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When a plain Monte Carlo estimate on n samples has variance 
σ 2/n, then scrambled digital nets attain a variance that is o(1/n)

as n → ∞. For finite n and an adversarially selected integrand, the 
variance of a scrambled (t, m, s)-net can be at most �σ 2/n for 
a maximal gain coefficient � < ∞. The most widely used digital 
nets and sequences are those of Sobol’. It was previously known 
that � � 2t3s for any nets in base 2. For digital nets, Dick and 
Pillichshammer (2010) obtained the bound 2t+s . In this paper we 
study digital nets in base 2 and show that � � 2t+s−1 for such nets. 
This bound is a simple, but apparently unnoticed, consequence of 
a microstructure analysis by Niederreiter and Pirsic in 2001. We 
obtain a sharper bound that is smaller than this for some digital 
nets. Our main finding is that all nonzero gain coefficients must 
be powers of two. A consequence of this latter fact is a simplified 
algorithm for computing gain coefficients of digital nets in base 2.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Numerical integration is a fundamental task in scientific computation. In high dimensional prob-
lems, Monte Carlo (MC) methods are widely used for integration because they are less affected by 
dimension than classical methods, such as those in [1]. Randomized quasi-Monte Carlo (RQMC) meth-
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ods as implemented via scrambled nets are asymptotically better than MC having variance o(1/n)

when plain MC has variance O (1/n). This paper is about some finite sample bounds. The variance of 
scrambled net RQMC is never more than a maximal gain coefficient � times the Monte Carlo variance 
for any integrand in L2. We improve on the bound for �. For scrambled Sobol’ nets in [0, 1]s with 
quality parameter t (defined below) we find that � � 2t+s−1 compared to the prior bounds of 2t3s
(for any net in base 2) and 2t+s (for digital nets in base 2). In addition to bounds, we show that any 
nonzero gain coefficient in a digital net of Sobol’ must be a power of 2. The analysis is through ranks 
of certain matrices over Z2.

The MC problems we study are to compute μ = ∫
[0,1]s f (x) dx for a dimension s � 1 and most of 

our attention is on f ∈ L2[0, 1]s . This μ is the mathematical expectation E( f (x)) for x ∼ U[0, 1]s . 
By using transformations from [2] we can greatly expand MC to expectations of quantities with non-
uniform distributions over domains other than the unit cube, and so for this paper it suffices to work 
with x ∼U[0, 1]s .

The MC estimate of μ is

μ̂MC = 1

n

n−1∑
i=0

f (xi), xi
iid∼ U [0,1]s. (1)

The independent uniform draws xi will form clusters and leave gaps in [0, 1]s . This fact has lead to 
the development of quasi-Monte Carlo (QMC) methods, beginning with [23], designed to cover the 
unit cube more evenly. See [5] for a recent survey. A QMC estimate μ̂QMC has the same form as 
μ̂MC from (1) except that n distinct points xi ∈ [0, 1]s are chosen deterministically so as to make the 
discrete uniform distribution on {x0, . . . , xn−1} close to the continuous uniform distribution on [0, 1]s , 
by minimizing a measure of the discrepancy (see [4]) between those distributions.

Using the Koksma-Hlawka inequality [7] it is possible to show that some QMC constructions attain

|μ̂QMC − μ| = O (n−1 log(n)s−1) (2)

when f has bounded variation in the sense of Hardy and Krause, which we write as f ∈ BVHK =
BVHK[0, 1]s . See [21] for a description of this variation. A drawback of QMC points is that they 
do not support a practical strategy to compute the bound in (2). Randomized QMC (RQMC) points 
x0, . . . , xn−1 are constructed so that individually xi ∼U[0, 1]s while collectively these points have the 
low discrepancy that makes (2) hold. Then we can estimate our error statistically, using independent 
replicates of the randomization procedure. See [9] for a survey of RQMC.

In this paper we focus on perhaps the most widely used QMC method, the Sobol’ sequences of 
[28]. We consider randomizing them with the RQMC method known as scrambled nets from [19]. 
The MC estimate satisfies

E((μ̂MC − μ)2) = σ 2

n
. (3)

Thus MC has a root mean squared error (RMSE) of σ/n1/2. The QMC error in (2) is asymptotically 
better, but for large s the log(n)s−1 factor leaves room for doubt about QMC at feasible sample sizes.

For scrambled nets we have

E((μ̂RQMC − μ)2)� �σ 2

n
(4)

for a maximal gain coefficient � < ∞, removing the powers of log(n). If f ∈ BVHK, then (2) also holds 
for μ̂RQMC, so RQMC gets the asymptotic benefit of QMC while (4) bounds how much worse RQMC 
could be compared to MC for finite n (with an adversarily chosen integrand).

When scrambling the nets taken from Faure sequences [6], it is known from [13] that � � exp(1) .=
2.718. The nets of Sobol’ [29] appear to be more widely used. As (t, m, s)-nets in base 2 they satisfy 
the bound � � 2t3s from [20]. Because they are digital nets as we describe below they also satisfy the 
bound � � 2t+s from [3]. In this paper we improve that bound to show that � � 2t+s−1. This bound 
2
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can also be deduced from the results of Niederreiter and Pirsic [16], but to our knowledge this has 
not been remarked on before. We further show that all the nonzero gain coefficients are powers of 
two and we provide a slight improvement in the microstructure gain bounds from [16].

An outline of this paper is as follows. Section 2 defines digital nets and sequences, and reviews 
properties of scrambled digital nets. Section 3 proves our bound 2t+s−1. Section 4 proves that nonzero 
gain coefficients must be powers of 2. Both of these results hold for any scrambled digital nets in base 
2 including those of Sobol’ [29] as well as those of Niederreiter and Xing [17,18] and base 2 nets con-
structed via polynomial lattice rules, as described in [3]. Section 5 shows that an improved exponent 
of 2 is possible by sharpening the usual notion of the t parameter for a subset of variables. One con-
crete example with an improved exponent is provided using shift nets of Schmid [24]. Section 6 has 
a discussion.

2. Notation and background

In this section we define digital nets and sequences. Then we describe methods of scrambling 
them and their properties. The key property in this paper is the set of gain coefficients of a digital 
net.

Throughout this paper we have a dimension s � 1. We write 1:s for {1, 2, . . . , s}. We use Z for the 
integers, N0 for non-negative integers, and for integers n � 1 we let Zn = {0, 1, . . . , n −1}. For u ⊆ 1:s
and x = (x1, . . . , xs) ∈ [0, 1]s we write xu for the tuple (x j) j∈u . The cardinality of u is written |u|. For 
a set defined by an explicit description, # may be used for cardinality. For a statement S we use 1S

or 1{S}, depending on readability, to denote a variable that is 1 when S holds and 0 otherwise.

2.1. Digital nets and sequences

We let b � 2 be an integer base in which to represent integers and points in [0, 1). We work with 
half-open intervals because we will need to partition [0, 1)s into congruent subsets. Note that the 
problems are still defined as 

∫
[0,1]s f (x) dx because QMC is strongly connected to Riemann integration 

[14] and the notion of bounded variation that we use is also defined on closed unit cubes. We begin 
with some standard definitions.

Definition 1. An s-dimensional elementary interval in base b has the form

E(k, c) =
s∏

j=1

[ c j

bk j
,
c j + 1

bk j

)

where k = (k1, . . . , ks) ∈Zs and c = (c1, . . . , cs) ∈ Zs satisfy k j � 0 and 0 � c j < bk j .

Given k, we define |k| = ∑s
j=1 k j . For a given vector k, the b|k| elementary intervals E(k, c)

partition [0, 1)s into congruent sub-intervals. Ideally they should all get the same number of our 
integration points xi and digital nets defined next make this happen in certain cases.

Definition 2. For integers m � t � 0 and b � 2 and s � 1, a (t, m, s)-net in base b is a point set x0, . . . , xn−1 ∈
[0, 1)s for n = bm where

n−1∑
i=0

1{xi ∈ E(k, c)} = nb−|k| = bm−|k|

for every elementary interval E(k, c) with |k| �m − t.

Other things being equal, we would prefer smaller t and t = 0 is the best. For a given m and s
and b, the smallest attainable t might be larger than 0. The minT project [26,27] keeps track of the 
minimum achieved values of t for given m and s and b along with known lower bounds. When we 
3
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refer to the value of t for a point set, we mean the smallest value of t for which the point set is a 
(t, m, s)-net.

Definition 3. For integers t � 0 and b � 2 and s � 1, a (t, s)-sequence in base b is an infinite sequence 
x0, x1, · · · ∈ [0, 1)s such that for any integer m � t and any integer r � 0 the point set

xrbm , xrbm+1, . . . , x(r+1)bm−1 ∈ [0,1)s
is a (t, m, s)-net in base b.

The value of (t, s)-sequences is that they provide an extensible set of (t, m, s)-nets. The first bm
points are a (t, m, s)-net in base b and if we increase the sample to bm+1 points then we have in-
cluded b − 1 more (t, m, s)-nets and they are carefully constructed to fill the gaps that each other 
leave, so that taken together they now comprise a (t, m + 1, s)-net in base b. Taking b of those 
(t, m + 1, s)-nets yields a (t, m + 2, s)-net, and so on. The (t, m, s)-nets that we study are taken to 
be the first bm points of a (t, s)-sequence.

The first (t, m, s)-nets and (t, s)-sequences are those of Sobol’ [29]. They are all in base b = 2. 
Sobol’s construction actually defines a whole family of point sequences, determined by one’s choice 
of ‘direction numbers’. Joe and Kuo [8] made an extensive search for good direction numbers and 
their choices are widely used.

The smallest value of t that one can attain is nondecreasing in s. The most favorable growth rates 
for t as a function of s are in the (t, s)-sequences of Niederreiter and Xing [17,18]. These are ordinarily 
implemented in base 2.

The (t, s)-sequences of Faure [6] have t = 0 but they require a prime base b � s. The modern 
notion of digital nets and sequences is based on the synthesis in [15]. That reference also generalizes 
Faure’s construction to bases b = pr for a prime number p and integer r � 1.

If x0, . . . , xn−1 is a (t, m, s)-net in base b then x0,u, . . . , xn−1,u ∈ [0, 1)|u| form a (t, m, |u|)-net in 
base b. It is common that the quality parameter of these projected digital nets is smaller than the 
one for the original net. We let tu be the smallest such t for which x0,u, . . . , xn−1,u ∈ [0, 1)|u| is a 
(t, m, |u|)-net in base b. For theory about tu see [25], for its use defining direction numbers, see [8], 
and for computational algorithms, see [11]. The quality parameter for the first bm points of a (t, s)-
sequence may also be smaller than the value of t that holds for the entire sequence. We will introduce 
a second quality parameter for a projected (t, m, s)-net in Section 5.

2.2. Scrambling nets

A scrambled net is one where the base b digits of a (t, m, s)-net in base b have been randomly 
permuted in such a way that the resulting points satisfy xi ∼ U[0, 1]s individually while the ensemble 
x0, . . . , xn−1 is still a (t, m, s)-net in base b with probability one. See [19] for the details of a nested 
uniform scramble and [12] for a random linear scramble of Matoušek that requires less storage.

The nested uniform scrambling has the following properties:

E(μ̂RQMC) = μ f ∈ L1[0,1]s,
Pr

(
lim
n→∞ μ̂RQMC = μ

) = 1 f ∈ L1+ε[0,1]s, some ε > 0,

var(μ̂RQMC) = o(1/n) f ∈ L2[0,1]2,
var(μ̂RQMC) � �σ 2/n var( f (x)) = σ 2, some � < ∞,

var(μ̂RQMC) = O (n−3 log(n)s−1) ∂u f ∈ L2[0,1]s all u ⊆ 1:s, and

var(μ̂RQMC) = O (n−2 log(n)2(s−1)) f ∈ BVHK[0,1]s.
See [22] for references. It is likely that the random linear scrambling has these moment properties 
too. The rate O (n−3 log(n)s−1) is established under somewhat weaker conditions than stated above 
4
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by Yue and Mao [31]. There is also a central limit theorem for nested uniform sampling when t = 0
due to Loh [10].

If f is singular then f /∈ BVHK, so most QMC theory does not apply to it. Many singular inte-
grands of interest are in L2, and so RQMC theory applies to them. Similarly, step discontinuities and 
discontinuites in the derivative of f typically lead to f /∈ BVHK [21] while not ruling out f ∈ L2.

The constant � above is the maximal gain coefficient of the digital net. It is the key quantity that 
we study here.

2.3. Gain coefficients

The gain coefficients we study are defined with respect to a different parameterization of elemen-
tary intervals. For u ⊆ 1:s, k ∈ N |u|

0 and c ∈N |u|
0 with c j < bk j let

E(u,k, c) =
∏
j∈u

[ c j

bk j
,
c j + 1

bk j

)∏
j /∈u

[0,1). (5)

In this representation vol(E(u, k, c)) = b−|u|−|k| .
Using a base b Haar wavelet decomposition of L2[0, 1]s in [13] we can write f ∈ L2[0, 1]s as

f (x) =
∑
u⊆1:s

∑
k∈N |u|

0

νu,k(x)

where the function νu,k is constant within the elementary intervals (5). These functions are defined 
there in a way that makes them mutually orthogonal. For u = ∅ there is just one of these functions, 
and it is constant over [0, 1]s with ν∅,()(x) = μ for all x.

From the orthogonality of νu,k we find that

σ 2 ≡ var( f (x)) =
∑
u 	=∅

∑
k∈N |u|

0

σ 2
u,k

where for u 	=∅ we let σ 2
u,k = var(νu,k(x)) =

∫
[0,1]s νu,k(x)2. Therefore with plain MC,

var(μ̂MC) = 1

n

∑
u 	=∅

∑
k∈N |u|

0

σ 2
u,k.

If instead of plain MC we use scrambled nets, then from [13] the sample averages of νu,k are still 
uncorrelated and

var(μ̂RQMC) = 1

n

∑
u 	=∅

∑
k∈N |u|

0

�u,kσ
2
u,k

for gain coefficients �u,k defined at (6) below. The maximal gain coefficient is

� = max
u 	=∅

max
k∈N |u|

0

�u,k,

and then var(μ̂RQMC) � �σ 2/n = �var(μ̂MC).
For a scrambled (t, m, s)-net in base b, if m − t � |u| + |k|, then all of E(u, k, c) contain the same 

number of points of the net. As a result νu,k is integrated without error and �u,k = 0.
The general formula for gain coefficients when scrambling points x0, . . . , xn−1 is

�u,k = 1

n(b − 1)|u|
n−1∑
i=0

n−1∑
i′=0

∏
j∈u

(
b1�bk j+1xi j�=�bk j+1xi′ j� − 1�bk j xi j�=�bk j xi′ j�

)
(6)
5
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from [13]. Here 1�bkxi j�=�bkxi′ j� means that xij, xi′ j ∈ [0, 1) match in their first k base b digits. The 
bounds from [20] are based on equation (6). Equation (6) holds for whatever points we might choose 
to scramble, not just digital nets. However, the way digital nets are constructed tends to give them 
small values of �u,k .

When b = 2, the factors being multiplied in (6) can only take three distinct values, 0, −1, or 1, 
according to whether xij and xi′ j match to fewer than k j bits, exactly k j bits, or more than k j bits. 
Also the factor (b − 1)−|u| reduces to 1. From this we get the simple bound

�u,k �
1

n

n−1∑
i=0

n−1∑
i′=0

∏
j∈u

1�2k j xi j�=�2k j xi′ j� (7)

when scrambling in base 2. We will see below that for digital nets in base 2, the bound in (7) is a 
power of two. More surprisingly, the exact gain in (6) is either 0 or a power of two.

2.4. Prior gain bounds

From Lemma 3 in [20] we get

�u,k � bt
b|u| + (b − 2)|u|

2(b − 1)|u| , whenm − t � |k|, (8)

for a slight generalization of (t, m, s)-nets in base b. The statement of that Lemma has m − t < |k| but 
the proof technique also applies when m − t = |k|. In the case b = 2, the bound simplifies to 2t+|u|−1. 
In Section 3 we extend this bound to all �u,k . Lemma 4 of [20] gives

�u,k � bt
(b + 1

b − 1

)|u|
when |k| <m − t < |u| + |k|.

It is that Lemma that yields the bound � � 2t3s for nets in base 2.
When t = 0, [13] shows that �u,k � (b/(b − 1))s−1. Because such nets are only possible when 

b � s we get �u,k � (b/(b − 1))b−1 � exp(1). Despite this very low upper bound on worst case 
var(μ̂RQMC)/var(μ̂MC), nets in base 2 are most used in practice.

Niederreiter and Pirsic [16] improved on the bounds of [20] by looking at the microstructure of 
digital nets. Microstructure refers to the placement of points within elementary intervals of volume 
smaller than bm−t . For example, the fact that Sobol’ points have t{ j} = 0 is an aspect of their mi-
crostructure.

For k ∈Ns
0 they introduce

A(k1, . . . ,ks) =
⌈
max
c∈Zbk

logb

( n−1∑
i=0

1{xi ∈ E(k, c)}
)⌉

where the condition on c is interpreted componentwise. They also use

AK = max
|k|=K

A(k1, . . . ,ks).

These quantities are well defined whether xi are a (t, m, s)-net in base b or not, but they simplify 
for nets. The reference [16] provides several interesting upper and lower bounds on A(·) based on the 
t parameter of a net, or based on having all xi ∈ Zbm/bm or knowing that one or more of the one 
dimensional projections of the net has t{ j} = 0.

From Proposition 5.1 of [16]

�u,k � bA|k| b
|u| + (b − 2)|u|

|u| .

2(b − 1)

6
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This improves upon (8) by reducing the lead exponent of b and by applying to all gain coefficients. 
We are most interested in b = 2 for which their bound yields

�u,k � 2A|k|+|u|−1.

Their Theorem 4.1 shows that for (t, m, s)-nets where t{1} = · · · = t{s} = 0 that A|k| � t when |k| >
m − t . Because �1:s,k = 0 whenever |k| �m − t we then get �u,k � 2t+|u|−1 and hence � � 2t+s−1 for 
Sobol’ nets.

Dick and Pillichshammer [3] define gain coefficients for each basis function in a Walsh function 
expansion of f . In their Theorem 13.9, they get the bound � � bt+s for digital (t, m, s)-nets in base b.

2.5. Constructions of nets

Here we describe the algorithms to construct digital nets in base 2, following [8]. We will describe 
how to compute 2m points xi ∈ [0, 1)s to m bits each. That is enough to get points that are a (t, m, s)-
net in base 2. If one is planning to extend the points from n = 2m to some larger sample size n = 2M , 
then it is best to use m = M . The points we generate actually belong to {0, 1/n, 2/n, . . . , (n − 1)/n}s . 
After scrambling, one ordinarily adds random offsets u i

iid∼ U[0, 1/n)s to the xi .
A digital net is defined in terms of s matrices C j ∈ {0, 1}m×m for j = 1, . . . , s. For Sobol’ sequences

C j =

⎛
⎜⎜⎜⎜⎜⎝

1 v2, j,1 v3, j,1 · · · vm, j,1
0 1 v3, j,2 · · · vm, j,2
0 0 1 · · · vm, j,3
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

defined in terms of direction numbers vk, j that equal 0.vk, j,1vk, j,2vk, j,3 . . . in their base 2 represen-
tation. Note especially that the matrix C j is upper triangular and has 1s on its diagonal. Sobol’ points 
ordinarily have C1 = Im .

The digital net construction works as follows. For 0 � i < 2m write i = ∑m
�=1 i�2

�−1 for bits i� ∈
{0, 1}. Similarly, write xij = ∑m

�=1 xij�2
−� for bits xij� ∈ {0, 1}. Then the net x0, . . . , x2m−1 is defined by

⎛
⎜⎜⎜⎝

xij1
xij2
...

xijm

⎞
⎟⎟⎟⎠ = C j

⎛
⎜⎜⎜⎝

i1
i2
...

im

⎞
⎟⎟⎟⎠ mod 2.

To define t we describe a process of forming new matrices by combining some of the rows of 
C1, . . . , Cs . Let C (k)

j ∈ {0, 1}k×m be the first k rows of C j . Then for a non-empty u = (r1, r2, . . . , r|u|) ⊆
1:s and a vector k = (kr1 , kr2 , . . . , kr|u|) ∈ {0, 1, . . . , m}|u|, let

Cu,k =

⎛
⎜⎜⎜⎜⎝

C (k1)
r1

C (k2)
r2
...

C
(k|u|)
r|u|

⎞
⎟⎟⎟⎟⎠ ∈ {0,1}|k|×m.

The t value of a digital net in base 2, constructed from C1, . . . , Cs is the smallest value of t such 
that Cu,k has linearly independent rows over Z2 whenever |k| �m − t . This value is the smallest t for 
which the definition in terms of E(k, c) holds. The description above applies to any binary matrices 
C1, . . . , Cs ∈ {0, 1}m×m , not just upper triangular ones.
7
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3. Bound on �

In this section we prove that �u,k � 2t+|u|−1. It follows that � � 2t+s−1. We make extensive use of 
the following elementary fact.

Proposition 1. Let A ∈ {0, 1}K×m have rank r over Z2 and let y ∈ {0, 1}K . Then the set of solutions x ∈ {0, 1}m
to Ax = y mod 2 has cardinality 0 or 2m−r .

We need to keep track of the number of bits where x, x′ ∈ [0, 1) match. For this we define

M(x, x′) = max
{
k ∈N0 | �2kx� = �2kx′�} ∈N0 ∪ {∞}.

Now for points that are scrambled in base 2 we get

�u,k = 1

n

n−1∑
i=0

n−1∑
i′=0

∏
j∈u

Ni,i′, j (9)

for

Ni,i′, j =

⎧⎪⎨
⎪⎩

0, M(xij, xi′ j) < k j

−1, M(xij, xi′ j) = k j

1, M(xij, xi′ j) > k j.

We use arrows to denote bit vectors derived from values in [0, 1) or in N0. For an integer 
i = ∑m

�=1 i�2
�−1 with i� ∈ {0, 1} we write �i = (i1, i2, . . . , im)T and for x = ∑m

�=1 x�2−� we write 
�x = (x1, x2, . . . , xm)T . In either usage, �0 = (0, 0, . . . , 0)T and there are no nonzero values in [0, 1) ∩N0, 
so the mapping to {0, 1}m is well defined. We only need to represent the bits of 2m integers in Z2m

and 2m of the points in [0, 1). Some points in x ∈ [0, 1) have two binary representations, such as 
1/4 = 0.010000 · · · = 0.001111 · · · . We use the choice that ends in a tail of 0s, via x� = �2�x� mod 2.

We will also need to represent some sets of integers as bit vectors. Given a set u ⊆ 1:s and v ⊆ u, 
we let �v = �v[u] ∈ {0, 1}|u| have bits 1 for indices corresponding to elements of v and 0 for indices 
corresponding to elements of u \ v .

Arithmetic on bit vectors is done componentwise modulo 2. We write �i ⊕ �j and �i � �j for the 
componentwise sum and difference of bit vectors.

For non-empty u = {r1, . . . , r|u|} ⊆ 1:s and k ∈ N |u|
0 we define

Cu,k+1 = Cu,k′ where k′
r j = kr j + 1 for j = 1, . . . , |u|.

Thus Cu,k+1 has |u| additional rows in it beyond those in Cu,k . We write the matrix with just these 
|u| additional rows as

∇Cu,k =

⎛
⎜⎜⎜⎝

Cr1(kr1 + 1, : )
Cr2(kr2 + 1, : )

...

Cr|u|(kr|u| + 1, : )

⎞
⎟⎟⎟⎠ .

With the above setup, we are ready to establish our bounds. Within the proof of the next theorem 
we show that

2m−1∑
i′=0

∏
j∈u

Ni,i′, j =
2m−1∑
i′=0

∏
j∈u

N0,i′, j

by symmetry and then bound that sum using Proposition 1.
8
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Theorem 1. For integers m � 1 and s � 1, let C1, . . . , Cs ∈ {0, 1}m×m generate the digital net x0, . . . , x2m−1

via �xij = C j�i for 0 � i < 2m and j = 1, . . . , s. Then for nonempty u ⊆ 1:s and k ∈ N |u|
0 the gain coefficient 

�u,k from (9) satisfies

�u,k =
∑

i∈Z2m

1Cu,k�i=0

∏
j∈u

N0,i, j

=
∑
v⊆u

#
{
i ∈Z2m | Cu,k�i = 0, ∇Cu,k�i = �v[u]}(−1)|v|. (10)

Proof. For any i ∈Z2m , there is some c with c j ∈Z
2k j

for which xi ∈ E(u, k, c). Then for i′ ∈ Z2m with 
xi′ /∈ E(u, k, c) we have Ni,i′, j = 0 for some j ∈ u. As a result, 

∏
j∈u Ni,i′, j = 0 unless xi′ ∈ E(u, k, c)

too. Having both points in the same E(u, k, c) happens if and only if Cu,k�i = Cu,k�i′ , and so only i′
with Cu,k(�i′ ��i) = 0 have 

∏
j∈u Ni,i′, j 	= 0.

Now for xi′ ∈ E(u, k, c) it remains to find the sign of 
∏

j∈u Ni,i′, j . In that case

Ni,i′, j =
{

−1, M(xi′ j, xij) = k j

1, M(xi′ j, xij) > k j.

Suppose that Ni,i′, j = −1 for j ∈ v ⊆ u and Ni,i′, j = 1 for j ∈ u \ v . This happens if and only if 
∇Cu,k(�i′ ��i) = �v[u]. Then 

∏
j∈u Ni,i′, j = (−1)|v| . It follows that

�u,k = 1

n

2m−1∑
i=0

∑
v⊆u

#
{
i′ ∈Z2m | Cu,k(�i′ ��i) = 0,∇Cu,k(�i′ ��i) = �v[u]}(−1)|v|

=
∑
v⊆u

#
{
i′ ∈Z2m | Cu,k�i′ = 0,∇Cu,k�i′ = �v[u]}(−1)|v|

where the second step follows because �i′ ��i runs over the set {0, 1}m for any i ∈Z2m . �
The next corollary is already known from the definition of (t, m, s)-nets. We include it to show 

how it follows from Theorem 1 and because we need it below.

Corollary 1. If Cu,k+1 has full row rank |u| + |k| for non-empty u ⊆ 1:s, then �u,k = 0.

Proof. When Cu,k+1 has full row rank then Cu,k�i = 0 and ∇Cu,k�i = �v[u] has 2m−rank(Cu,k+1) solutions 
for all v ⊆ u. Now Theorem 1 yields �u,k = 2m−rank(Cu,k+1)

∑
v⊆u(−1)|v| = 0. �

Corollary 2. �u,k � 2m−rank(Cu,k) .

Proof. We can rewrite equation (10) as

�u,k =
∑
v⊆u

#
{�i ∈ {0,1}m | Cu,k�i = 0,∇Cu,k�i = �v[u]}(−1)|v|

�
∑
v⊆u

#
{�i ∈ {0,1}m | Cu,k�i = 0,∇Cu,k�i = �v[u]}

= #
{�i ∈ {0,1}m | Cu,k�i = 0

}
= 2m−rank(Cu,k).

The last step follows from Proposition 1 after noting that there is at least one solution because �0 is a 
solution. �
9
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Corollary 3. Let xi ∈ [0, 1)s for i ∈Z2m be a digital (t, m, s)-net in base 2. Then

�u,k � 2t+|u|−1.

Proof. If Cu,k+1 has full row rank then �u,k = 0 by Corollary 1.
Suppose next that Cu,k has full row rank but Cu,k+1 does not. The matrix Cu,k+1 has |u| +|k| rows 

and this must be at least m − t + 1 by the definition of t for a (t, m, s)-net. Because Cu,k has full row 
rank we get rank(Cu,k) = |k| and then by Corollary 2,

�u,k � 2m−rank(Cu,k) = 2m−|k| � 2t+|u|−1.

The remaining case is that Cu,k does not have full row rank. In that case |k| � m − t + 1. The 
matrix Cu,k must have a subset of m − t rows defined by Cu,k′ with k′ � k componentwise for which 
Cu,k′ has full row rank. Then by Corollary 2,

�u,k � 2m−rank(Cu,k) � 2m−rank(Cu,k′ ) = 2t � 2t+|u|−1. �
Sobol’ matrices are upper triangular with ones on their diagonal. Corollary 3 does not require 

upper triangular matrices or ones on the diagonal. Those properties are important but their benefit 
comes through t .

The largest bounds on gain coefficients come from the case where Cu,k has full rank but Cu,k+1
does not. Among these, the largest are the ones for large |u|.

Remark 1. The strategy above can be extended to digital (t, m, s)-nets in base p for prime numbers 
p to show that maxu,k �u,k � pt+|u|−1. That will not generally improve on the bound pt ((p + 1)/(p −
1))|u| from [20]. Even for p = 3 it brings improvements only for |u| � 2 and raises the bound for 
|u| � 3.

4. � is a power of 2

Here we prove that the upper bound is actually tight, so that �u,k is either 0 or 2m−rank(Cu,k) , 
making the maximal gain a power of 2 (because it is impossible to have every �u,k = 0). We need 
some further notation. For w ⊆ u ⊆ 1:s and k ∈ N |u|

0 let k+1w be the vector k′ ∈N |u|
0 with k′

j = k j +1
for j ∈ w and k′

j = k j for j ∈ u \ w . We then introduce a generalized gain coefficient

�w
u,k =

∑
i∈Z2m

1{Cu,k�i = 0}
∏
j∈w

N0,i, j. (11)

As usual, an empty product is 1. Also the matrix with all the rows of Cu,k+1w that are not in Cu,k is 
denoted ∇wCu,k ∈ {0, 1}|w|×m .

Lemma 1. If w 	=∅ and rank(Cu,k+1w ) − rank(Cu,k) = |w| then �w
u,k = 0.

Proof. Because rank(Cu,k+1w ) − rank(Cu,k) = |w|, the image of ∇wCu,k�i for �i ∈ {0, 1}m with Cu,k�i = 0
has rank |w|. But ∇wCu,k�i ∈ {0, 1}|w| , so the image is the whole space. Therefore for any v ⊆ w the 
system of equations

Cu,k�i = 0 and ∇wC(u,k)�i = �v[w]
is consistent and has 2m−rank(Cu,k+1w ) solutions. The rest of the proof is like that in Corollary 1. �
Lemma 2. If w 	= ∅ and rank(Cu,k+1w ) − rank(Cu,k) < |w| then there exists a nonempty v ⊆ w such that ∏

j∈v N0,i, j = 1 for any i ∈Z2m with Cu,k�i = 0.
10



Z. Pan and A.B. Owen Journal of Complexity 75 (2023) 101700
Proof. By hypothesis, there exist coefficients a j,� ∈ {0, 1} for 1 � � � k j for j ∈ u \w and 1 � � � k j +1
for j ∈ w with at least one a j,k j+1 = 1 for j ∈ w such that

∑
j∈u\w

k j∑
�=1

a j,�C j(�, : ) ⊕
∑
j∈w

k j+1∑
�=1

a j,�C j(�, : ) = 0 (12)

with C j(�, : ) ∈ {0, 1}m equal to row � of C j .
We will show that v = { j ∈ w | a j,k j+1 = 1} satisfies the conditions of the Lemma. To do this we 

choose any i ∈ Z2m with Cu,k�i = 0 and let �e = ∇wCu,k�i ∈ {0, 1}|w| . Multiplying both sides of (12) by �i
gives ∑

j∈w

a j,k j+1C j(k j + 1, : )�i =
∑
j∈v

e j = 0 mod 2.

Because the bits of �e sum to zero in Z2 there must be an even number of them that equal 1. There 
are then an even number of j ∈ v with N0,i, j = −1 and then 

∏
j∈v N0,i, j = 1. �

Theorem 2. �u,k is either 0 or 2m−rank(Cu,k) .

Proof. We proceed by induction on |w| to prove that �w
u,k ∈ {0, 2m−rank(Cu,k)} for all w ⊆ u. The con-

clusion then follows because �u
u,k = �u,k .

We begin with w = ∅. Then from the definition (11) of generalized gain coefficients,

�
∅

u,k =
∑

i∈Z2m

1Cu,k�i=0

∏
j∈∅

N0,i, j =
∑

i∈Z2m

1Cu,k�i=0 ∈ {0,2m−rank(Cu,k)}

by Proposition 1.
Now we suppose that �w

u,k ∈ {0, 2m−rank(Cu,k)} holds whenever 0 � |w| < r for some r � |u|. If 
|w| = r and rank(Cu,k+1w ) − rank(Cu,k) = |w| then �w

u,k = 0 for w 	=∅ by Lemma 1.
It remains to consider the case with |w| = r and rank(Cu,k+1w ) −rank(Cu,k) < |w|. In this case w is 

not empty and we let v be the non-empty subset of w from Lemma 2. Then because 
∏

j∈v N0,i, j = 1

�w
u,k =

∑
i∈Z2m

1Cu,k�i=0

∏
j∈w

N0,i, j =
∑

i∈Z2m

1Cu,k�i=0

∏
j∈w\v

N0,i, j = �
w\v
u,k .

Now |w \ v| < |w| = r so we can apply the induction hypothesis. �
Since there are only two possibilities for �u,k we are able to get a computationally advantageous 

check for which of them holds.

Corollary 4. �u,k = 2m−rank(Cu,k) if and only if 
∑

j∈u C j(k j + 1, : ) ∈ {0, 1}m is in the row space of Cu,k .

Proof. First suppose that 
∑

j∈u C j(k j + 1, : ) is in the row space of Cu,k . Then we can apply Lemma 2

with v = w = u to get that 
∏

j∈u N0,i, j = 1 for any i ∈ Z2m with Cu,k�i = 0. Conversely, suppose that 
�u,k = 2m−rank(Cu,k) . Then from details of the proof of Corollary 2,∑

v⊆u

#
{�i ∈ {0,1}m | Cu,k�i = 0,∇Cu,k�i = �v[u]}(−1)|v|

=
∑
v⊆u

#
{�i ∈ {0,1}m | Cu,k�i = 0,∇Cu,k�i = �v[u]},

which rules out having any solutions �i ∈ {0, 1}m to
11
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Fig. 1. The figure shows a portion of the first 216 points in the Sobol’ sequence based on generating matrices of [8] projected 
onto their 8’th and 12’th coordinates. Some elementary intervals are 8 times over-filled. Each is joined by 7 empty ones. The 
figure shows the rectangle [0, 1] × [0, 2−10].

Cu,k�i = 0,∇Cu,k�i = �v[u]
for any v with an odd cardinality. Therefore 

∑
j∈u C j(k j + 1, : )�i = 0 whenever Cu,k�i = 0 which then 

implies that 
∑

j∈u C j(k j + 1, : ) is in the row space of Cu,k . �
Remark 2. Whether �u,k equals zero is closely related to the distribution of points in E(u, k, c). If 
one divides E(u, k, c) into 2|u| smaller elementary intervals by cutting each edge in half and coloring 
those with points inside black, then no two black intervals can be adjacent when �u,k 	= 0. Further-
more, if half of those intervals are black, one sees a chessboard pattern where each black interval 
is surrounded by white intervals and vice versa. In general, after labeling the position of each black 
interval with a binary code in {0, 1}|u| , one can infer from Corollary 4 that �u,k 	= 0 if and only if the 
codes of any pair of black intervals differ on an even number of digits.

As an example, in Fig. 1 the gain coefficient corresponding to [0, 2−1) × [0, 2−10) is nonzero be-
cause only the lower left and upper right quadrants contain points. On the other hand, the gain 
coefficient corresponding to [0, 2−2) × [0, 2−10) is zero because the lower left and lower right quad-
rants are adjacent and filled with points.

5. Reduced upper bound

From Corollary 2 we have �u,k � 2t+|u|−1. It follows immediately that �u,k � 2tu+|u|−1 because we 
could have formed a net out of only xi,u ⊂ [0, 1)|u| . In this section we show that it is possible to 
improve that bound.
12



Z. Pan and A.B. Owen Journal of Complexity 75 (2023) 101700
We need to use a second notion of the t parameter specific to a subset u 	= ∅ of components of xi . 
This notion is denoted by t∗u . We define it below side by side with the prior tu to make comparisons 
easier. We also need a quantity td for 1 � d � s to describe the quality of projected nets. The new and 
old quantities are

t =m + 1− min
u 	=∅,k∈N |u|

0

{|k| | Cu,k not of full rank
}
,

td =m + 1− min
u:|u|�d,k∈N |u|

0

{|k| | Cu,k not of full rank
}
,

tu =m + 1− min
k∈N |u|

0

{|k| | Cu,k not of full rank
}
, and

t∗u =m + 1− min
k∈N |u|

0

{|k| | Cu,k not of full rank, k� 1u componentwise
}
.

Because t∗u adds constraints k j � 1 for j ∈ u, we have t∗u � tu . Likewise, if v ⊆ u, then t∗v adds con-
straints k j � 1 for j ∈ v and k j = 0 for j ∈ u \ v , and we have t∗v � tu . For any k that attains the 
minimum defined in tu , define v = { j ∈ u | k j � 1} and k′ ∈ N |v|

0 to be the nonzero entries of k. Then 
Cu,k is also Cv,k′ and t∗v � tu . Therefore

tu = max
v⊆u

t∗v .

From the definitions of td and t , we have

td = max
u:|u|�d

tu = max
u:|u|�d

max
v⊆u

t∗v = max
|v|�d

t∗v , and

t = max
1�d�s

td = max
u 	=∅

tu = max
v 	=∅

t∗v .

Theorem 3 below shows that we can replace the bound 2tu+|u|−1 by 2t∗u+|u|−1. It then follows that

max
u:|u|�d

max
k∈N |u|

0

�u,k � max
u:|u|�d

2t
∗
u+|u|−1 � 2td+d−1.

For the next results we need to use the vector 1u = (1, 1, . . . , 1) ∈Z|u| .

Theorem 3. For any u ⊆ 1:s where Cu,1u has full row rank,

max
k∈N |u|

0

�u,k � 2t
∗
u+|u|−1 and max

v⊆u
max
k∈N |v|

0

�v,k = 2t
∗
u+|u|−1.

Proof. First we prove that �u,k � 2t
∗
u+|u|−1. By the definition of t∗u , if a matrix Cu,k with k� 1u does 

not have full row rank, it must satisfy |k| �m + 1 − t∗u . The proof in the case where Cu,k has full row 
rank is like that in Corollary 3. The remaining case is when Cu,k does not have full row rank.

Define v = { j ∈ u | k j = 0}. Then |k| + |v| � m − t∗u + 1 because Cu,k+1v does not have full row 
rank and k + 1v � 1u . The matrix Cu,k+1v must have a subset of m − t∗u rows defined by Cu,k′ with 
k′ � k + 1v for which Cu,k′ has full row rank. Then by Corollary 2,

�u,k � 2m−rank(Cu,k) � 2m−rank(Cu,k+1v )+|v| � 2t
∗
u+|v| � 2t

∗
u+|u|−1,

where the last inequality follows from v being a proper subset of u because k cannot be 0.
To prove the second statement, notice that for any v ⊆ u and k ∈ N |v|

0 such that k � 1v and Cv,k

is row rank deficient, we can define k′ ∈ N |u|
0 so that k′

j = k j for j ∈ v and k′
j = 1 for j ∈ u \ v . Then 

k′ � 1u and Cu,k′ is row rank deficient as well because it is made of Cv,k with |u| − |v| extra rows. It 
follows that t∗v � t∗u + |u| − |v| and
13
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max
k∈N |v|

0

�v,k � 2t
∗
v+|v|−1 � 2t

∗
u+|u|−1.

It remains to show that there exists v ⊆ u and kv ∈ N |v|
0 such that kv � 1v and �v,kv = 2t

∗
u+|u|−1. 

First we choose any k∗ that attains the minimum |k| defined in t∗u . Because Cu,k∗ is not of full rank, 
its row vectors must be linearly dependent. That is, there exist coefficients a j,� ∈ {0, 1} for 1 � � � k∗

j
and j ∈ u such that

∑
j∈u

k∗
j∑

�=1

a j,�C j(�, : ) = 0 mod 2.

Define v = { j ∈ u | a j,k∗
j
= 1} and kv ∈ N |v|

0 such that kvj = k∗
j for j ∈ v . Because k∗ attains the smallest 

|k| among k� 1u , a j,k∗
j
= 1 for all j ∈ u such that k∗

j � 2. In other words, j ∈ u \ v if and only if k∗
j = 1

and a j,1 = 0. Hence |kv | = |k∗| − |u \ v| and

∑
j∈v

C j(k
v
j , : ) +

∑
j∈v

kvj −1∑
�=1

a j,�C j(�, : ) = 0.

Corollary 4 then implies that �v,kv−1v
= 2m−rank(Cv,kv−1v ) . Again, because k∗ attains the smallest |k|, 

Cv,kv−1v
has full row rank and rank(Cv,kv−1v

) = |kv | − |v| = |k∗| − |u|. Therefore

�v,kv−1v
= 2m−rank(Cv,kv−1v ) = 2m−|k∗|+|u| = 2t

∗
u+|u|−1. �

Corollary 5. If there exists u ⊆ 1:s with rank(Cu,1u ) < |u| then the maximal gain coefficient � = 2m. Other-
wise � = 2t

∗
1:s+s−1 .

Proof. In the former case, we can choose the smallest size u whose Cu,1u is not full rank. Then the 
row vectors of Cu,1u are linearly dependent, but any proper subset of them are linearly independent. 
Therefore 

∑
j∈u C j(1, : ) = 0. We can then apply Corollary 4 to �u,0 and derive �u,0 = 2m , which is 

the largest �u,k in view of Corollary 2.
In the latter case, the conclusion immediately follows by applying Theorem 3 to u = 1:s. �

Example 1. In this example we prove by construction that it is possible to have t∗1:s < t1:s . For this, we use a 
(1, 1, 4)-net in base 2, known as a shift net [24]. It has that name because the columns of the first generator 
matrix C1 are shifted to create the other generator matrices. The top three rows of the generator matrices C1

through C4 are⎛
⎝0 0 0 1

0 1 1 0
0 0 1 0

⎞
⎠ ,

⎛
⎝0 0 1 0

1 1 0 0
0 1 0 0

⎞
⎠ ,

⎛
⎝0 1 0 0

1 0 0 1
1 0 0 0

⎞
⎠ and

⎛
⎝1 0 0 0

0 0 1 1
0 0 0 1

⎞
⎠ .

The fourth rows could be anything without changing this example. From m = s = 4 and t = 1 we get a gain 
coefficient bound � � 2t+s−1 = 16. However t∗1:s = 0 for this net after observing that

C1:4,11:4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

has full rank. Therefore � = 2t
∗
1:s+s−1 = 8.
14
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6. Discussion

Our first contribution is to tighten the bounds on �u,k and hence also the maximal gain � =
max|u|>0 maxk∈N |u|

0
�u,k for digital nets in base 2 of which the constructions of Sobol’ [29] and 

Niederreiter-Xing [17,18] are the most important. Our second contribution is to show that gain coef-
ficients for base 2 digital nets must be either 0 or a power of 2, so the maximal gain coefficient is a 
power of 2. A consequence of our results is a more efficient algorithm for computing gain coefficients 
compared to direct calculations using (9).

We also note that there is a potential advantage to further randomization by making a random 
assignment of components of xi to inputs of f . Sun et al. [30] call this the column shift method. 
If x0, . . . , xn−1 are a digital net in base b and π is a random permutation of 1, 2, . . . , s then we 
can evaluate f at points x̃i = (xiπ(1), xiπ(2), . . . , xiπ(s)). We note that if column shift is applied to 
a scrambled digital nets, then the gain coefficient �̃u,k for this procedure is an average of s! not 
necessarily distinct gain coefficients. We will generally have maxu,k �̃u,k < maxu,k �u,k .

References

[1] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic Press, San Diego, 1984.
[2] L. Devroye, Non-uniform Random Variate Generation, Springer, 1986.
[3] J. Dick, F. Pillichshammer, Digital Nets and Sequences, Discrepancy and Quasi-Monte Carlo Integration, Cambridge Univer-

sity Press, Cambridge, 2010.
[4] J. Dick, F. Pillichshammer, Discrepancy theory and quasi-Monte Carlo integration, in: A Panorama of Discrepancy Theory, 

Springer, 2014, pp. 539–619.
[5] J. Dick, F.Y. Kuo, I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way, Acta Numer. 22 (2013) 133–288.
[6] H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982) 337–351.
[7] F.J. Hickernell, Koksma-Hlawka inequality, in: Wiley StatsRef: Statistics Reference Online, 2014.
[8] S. Joe, F.Y. Kuo, Constructing Sobol’ sequences with better two-dimensional projections, SIAM J. Sci. Comput. 30 (5) (2008) 

2635–2654.
[9] P. L’Ecuyer, C. Lemieux, A survey of randomized quasi-Monte Carlo methods, in: M. Dror, P. L’Ecuyer, F. Szidarovszki (Eds.), 

Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Kluwer Academic Publishers, 2002, 
pp. 419–474.

[10] W.-L. Loh, On the asymptotic distribution of scrambled net quadrature, Ann. Stat. 31 (4) (2003) 1282–1324.
[11] P. Marion, M. Godin, P. L’Ecuyer, An algorithm to compute the t-value of a digital net and of its projections, J. Comput. 

Appl. Math. 371 (2020) 112669.
[12] J. Matoušek, Geometric Discrepancy: An Illustrated Guide, Springer-Verlag, Heidelberg, 1998.
[13] A.B. Owen Monte, Carlo variance of scrambled equidistribution quadrature, SIAM J. Numer. Anal. 34 (5) (1997) 1884–1910.
[14] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Am. Math. Soc. 84 (6) (1978) 957–1041.
[15] H. Niederreiter, Point sets and sequences with small discrepancy, Monatshefte Math. 104 (1987) 273–337.
[16] H. Niederreiter, G. Pirsic, The microstructure of (t,m,s)-nets, J. Complex. 17 (4) (Dec. 2001) 683–696.
[17] H. Niederreiter, C. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 

2 (1996) 241–273.
[18] H. Niederreiter, C. Xing, Quasirandom points and global function fields, in: S. Cohen, H. Niederreiter (Eds.), Finite Fields 

and Applications, vol. 233, Cambridge, Cambridge University Press, 1996, pp. 269–296.
[19] A.B. Owen, Randomly permuted (t, m, s)-nets and (t, s)-sequences, in: H. Niederreiter, P.J.-S. Shiue (Eds.), Monte Carlo and 

Quasi-Monte Carlo Methods in Scientific Computing, Springer-Verlag, New York, 1995, pp. 299–317.
[20] A.B. Owen, Scrambling Sobol’ and Niederreiter-Xing points, J. Complex. 14 (4) (1998) 466–489.
[21] A.B. Owen, Multidimensional variation for quasi-Monte Carlo, in: J. Fan, G. Li (Eds.), International Conference on Statistics 

in Honour of Professor Kai-Tai Fang’s 65th Birthday, 2005.
[22] A.B. Owen, D. Rudolf, A strong law of large numbers for scrambled net integration, SIAM Rev. 63 (2) (2021) 360–372.
[23] R.D. Richtmyer, The evaluation of definite integrals and quasi-Monte Carlo method based on the properties of algebraic 

numbers, Technical report, Los Alamos Scientific Laboratory, Los Alamos, NM, 1951.
[24] W.Ch. Schmid, Shift—nets: a new class of binary digital (t, m, s)–nets, in: H. Niederreiter, P. Hellekalek, G. Larcher, P. 

Zinterhof (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 1996, Springer, 1998, pp. 369–381.
[25] W.Ch. Schmid, Projections of digital nets and sequences, Math. Comput. Simul. 55 (2001) 239–247.
[26] R. Schürer, W.Ch. Schmid, MinT: a database for optimal net parameters, in: H. Niederreiter, D. Talay (Eds.), Monte Carlo and 

Quasi-Monte Carlo Methods 2004, Springer, 2006.
[27] R. Schürer, W.Ch. Schmid, MinT: new features and new results, in: P. L’Ecuyer, A.B. Owen (Eds.), Monte Carlo and Quasi-

Monte Carlo Methods 2008, Springer, 2009.
[28] I.M. Sobol’, The distribution of points in a cube and the accurate evaluation of integrals (in Russian), Ž. Vyčisl. Mat. Mat. 
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