the cardinality

n

N(u) = Ni(u) = Z i € Cy(u)}.

i=1

We consider variable j to be important for identifying subject ¢ if Ny(uU{j})
is typically much smaller than Ny(u) for u C 1:d \ {j}. In that case, knowledge
of x;; refines the cohort containing subject ¢ by a large factor. There are 29!
different cohorts into which {j} might be included, and we will use Shapley
value to incorporate them all.

To simplify some of our expressions, we introduce some notational short
forms. The set 1:d \ {j} is written as —j. When j ¢ u C 1:d then we write
u+ j for wU{j}. The set of all subsets of 1:d is written 2. When w is a finite
set, then |ul is its cardinality.

2.1. Shapley value

The Shapley value from game theory can be used to allocate value to the mem-
bers of a team that produced the value. In our context, the team will be made
up of variables whose values are specified, and the value will be defined by how
much subject ¢ is identified.

We work with a value function val: 254 — R where val(u) is the value created
by the team u, and we suppose that we are given val(u) for all u C 2%¢. The
total value created by the team is val(1:d), and the problem is to make a fair
allocation to members j = 1,...,d. The fair share for member j is denoted by
¢;. Shapley (1953) had these axioms:

1) (Efficiency) Z;l:l ¢; = val(1:d),

2) (Symmetry) if val(u + j) = val(u + j') whenever v C 1:d \ {j,j'} then

®j = by,

3) (Dummy) if val(u + j) = val(u) whenever © C —j then ¢; = 0 and

4) (Additivity) if two games have value functions val and val’ and shares ¢;

and ¢/; then the game with values val(u)+val’ (u) must have shares ¢;+¢/.
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The fair shares depend strongly on the incremental value of variable j given
that variables u C —j are already included. It is convenient to use

val(j|u) = val(u + j) — val(u) (1)

to represent this incremental value. Shapley (1953) finds that there is a unique
set of shares ¢; (called Shapley values) that satisfy his four axioms. They are

5 zé 3 <d;|1>1val(j|u). 2)

uC—j

Another way to describe ¢; is to build a set from @ to 1:d by adding the
variables j € 1:d in a random order. At some point variable j appears with a set
u C —j of previously introduced variables. Then ¢; is the average of val(j | u)
taken over all d! variable orders.

We see from equation (2) that only value differences affect ¢, ..., ¢q. It is
often convenient to take val(@) = 0. If that does not hold we can replace every
val(u) by val(u) — val(@) without changing any of the ¢,.

2.2. Uniqueness Shapley

The value function we choose for identifying subject ¢ is

val(u) = —log, (]J\\g((;)) ) .

This definition satisfies val(@) = 0. The smaller the cardinality N;(u) of Cy(u),
the more @, , has served to identify subject ¢. One unit of val(-) corresponds to
information that halves the size of the cohort containing subject t. We quantify
the importance of zy; to the identifiability of subject ¢ via the Shapley value
¢; = ¢ ; derived from the value function in (3). The extent to which revealing
x¢; identifies subject ¢ depends on any previously identified variables @, for
u C —j. The uniqueness Shapley value combines all 291 of these contributions
in a way consistent with game theory. Those contributions take the form

Ni(u)
Ni(u + J)>

(3)

val(j|u) = log,

after cancellation of log, (N (2)).

The uniqueness Shapley value function is the cohort Shapley value function
of Mase, Owen and Seiler (2019) after the within-cohort average of a response
variable is replaced by the cardinality of the cohort.

Proposition 1. The uniqueness Shapley value ¢y ; satisfies ¢ ; = 0 with ¢y ; =
0 if and only if xij = x¢j for alli=1,...,n.

Proof. If j & u, then Ny(u + j) < N;(u) and from this we find that ¢, ; > 0. If
xij = x4 for all ¢ then Cy(u + j) = Cy(u) for j & u making Ny(u) = Ny(u + j)
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and val(u + j) — val(u) = 0. Conversely, suppose that ¢, ; = 0 but z;; #
xj for some i. Then Ny ({j}) > Ni(@) from which val({j} | @) > 0. This
provides a contradiction because there cannot be any compensating negative
value differences to bring the Shapley value down to zero. O

Now suppose that we want to quantify the importance of variable j to the
whole set of subjects. The additivity axiom of Shapley value makes it natural
to sum those values. For interpretability we scale that sum to an average over
subjects taking

‘ 1 «
;" =~ ; Pt (4)

as our global measure of the cardinality importance of variable j.
For an arbitrary non-empty subset v C 1:n of subjects we can also define

1
95 = ol > duie ()

tev

Suppose for instance that z;; encodes the gender of subject i. We can then
define a set v consisting of all the subjects with one of the genders in the data
set and then ¢7 describes the extent to which gender identifies people of the
given gender. This is not necessarily zero even though gender is constant over
i € v because the Shapley values ¢, ; are defined on the entire subject set 1:n.
For some other feature j' such as age in years we can then measure the extent
to which j’ identifies subjects of a given gender and see how this varies as we
change the set v to each gender in turn.

3. Relationship to information theory

It is natural to consider entropy as a measure of how informative a feature is for
identification. Gémez-Boix, Laperdrix and Baudry (2018) report entropy val-
ues for individual variables in their browser fingerprint data. Here we introduce
some information theoretic quantities and show that uniqueness Shapley value
aggregated over subjects is equivalent to entropy when the features are inde-
pendent. More generally, aggregating the uniqueness Shapley measure yields a
linear combination of conditional entropies. Aggregates over proper subsets of
subjects involve cross-entropies.

For a categorical variable x € X with & ~ p we write the entropy of both x
and p as H(xz) = H(p) = =) ,cr p(x)logy(p(x)). For disjoint u, % C 1:d the
conditional entropy of x, given x; is

H(xy|zz) = Z p(za)H(xy|Ta = za), where
z2a€Xg

H(wy|®a = 23) = — Y play|@s = za) logy (p(@ |25 = 23)).
Ty EXy
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By the chain rule for entropy (Cover and Thomas, 2006, Theorem 2.2.1)
H(xy|xa) = H(xwua) — H(zy).

We will work with the entropy of sub-vectors of x and for this we write H(u) =
H(u;x) = H(x,) when the distribution of x,, is understood from context. Sim-
ilarly, H(u|@) denotes H(x, |x4z). For j € u we may abbreviate the conditional
entropy H({j}[u) to H(j|u).

3.1. Relationship to entropy

Let p(-) be the empirical distribution on X with

n

pa)= -3 1o = i) ()

i=1

For j € 1:d, let p; be the marginal distribution of «; under (6) and for v C 1:d
let p,, be the marginal distribution of x,, under (6).

We say that two or more variables are independent in the data if they are
independent random variables under (6). Exact independence is quite unlikely
to occur but it provides an interpretable baseline via Shannon’s entropy.

Proposition 2. Suppose that x(;y is independent of x_; under (6). Then

¢;" =H({j}).
for @ with the empirical distribution (6).
Proof. Consider subject t. Because xy;, is independent of x_; we find that

z4,¢jy 1s independent of z; _;. This means that for all u C —j,

Ni(u+j)
“N(u) = p;(7t;)

and then ¢, ; = —logy(p;(zs;)) based on its expression as an average over
permutations of incremental values. Now aggregating over subjects,

n

w1
o= LS o) =~ S p@hsne). O

t=1 TEX);

As usual, the proper interpretation of 0log,(0) is zero. If all the variables
are independent, then they all have a uniqueness Shapley value equal to their
entropy. The connection to entropy goes further.

Proposition 3. The global uniqueness Shapley value for variable j is
-1
—2 ¥ (")) mul ™
uC —J

where the conditional entropies are computed for a random wvector x with the
empirical distribution (6).
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Proof. For t € 1:n we have N¢(u)/N¢(@) = N¢(u)/n = py(x,,). Then

val'" (u) = % Z —logy(Ni(u)/n) = H(u) + logy(n)

t=1
and so val'™(j|u) = val"™ (u+ j) — val"*" (u) = H(u+j) — H(u) = H(j|u). O

Because conditional entropies are non-negative and val(1:d) is the entropy of
x under p, we have the bracketing inequality

H({H)

Ul < g < urea. ®)
Noting that H(@) = 0 we find for d = 2 that
. 1 1
1= SR + 5 HELH{2)) (9)

with ¢3™ found by switching indices. For d = 3,

B = SHOD + U D) + gD + SH1 2.3))

It may seem counterintuitive that larger entropy corresponds to greater power
to identify subjects. If a variable takes two levels, say 0 and 1, then the distri-
bution with greatest entropy is the one that gives them each probability 0.5.
Revealing that variable provides ‘1 bit’ of cohort reduction. If instead there
is a 90:10 split for some variable then 10% of the population find that their
cohort size is greatly reduced by 10-fold (log,(10) ~ 3.3) but 90% find their
cohort size reduced by the much lower amount, 1/0.9. This is about 11% and
log,(1/0.9) = 0.15, so the average number of bits is 0.1 x 3.3+ 0.9 x 0.15 ~ 0.46.

The largest possible global uniqueness Shapley value for a binary predictor
variable z; is qﬁjl-:” = —log,(1/2) = 1. In the solar flare example of Section 5 we
will see ¢ > 1 for a binary predictor z; and a set v of anomalous observations.

3.2. Relationship to cross entropy

For two distributions p(x) and ¢(x) on a discrete set X’ the relative entropy
(Kullback-Leibler distance) from p to g is

Diallp) = Y gl log (42)),

TeEX p(w)

Similarly, the cross entropy of p relative to g is

H(p,q) =— > q(x)logy(p(x)) = H(q) + D(q| p).
rxeX

It is very common to write these expressions with symbols p and ¢ reversed,
but in our setting, the second argument needs to be the empirical distribution
from (6) that we have labeled p. For distribution ¢, we use marginal distributions
¢j, qu and gu4; analogous to the quantities that we have used previously for p.
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Proposition 4. The uniqueness Shapley values for subset v of subjects at (5)
can be written

-1
qﬁ;’ = 1 <d_ 1) (H(pu+j7qu+j) - H(puuQu)) (10)

where q is the uniform distribution on x; fort € v.

Proof. First, by definition
-1
j |U|Z Z ( ) val(j|u)
tev uC—j
)
dz(w) I\; ( (w+J)

Next, for a set w C 1:d,

pw;(hu = Z Qw 10g2 pw( ))

xreX

This sum can be rewritten over ¢ € v as long as we divide out the multiplicity
for each & among the x; for t € v yielding

H(pon ) = = Y 577yt @) 102 (@)

Here Ny (w) = ;. 1{i € C¢(w)} is the number of subjects in v that match
x; on the features in w. As g, is the uniform distribution over x; for ¢t € v,
qw(xt) = (NP (w)/|v]), i.e., the proportion of subjects in v that match x; on the
features in w. Therefore

“)

H(pw, quw) = Z <

tev

With this formulation we can see that

-1
(li Z (d_l) (H(Putjs Qutj) — H(Pu, qu))

|ul

(dm) (( ZI\ (NuTm))_(_Zlilg (NT(LU))))

- Z,<du|) ||Z o8 (miey) =

uC—y

O
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3.3. Duplicate and redundant variables

If some other variable j’ is equivalent to variable 7, then it must have the same
uniqueness Shapley value. The extreme version of this is that the second variable
could have been copy-pasted from the first one by accident. More plausibly there
could be two variables like a person’s email address and cell phone number that
have very nearly a one to one relationship in a data set of transactions.

Let’s look at ¢1*® in the special case where all x;3 = ;1. Then H({1,3}) =
H({1}) = H({3}) and H({1,2}) = H({2,3}) = H({1,2,3}) and we find that

o = SHD) + GH 2D)

This is strictly smaller than the value in (9) unless @1y is constant in the data
in which case both are zero.
Next we consider the effect of introducing this duplicate on ¢3™. We get

1

E = SH((2)) + SR D) + gHO2) 3D + 302} (1,3))

1 2
= 3H({2D) + FH{2H{1D).

The coefficient of H({2}) has decreased from 1/2 to 1/3 while the coefficient of
H({2}|{1}) has increased from 1/2 to 2/3.

A redundant variable is one that can be perfectly identified based on some
subset of other variables. Like a duplicated variable, the redundant ones do not
get a uniqueness Shapley value of zero.

3.4. Database key

Suppose that one of the variables uniquely identifies each subject. That is, we
never have x;; = x;; unless ¢ = t. We can think of this as the key variable in a
database or even the row number in a data frame. The presence of this variable
forces val(1:d) = logy(n) (its largest possible value) for every subject. For each
subject, N¢(u) = 1 whenever the key is in u.

We can look at val(j|u) where u C 1:d is a set of variables and now suppose
that we introduce a database key with index 5 = 0. For each of the prior
d! orders in which variable j > 1 could have been included there are d + 1
positions at which the new variable j = 0 could be introduced. If variable 0 is
introduced after variable j then the incremental value is unchanged. If variable
0 is introduced before variable j then the new incremental value for variable j is
0. Therefore introducing the key changes the uniqueness Shapley value for one
subject to

=3 % <d|u|1>_ () wiG

uC—j
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- ﬁ u;j <|Z|>_lval(j ) (11)

because d — |u| of the d 4+ 1 possible insertion points preserve the incremental
value while the others remove it. Equation (11) holds for v C 1:n with ¢y ;
corresponding to v = {t}. The sum in (11) is taken over subsets u of the original
d variables exclusive of both variable j and the posited key variable 0.

After introducing the key variable, the contribution of val(j | u) is down-
weighted by a factor of (d —|u|)/(d+ 1), which ranges from d/(d + 1) for u = @
to 1/(d+ 1) for u = —j. The average value of this factor over sets u C —j is

Ld+1 2

Other things being equal we might expect that introducing the database key
will halve the other variables’ uniqueness Shapley values. Variables that get
their importance mostly from val(j|u) for small |u| are less affected by the key,

and variables that get their importance mostly from val(j|w) for large |u| will
lose more than half of their uniqueness Shapley values.

IS

4. All dimension trees

It would require O(n|u|) time to compute N¢(u) by naively checking which
subjects match the target ¢t on a particular subset of features u. For a naive
calculation of the uniqueness Shapley, we would therefore need to compute N;(u)
0O(2%) times for each combination of feature and subjects to calculate each k.
Therefore, the full run time of the naive implementation of uniqueness Shapley
would be O(n%d?2%). For a reasonably large number of subjects, the n? factor
can be computationally prohibitive even when d is not large. To improve upon
the naive implementation, we employ a more suitable data structure: the all
dimension tree of Moore and Lee (1998).

The all dimension tree is optimized for tasks similar to calculating N¢(u), i.e.,
generating contingency tables. The basic structure takes categorical data and
constructs a tree where each branch corresponds to a particular “feature equals
value” query, and the subsequent node stores the count of all subjects for whom
that query and all preceding queries in the tree are true. To compute Ny(u)
for a given t,u pair, you start at the root of the tree and follow the branches
corresponding to queries x; = x4; for all j € u, and the count stored in the
resulting node would be N;(u). Therefore, with such a tree structure, we only
require O(|u|) time to compute N;(u) which no longer scales with the number
of subjects. Note that the same tree can be used for all subjects, so it need not
be constructed more than once for a single data set.

A naive version of this structure would generally require a prohibitive amount
of memory, thereby rendering the computational savings moot even for relatively
small d. The innovation of the all dimension tree comes from its techniques to
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Algorithm 1 Uniqueness Shapley Pseudo Code

1: input: feature matrix X

2: T=ADTree(X)

3: Shap=zeros(n,d)

4: for subject i =1,2,...,n do

5: for feature j =1,2,...,d do

6: for u C 7j1d0

’ Al

8: N1=T.query(i,u)

9: N>=T.query(i,u+j)
10: Shapl[i,j]+ = vlog(N1/N2)
11: end for
12: end for
13: end for

14: Return Shap

TABLE 1
Run times in seconds for uniqueness Shapley for the solar flare data, the full North
Carolina census data, and two specific counties of North Carolina census data.

Data n d ADTree Standard
Solar Flare 1,066 9 5.30 54.55
Dare County Census 30,921 5 1.91 2,522.40
Durham County Census 253,563 5 16.46  32,426.91
North Carolina Census 7,538,125 5 362.51 n/a

reduce memory requirements especially in the common cases of sparsity and cor-
related features. They use several different methods to achieve this goal which
are not relevant to the scope of this discussion except that they succeed in reduc-
ing the memory cost. For example, for binary features, the memory requirement
is O(29) in the worst case compared to O(39) in the dense naive implementation,
and it can achieve O(d) in the best case. Performance closer to the best case is
achieved when features are distributed more unevenly and are more correlated,
resulting in a sparser distribution. The time to initially construct the all dimen-
sion tree is also linear in n and while worst-case exponential in d, it is not worse
than our dependence to d in the Shapley calculation. This makes our overall
implementation of uniqueness Shapley using all dimension trees O(nd?2%). A
speed up by a factor of n. We use the all dimension tree Python implementation
developed by Ding (2018).

For a reasonably large number of features d, this implementation is no longer
computationally feasible. In those cases, a Monte Carlo approximation must
be employed as in Maleki et al. (2013). The all dimension tree structure can
also be adapted for large d to reduce its memory dependence at the cost of
only approximately calculating N;(u) which is also discussed in Moore and Lee
(1998). Our present examples did not have such very large d. An implementation
of uniqueness Shapley can be found on our GitHub: https://github.com/
cohortshapley/uniquenessshapley.
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TABLE 2
Nine solar flare predictor variables. The ‘this pass’ variable answers the question: Did the
region become historically complex on this pass across the sun’s disk? Source: https://
archive.ics.uct.edu/ml/datasets/Solar+Flare

Variable Levels

Modified Zurich class (A, B, C, D, E, F, H)

Largest spot size (X, R, S, A, H, K)

Spot distribution (X, 0,1, C)

Activity (1 = reduced, 2 = unchanged)

Evolution (1 = decay, 2 = no growth, 3 = growth)

Prior 24 hr activity (1 = no > Mls, 2 = one > M1, 3 = multiple > M1s)
Historically-complex (1 = yes, 2 = no)

This pass (1 = yes, 2 = no)

Area (1 = small, 2 = large)

5. Solar flare data example

Many data sets have a few entries that are anomalies, such as outliers. There
have been many efforts to detect anomalies and others to explain them. For a
survey of anomaly detection, see Chandola, Banerjee and Kumar (2009). Jacob
et al. (2020) provide the Exathlon benchmark for anomaly explanation methods,
aimed at time series. They include a method based on marginal entropies.

In this section we look at the solar flare data set from the UC Irvine repository
(Dua and Graff, 2017). Some of the solar flares have been marked as unusual
(anomaly detection). We consider uniqueness Shapley as a way to understand
which variables make the anomalous data most unique. We must add that find-
ing an identifying variable for an anomaly is a kind of association and is not
necessarily causal. For instance, an unusual person’s social security number is
very identifying but is unlikely to be causal.

We use the second solar flare data set from the UC Irvine repository because
it is said to be more reliable. It describes n = 1066 regions on the surface of the
sun. There are 10 categorical predictors and 3 responses indicating the number
of common (C class), moderate (M class) and severe (X class) solar flares in each
region over a 24 hour period. Severe flares are 100 times as strong as moderate
ones which in turn are 10 times as strong as common ones. The M class flares
can cause radio blackouts or endanger astronauts. There are also numerical
gradations within these classes. See https://www.nasa.gov/mission_pages/
sunearth/news/X-class-flares.html.

Some of those solar regions are much more interesting than others. All but
five of them had no severe flares. Of those five, one had two severe flares. Four
of the regions had three or more flares rated moderate or severe, so we consider
those too. We will use uniqueness Shapley to study these anomalies in terms of
the categorical predictors of the data set. The first nine categorical predictor
variables are described in Table 2. A tenth variable, about the area of the largest
spot, was constant for all 1066 regions. We omit that variable and work with
d = 9 others.

The first two columns of Table 3 show entropy and uniqueness Shapley val-
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TABLE 3
The first two columns give entropy and uniqueness Shapley for the nine solar flare
predictors. The next three columns cover three types of anomalies in increasing order of
severity as described in the text. The ‘Area’ variable takes on increasing importance as
severity increases while ‘This Pass’ decreases.

Variable Entropy Shapley Common Moderate Severe
Zurich 1.64 1.37 1.72 1.62 1.81
Large Spot 1.52 1.55 1.69 1.62 1.23
Spot Dist 1.16 0.92 1.17 1.34 1.49
Activity 0.43 0.45 0.73 0.67 0.86
Evolution 0.90 1.17 0.98 0.98 0.85
Prev Activ 0.18 0.16 0.33 0.43 0.93
Complex 0.67 0.77 0.69 0.69 0.29
This Pass 0.38 0.35 0.15 0.11 0.03
Area 0.12 0.07 0.22 0.43 1.36

ues for the 9 predictors in the solar flare data. Zurich and large spot are the
most identifying. Area is least identifying. In this data, many of the uniqueness
Shapley values are below their corresponding marginal entropy.

The last three columns of Table 3 shows cardinality Shapley for some subsets
of solar regions of increasingly anomalous nature. They are those with at least
one common flare, at least one moderate flare, and, finally, at least one severe
flare. The area variable which is so unimportant globally becomes ever more
identifying for these anomalies. So does ‘previous activity’ These variables are
associated with anomalous solar behavior in that the more extreme the behavior,
the more identifying these become.

6. North Carolina voter registration data

Here we consider a real world demographic example in the vein of Sweeney’s
original work (Sweeney, 2000). The state of North Carolina publishes voting and
demographic information about all of its registered voters each election. Some
information is withheld to maintain privacy such as exact birth dates, exact
addresses, and social security numbers. From the available features, we looked
at zip code, age, race, gender, and political party affiliation for n ~ 7.5 x 10°
registered voters in the state. Summary uniqueness Shapley values and baseline
marginal entropy values can be found in Table 4. There we can see that the
relative ordering of the uniqueness Shapley values is consistent with the entropy
values, but that we have large positive deviations for zip code and age. All
variables had Shapley value greater than their entropy. Recall that the lower
bound on the Shapley value is one fourth of the entropy, since d = 4.

In Table 5, we can see the average uniqueness Shapley values for various sub-
populations of the state. Some patterns follow logically from the relative class
sizes, as for example, members of races that make up a smaller percentage of the
population have larger uniqueness Shapley values for race on average. Clearly
membership in a less common class should help to uniquely identify someone.
Other noticeable patterns highlight the effects of the correlation structure not



14 B. B. Seiler et al.

TABLE 4
North Carolina voter registration average uniqueness Shapley and marginal entropy. Source:
https://www.ncsbe. gov/results-data/voter-registration-data

Zip Code Race Party Gender Age

Shapley 8.58 1.22 1.48 1.17 5.39
Entropy 6.08 1.08 1.14 0.92 4.24
TABLE 5

North Carolina voter registration data’s average uniqueness Shapley values for variables
aggregated over voter subgroups. Final column is percentage of total population.

Subgroup Zip Code Race Party Gender Age % Pop.
Democratic 8.44 1.54 1.31 1.14 5.47 36
Libertarian 8.15 1.16 6.65 1.14 4.54 1
Republican 8.76 0.72 1.51 1.15 5.50 30
None 8.57 1.32 1.51 1.22 5.23 33
Female 8.58 1.18 1.46 0.97 5.46 49
Male 8.61 1.15 1.49 1.20 5.40 42
No Answer 8.42 1.76 1.53 2.24 4.91 8
White 8.75 0.53 1.58 1.09 5.52 63
Black 8.28 1.70 1.14 1.10 5.35 21
Asian 7.56 5.44 1.44 1.09 5.01 1
Native American 7.64 5.14 1.40 1.01 5.13 1
No Answer 8.45 2.27 1.54 1.91 4.94 10
Age < 32 8.49 1.52 1.52 1.26 4.63 25
3248 8.48 1.33 1.50 1.20 5.22 25
48-63 8.61 1.13 1.46 1.15 5.33 25
> 63 8.71 0.90 1.44 1.09 6.34 25

captured by the marginal entropy measures. For example, the average cardinal-
ity value for race decreases for older age cohorts.

To further investigate the relationship between class imbalance and the unique-
ness Shapley value, we look at zip code defined subpopulations in Figure 1. We
plot the Shapley value for race versus the proportion of the population that
does not identify as white. There are a handful of large positive outliers to this
trend. Upon further inspection, we can note that these are all zip codes with a
very high proportion of American Indian voters.

We can also measure the effect of feature granularity on the uniqueness Shap-
ley values. Instead of recording location by zip code, we can coarsen it to the
county level or even the whole state. The results for this adjusted dataset are
in Table 6. The uniqueness Shapley values for the other variables are not sen-
sitive to this coarsening. Similarly, instead of considering each age by year, we
can coarsen the grouping level to five or ten or 25 years and again we see no
meaningful changes outside of the expected reduction in the age feature, even
if we lump all ages into one bucket.

Beyond summary tables, we can visualize individual values in plots such as
Figure 2. Each vertical line corresponds to a single voter with the height of each
colored segment representing the uniqueness Shapley value for the respective


https://www.ncsbe.gov/results-data/voter-registration-data
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Fic 1. Awverage uniqueness Shapley for race in a zip code versus proportion of the population
in that zip code that is not ‘White’. The reference shows entropy of race for a hypothetical pop-
ulation sampled independently from North Carolina except that it has the implied proportion
‘White’.

feature. They are ordered by their overall uniqueness, and we only display every
hundredth voter so they fit in the figure.

7. Discussion

We have used Shapley value to quantify and compare the power that differ-
ent categorical variables have to identify a subject. When we use the additive
property of Shapley value to average this measure over a population we get an
expression that equals a weighted sum of conditional entropies. Variables that
when revealed increase entropy are the ones that most identify subjects. When
we average over a different distribution, such as a sub-population of interest,
the entropies are replaced by cross entropies.
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TABLE 6
North Carolina voter registration average uniqueness Shapley. The first block coarsens
location from zip code to county to state. The second block coarsens age, starting with the
original single year granularity.

Location Race Party Gender Age

Zip Code 8.58 1.22 1.48 1.17 5.39
County 5.55 1.27 1.50 1.19 5.43
State 0.00 1.32 1.53 1.19 5.45

Zip code Race Party Gender Age
Single year 8.58 1.22 1.48 1.17 5.39
5 year age buckets 8.61 1.24 1.50 1.18 3.34
10 year 8.62 1.24 1.50 1.19 2.39
25 year 8.63 1.25 1.51 1.19 1.19
One bucket 8.64 1.25 1.51 1.19 0.00

Individual Shapley Values
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F1G 2. Individual Shapley values stacked vertically (subsampled every 100).

The extent to which a variable makes you unique depends on the order in
which it and other variables are revealed. Some variables might, if revealed last,
be very identifying. Other variables might be redundant if revealed last but
very informative if revealed early due to associations among the variables. The
Shapley formulation combines all of the orders in which a variable might be
revealed.

In this work we have kept to data sets with a modest number d of variables
because computation of Shapley value can include a cost that grows proportion-
ally to d2%, the number of cohorts a subject might belong to. There are Monte
Carlo sampling algorithms for Shapley value that allow larger d.

We have focused on categorical variables. Continuous variables can be coars-
ened into categorical ones by setting ranges. The finer the range the greater the
Shapley value is. This is appropriate because finer classifications really are more
revealing.

It is also possible to use asymmetric notions of symmetry for continuous
variables as considered in Mase, Owen and Seiler (2019). For instance if we
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declare z;; to be similar to x;; whenever |z;; — z4;| < d;|z¢;| we might find
that x;; is similar to x;; but not the converse. The proper way to account for
a continuous variable when quantifying uniqueness depends on how we expect
that variable might be revealed. We can compare the effects of revealing age
in 1 or 5 or 10 year windows and can also measure how the effect of revealing
another variable such as race or gender depends on the granularity with which
age has been revealed.
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