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The Square Root Rule for Adaptive Importance Sampling

ART B. OWEN, Stanford University

YI ZHOU

In adaptive importance sampling and other contexts, we have K > 1 unbiased and uncorrelated estimates μ̂k
of a common quantity μ. The optimal unbiased linear combination weights them inversely to their variances,

but those weights are unknown and hard to estimate. A simple deterministic square root rule based on a

workingmodel that Var(μ̂k ) ∝ k−1/2 gives an unbiased estimate of μ that is nearly optimal under a wide range

of alternative variance patterns. We show that if Var(μ̂k ) ∝ k−y for an unknown rate parameter y ∈ [0, 1],
then the square root rule yields the optimal variance rate with a constant that is too large by at most 9/8 for

any 0 � y � 1 and any number K of estimates. Numerical work shows that rule is similarly robust to some

other patterns with mildly decreasing variance as k increases.
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1 INTRODUCTION

A useful rule for weighting uncorrelated estimates appears in an unpublished technical report [22].

This article states and proves that result and discusses some mild generalizations. The motivating

context for the problem is adaptive importance sampling.

Importance sampling is a fundamental Monte Carlo method used in finance [9], reliability [1,

21], coding theory [7], particle transport [12, 13], computer graphics [23, 25], queuing [2], and

sequential analysis [14], among other areas.

The prototypical problem is to estimate a constant μ =
∫
f (x )p (x ) dx for a density function

p and integrand f . Although we illustrate the problem with continuous distributions, discrete

distributions are handled similarly. In importance sampling, we might estimate μ by

μ̂ =
1

n

n∑
i=1

f (x i )p (x i )

q(x i ;θ )
, for x i

iid∼ q(·;θ ). (1)
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13:2 A. B. Owen and Y. Zhou

The density function q must satisfy q(x ;θ ) > 0 whenever f (x )p (x ) � 0, in order to ensure that

E(μ̂) = μ. In this setting, we must also choose a parameter θ .
A common alternative method is self-normalized importance sampling with

μ̃ =
n∑
i=1

f (x i )p (x i )

q(x i ;θ )

/ n∑
i=1

p (x i )

q(x i ;θ )
, for x i

iid∼ q(·;θ ). (2)

This method is more restrictive in requiring q(x ;θ ) > 0 whenever p (x ) > 0 but less restrictive in

that it allowsp orq or both to be unnormalized, i.e., known only up to a constant of proportionality.

We focus primarily on μ̂, with a few remarks about μ̃.
After choosing θ and getting x1, . . . ,xn , we might well decide that some other value of θ would

have been better. For instance, we might think that some other θ would yield an estimate of μ with
lower variance. In adaptive importance sampling we estimate μ by μ̂k at iteration k � 1 using some

parameter θk . Then, we may use all the sample values from the first k iterations to select θk+1 for
the next round.

In an adaptive method with one pilot estimate and one final estimate, K = 2 and n is usually

large. In other settings, each μ̂k could be based on just one evaluation of the integrand (e.g.,

Ref. [24]), and then K would typically be very large. In intermediate settings, we might have

something like K = 10 estimates based on perhaps thousands of evaluations each. For instance,

the cross-entropy method [6] might be used this way. The total sample size used is N = nK . We

remark briefly on the possibility that the value of n varies with k in Section 7.

To specify an adaptive importance sampling method, one must come up with a family q(·;θ ) of
distributions, a starting value θ1, a choice for n, an algorithm for computing θk+1 from the data of

the prior k rounds, and a termination rule. This article addresses a different issue: after all those

choices have been made, how should one pool estimates μ̂1, . . . , μ̂K to get the combined estimate

μ̂? We have two main points to make:

(1) a natural approach using inverse sample variances to weight μ̂k is risky, and

(2) a simple deterministic weighting scheme is nearly optimal over a broad range of reason-

able conditions.

We will make the first point with some qualitative arguments and citations.

Most of the article is devoted to the second point showing that a simple deterministic rule is

nearly optimal over a set of assumptions ranging from what we consider unduly pessimistic to

what we consider unduly optimistic. To that end, we adopt a working model in which Var(μ̂k ) ∝
k−1/2. Using this working model, we get an estimate μ̂ satisfying E(μ̂) = μ along with an unbiased

estimate of Var(μ̂). The working model will ordinarily be incorrect, and the consequence of that

incorrectness is a larger value of Var(μ̂) than would have been attained using the unknown true

variances. We give conditions under which the resulting inefficiency is mild enough to be negli-

gible. That lets one avoid a potentially severe challenge of estimating the step-by-step variances

and then analyzing a complicated rule derived from those estimates.

This article is organized as follows. Section 2 gives reasons to study settings where Var(μ̂k )
will decay steadily but not dramatically, and with diminishing returns as k increases. Section 3

presents our notation and explains why we can assume that the estimates μ̂k are unbiased and

uncorrelated. Section 4 presents our linear combination estimator, discusses why it is safer to use

a prespecified linear combination of μ̂k than to use estimated variances, and gives an expression

for the relative inefficiency that stems from using a weighting derived from a potentially incorrect

power law. Section 5 states and proves our main result using two lemmas. It is that the square

root rule never raises the variance by more than 9/8 times the optimal variance for any setting
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The Square Root Rule for Adaptive Importance Sampling 13:3

where Var(μ̂k ) ∝ k−y for any 0 � y � 1 and any number K � 1 of steps. It is accurate to within

that constant factor even though the unknown optimal Var(μ̂) converges at rates ranging from

O (N −1) toO (N−2). Section 6 considers some alternative ways to model steady improvement with

diminishing returns.We find numerically that weighting proportionally tok1/2 loses little accuracy
under very general circumstances, although some variance patterns give worse than a 9/8 variance
ratio. Section 7 includes some remarks on how to weight the μ̂k in settings where even better

convergence rates, including exponential convergence, apply. Section 8 has brief conclusions.

2 PLAUSIBLE CONVERGENCE RATES

The key assumption we need to make is about how quickly the statistical efficiency of the individ-

ual estimates μ̂k increases with k . Very commonly f (x ) � 0 and then f (x )p (x )/μ is a probability

density function. If we could sample from that density, then we would have a zero variance es-

timate μ̂. In special circumstances, f (x )p (x )/μ = q(x ;θ ) for some parameter vector θ ∈ Θ ⊂ Rr

in an r -dimensional family of densities. It may then be possible to get good estimates of θk that

improve rapidly as k increases, with the effect that Var(μ̂k ) decreases exponentially fast to 0 as

k increases. This situation is very well studied in the literature. See Refs. [12], [13], and [18]. We

consider it to be especially favorable and not representative of importance sampling in general.

In other settings, f (x )p (x )/μ does not take the form q(x ;θ ) for any θ ∈ Θ, and then μ̂k cannot

have zero variance for finite n. It remains possible that θk approaches an optimal vector and then

Var(θ̂k ) can improve toward a positive lower bound but no further. Exponential convergence is

ruled out a fortiori.

The self-normalized estimator μ̃k cannot approach zero variance for fixed n outside of trivial

settings where f (x ) is constant under x ∼ p. It is a ratio estimator and the asymptotically optimal

q is proportional to | f (x ) − μ |p (x ). Any self-normalized estimator satisfies

lim
n→∞

nVar(μ̃) �
(∫
| f (x ) − μ |p (x ) dx

)2
.

See theAppendix of Ref. [21], which uses the optimal self-normalized importance sampler found by

Ref. [11], also given in Ref. [10]. When f (x ) is the indicator of an event with probability ϵ ∈ (0, 1)
under x ∼ p, then the asymptotically optimal self-normalized sampler has Pr( f (x ) = 1;x ∼ q) =
1/2, and any self-normalized importance sampler has

lim
n→∞

nVar(μ̃) � 4ϵ2 (1 − ϵ )2.

As a consequence, any nontrivial instance of the self-normalized importance sampler must also

have a nonzero floor on its mean squared error for fixed n. This rules out exponential convergence
for self-normalized importance sampling in non-trivial problems.

In a third possibility, q(x ;θ ) is an infinite dimensional family of densities in which p (x ) f (x ) can
be approached to any desired level of accuracy by some choice of θ . Following up on a strategy of

Ref. [26], the nonparametric importance sampler of Zhang [28] hasK = 2 steps. The second step is

an importance sample from a kernel density estimate of p (x ) f (x )/μ obtained using the first step

as a pilot sample. He gives conditions under which the mean squared error at the second stage

is O (N −(d+8)/(d+4) ) for x ∈ Rd . A multistep adaptive algorithm attains the same rate in N with a

different constant that is not necessarily better than using K = 2.

We consider exponential convergence to be a rare and special circumstance, and we are most

interested in problems where exponential convergence is not possible. We assume that Var(μ̂k )
reduces steadily with k but not spectacularly so, and most of our analysis assumes diminishing

returns as k keeps increasing. Our main model for steady variance reduction is Var(μ̂k ) ∝ k−y for

an unknown value ofy. While the actual variance won’t follow this pattern exactly, we expect that
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13:4 A. B. Owen and Y. Zhou

this pattern is qualitatively similar to realistic progress, and it is amenable to sharp analysis. Our

combined estimate is a linear combination of μ̂k . The resulting variance is a linear combination of

Var(μ̂k ), and so mild departures from a k−y pattern will have little effect on the conclusion.

We consider the case withy = 0 to be unduly pessimistic. It describes a setting where adaptation

brings no benefitwhatsoever.We considery = 1 to be unduly optimistic.While it is not as favorable

as the exponential case described above, we show below that it yields an asymptotic mean squared

error ofO (N −2). That is better than the nonparametric method can attain in even one-dimensional

problems, and it is much better than we can attain when p (x ) f (x )/μ cannot be approximated

arbitrarily well with some q(x ;θ ).
When f (x )p (x )/μ cannot be arbitrarily well approximated by q(x ;θ ) for any θ , then it is not

actually possible to have Var(μ̂k ) ∝ k−y for anyy > 0 and allk � 1. This exponential decay remains

a reasonable working model for initial transients over 1 � k � K for some finite K .
Our proposal is to weight the iterates μ̂k as if y = 1/2. The result is

μ̂ =
K∑
k=1

ωk μ̂k for ωk =

√
k∑K

i=1

√
i
, (3)

a square root rule.

3 NOTATION

Step k of our adaptive importance sampler generates data Xk . This includes all of the sample

points xki along with the function evaluations f (xki ), p (xki ), and q(xki ;θk ) at that step. It can
also include q(xki ;θ

′) for values θ ′ � θk . We let Zk = (X1, . . . ,Xk−1) denote the data from all steps

prior to the kth, with Z1 being empty. We assume that our estimates μ̂k satisfy

E(μ̂k |Zk ) = μ, and Var(μ̂k |Zk ) = σ 2
k < ∞, k = 1, . . . ,K . (4)

This is a reasonable assumption for the estimates in Equation (1), thoughwe are ruling out extreme

settings with σ 2
k
= ∞. The self-normalized estimate μ̃ of Equation (2) does not satisfy Equation (4)

because, as a ratio estimator, it incurs a bias of size O (1/n). For large n, the bias might be small

enough that Equation (4) becomes a good approximation for the self-normalized case also.

For the regular importance sampler in Equation (1),

Var(μ̂k ) = E(Var(μ̂k |Zk )) + Var(E(μ̂k |Zk )) = E(σ 2
k ) ≡ τ

2
k . (5)

There is ordinarily an unbiased estimate of σ 2
k
, such as

σ̂ 2
k =

1

n − 1

n∑
i=1

(
f (x i )p (x i )

q(x i ;θk )
− μ̂k
)2
.

Under some moment conditions, E(σ̂ 2
k
|Zk ) = σ 2

k
and then

E(σ̂ 2
k ) = E(σ 2

k ) = τ
2
k .

That is, σ̂ 2
k
is simultaneously an unbiased estimate of both the random variable Var(μ̂k |Zk ) and

the constant Var(μ̂k ).
In Ref. [22], μ̂k was an importance sampled estimate of an integral over the unit cube, sampling

from a mixture of products of beta distributions. Then, θk included the mixture components and

beta distribution parameters used at step k . That article considers a synthetic integrand formed

by a mixture of Gaussians and an integrand with positive and negative singularities from particle

physics.
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The estimates μ̂k are, in general, dependent because data sampled at step k influences the choice

of θ� for � > k , and thereby affects μ̂� . These estimates are uncorrelated because

Cov(μ̂k , μ̂� ) = E(E((μ̂k − μ ) (μ̂� − μ ) |Z� ))

= E((μ̂k − μ )E(μ̂� − μ |Z� )) = 0.

The underlying idea in the above expressions is that
∑L

k=1ωk (μ̂k − μ ) is a martingale in L [27], for

any fixed set of weights ωk . We will not make formal use of martingale arguments.

4 LINEAR COMBINATIONS

A simple strategy is to estimate μ by

μ̂ =
K∑
k=1

ωk μ̂k , where

K∑
k=1

ωk = 1.

For deterministicωk , we have E(μ̂) = μ with Var(μ̂) =
∑K

k=1ω
2
k
τ 2
k
and then V̂ar(μ̂) =

∑K
k=1ω

2
k
σ̂ 2
k
is

an unbiased estimate of Var(μ̂), even if Var(μ̂k ) is not proportional to ω
−1
k
.

To minimize Var(μ̂), we should take ωk ∝ Var(μ̂k )
−1. The problem is that we do not know

Var(μ̂k ). It is not advisable to plug in the unbiased estimates σ̂ 2
k
and take ωk ∝ σ̂−2

k
, for several

reasons that we outline next.

The importance sampling context is often one where f (x ) is the indicator of a very rare event.

For background on importance sampling for rare events, see Ref. [17]. Another common setting

is for f (x ) to be a nonnegative random variable with a very heavy right tail, perhaps even an

integrable singularity. Both of these cases describe a setting where f (x ) has extremely large pos-

itive skewness under x ∼ p. We then expect to get f (x )p (x )/q(x ) with large positive skewness

under x ∼ q. Evans and Swartz [8] describe this as low effective sample size for the integrand f .
The more general low effective sample size problem shows up as extreme positive skewness in

p (x )/q(x ) under x ∼ q.
In cases of positive skewness, we get a positive correlation between the sample values of μ̂k

and σ̂ 2
k
[19]. Weighting points proportionally to σ̂−2

k
then means that the largest μ̂k tend to be

randomly downweighted while the smallest ones tend to be randomly upweighted. The result is

a negative bias in μ̂, which is especially undesirable when μ is the probability of a rare adverse

event. For a rare event that fails to happen even once at step k , we could get μ̂k = σ̂ 2
k
= 0, and

then some complicated intervention would be required to make the formulas work. It is possible

that some settings will have negative skewness for f p/q and a corresponding upward bias using

estimated variances, though that is less to be expected in importance sampling. This could happen

for problems with negative integrable singularities or problems with both positive and negative

integrable singularities or when estimating the probability of an event whose complement is rare.

In addition to the bias issue, there is a possiblymore fundamental reason not to use σ̂ 2
k
inweights.

Importance sampling is often used in settings where simply estimating μ is quite hard. Estimating

σ 2
k
or τ 2

k
well could then be an order of magnitude harder. They only have finite variances under

a finite fourth moment condition for f p/q. Using estimates of those quantities then amounts to

using an extremely noisy weighting relying on a subsidiary problem (variance estimation) that

is harder than the motivating problem. See Ref. [15] for an analysis of how hard it is to estimate

variance in the importance sampling context. This issue is especially severe in cases with large

K and small n. Chatterjee and Diaconis [4] also remark on the difficulty of using variances in

importance sampling.

The adaptive multiple importance sampling (AMIS) algorithm of Ref. [5] uses a sample deter-

mined weighted combination of estimates. In that case, the weight applied to μ̂k can depend on

ACM Transactions on Modeling and Computer Simulation, Vol. 30, No. 2, Article 13. Publication date: March 2020.



13:6 A. B. Owen and Y. Zhou

observations from future rounds in a more complicated way than just normalizing σ̂−2
k
. The in-

tricate dependence pattern between weights ω̂k and estimates μ̂k complicates even the task of

proving consistency of the estimator. Their setup was for self-normalized importance sampling,

but the difficulties with noisy estimates of optimal weights apply there, too. Even without that

complexity, taking account of sampling fluctations in both μ̂k and ω̂k can raise challenging issues

that a deterministic rule avoids.

We are interested in cases where adaptation brings steady but not dramatic improvements. As

noted above, our model for that is

Var(μ̂k ) = τ
2k−y (6)

for 0 � y � 1 and τ = τ1 ∈ (0,∞). If we worked with τ 2k−x , then our estimate would be

μ̂ = μ̂ (x ) =
K∑
i=1

ix μ̂i

/ K∑
i=1

ix ,

including our Proposal (3) via x = 1/2. The best choice is μ̂ (y), but y is unknown. Our variance

using x is

Var(μ̂ (x )) = τ 2
K∑
i=1

i2x−y
/ ��

K∑
i=1

ix��
2

,

and we measure the inefficiency of our choice by

ρK (x |y) ≡
Var(μ̂ (x ))

Var(μ̂ (y))
=

(∑K
i=1 i

2x−y
) (∑K

i=1 i
y
)

(∑K
i=1 i

x
)2 . (7)

If the variance of μ̂k decays as k−y and, knowing that, we use x = y, then Var(μ̂) = O (K−y−1) =
O (N −y−1). The value y = 0 is pessimistic as it corresponds to a setting where adaptation brings no

benefits. For an optimistic value y = 1, the variance decays at the rateO (N −2), which we consider

unreasonably optimistic. It is better than the rate that Ref. [28] gets for importance sampling by

one-dimensional kernel density estimates and even slightly better than the rate that holds for

randomly shifted lattice rules applied to functions of bounded variation in the sense of Hardy and

Krause. See Ref. [16] for background on randomized lattice rules.

5 SQUARE ROOT RULE

In Ref. [22], we proposed to split the difference between the optimistic estimate μ̂ (1) and the pes-

simistic one μ̂ (0) by using μ̂ (1/2). The result is an unbiased estimate that attains the same conver-

gence rate as the unknown best estimate with only a modest penalty in the constant factor.

Theorem 1. For ρK (x |y) given by Equation (7),

sup
1�K<∞

sup
0�y�1

ρK

(
1

2

��� y) � 9

8
. (8)

If x � 1/2 and K � 2, then

sup
0�y�1

ρK (x |y) > sup
0�y�1

ρK

(
1

2

��� y) . (9)

Equation (8) shows that the square root rule has at most 12.5% more variance than the unknown

best rule. Equation (9) shows that the choice x = 1/2 is the unique minimax optimal one, when

K > 1. WhenK = 1, then μ̂ (x ) does not depend on x , and, in that case, μ̂ (x ) = μ̂ (y). Before proving
the theorem, we establish two lemmas.
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Lemma 1. For ρK (x |y) given by Equation (7), with K � 1 and 0 � x � 1,

sup
0�y�1

ρK (x |y) =
{
ρK (x | 1), x � 1/2

ρK (x | 0), x � 1/2.

Proof. The result holds trivially forK = 1 because ρ1 (x |y) = 1. Now suppose thatK � 2. Then,

∂2

∂y2
ρK (x |y) = C−2 ×

K∑
i=1

K∑
j=1

i2x−y jy (log(i ) − log(j ))2

forC =
∑K

i=1 i
x . Thus, ρK (x |y) is strictly convex iny for any x whenK � 2, and so sup0�y�1 ρK (x |

y) ∈ {ρK (x | 1), ρK (x | 0)}.
By symmetry, ρK (x | 2x − y) = ρK (x |y). So if x � 1/2, then ρK (x | 0) = ρK (x | 2x ) � ρK (x , 1).

The last step follows because 2x � 1 and ρK (x |y) is a convex function of y with its minimum at

y = x � 1. This establishes the result for x � 1/2 and a similar argument holds for x � 1/2. For
x = 1/2, ρK (x | 0) = ρK (x | 1). �

Proposition 1 has two integral bounds that we will use below.

Proposition 1. If 0 � x � 1, and K � 1 is an integer, then

K∑
i=1

ix �
∫ K+1/2

1/2
vx dv =

(K + 1/2)x+1 − (1/2)x+1

x + 1
, and (10)

K∑
i=1

ix �
∫ K+1

1

vx dv =
(K + 1)x+1 − 1

x + 1
. (11)

Equation (10) is strict when 0 < x < 1. Equation (11) is strict when 0 < x � 1.

Proof. Equation (10) follows from the concavity of vx . That concavity is strict for 0 < x < 1.

Equation (11) follows because vx � ix for i � v � i + 1, which holds strictly for x > 0. �

Equation (10) is much sharper than the bound one gets by integrating vx over 0 � v � K .

Lemma 2. For ρK (x |y) given by Equation (7), ρK+1 (1/2 | 1) > ρK (1/2 | 1) holds for any integer

K � 1.

Proof. Let SK =
∑K

i=1 i
1/2. Then, using Equation (10) from Proposition 1,

ρK+1 (1/2 | 1)
ρK (1/2 | 1)

=
(K + 1) (K + 2)S2K

K2 (SK +
√
K + 1)2

=
(K + 1) (K + 2)

K2
(
1 +

√
K+1
SK

)2

>
(K + 1) (K + 2)

K2

/ ��1 +
√
K + 1

((K + 1/2)3/2 − 2−3/2)/(3/2)
��
2

= (K + 1) (K + 2)
/ ��K +

3

2

K

f (K ) − 2−3/2/
√
K + 1

��
2

,

for

f (K ) = (K + 1/2)3/2/
√
K + 1.
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13:8 A. B. Owen and Y. Zhou

Let д(K ) = f (K )/(K + 1/4). We easily find that limK→∞ д(K ) = 1. Also, д is monotone decreas-

ing in K because the derivative of log(д(K )) with respect to K is −(3/16)[(K + 1/2) (K + 1/4) (K +
1)]−1. Therefore, if K > 7,

ρK+1 (1/2 | 1)
ρK (1/2 | 1)

> (K + 1) (K + 2) ��K +
3

2

K

д(K ) (K + 1/4) − 2−3/2/
√
8
��
−2

> (K + 1) (K + 2)

(
K +

3

2

K

K + 1/4 − 2−3/2/
√
8

)−2

=
(K + 1) (K + 2)(
K + 3

2
K

K+1/8

)2 . (12)

The numerator in Equation (12) is K2 + 3K + 2, while the denominator is

K2 + 3K
K

K + 1/8
+
9

4

K2

(K + 1/8)2
.

The numerator is larger than the denominator, establishing the theorem for K > 7. For 1 � K � 7,

we compute directly that

ρK+1 (1/2 | 1)
ρK (1/2 | 1)

> 1.0038. �

Proof of Theorem 1. Applying Lemmas 1 and 2,

sup
1�K<∞

sup
0�y�1

ρK

(
1

2

��� y) = lim
K→∞

ρK

(
1

2

��� 1) = lim
K→∞

K2 (K + 1)/2(∑K
i=1 i

1/2
)2 .

Using the integral Bounds (10) and (11) from Proposition 1, we can show that the above limit is

9/8, establishing Equation (8). Next, if x < 1/2, then

sup
0�y�1

ρK (x |y) = ρK (x | 1) =

(∑K
i=1 i

2x−1
) (∑K

i=1 i
)

(∑K
i=1 i

x
)2

=
K (K + 1)

2

(∑K
i=1 i

2x−1
)

(∑K
i=1 i

x
)2 .

Ignoring the factor K (K + 1) and taking the derivative with respect to x yields

∑K
i=1

∑K
j=1 i

x j2x−1 (log(j ) − log(i ))(∑K
i=1 i

x
)3 . (13)

The numerator in Equation (13) is of the form
∑K

�=1 η� log(�) where
∑K

�=1 η� = 0. That quantity

η� is
∑K

i=1 (i
x �2x−1 − �x i2x−1), which is a decreasing function of � because x < 1/2. Next, because

log(�) is non-negative and increasing in �, we find that the numerator in Equation (13) is negative

and, hence, so is the whole expression. Therefore, ρK (x | 1) is a decreasing function of x making

ρK (x | 1) > ρK (1/2 | 1) for x < 1/2. This establishes Equation (9) for x < 1/2, and the case of x > 1/2
is similar and slightly easier. �
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6 ROBUSTNESS

It is not reasonable to suppose that even the more general working model Var(μ̂k ) ∝ k−y would

hold exactly. Using the square root rule

Var(μ̂) =
K∑
k=1

kVar(μ̂k )
/ ��

K∑
k=1

k1/2��
2

is a continuous function of Var(μ̂k ). Then, small perturbations from a power law make a small

difference. Also a positive function of k that decreases mildly and steadily and convexly as k in-

creases can be expected to be highly correlated with k−y for some y. The inefficiency of the square

root rule in this more general setting is

ρ =
K∑
k=1

kVar(μ̂k )
K∑
k=1

Var(μ̂k )
−2
/ ( K∑

k=1

k1/2
)2
. (14)

One plausible alternative to the power law is that Var(μ̂k ) might make steady progress and then

plateau. An example of that would be Var(μ̂k ) = min(k, 6)−1 for k = 1, . . . , 10. We can compute

ρ of Equation (14) directly in this case and find that using ωk ∝ k1/2 would increase variance by

a factor of just under 1.04 compared to using the optimal weights. If we suppose that there are

k1 ∈ {1, . . . , 100} stages with variance decreasing proportionally to k−1 followed by a plateau of

k2 ∈ {1, . . . , 100} steps with variance proportional to (k1 + 1)
−1, then the square root rule never

raises variance by more than 1.121 over the optimal combination.

A more general form of mild improvement has σ 2
k
� 1/k to rule out unreasonably good per-

formance, σ 2
k+1

� σ 2
k
to model improvement, and σ 2

k
− σ 2

k+1
� σ 2

k+1
− σ 2

k+2
to model diminishing

returns. Taking σ 2
1 = 1 and a fixed K , these conditions yield a convex set of vectors (σ 2

1 , . . . ,σ
2
K ).

It would be interesting to know the largest inefficiency ρ over that set of possibilities, but this ρ
is not a concave function of the σ 2

k
values, and finding the exact worst case is outside the scope of

this article.

We can sample the space of possible values by recursively taking σ 2
1 = 1, σ 2

2 ∼ U [1/2,σ 2
1 ], and

for 2 � i � K ,

σ 2
k ∼ U

[
min(1/k, 2σ 2

k−1 − σ
2
k−2), σ

2
k−1

]
.

In 106 simulations with K = 5, the inefficiency was worse than 9/8 only 18 times, and the worst

value was about 1.134. In 106 simulations with K = 10, the inefficiency was worse than 9/8 1,904
times, and the worst value was about 1.297. In 106 simulations with K = 20, the inefficiency was

worse than 9/8 101 times, and the worst value was about 1.263. There is not much to lose in

weighting proportionally to k1/2 in this diminishing returns setup.

If the progress is not steady and convex, then the square root rule can be more inefficient than

described above. If the variance remains flat for the first k1 steps and then decreases sharply,

the square root rule is less efficient. For instance, if the first 3 iterations have unit variance and

the next 10 have variance 0.01, then the square root rule raises variance by about 6.37 fold over the

optimal weights. In Ref. [22], we advocated putting zero weight on the first few iterations if such

an initial transient is suspected.

7 GENERALIZATION

We can generalize some aspects of the square root rule to other power laws. Suppose that the

true rate parameter y is known to satisfy L � y � U for 0 � L � U < ∞. We can then work with
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13:10 A. B. Owen and Y. Zhou

ωk ∝ kx for x = M ≡ (L +U )/2. First, we recall the definition of ρK from Equation (7):

ρK (x |y) =

(∑K
i=1 i

2x−y
) (∑K

i=1 i
y
)

(∑K
i=1 i

x
)2 .

Then, 2M −U = L, and

ρK (M |U ) =

(∑K
i=1 i

L
) (∑K

i=1 i
U
)

(∑K
i=1 i

M
)2 . (15)

Lemma 3. For ρK (x |y) given by Equation (7), with K � 1 and 0 � L � x � U < ∞,

sup
L�y�U

ρK (x |y) =
{
ρK (x |U ), x � M

ρK (x |L), x � M,

forM = (L +U )/2.

Proof. The proof is the same as for Lemma 1 because ρK (x |y) is convex in y for any K � 1

and any x and ρK (x | 2x − y) = ρK (x |y). �

The inequalities in Lemma 2 are rather delicate, and we have not extended them to the more

general setting. Equation (15) is easy to evaluate for integer values of L,M , andU . For more general

values, some sharper tools than the integral bounds in this article are given by Ref. [3] who make

a detailed study of sums of powers of the first K natural numbers. We do see, numerically, that

ρK (M |U ) is nondecreasing with K in every instance we have inspected. Using Proposition 1, we

can easily find the asymptotic inefficiency

lim
K→∞

ρK (M |U ) = lim
K→∞

KL

L + 1

KU

U + 1

/ ( KM

M + 1

)2
=

(M + 1)2

(L + 1) (U + 1)
.

In cases with L = 0 and, hence, M = U /2, we get (U /2 + 1)2/(U + 1). For instance, an upper

bound at the rate y = U = 2 corresponding roughly to asymptotic accuracy of scrambled net inte-

gration [20] leads to x = M = 1 and an asymptotic inefficiency of at most

(1 + 1)2

(0 + 1) (2 + 1)
=

4

3
.

Some references in Section 2 describe problems where the adaptive importance sampling vari-

ance converges exponentially to zero. It is reasonable to expect that each estimate μ̂k will require

a large number n of observations to fit a complicated integrand, and that K will then be not too

large.

Suppose that Var(μ̂k ) = τ
2 exp(−yk ) for some y > 0. Then, the desired combination is

μ̂ (y) =

∑K
i=1 exp(iy)μ̂i∑K
i=1 exp(iy)

.

Not knowing y, we use

μ̂ (x ) =

∑K
i=1 exp(ix )μ̂i∑K
i=1 exp(ix )

,
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for some x > 0. The inefficiency of our estimate is now

γK (x |y) ≡
∑K

i=1 exp((2x − y)i )
∑K

i=1 exp(yi )(∑K
i=1 exp(xi )

)2

=

(
e2x−y (eK (2x−y ) − 1)

e2x−y − 1

) (
ey (eKy − 1)

ey − 1

) / (ex (eKx − 1)
ex − 1

)2
.

If x = y/2, then the first factor in the numerator isK . It can be disastrously inefficient to use x � y.
Some safety is obtained in the x → ∞ limit where μ̂ = μK . In that limit, we consider using the final

and presumably best estimate to be a sensible default. Then,

lim
x→∞

γK (x |y) =
ey (1 − e−Ky )

ey − 1 � ey

ey − 1 .

We have no direct experience with problems having geometric convergence. For sake of illus-

tration, if the variance is halving at each iteration, then y = log(2) and then taking x → ∞ is in-

efficient by at most a factor of 2. Repeated ten-fold variance reductions correspond to y = log(10)
and a limiting inefficiency of at most 10/9 � 1.11. The greatest inefficiency from using only the

final iteration arises in the limit y → 0 where the factor is K . In this setting, the user is not getting

a meaningful exponential convergence; even there, the loss factor is at most K and, as remarked

above, that K is not likely to be large.

We have assumed that n is the same at every iteration. It is possible to take a varying number nk
of observations at iteration k . Zhang [28] obtains his convergence rates for K = 2 assuming that

n1 and n2 are chosen in an asymptotic regime where n1/(n1 + n2) approaches a limit in the interior

of the interval (0, 1). Somewhat unequal values of n1 and n2 optimized the lead constant.

If Var(μ̂k ) = σ 2
k
/nk with σ 2

k
∝ k−y for 0 � y � 1 and nk ∝ kα , then Var(μ̂k ) ∝ k−y−α . We might

then be able to use the more general bounds above with L = α andU = 1 + α . Conceivably, know-
ing σ 2

k
would let one tune nk . However, changes to nk are likely to change σ 2

k
, so that problem is

circular and solving that is outside the scope of this article.

8 CONCLUSIONS

Some adaptive importance samplers can have geometric convergence, but many other settings will

not converge that quickly. A simple rule weighting the estimate at stage k proportionally to k1/2

gives an unbiased and nearly efficient estimate under a wide range of conditions and it also lets the

user avoid trying to model a random linear combination of μ̂k . An interesting extension would be

to specify a well-motivated convex set of values for (1,σ 2
2 /σ

2
1 , . . . ,σ

2
K/σ

2
1 ) and find a set of weights

ωk � 0 with
∑

k ωk = 1 that minimizes the worst-case inefficiency

max

K∑
k=1

ω2
kVar(μ̂k )

K∑
k=1

Var(μ̂k )
−2,

where the maximum is taken over variances with ratios in the aforementioned convex set.
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