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The Square Root Rule for Adaptive Importance Sampling
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In adaptive importance sampling and other contexts, we have K > 1 unbiased and uncorrelated estimates /iy
of a common quantity p. The optimal unbiased linear combination weights them inversely to their variances,
but those weights are unknown and hard to estimate. A simple deterministic square root rule based on a
working model that Var(fig) o k~1/2 gives an unbiased estimate of y that is nearly optimal under a wide range
of alternative variance patterns. We show that if Var(ji;) occ k™Y for an unknown rate parameter y € [0, 1],
then the square root rule yields the optimal variance rate with a constant that is too large by at most 9/8 for
any 0 < y < 1 and any number K of estimates. Numerical work shows that rule is similarly robust to some
other patterns with mildly decreasing variance as k increases.
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1 INTRODUCTION

A useful rule for weighting uncorrelated estimates appears in an unpublished technical report [22].
This article states and proves that result and discusses some mild generalizations. The motivating
context for the problem is adaptive importance sampling.

Importance sampling is a fundamental Monte Carlo method used in finance [9], reliability [1,
21], coding theory [7], particle transport [12, 13], computer graphics [23, 25], queuing [2], and
sequential analysis [14], among other areas.

The prototypical problem is to estimate a constant y = f f(x)p(x) dx for a density function
p and integrand f. Although we illustrate the problem with continuous distributions, discrete
distributions are handled similarly. In importance sampling, we might estimate y by

= fo)px)’ for x; ii~dq(-;9). (1)
—~ q(xi;0)
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The density function g must satisfy g(x;0) > 0 whenever f(x)p(x) # 0, in order to ensure that
E(f) = p. In this setting, we must also choose a parameter 6.
A common alternative method is self-normalized importance sampling with

=y L) 55 i) i
ﬂ_;m/izl q(xi;0)° for x; = q(-;6). @

This method is more restrictive in requiring g(x; 0) > 0 whenever p(x) > 0 but less restrictive in
that it allows p or g or both to be unnormalized, i.e., known only up to a constant of proportionality.
We focus primarily on /i, with a few remarks about /.

After choosing 0 and getting x1, . . ., x,,, we might well decide that some other value of 8 would
have been better. For instance, we might think that some other 6 would yield an estimate of y with
lower variance. In adaptive importance sampling we estimate u by fix atiteration k > 1 using some
parameter 6. Then, we may use all the sample values from the first k iterations to select ;. for
the next round.

In an adaptive method with one pilot estimate and one final estimate, K = 2 and n is usually
large. In other settings, each [ could be based on just one evaluation of the integrand (e.g.,
Ref. [24]), and then K would typically be very large. In intermediate settings, we might have
something like K = 10 estimates based on perhaps thousands of evaluations each. For instance,
the cross-entropy method [6] might be used this way. The total sample size used is N = nK. We
remark briefly on the possibility that the value of n varies with k in Section 7.

To specify an adaptive importance sampling method, one must come up with a family g(+; 8) of
distributions, a starting value 6;, a choice for n, an algorithm for computing 6k, from the data of
the prior k rounds, and a termination rule. This article addresses a different issue: after all those
choices have been made, how should one pool estimates /iy, . . ., fix to get the combined estimate
[1? We have two main points to make:

(1) anatural approach using inverse sample variances to weight /i is risky, and
(2) a simple deterministic weighting scheme is nearly optimal over a broad range of reason-
able conditions.

We will make the first point with some qualitative arguments and citations.

Most of the article is devoted to the second point showing that a simple deterministic rule is
nearly optimal over a set of assumptions ranging from what we consider unduly pessimistic to
what we consider unduly optimistic. To that end, we adopt a working model in which Var(ji) o
k~1/2. Using this working model, we get an estimate ji satisfying (i) = p along with an unbiased
estimate of Var(ji). The working model will ordinarily be incorrect, and the consequence of that
incorrectness is a larger value of Var(j1) than would have been attained using the unknown true
variances. We give conditions under which the resulting inefficiency is mild enough to be negli-
gible. That lets one avoid a potentially severe challenge of estimating the step-by-step variances
and then analyzing a complicated rule derived from those estimates.

This article is organized as follows. Section 2 gives reasons to study settings where Var(jix)
will decay steadily but not dramatically, and with diminishing returns as k increases. Section 3
presents our notation and explains why we can assume that the estimates fi; are unbiased and
uncorrelated. Section 4 presents our linear combination estimator, discusses why it is safer to use
a prespecified linear combination of fi; than to use estimated variances, and gives an expression
for the relative inefficiency that stems from using a weighting derived from a potentially incorrect
power law. Section 5 states and proves our main result using two lemmas. It is that the square
root rule never raises the variance by more than 9/8 times the optimal variance for any setting
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The Square Root Rule for Adaptive Importance Sampling 13:3

where Var(fi;) oc k7Y for any 0 < y < 1 and any number K > 1 of steps. It is accurate to within
that constant factor even though the unknown optimal Var(ji) converges at rates ranging from
O(N™1) to O(N™2). Section 6 considers some alternative ways to model steady improvement with
diminishing returns. We find numerically that weighting proportionally to k'/? loses little accuracy
under very general circumstances, although some variance patterns give worse than a 9/8 variance
ratio. Section 7 includes some remarks on how to weight the ji in settings where even better
convergence rates, including exponential convergence, apply. Section 8 has brief conclusions.

2 PLAUSIBLE CONVERGENCE RATES

The key assumption we need to make is about how quickly the statistical efficiency of the individ-
ual estimates fi; increases with k. Very commonly f(x) > 0 and then f(x)p(x)/u is a probability
density function. If we could sample from that density, then we would have a zero variance es-
timate f. In special circumstances, f(x)p(x)/p = q(x;0) for some parameter vector § € © c R”
in an r-dimensional family of densities. It may then be possible to get good estimates of i that
improve rapidly as k increases, with the effect that Var(ji;) decreases exponentially fast to 0 as
k increases. This situation is very well studied in the literature. See Refs. [12], [13], and [18]. We
consider it to be especially favorable and not representative of importance sampling in general.

In other settings, f(x)p(x)/p does not take the form g(x; 6) for any 6 € ©, and then fi; cannot
have zero variance for finite n. It remains possible that 0y approaches an optimal vector and then
Var(6y) can improve toward a positive lower bound but no further. Exponential convergence is
ruled out a fortiori.

The self-normalized estimator fi; cannot approach zero variance for fixed n outside of trivial
settings where f(x) is constant under x ~ p. It is a ratio estimator and the asymptotically optimal
q is proportional to | f(x) — p|p(x). Any self-normalized estimator satisfies

2
lim nVar(j) > (f If(x) — plp(x) dx) .

n—oo

See the Appendix of Ref. [21], which uses the optimal self-normalized importance sampler found by
Ref. [11], also given in Ref. [10]. When f(x) is the indicator of an event with probability € € (0, 1)
under x ~ p, then the asymptotically optimal self-normalized sampler has Pr(f(x) = 1;x ~ q) =
1/2, and any self-normalized importance sampler has

lim nVar(ji) > 4€*(1 — €)%
n—oo

As a consequence, any nontrivial instance of the self-normalized importance sampler must also
have a nonzero floor on its mean squared error for fixed n. This rules out exponential convergence
for self-normalized importance sampling in non-trivial problems.

In a third possibility, g(x; 0) is an infinite dimensional family of densities in which p(x) f(x) can
be approached to any desired level of accuracy by some choice of 6. Following up on a strategy of
Ref. [26], the nonparametric importance sampler of Zhang [28] has K = 2 steps. The second step is
an importance sample from a kernel density estimate of p(x) f(x)/p obtained using the first step
as a pilot sample. He gives conditions under which the mean squared error at the second stage
is O(N~(@+8)/(d+D)y for x € R4, A multistep adaptive algorithm attains the same rate in N with a
different constant that is not necessarily better than using K = 2.

We consider exponential convergence to be a rare and special circumstance, and we are most
interested in problems where exponential convergence is not possible. We assume that Var(jiy)
reduces steadily with k but not spectacularly so, and most of our analysis assumes diminishing
returns as k keeps increasing. Our main model for steady variance reduction is Var(fi;) o k¥ for
an unknown value of y. While the actual variance won’t follow this pattern exactly, we expect that
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13:4 A. B. Owen and Y. Zhou

this pattern is qualitatively similar to realistic progress, and it is amenable to sharp analysis. Our
combined estimate is a linear combination of fi;. The resulting variance is a linear combination of
Var (i), and so mild departures from a k™Y pattern will have little effect on the conclusion.

We consider the case with y = 0 to be unduly pessimistic. It describes a setting where adaptation
brings no benefit whatsoever. We consider y = 1 to be unduly optimistic. While it is not as favorable
as the exponential case described above, we show below that it yields an asymptotic mean squared
error of O(N~2). That is better than the nonparametric method can attain in even one-dimensional
problems, and it is much better than we can attain when p(x) f(x)/p cannot be approximated
arbitrarily well with some g(x; 0).

When f(x)p(x)/p cannot be arbitrarily well approximated by g(x;0) for any 0, then it is not
actually possible to have Var(fig) o< k7Y forany y > 0 and all k > 1. This exponential decay remains
a reasonable working model for initial transients over 1 < k < K for some finite K.

Our proposal is to weight the iterates fi; as if y = 1/2. The result is

> Vi
p= Z wrf for  wp = K .~
k=1 iz Vi

. ®)

a square root rule.

3 NOTATION

Step k of our adaptive importance sampler generates data Xj. This includes all of the sample
points xi; along with the function evaluations f(x;), p(xk;), and q(xk;; 0y) at that step. It can
also include q(x;; 0”) for values 0 # 0. We let Z. = (X, ..., X)—1) denote the data from all steps
prior to the kth, with Z; being empty. We assume that our estimates fi; satisfy

E(fx | Zk) = p,  and Var(ﬁkIZk)=o£<oo, k=1,...,K. (4)

This is a reasonable assumption for the estimates in Equation (1), though we are ruling out extreme
settings with ai = 0. The self-normalized estimate /i of Equation (2) does not satisfy Equation (4)
because, as a ratio estimator, it incurs a bias of size O(1/n). For large n, the bias might be small
enough that Equation (4) becomes a good approximation for the self-normalized case also.

For the regular importance sampler in Equation (1),

Var(i) = E(Var(ii | Zy)) + Var(E (g | Z)) = E(0?) = 72, (5)

There is ordinarily an unbiased estimate of o2, such as

n

2 1 flxpxi) . 2
k‘n—lz( q(x::00) “") '

i=1

Under some moment conditions, E(67 | Zx) = o} and then
E(67) = E(o}) = 7.

That is, &i is simultaneously an unbiased estimate of both the random variable Var(jix | Zx) and
the constant Var(iy).

In Ref. [22], jix was an importance sampled estimate of an integral over the unit cube, sampling
from a mixture of products of beta distributions. Then, i included the mixture components and
beta distribution parameters used at step k. That article considers a synthetic integrand formed
by a mixture of Gaussians and an integrand with positive and negative singularities from particle
physics.
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The estimates /i are, in general, dependent because data sampled at step k influences the choice
of Oy for £ > k, and thereby affects fi;. These estimates are uncorrelated because

Cov(fix, fie) = E(E((x — p)(ie — 1) | Ze))
= E((ik — WE(fie — p1Z¢)) = 0.

The underlying idea in the above expressions is that 21}2:1 o (fx — p) is a martingale in L [27], for
any fixed set of weights wy. We will not make formal use of martingale arguments.

4 LINEAR COMBINATIONS
A simple strategy is to estimate u by

K K
= kZ orfix, where ; wr = 1.
=1 =1

For deterministic wy, we have E(f1) = y with Var(f) = Y'§_, w?r? and then Var(j) = SR wi6lis

an unbiased estimate of Var(f1), even if Var(ji;) is not proportional to w;l.

To minimize Var(ji), we should take wj o« Var(fix)~. The problem is that we do not know
Var(fiy). It is not advisable to plug in the unbiased estimates 6’13 and take wj o 672, for several
reasons that we outline next.

The importance sampling context is often one where f(x) is the indicator of a very rare event.
For background on importance sampling for rare events, see Ref. [17]. Another common setting
is for f(x) to be a nonnegative random variable with a very heavy right tail, perhaps even an
integrable singularity. Both of these cases describe a setting where f(x) has extremely large pos-
itive skewness under x ~ p. We then expect to get f(x)p(x)/q(x) with large positive skewness
under x ~ q. Evans and Swartz [8] describe this as low effective sample size for the integrand f.
The more general low effective sample size problem shows up as extreme positive skewness in
p(x)/q(x) under x ~ q.

In cases of positive skewness, we get a positive correlation between the sample values of fix
and 6',3 [19]. Weighting points proportionally to 6, ? then means that the largest /i tend to be
randomly downweighted while the smallest ones tend to be randomly upweighted. The result is
a negative bias in /I, which is especially undesirable when p is the probability of a rare adverse
event. For a rare event that fails to happen even once at step k, we could get /i = c}i =0, and
then some complicated intervention would be required to make the formulas work. It is possible
that some settings will have negative skewness for fp/q and a corresponding upward bias using
estimated variances, though that is less to be expected in importance sampling. This could happen
for problems with negative integrable singularities or problems with both positive and negative
integrable singularities or when estimating the probability of an event whose complement is rare.

In addition to the bias issue, there is a possibly more fundamental reason not to use &i in weights.
Importance sampling is often used in settings where simply estimating p is quite hard. Estimating
GIE or 1']3 well could then be an order of magnitude harder. They only have finite variances under
a finite fourth moment condition for fp/q. Using estimates of those quantities then amounts to
using an extremely noisy weighting relying on a subsidiary problem (variance estimation) that
is harder than the motivating problem. See Ref. [15] for an analysis of how hard it is to estimate
variance in the importance sampling context. This issue is especially severe in cases with large
K and small n. Chatterjee and Diaconis [4] also remark on the difficulty of using variances in
importance sampling.

The adaptive multiple importance sampling (AMIS) algorithm of Ref. [5] uses a sample deter-
mined weighted combination of estimates. In that case, the weight applied to jix can depend on
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13:6 A. B. Owen and Y. Zhou

observations from future rounds in a more complicated way than just normalizing 6, 2, The in-
tricate dependence pattern between weights & and estimates [i; complicates even the task of
proving consistency of the estimator. Their setup was for self-normalized importance sampling,
but the difficulties with noisy estimates of optimal weights apply there, too. Even without that
complexity, taking account of sampling fluctations in both jix and @ can raise challenging issues
that a deterministic rule avoids.

We are interested in cases where adaptation brings steady but not dramatic improvements. As
noted above, our model for that is

Var(jig) = r°k™Y (6)

for0 <y < 1landr =17 € (0,). If we worked with 72k™, then our estimate would be

K K
AN
i=1 i=1

including our Proposal (3) via x = 1/2. The best choice is fi(y), but y is unknown. Our variance

using x is
K 2
Var(ji(x)) = 7 Z i / (Z 'x) ,

i=1 i=1

and we measure the inefficiency of our choice by

Var(i(r)) (S 27) (2, )

Var(i(y)) (2K, i) (7)

pr(xly) =

If the variance of i decays as k™Y and, knowing that, we use x = y, then Var(ji) = O(K~¥7!) =
O(N7Y71). The value y = 0 is pessimistic as it corresponds to a setting where adaptation brings no
benefits. For an optimistic value y = 1, the variance decays at the rate O(N~2), which we consider
unreasonably optimistic. It is better than the rate that Ref. [28] gets for importance sampling by
one-dimensional kernel density estimates and even slightly better than the rate that holds for
randomly shifted lattice rules applied to functions of bounded variation in the sense of Hardy and
Krause. See Ref. [16] for background on randomized lattice rules.

5 SQUARE ROOT RULE

In Ref. [22], we proposed to split the difference between the optimistic estimate fi(1) and the pes-
simistic one /i1(0) by using /i(1/2). The result is an unbiased estimate that attains the same conver-
gence rate as the unknown best estimate with only a modest penalty in the constant factor.

THEOREM 1. For px(x|y) given by Equation (7),
9
s sup p(5 |v) < <. (®)
1<K <00 0<y<1
Ifx #1/2 and K > 2, then
sup px(x|y) > sup pK(- | y) ©)
0<y<1 0<y<1

Equation (8) shows that the square root rule has at most 12.5% more variance than the unknown
best rule. Equation (9) shows that the choice x = 1/2 is the unique minimax optimal one, when
K > 1. When K = 1, then /i(x) does not depend on x, and, in that case, fi(x) = fi(y). Before proving
the theorem, we establish two lemmas.
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The Square Root Rule for Adaptive Importance Sampling 13:7

sup px(x|y) =
0<y<1

Proor. The result holds trivially for K = 1 because p;(x|y) = 1. Now suppose that K > 2. Then,

92 K K
Gy PR 1Y) = €78 ) )i log(h) ~ log()*

i=1 j=1

for C = ¥ X i*. Thus, px (x| y) is strictly convex in y for any x when K > 2, and so SUPg<y<1 PK (X
y) € {pk(x[1), px (x[0)}.

By symmetry, px(x|2x —y) = px(x|y). So if x > 1/2, then pg(x]0) = px(x]2x) > pr(x,1).
The last step follows because 2x > 1 and px(x|y) is a convex function of y with its minimum at
y = x < 1. This establishes the result for x > 1/2 and a similar argument holds for x < 1/2. For
x =1/2, pr(x|0) = pr(x|1). |

Proposition 1 has two integral bounds that we will use below.

ProrosITION 1. If0 < x < 1, and K > 1 is an integer, then

K K+1/2 K + 1/2)%+1 — (1/2)x+1
Zix>f vxdvz( /2) (1/2) , and (10)
i 1/2 x+1
K K+1 +1
K+1)* -1
S [ 0L o
= 1 x+1

Equation (10) is strict when 0 < x < 1. Equation (11) is strict when 0 < x < 1.

Proor. Equation (10) follows from the concavity of v*. That concavity is strict for 0 < x < 1.
Equation (11) follows because v* > i* for i < v < i + 1, which holds strictly for x > 0. O

Equation (10) is much sharper than the bound one gets by integrating v* over 0 < v < K.

LEMMA 2. For px(x|y) given by Equation (7), px+1(1/2|1) > px(1/2]1) holds for any integer
K> 1.

PrOOF. Let Sk = YK i'/2. Then, using Equation (10) from Proposition 1,

pr+(1/2]11)  (K+1D)(K+2)S5 (K +1)(K +2)
pr(1/211)  K2(Sg + VK + 1)2 Kz(1 i @)2

(K+1)(K+2)/ . VK+1 ’
TR (K + 17272 — 2972)/(3/2)

2
3 K
= (K+1)(K+2) / (K+ Ef(K) - 2—3/2/\/Im) ,

for

f(K) = (K+1/2)%2/VK + 1.
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13:8 A. B. Owen and Y. Zhou

Let g(K) = f(K)/(K + 1/4). We easily find that limg_,., g(K) = 1. Also, g is monotone decreas-
ing in K because the derivative of log(g(K)) with respect to K is —(3/16)[(K + 1/2)(K + 1/4)(K +
1)]7L. Therefore, if K > 7,

-2
pr+1(1/21) 3 K
peafery ~ DT (K 20K+ 1/ - 23/2/\/5)
-2
3 K
> (K+1)(K+2) (K + EK PR 23/2/\/5)
_ (K+1)(K + 2)' 12
(K+3eks)

The numerator in Equation (12) is K2 + 3K + 2, while the denominator is

+9 K?
K+1/8 4 (K+1/8)%

K? +3K

The numerator is larger than the denominator, establishing the theorem for K > 7.For 1 < K < 7,
we compute directly that

pr+1(1/2]1)
px(1/2]1)

Proor oF THEOREM 1. Applying Lemmas 1 and 2,

> 1.0038. |

(1 | ) I (1 |1) y K%K +1)/2
sup sup pklz |Yy) = Im pg|—- = lim ——————.
1<K <00 0<y<1 2 K—eo' "\2 K—oo (Zszl i1/2)2

Using the integral Bounds (10) and (11) from Proposition 1, we can show that the above limit is
9/8, establishing Equation (8). Next, if x < 1/2, then

K_ 2x—1 K_ P
sup pk(x|y) = px(x|1) = ( Bk )( 21_1 l)
0<ys1 (Z{il ix)

KK +1) (2,7

Py

Ignoring the factor K(K + 1) and taking the derivative with respect to x yields
Zlel Zj:l iszx_l(log(j) - log(i))
. 3 :
(25 )

The numerator in Equation (13) is of the form Zf:l nelog(€) where Zszl ne¢ = 0. That quantity
ne is YK (X371 — ¢*i?*~1), which is a decreasing function of ¢ because x < 1/2. Next, because
log(¢) is non-negative and increasing in ¢, we find that the numerator in Equation (13) is negative
and, hence, so is the whole expression. Therefore, px(x|1) is a decreasing function of x making
pr(x]1) > pg(1/2]1) for x < 1/2. This establishes Equation (9) for x < 1/2, and the case of x > 1/2
is similar and slightly easier. O

(13)
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6 ROBUSTNESS

It is not reasonable to suppose that even the more general working model Var(jix) o« k™Y would
hold exactly. Using the square root rule

K K 2
Var(i) = kVar(i) / (Z k1/2)
k=1

k=1

is a continuous function of Var(fi;). Then, small perturbations from a power law make a small
difference. Also a positive function of k that decreases mildly and steadily and convexly as k in-
creases can be expected to be highly correlated with k™Y for some y. The inefficiency of the square
root rule in this more general setting is

K K K 2
p = KVar(i) )" Var(i) ? | (Z k“z) : (14)
k=1 k=1 k=1

One plausible alternative to the power law is that Var(f;) might make steady progress and then
plateau. An example of that would be Var(fix) = min(k, 6)~! for k = 1,...,10. We can compute
p of Equation (14) directly in this case and find that using wy o k/? would increase variance by
a factor of just under 1.04 compared to using the optimal weights. If we suppose that there are
ky € {1,...,100} stages with variance decreasing proportionally to k™! followed by a plateau of
ko € {1,...,100} steps with variance proportional to (k; + 1)7!, then the square root rule never
raises variance by more than 1.121 over the optimal combination.

A more general form of mild improvement has 0']3 > 1/k to rule out unreasonably good per-
formance, Gi_H < 0']3 to model improvement, and O']z - O'E_H > O'ZH - O'Z+2
returns. Taking 012 = 1 and a fixed K, these conditions yield a convex set of vectors (6?,..., 0'12<).
It would be interesting to know the largest inefficiency p over that set of possibilities, but this p
is not a concave function of the cr,f values, and finding the exact worst case is outside the scope of
this article.

We can sample the space of possible values by recursively taking o2 = 1, 02 ~ U[1/2, 07], and
for2 <i <K,

to model diminishing

2 . 2 2 2
op ~ Ulmin(1/k,20,,_, — 0;_,), 0;_; |-

In 10° simulations with K = 5, the inefficiency was worse than 9/8 only 18 times, and the worst
value was about 1.134. In 10° simulations with K = 10, the inefficiency was worse than 9/8 1,904
times, and the worst value was about 1.297. In 10° simulations with K = 20, the inefficiency was
worse than 9/8 101 times, and the worst value was about 1.263. There is not much to lose in
weighting proportionally to k'/2 in this diminishing returns setup.

If the progress is not steady and convex, then the square root rule can be more inefficient than
described above. If the variance remains flat for the first k; steps and then decreases sharply,
the square root rule is less efficient. For instance, if the first 3 iterations have unit variance and
the next 10 have variance 0.01, then the square root rule raises variance by about 6.37 fold over the
optimal weights. In Ref. [22], we advocated putting zero weight on the first few iterations if such
an initial transient is suspected.

7 GENERALIZATION

We can generalize some aspects of the square root rule to other power laws. Suppose that the
true rate parameter y is known to satisfy L < y < U for 0 < L < U < co. We can then work with
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13:10 A. B. Owen and Y. Zhou

i < k* for x = M = (L + U)/2. First, we recall the definition of px from Equation (7):

(B ) (B )
- :

pr(xly) =
(T8 )
Then, 2M — U = L, and
(2 1) (2K Y
p(M|U) = ( . ) (15)
(Zh, i)
i=1
LEMMA 3. For pk(x|y) given by Equation (7), withK > 1 and0 < L < x < U < oo,
(x14) {pK(xlU), x <M
sup pi(x|y) =
L<y<U pr(x|L), x =M,

forM = (L+U)/2.

Proor. The proof is the same as for Lemma 1 because px(x|y) is convex in y for any K > 1
and any x and pg(x|2x —y) = px(x|y). O

The inequalities in Lemma 2 are rather delicate, and we have not extended them to the more
general setting. Equation (15) is easy to evaluate for integer values of L, M, and U. For more general
values, some sharper tools than the integral bounds in this article are given by Ref. [3] who make
a detailed study of sums of powers of the first K natural numbers. We do see, numerically, that
pr (M |U) is nondecreasing with K in every instance we have inspected. Using Proposition 1, we
can easily find the asymptotic inefficiency

Kt KV /( KM )2 (M + 1)2

li M|U) = li = .
Kl—rgopK( ) - M+1 L+1)U+1)

Koo L+1U+1

In cases with L = 0 and, hence, M = U/2, we get (U/2 + 1)2/(U + 1). For instance, an upper

bound at the rate y = U = 2 corresponding roughly to asymptotic accuracy of scrambled net inte-
gration [20] leads to x = M = 1 and an asymptotic inefficiency of at most

(1+1)> 4
O+1)(2+1) 3

Some references in Section 2 describe problems where the adaptive importance sampling vari-
ance converges exponentially to zero. It is reasonable to expect that each estimate /iy will require
a large number n of observations to fit a complicated integrand, and that K will then be not too
large.

Suppose that Var(fix) = 72 exp(—yk) for some y > 0. Then, the desired combination is

SK, exp(iy) i

fi(y) = — -
ZIK=1 exp(iy)
Not knowing y, we use
o S exp(ix)f
Alx) = —————
Dlieq exp(ix)
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for some x > 0. The inefficiency of our estimate is now
i exp((2x = y)i) TE, exp(yi)
( i eXP(Xi))Z
(eZX—y(eK(Zx—y) _ 1)) (ey(eKy _ 1)) / (ex(er _ 1))2

eXx-y — 1 e¥ —1 e —1

yr(xly) =

If x = y/2, then the first factor in the numerator is K. It can be disastrously inefficient to use x < y.
Some safety is obtained in the x — oo limit where /i = pg. In that limit, we consider using the final
and presumably best estimate to be a sensible default. Then,

e¥(1 — e KY) eY
< .
eYy -1 e¥Yy—1

We have no direct experience with problems having geometric convergence. For sake of illus-
tration, if the variance is halving at each iteration, then y = log(2) and then taking x — oo is in-
efficient by at most a factor of 2. Repeated ten-fold variance reductions correspond to y = log(10)
and a limiting inefficiency of at most 10/9 = 1.11. The greatest inefficiency from using only the
final iteration arises in the limit y — 0 where the factor is K. In this setting, the user is not getting
a meaningful exponential convergence; even there, the loss factor is at most K and, as remarked
above, that K is not likely to be large.

We have assumed that n is the same at every iteration. It is possible to take a varying number nj
of observations at iteration k. Zhang [28] obtains his convergence rates for K = 2 assuming that
ny and ny are chosen in an asymptotic regime where n,/(n; + nz) approaches a limit in the interior
of the interval (0, 1). Somewhat unequal values of n; and n, optimized the lead constant.

If Var(jix) = cri/nk with cri oc k7Y for 0 < y < 1 and ny o k%, then Var(fi) o« k7Y%, We might
then be able to use the more general bounds above with L = ¢ and U = 1 + «. Conceivably, know-
ing O']z would let one tune ni. However, changes to ny are likely to change o2, so that problem is
circular and solving that is outside the scope of this article.

lim yk(x]y) =

8 CONCLUSIONS

Some adaptive importance samplers can have geometric convergence, but many other settings will
not converge that quickly. A simple rule weighting the estimate at stage k proportionally to k'/?
gives an unbiased and nearly efficient estimate under a wide range of conditions and it also lets the
user avoid trying to model a random linear combination of /ix. An interesting extension would be
to specify a well-motivated convex set of values for (1,05 /07, ..., 0% /0}) and find a set of weights
wr = 0 with Y, wx = 1 that minimizes the worst-case inefficiency

K K
max Z co,char(ﬁk) Z Var(fix) 2,
k=1 k=1

where the maximum is taken over variances with ratios in the aforementioned convex set.
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