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When a plain Monte Carlo estimate on n samples has variance
o2 /n, then scrambled digital nets attain a variance that is o(1/n)
as n — oo. For finite n and an adversarially selected integrand, the
variance of a scrambled (t,m,s)-net can be at most I'c2/n for
a maximal gain coefficient I' < co. The most widely used digital
nets and sequences are those of Sobol’. It was previously known
that T < 2!3% for any nets in base 2. For digital nets, Dick and
Pillichshammer (2010) obtained the bound 2!*S. In this paper we
study digital nets in base 2 and show that I < 251 for such nets.
This bound is a simple, but apparently unnoticed, consequence of
a microstructure analysis by Niederreiter and Pirsic in 2001. We
obtain a sharper bound that is smaller than this for some digital
nets. Our main finding is that all nonzero gain coefficients must
be powers of two. A consequence of this latter fact is a simplified
algorithm for computing gain coefficients of digital nets in base 2.
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1. Introduction

Numerical integration is a fundamental task in scientific computation. In high dimensional prob-
lems, Monte Carlo (MC) methods are widely used for integration because they are less affected by
dimension than classical methods, such as those in [1]. Randomized quasi-Monte Carlo (RQMC) meth-
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ods as implemented via scrambled nets are asymptotically better than MC having variance o(1/n)
when plain MC has variance O (1/n). This paper is about some finite sample bounds. The variance of
scrambled net RQMC is never more than a maximal gain coefficient I" times the Monte Carlo variance
for any integrand in L2. We improve on the bound for I'. For scrambled Sobol’ nets in [0, 1]° with
quality parameter t (defined below) we find that I' < 2*5=1 compared to the prior bounds of 2{3°
(for any net in base 2) and 25 (for digital nets in base 2). In addition to bounds, we show that any
nonzero gain coefficient in a digital net of Sobol’ must be a power of 2. The analysis is through ranks
of certain matrices over Z,.

The MC problems we study are to compute y = f[O,l]S f(x)dx for a dimension s > 1 and most of

our attention is on f e L%[0,1]°. This p is the mathematical expectation E(f(x)) for x ~ U[0, 1]°.
By using transformations from [2] we can greatly expand MC to expectations of quantities with non-
uniform distributions over domains other than the unit cube, and so for this paper it suffices to work
with x~ U[0, 1]5.

The MC estimate of u is

. 1 iid s
MMC—EZ;f(Xi), x~U[0,17. (1)

The independent uniform draws x; will form clusters and leave gaps in [0, 1]°. This fact has lead to
the development of quasi-Monte Carlo (QMC) methods, beginning with [23], designed to cover the
unit cube more evenly. See [5] for a recent survey. A QMC estimate [igmc has the same form as
fmc from (1) except that n distinct points x; € [0, 1]° are chosen deterministically so as to make the
discrete uniform distribution on {xg, ..., X,_1} close to the continuous uniform distribution on [0, 11,
by minimizing a measure of the discrepancy (see [4]) between those distributions.

Using the Koksma-Hlawka inequality [7] it is possible to show that some QMC constructions attain

lfigme — 4l = 0 (n ' log(n)*™1) 2)

when f has bounded variation in the sense of Hardy and Krause, which we write as f € BVHK =
BVHK][O, 1]°. See [21] for a description of this variation. A drawback of QMC points is that they
do not support a practical strategy to compute the bound in (2). Randomized QMC (RQMC) points
X0, ...,X;_1 are constructed so that individually x; ~ U[0, 1]° while collectively these points have the
low discrepancy that makes (2) hold. Then we can estimate our error statistically, using independent
replicates of the randomization procedure. See [9] for a survey of RQMC.

In this paper we focus on perhaps the most widely used QMC method, the Sobol’ sequences of
[28]. We consider randomizing them with the RQMC method known as scrambled nets from [19].
The MC estimate satisfies

2
E((fme — %) = % (3)

Thus MC has a root mean squared error (RMSE) of o /n'/2, The QMC error in (2) is asymptotically
better, but for large s the log(n)s~! factor leaves room for doubt about QMC at feasible sample sizes.
For scrambled nets we have

2
E((frgmc — 1)) < F% (4)
for a maximal gain coefficient I" < co, removing the powers of log(n). If f € BVHK, then (2) also holds
for firomc, SO0 RQMC gets the asymptotic benefit of QMC while (4) bounds how much worse RQMC
could be compared to MC for finite n (with an adversarily chosen integrand).

When scrambling the nets taken from Faure sequences [6], it is known from [13] that " < exp(1) =
2.718. The nets of Sobol’ [29] appear to be more widely used. As (t,m, s)-nets in base 2 they satisfy
the bound I" < 23 from [20]. Because they are digital nets as we describe below they also satisfy the
bound I' < 2f*$ from [3]. In this paper we improve that bound to show that I' < 2f+5=1, This bound
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can also be deduced from the results of Niederreiter and Pirsic [16], but to our knowledge this has
not been remarked on before. We further show that all the nonzero gain coefficients are powers of
two and we provide a slight improvement in the microstructure gain bounds from [16].

An outline of this paper is as follows. Section 2 defines digital nets and sequences, and reviews
properties of scrambled digital nets. Section 3 proves our bound 2{+5~1, Section 4 proves that nonzero
gain coefficients must be powers of 2. Both of these results hold for any scrambled digital nets in base
2 including those of Sobol’ [29] as well as those of Niederreiter and Xing [17,18] and base 2 nets con-
structed via polynomial lattice rules, as described in [3]. Section 5 shows that an improved exponent
of 2 is possible by sharpening the usual notion of the t parameter for a subset of variables. One con-
crete example with an improved exponent is provided using shift nets of Schmid [24]. Section 6 has
a discussion.

2. Notation and background
In this section we define digital nets and sequences. Then we describe methods of scrambling

them and their properties. The key property in this paper is the set of gain coefficients of a digital
net.

Throughout this paper we have a dimension s > 1. We write 1:s for {1,2,...,s}. We use Z for the
integers, Ny for non-negative integers, and for integers n > 1 we let Z, ={0,1,...,n—1}. Foru C 1:s
and X = (x1,...,xs) € [0,1]° we write ¥, for the tuple (x;)jcy. The cardinality of u is written |u]. For

a set defined by an explicit description, # may be used for cardinality. For a statement S we use 1g
or 1{S}, depending on readability, to denote a variable that is 1 when S holds and O otherwise.

2.1. Digital nets and sequences

We let b > 2 be an integer base in which to represent integers and points in [0, 1). We work with
half-open intervals because we will need to partition [0, 1)° into congruent subsets. Note that the
problems are still defined as f[o,l]s f(x) dx because QMC is strongly connected to Riemann integration
[14] and the notion of bounded variation that we use is also defined on closed unit cubes. We begin
with some standard definitions.

Definition 1. An s-dimensional elementary interval in base b has the form

N

¢j cj+1
E(k,c):l_[[bT]j, o )

j=1
wherek = (ki,...,k;) € Z° and c = (c1, ..., cs) € Z° satisfy kj > 0 and 0 < c; < bk,
Given k, we define |k| = j;l k;. For a given vector k, the bkl elementary intervals E(k, c)

partition [0, 1)° into congruent sub-intervals. Ideally they should all get the same number of our
integration points x; and digital nets defined next make this happen in certain cases.

Definition 2. Forintegersm >t > 0andb > 2 ands > 1, a (t,m, s)-net in base b is a point set Xg, ..., Xp—1 €
[0, 1) for n = b™ where

n—1
> 1{xi € Ek, ©)y =nb~ ¥ = pm-1K
i=0

for every elementary interval E (k, ¢) with |k| <m —t.

Other things being equal, we would prefer smaller ¢t and t = 0 is the best. For a given m and s
and b, the smallest attainable ¢t might be larger than 0. The minT project [26,27] keeps track of the
minimum achieved values of t for given m and s and b along with known lower bounds. When we
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refer to the value of t for a point set, we mean the smallest value of t for which the point set is a
(t,m, s)-net.

Definition 3. For integers t > 0 and b > 2 and s > 1, a (t, s)-sequence in base b is an infinite sequence
X0, X1, - -- € [0, 1)° such that for any integer m > t and any integer r > 0 the point set

S
Xepm, Xppm i1, ..., Xep1)pm—1 € [0, 1)

is a (t, m, s)-net in base b.

The value of (t, s)-sequences is that they provide an extensible set of (t,m,s)-nets. The first b™
points are a (t,m, s)-net in base b and if we increase the sample to b™*! points then we have in-
cluded b — 1 more (t,m,s)-nets and they are carefully constructed to fill the gaps that each other
leave, so that taken together they now comprise a (t,m + 1, s)-net in base b. Taking b of those
(t,m + 1, s)-nets yields a (t,m + 2, s)-net, and so on. The (t,m, s)-nets that we study are taken to
be the first b™ points of a (t, s)-sequence.

The first (t,m,s)-nets and (t, s)-sequences are those of Sobol’ [29]. They are all in base b = 2.
Sobol’s construction actually defines a whole family of point sequences, determined by one’s choice
of ‘direction numbers’. Joe and Kuo [8] made an extensive search for good direction numbers and
their choices are widely used.

The smallest value of t that one can attain is nondecreasing in s. The most favorable growth rates
for t as a function of s are in the (t, s)-sequences of Niederreiter and Xing [17,18]. These are ordinarily
implemented in base 2.

The (t,s)-sequences of Faure [6] have t = 0 but they require a prime base b > s. The modern
notion of digital nets and sequences is based on the synthesis in [15]. That reference also generalizes
Faure’s construction to bases b = p" for a prime number p and integer r > 1.

If Xp,...,%;—1 is a (t,m,s)-net in base b then xoy,...,X—1,4 € [0, DUl form a (t,m, |u|)-net in
base b. It is common that the quality parameter of these projected digital nets is smaller than the
one for the original net. We let t, be the smallest such t for which xg 4, ..., %14 € [0, DUl is a

(t,m, |u|)-net in base b. For theory about t, see [25], for its use defining direction numbers, see [8],
and for computational algorithms, see [11]. The quality parameter for the first b™ points of a (t, s)-
sequence may also be smaller than the value of ¢t that holds for the entire sequence. We will introduce
a second quality parameter for a projected (t, m, s)-net in Section 5.

2.2. Scrambling nets

A scrambled net is one where the base b digits of a (t, m, s)-net in base b have been randomly
permuted in such a way that the resulting points satisfy x; ~ U[0, 1]° individually while the ensemble
X0, ...,Xp—1 is still a (t,m, s)-net in base b with probability one. See [19] for the details of a nested
uniform scramble and [12] for a random linear scramble of MatouSek that requires less storage.

The nested uniform scrambling has the following properties:

E(ftrgme) = 14 fel'o,17,

Pr( lim /irquc = pt) =1 fel'™€[0,1F, somee >0,
var(firgme) = 0(1/n) fel?0,17%,

var(firgme) < F'o?/n var(f(x)) =02, someT < oo,
var(firgme) = 0 (n~> log(n)*~1) a“fel?0,1) alluc1s, and
var(firomc) = 0 (1% log(n)>¢=D) f € BVHK][O, 17°.

See [22] for references. It is likely that the random linear scrambling has these moment properties
too. The rate O(n—>log(n)*~!) is established under somewhat weaker conditions than stated above
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by Yue and Mao [31]. There is also a central limit theorem for nested uniform sampling when t =0
due to Loh [10].

If f is singular then f ¢ BVHK, so most QMC theory does not apply to it. Many singular inte-
grands of interest are in L2, and so RQMC theory applies to them. Similarly, step discontinuities and
discontinuites in the derivative of f typically lead to f ¢ BVHK [21] while not ruling out f e L2.

The constant I" above is the maximal gain coefficient of the digital net. It is the key quantity that
we study here.

2.3. Gain coefficients

The gain coefficients we study are defined with respect to a different parameterization of elemen-
tary intervals. For u C 1:s, ke NJ'' and ¢ e N)}'! with c; < bY let

_ cj cj+1

Ewko=[[F =5=) [Tio.n. (5)
jeu Jjéu

In this representation vol(E (u, k, ¢)) = b~ 1uI= Ikl

Using a base b Haar wavelet decomposition of L2[0, 1]° in [13] we can write f € L?[0,1]° as

f@O=Y > vur®
ugl:skeN(\Ju\

where the function v,  is constant within the elementary intervals (5). These functions are defined
there in a way that makes them mutually orthogonal. For u = & there is just one of these functions,
and it is constant over [0, 11° with vg ((x) = u for all x.

From the orthogonality of v, j we find that

o2 =var(f(x)) = Z Z af’k

U e
where for u # @ we let oik =var(v, k(X)) = f[o 1P vu,k(x)z. Therefore with plain MC,
N 1
var(ive) = ~ oY ok
U e

If instead of plain MC we use scrambled nets, then from [13] the sample averages of v, y are still
uncorrelated and

. 1
var(fAromc) = - Z Z Tu k0
uF2 geNJ

for gain coefficients I'; j defined at (6) below. The maximal gain coefficient is

I'=max max 'y,
UFD eN)!

and then var(firomc) < ['o?/n = Ivar(fimc).
For a scrambled (t, m, s)-net in base b, if m —t > |u| + |k|, then all of E(u, k, ¢) contain the same
number of points of the net. As a result v, j is integrated without error and I'y j = 0.

The general formula for gain coefficients when scrambling points xg, ..., X,_1 is
1 n—1n-1
Cyk= n(b — Dl 2{; z(:)l_[(blLbkj+]xijJ=Lbkj+]xi/jj - 1[b"jx,-,-J=Lb"fxi/jJ) (©)
i=01i'=0 jeu
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from [13]. Here lLkaijJ:LbkxiljJ means that x;j, xyj € [0,1) match in their first k base b digits. The
bounds from [20] are based on equation (6). Equation (6) holds for whatever points we might choose
to scramble, not just digital nets. However, the way digital nets are constructed tends to give them
small values of Ty, k.

When b = 2, the factors being multiplied in (6) can only take three distinct values, 0, —1, or 1,
according to whether x;; and x;;; match to fewer than k; bits, exactly k; bits, or more than k; bits.
Also the factor (b — 1)~ reduces to 1. From this we get the simple bound

n—1n-1

1
Fu,k < EZZH1L2’(injJ:L2’(in/jJ (7)

i=0i'=0 jeu
when scrambling in base 2. We will see below that for digital nets in base 2, the bound in (7) is a
power of two. More surprisingly, the exact gain in (6) is either 0 or a power of two.

2.4. Prior gain bounds

From Lemma 3 in [20] we get

b (b — 2l
2(b — 1kl
for a slight generalization of (t, m, s)-nets in base b. The statement of that Lemma has m —t < |k| but

the proof technique also applies when m —t = |k|. In the case b =2, the bound simplifies to 2{*/u/-1,
In Section 3 we extend this bound to all 'y . Lemma 4 of [20] gives

Tur<b whenm —t < |k|, (8)

u
Tyk < bt(zil)l | when |k| <m —t < |u| + |K|.
It is that Lemma that yields the bound I' < 2¢3° for nets in base 2.

When ¢t =0, [13] shows that I'y x < (b/(b — 1))*~1. Because such nets are only possible when
b>s we get Ty < (b/(b— 1))b~1 < exp(1). Despite this very low upper bound on worst case
var(firgmc)/var(finmc), nets in base 2 are most used in practice.

Niederreiter and Pirsic [16] improved on the bounds of [20] by looking at the microstructure of
digital nets. Microstructure refers to the placement of points within elementary intervals of volume
smaller than b™~*. For example, the fact that Sobol' points have t{j; =0 is an aspect of their mi-
crostructure.

For k € Nj they introduce

n—1
Alky,.... ks) = ’Vcrgzali logb<21{x,- € E(k, c)}>—‘

i=0

where the condition on c is interpreted componentwise. They also use

Ax = max Ak, ..., ks).
|k|=K
These quantities are well defined whether x; are a (t, m, s)-net in base b or not, but they simplify
for nets. The reference [16] provides several interesting upper and lower bounds on A(-) based on the
t parameter of a net, or based on having all x; € Zyn/b™ or knowing that one or more of the one
dimensional projections of the net has t{;; =0.
From Proposition 5.1 of [16]

blul + (b —2)lul

Ty < bAK
uk 2(b — Dl
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This improves upon (8) by reducing the lead exponent of b and by applying to all gain coefficients.
We are most interested in b = 2 for which their bound yields

Iﬂu k < 2A|m+|u\—1'

Their Theorem 4.1 shows that for (t,m,s)-nets where t(;; =--- =t5y =0 that Ay <t when |k| >
m — t. Because I'15x =0 whenever |k| <m —t we then get [y < 2H%~1 and hence I' < 25571 for
Sobol’ nets.

Dick and Pillichshammer [3] define gain coefficients for each basis function in a Walsh function
expansion of f. In their Theorem 13.9, they get the bound T" < b**S for digital (¢, m, s)-nets in base b.

2.5. Constructions of nets

Here we describe the algorithms to construct digital nets in base 2, following [8]. We will describe
how to compute 2™ points x; € [0, 1)° to m bits each. That is enough to get points that are a (t, m, s)-
net in base 2. If one is planning to extend the points from n=2" to some larger sample size n =2,
then it is best to use m = M. The points we generate actually belong to {0,1/n,2/n,...,(n — 1)/n}*.

After scrambling, one ordinarily adds random offsets u; i U[0, 1/n)’ to the x;.

A digital net is defined in terms of s matrices Cj € {0, 1}™*™ for j=1,...,s. For Sobol’ sequences
1 vajn1 vijnr -0 Vmija
0 1 V3j2 ot Vmj2
Cj= 0 0 1 e Vmyj3
0 0 0 e 1

defined in terms of direction numbers v j that equal 0.vy j 1V j2Vk j3-.. in their base 2 represen-
tation. Note especially that the matrix C; is upper triangular and has 1s on its diagonal. Sobol’ points
ordinarily have Cq = Ip,.

The digital net construction works as follows. For 0 < i < 2™ write i = 2?21 ip2¢=1 for bits iy €
{0, 1}. Similarly, write x;j = Zzl:] xjjg2_‘3 for bits x;j¢ € {0, 1}. Then the net Xo, ..., Xm_1 is defined by

Xij1 i
Xij2 12
=Cj| . mod 2.
Xijm im
To define t we describe a process of forming new matrices by combining some of the rows of
Cq,...,Cs. Let CEk) € {0, 1}**m pe the first k rows of Cj. Then for a non-empty u = (rq,12,...,Tu) C
1:s and a vector k= (ky, . kr,. ...k, ) €{0,1,...,m}l"| let
Cii‘I
Cr?
Cuk=| . [eto 1ykixm
k
i’
The t value of a digital net in base 2, constructed from Cyq, ..., Cs is the smallest value of t such

that C, x has linearly independent rows over Z; whenever |k| <m —t. This value is the smallest t for
which the definition in terms of E(k, ¢) holds. The description above applies to any binary matrices
Ci,...,Cs €{0,1}™™M not just upper triangular ones.

7
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3. Boundon I

In this section we prove that [y j < 2¢#1=1, It follows that ' < 2¢+5~1. We make extensive use of
the following elementary fact.

Proposition 1. Let A € {0, 1YX>™ have rank r over Z, and let y € {0, 1}X. Then the set of solutions x € {0, 1}™
to Ax =y mod 2 has cardinality 0 or 2™,

We need to keep track of the number of bits where x, X' € [0, 1) match. For this we define

M(x, x') = max{k € N | [2¢x] = |_2kX/J} e Ng U {o0}.
Now for points that are scrambled in base 2 we get

n—1n-1

Fu,k:%ZZHNi,i’,j (9)

i=0i'=0 jeu
for

0, M(xij, xij) <kj
Ni,i’$j= -1, M(xijvxi’j):kj
1, M(xij, xirj) > k;j.

We use arrows to denote bit vectors derived from values in [0,1) or in No. For an integer
i=Y7 12" with i, € {0,1} we write i = (i1,12,...,im)" and for x = >0, x,27¢ we write
X=(X1,X2,...,%m)". In either usage, 0= (0,0, ...,0)" and there are no nonzero values in [0, 1) N Ng,
so the mapping to {0, 1} is well defined. We only need to represent the bits of 2™ integers in Zym
and 2™ of the points in [0, 1). Some points in x € [0, 1) have two binary representations, such as
1/4=0.010000---=0.001111---. We use the choice that ends in a tail of 0s, via x, = |2¢x| mod 2.

We will also need to represent some sets of integers as bit vectors. Given a set u € 1:s and v C u,
we let v = v[u] € {0, 1}/*| have bits 1 for indices corresponding to elements of v and 0 for indices
corresponding to elements of u \ v. L ..

Arithmetic on bit vectors is done componentwise modulo 2. We write i @ j and i © j for the
componentwise sum and difference of bit vectors.

For non-empty u = {ry,...,ru} S 1:sand k € N(l)ul we define

Cut1=Cy e where k;j =k +1forj=1,...,[ul.

Thus Cy k41 has |u| additional rows in it beyond those in C, k. We write the matrix with just these
|u| additional rows as

Cm(kr] +1a:)

Crz(krz + 15 :)
VCyk= .

CTM (kl“u‘ + 17 :)

With the above setup, we are ready to establish our bounds. Within the proof of the next theorem
we show that

2m_—1 2m—1
> [TNii= 2" [TNoi;
i’=0 jeu i’=0 jeu

by symmetry and then bound that sum using Proposition 1.

8
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Theorem l.qFor integersm >1ands > 1, let Cq,...,Cs € {0, 1}™*™ generate the digital net X, ..., Xym_4
via X;j = Cji for 0<i<2™and j=1,...,s. Then for nonempty u C 1:s and k € N(l)ul the gain coefficient
Iy k from (9) satisfies

Pui= 2 ¢, 0] [Noss

i€Zom jeu
=Y #{ieZm | Cukl =0, VCy i = v[ul} (=D, (10)
vCu

Proof. For any i € Zm, there is some ¢ with ¢j € szj for which x; € E(u, k, ¢). Then for i’ € Z,m with
Xy ¢ E(u,k, c) we have N;y j =0 for some j € u. As a result, ]_[jeu Ny j =0 unless xy € E(u, k,c)
too. Having both points in the same E(u, k,c) happens if and only if C, i = Cyki’, and so only i’
with Cy k(7 ©1) = 0 have [];c, Ny, #0.

Now for x; € E(u, k, ¢) it remains to find the sign of ]_[jeu Nj i j. In that case

Niow i — =1, Mxyj, xij) =kj
o 1, M(xyj, xij) > kj.

Suppose that N;y j=—1 for jev Cu and N;y j=1 for jeu\ v. This happens if and only if
VCy k(' ©1) = V[u]. Then [, Niij = (=1 It follows that

2m—1

1 ; 57 R N
Fuk=~ Z > #{i' € Zon | Cup(@ ©1) =0, VCyi(i' ©1) = V[ul}(-1)"!
i=0 v<u
=Y #{i' € Zym | Cuud’ =0, VCyui’ = V[ul} (-
vCu

where the second step follows because ?9? runs over the set {0, 1}™ for any i € Zm. O

The next corollary is already known from the definition of (t,m,s)-nets. We include it to show
how it follows from Theorem 1 and because we need it below.

Corollary 1. If C;, k+1 has full row rank |u| + |k| for non-empty u C 1:s, then T'y x = 0.

Proof. When Cy j41 has full row rank then Cu,,j: 0 and VCy ki = V[u] has 2m=Tank(Cuk+1) solutions
for all v € u. Now Theorem 1 yields I'y j = 2m "0k k) 3 (-1 =0. O

Corollary 2. T j, < 2m—"ankCui),

Proof. We can rewrite equation (10) as
Fuge= Y #{1 € (0. 1) | Cui =0, VCyi = Vul} (="
vCu
<Y #{i€{0.1)™ | Cypd =0, VCy i = V[u]}
vCu
=#{i€{0,1)™| Cyxi =0}
— merank(Cuyk).

The last step follows from Proposition 1 after noting that there is at least one solution because 0isa
solution. O
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Corollary 3. Let x; € [0, 1)’ for i € Zym be a digital (t, m, s)-net in base 2. Then

Fu,k < 2t+|u\—l .

Proof. If C; k41 has full row rank then I'; ; = 0 by Corollary 1.

Suppose next that C,  has full row rank but C, k11 does not. The matrix C; k41 has |u| + |k| rows
and this must be at least m — t + 1 by the definition of ¢ for a (t,m, s)-net. Because C, j has full row
rank we get rank(Cy ) = |k| and then by Corollary 2,

Fu,k < szrank(Cu,k) — sz\kl < 2t+\u|71.

The remaining case is that C, j does not have full row rank. In that case |k| > m —t + 1. The
matrix Cy j must have a subset of m —t rows defined by C, ;s with k' < k componentwise for which
Cy k¢ has full row rank. Then by Corollary 2,

Tuk < gm—rank(Cy k) < gm—rank(C, y) _ ot < otHlul-1 4

Sobol’ matrices are upper triangular with ones on their diagonal. Corollary 3 does not require
upper triangular matrices or ones on the diagonal. Those properties are important but their benefit
comes through t.

The largest bounds on gain coefficients come from the case where C, y has full rank but Cy 41
does not. Among these, the largest are the ones for large |u]|.

Remark 1. The strategy above can be extended to digital (t,m, s)-nets in base p for prime numbers
p to show that max, j I'y i < p+*I=1. That will not generally improve on the bound p‘((p +1)/(p —
1)/ from [20]. Even for p =3 it brings improvements only for |u| < 2 and raises the bound for
lul = 3.

4. T is a power of 2

Here we prove that the upper bound is actually tight, so that [ is either 0 or 2™~ ank(Cui),
making the maximal gain a power of 2 (because it is impossible to have every I'y = 0). We need

some further notation. For w Cu C 1:sand k € N(l)”l let k+1,, be the vector k' € N(‘)”‘ with k;. =kj+1
for j € w and k;. =k; for j eu\ w. We then introduce a generalized gain coefficient

k= Z 1{Cu,k7=0}HNo,i,j~ (11)

i€eZym jew

As usual, an empty product is 1. Also the matrix with all the rows of Cy x+1,, that are not in Cy i is
denoted VW C, € {0, 1}IWIxm,

Lemma 1. If w # @ and rank(Cy g+1,,) — rank(Cy ) = |w| then FLVlV,k =0.

Proof. Because rank(Cy g+1,,) — rank(Cy ) = |w|, the image of VWCu,k? forie {0, 1}™ with Cu,k?: 0
has rank |w|. But V¥ C, i € {0, 1}!"], so the image is the whole space. Therefore for any v C w the
system of equations

Cuki=0 and VYC(u,k)i="v[w]

is consistent and has 2™ Tk(Cuk+1w) solutions. The rest of the proof is like that in Corollary 1. O

Lemma 2. If w # @ and rank(Cy g+1,,) — rank(Cy ) < |w| then there exists a nonempty v € w such that
I—[jev No,i,j =1 forany i € Zom with Cy i =0.

10
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Proof. By hypothesis, there exist coefficients aj , € {0, 1} for 1 <£ <k; for jeu\w and 1 <€ <kj+1
for j € w with at least one A k41 =1 for j € w such that

kj kj+1
DY ajCie. @) > ajCift.)=0 (12)
jeu\w (=1 jew =1

with C;(¢,:) € {0, 1} equal to row ¢ of C;j.
We will show that v ={j € w|aj;+1 =1} satisfies the conditions of the Lemma. To do this we

choose any i € Zyn with Cy i =0 and let & = V", xi € {0, 1}"|. Multiplying both sides of (12) by i
gives

> a1tk +1,:)i=) ej=0mod2.

jew jev
Because the bits of € sum to zero in Z; there must be an even number of them that equal 1. There
are then an even number of j € v with Ng; j = —1 and then ]_[jev Noij=1. O

Theorem 2. T . is either 0 or 2M~"ank(Cu),

Proof. We proceed by induction on |w| to prove that ka € {0, 2m-rank(Cuw)} for all w C u. The con-
clusion then follows because T wte =Tk
We begin with w = @. Then from the definition (11) of generalized gain coefficients,

m—rank(Cy )
Fok= D Te,ico [[Noij= D 1¢,,ip€(0.2 “
ieZym jeo i€Zom

by Proposition 1.

Now we suppose that Ty, € {0,2™~ rank(Cuk)} holds whenever 0 < |w| < r for some r < |ul|. If
|w| =r and rank(Cy g+1,,) — rank(Cy k) = |w| then Fu k=0 for w# & by Lemma 1.

It remains to consider the case with |w|=r and rank(Cu,kHW) —rank(Cy k) < |w|. In this case w is
not empty and we let v be the non-empty subset of w from Lemma 2. Then because ]_[jev Noij=1

R LW\
M= D Yeico [ I Noai= D T¢,ico 1 Noij=Tys"
i€Zym jew i€Zym jew\v
Now |w \ v| < |w|=r so we can apply the induction hypothesis. O

Since there are only two possibilities for I',  we are able to get a computationally advantageous
check for which of them holds.

Corollary 4. T j, = 2™~k ) if and only if > jeu Cj(kj+1,:) € {0, 1)™ is in the row space of Cy k.

Proof. First suppose that Zjeu Cj(kj+1,:) is in the row space of Cy . Then we can apply Lemma 2
with v =w = u to get that Hjeu No,i j=1 for any i € Zm with Cuﬁ: 0. Conversely, suppose that
[y g =2m"kCui) Then from details of the proof of Corollary 2,

> #{i € {0.1)™ | Cypd =0, VCyud = V[u]}(—1)"!

vCu

=Y #{i € (0.1} | Cusi =0, VCy i = V[ul},

vCu

which rules out having any solutions ie {0,1}™ to

11
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Some eight times over filled boxes when m=16

1e-03

8e-04
®e

6e-04
o'

Sobol' variable 12
L]

4e-04
()
[ ]

2e-04

0e+00
|

0.0 0.2 0.4 0.6 0.8 1.0
Sobol' variable 8

Fig. 1. The figure shows a portion of the first 2'¢ points in the Sobol’ sequence based on generating matrices of [8] projected
onto their 8'th and 12'th coordinates. Some elementary intervals are 8 times over-filled. Each is joined by 7 empty ones. The
figure shows the rectangle [0, 1] x [0,271].

Cutd =0, VCy e = V[u]

for any v with an odd cardinality. Therefore Zjeu Cikj+1, :)7: 0 whenever Cu,,ﬁ: 0 which then
implies that Zjeu Cj(kj+1,:) is in the row space of Cy . O

Remark 2. Whether I'y i equals zero is closely related to the distribution of points in E(u, k, c). If
one divides E(u, k, ¢) into 2/“! smaller elementary intervals by cutting each edge in half and coloring
those with points inside black, then no two black intervals can be adjacent when I'; i # 0. Further-
more, if half of those intervals are black, one sees a chessboard pattern where each black interval
is surrounded by white intervals and vice versa. In general, after labeling the position of each black
interval with a binary code in {0, 1}%/, one can infer from Corollary 4 that T, j # 0 if and only if the
codes of any pair of black intervals differ on an even number of digits.

As an example, in Fig. 1 the gain coefficient corresponding to [0,2~1) x [0,271%) is nonzero be-
cause only the lower left and upper right quadrants contain points. On the other hand, the gain
coefficient corresponding to [0,272) x [0,2719) is zero because the lower left and lower right quad-
rants are adjacent and filled with points.

5. Reduced upper bound

From Corollary 2 we have 'y j < 2:7=1 [t follows immediately that T, j < 2%7F!4=1 because we
could have formed a net out of only x;, C [0, 1), In this section we show that it is possible to
improve that bound.

12
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We need to use a second notion of the t parameter specific to a subset u # @ of components of x;.
This notion is denoted by t;;. We define it below side by side with the prior t, to make comparisons
easier. We also need a quantity t4 for 1 <d < s to describe the quality of projected nets. The new and
old quantities are

t=m+1— min {|k||Cy notof full rank },
2, keN)
tg=m+1— min  {|k| | Cy k not of full rank },

u:\ulgd,keN(l)”l

tu=m+1— mil‘l‘{|k| | Cy i not of full rank },  and
keNy'

th=m+1-— mlr‘l {IK| | Cyk not of full rank, k > 1, componentwise }.
keN; ul

Because t;; adds constraints k; > 1 for j € u, we have t;; <t,. Likewise, if v C u, then t} adds con-
straints k; > 1 for jev and kj =0 for jeu\ v, and we have tj <t,. For any k that attains the

minimum defined in t,, define v={jecu|kj>1} and k' € NM to be the nonzero entries of k. Then
Cuk is also C, s and t} > ty. Therefore

ty = maxt}.
vCu
From the definitions of t; and t, we have
tg= max t, = max maxt; = maxt;, and

u:lul<d u:lu|<d vCu lvi<d

t = max tg = maxt, = maxt
1<d<s u#g V£D

Theorem 3 below shows that we can replace the bound 2t +UI=1 by 2t+ltl=1 |t then follows that

«
max max I'y p < max lutlul=1 < otatd—1
wlu<d ey u:jul <d

For the next results we need to use the vector 1, =(1,1,...,1) € Z4l.

Theorem 3. For any u C 1:s where Cy 1, has full row rank,
* *
max [y <241 agnd  max max Iy j = 2aFHI=T

keN)!! VEU keN)!

Proof. First we prove that T, j < 2W*14I=1 By the definition of ¢, if a matrix C,j with k> 1, does
not have full row rank, it must satisfy |k| >m + 1 —t;;. The proof in the case where Cy k has full row
rank is like that in Corollary 3. The remaining case is when Cy k does not have full row rank.

Define v ={j e u | kj =0}. Then [k| 4+ |v| >m —t} + 1 because Cy 41, does not have full row
rank and k + 1, > 1,. The matrix Cy 41, must have a subset of m — t;; rows defined by C, j» with
k' <k+1, for which C, j has full row rank. Then by Corollary 2,

Fu k< < 2m= rank(Cy k) < om— rank(Cy g41,)+v| < 2t* |v] < Zt* lu|— 1

where the last inequality follows from v being a proper subset of u because k cannot be 0.
To prove the second statement, notice that for any v Cu and k € N(‘)Vl such that k> 1, and C, i

is row rank deficient, we can define k' e N(l)ul so that k/j =k; for jev and k;. =1 for jeu\v. Then

kK >1, and Cy. is row rank deficient as well because it is made of C, j with |u| — |v| extra rows. It
follows that t§ <t + |u| —|v| and

13
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* _ * _
max Fv,k < 2tv+|v| 1 < 2tu+\u| 1_
keN)'!

It remains to show that there exists v Cu and k' N(‘J"‘ such that k¥ >1, and ', v = 2bitlul-1,
First we choose any k* that attains the minimum |k| defined in t;;. Because C, y+ is not of full rank,
its row vectors must be linearly dependent. That is, there exist coefficients a; , € {0, 1} for 1 < £ < kjf
and j € u such that

.
]

DY aj.Ci(e.:) =0mod 2.

jeu £=1

Define v={jecu|ajp =1} and k' € N(l]v‘ such that k)f = k? for j € v. Because k* attains the smallest
|k| among k >1,, ajkr = 1 for all j € u such that kjf > 2. In other words, j € u\ v if and only if kjf =
and aj1 =0. Hence |k"| = |k*| —|u\ v| and

kY—1

J
DGk )+ Y ajeCie.) =0.
jev jev =1

Corollary 4 then implies that I'y jv_;, = 2m—rank(Cy kv _1,) Again, because k* attains the smallest |k|,
Cy kv—1, has full row rank and rank(C, pv_q,) = |k'| — |v| = |k*| — |u|. Therefore

— pm—rank(C, yv_3,) _ 2m—|k*|+\u| — ptutlul-1 O

—1y

1—‘v,k"—lv

Corollary 5. If there exists u C 1:s with rank(Cy1,) < |u| then the maximal gain coefficient I" = 2™. Other-
wise I = 20T +s—1,

Proof. In the former case, we can choose the smallest size u whose Cy 1, is not full rank. Then the
row vectors of Cy 1, are linearly dependent, but any proper subset of them are linearly independent.
Therefore Zjeu Cj(1,:) =0. We can then apply Corollary 4 to I'y o and derive I'y o = 2™, which is
the largest 'y  in view of Corollary 2.

In the latter case, the conclusion immediately follows by applying Theorem 3 to u =1:5. O

Example 1. In this example we prove by construction that it is possible to have t].; < ty.s. For this, we use a
(1,1, 4)-net in base 2, known as a shift net [24]. It has that name because the columns of the first generator
matrix Cq are shifted to create the other generator matrices. The top three rows of the generator matrices Cq
through C4 are

0 001 0010 0100 1 000
0110),{1710O0}),{1T 00 1)and |0 0 1 1
0010 01 00O 1 000 0 0 01

The fourth rows could be anything without changing this example. Fromm =s =4 and t = 1 we get a gain
coefficient bound I' < 2t+5~1 = 16. However t1., = 0 for this net after observing that

Cra1,4=

- O O O

0
0
1
0

[=NelNeR s

0
1
0
0
has full rank. Therefore T" = 2tis+s=1 =8,

14
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6. Discussion

Our first contribution is to tighten the bounds on TI', x and hence also the maximal gain I' =
MaX|y|>0 MaX, _xqul 'y for digital nets in base 2 of which the constructions of Sobol’ [29] and
0

Niederreiter-Xing [17,18] are the most important. Our second contribution is to show that gain coef-
ficients for base 2 digital nets must be either 0 or a power of 2, so the maximal gain coefficient is a
power of 2. A consequence of our results is a more efficient algorithm for computing gain coefficients
compared to direct calculations using (9).

We also note that there is a potential advantage to further randomization by making a random
assignment of components of x; to inputs of f. Sun et al. [30] call this the column shift method.
If X0,...,%;,—1 are a digital net in base b and 7 is a random permutation of 1,2,...,s then we
can evaluate f at points X; = (Xiz (1), Xiz(2), - - - » Xin(s))- We note that if column shift is applied to
a scrambled digital nets, then the gain coefficient f‘u,k for this procedure is an average of s! not
necessarily distinct gain coefficients. We will generally have maxy i l:u,k < maxy gy k.
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