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Abstract: The cost of both generalized least squares (GLS) and Gibbs
sampling in a crossed random effects model can easily grow faster than
N3/2 for N observations. Ghosh et al. (2022) develop a backfitting algo-
rithm that reduces the cost to O(N). Here we extend that method to a
generalized linear mixed model for logistic regression. We use backfitting
within an iteratively reweighted penalized least squares algorithm. The spe-
cific approach is a version of penalized quasi-likelihood due to Schall (1991).
A straightforward version of Schall’s algorithm would also cost more than
N3/2 because it requires the trace of the inverse of a large matrix. We
approximate that quantity at cost O(N) and prove that this substitution
makes an asymptotically negligible difference. Our backfitting algorithm
also collapses the fixed effect with one random effect at a time in a way
that is analogous to the collapsed Gibbs sampler of Papaspiliopoulos et al.
(2020). We use a symmetric operator that facilitates efficient covariance
computation. We illustrate our method on a real dataset from Stitch Fix.
By properly accounting for crossed random effects we show that a naive lo-
gistic regression could underestimate sampling variances by several hundred
fold.
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1. Introduction

Crossed random effects structures are ubiquitous in science, engineering and
commerce. A biologist might study a response across many genotypes and en-
vironments (Bolker et al., 2009). A social scientist might study test scores by
question and by student (Baayen et al., 2008). A web store might study re-
sponses of customers to various products. In all of these cases we have a pair
of categorical variables with a potentially large number of levels. When those
levels are a subset of a much larger set of potential levels then it is natural to
model them as random effects. The problems we are interested in are large and
sparse. There are R (for rows) levels of one factor crossed with C (for columns)
of another factor. The total number of observations is N and sparsity means
that N � RC. The pattern of observations is also unstructured.

While large online commerce data sets have the crossed random effects struc-
ture, it is exceedingly difficult to analyze such data that way. Even for regression
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problems, the cost of computing the Gauss-Markov generalized least squares es-
timator grows as fast as N3/2 or worse. The same holds for the cost of evaluating
a Gaussian likelihood even once. The fundamental cause is that a linear equation
of size R + C must be solved. The usual algorithms solve it at cost proportional
to (R + C)3 and then because RC � N we have max(R, C) �

√
N and now

(R + C)3 = Ω(N3/2). See Gao and Owen (2020) for details.
A cost of N3/2 is infeasible in big data settings where N is very large and

growing. It is only recently that algorithms with an O(N) cost have been pro-
duced. Ghosh et al. (2022) develop a backfitting algorithm based on the work
of Buja et al. (1989). That algorithm computes the generalized least squares
estimate and they give conditions where only O(1) iterations are needed, with
each iteration taking O(N) work. A plain Gibbs sampler has the same Ω(N3/2)
cost as naive linear modeling (Gao and Owen, 2017). A collapsed Gibbs sampler
Papaspiliopoulos et al. (2020) can attain a cost of O(N) under a strong balance
condition that Ghosh and Zhong (2021) show can be weakened.

The response in an electronic commerce setting is usually categorical and
very often binary, instead of the real valued responses that are common in other
settings, such as agriculture. In a fixed effects setting, extending from least
squares to generalized least squares is often done by a straightforward iteratively
reweighted least squares approach. In a random effects setting, this path is not
so simple because there is a very high dimensional integration problem that
complicates it. Our main contribution is to find a way to adapt a penalized quasi-
likelihood algorithm of Schall (1991) to mixed effects logistic regression models
where there are crossed random effects. Schall’s algorithm as written would cost
Ω(N3/2) making it infeasible. We have adapted it by ignoring some off diagonal
blocks in an (R + C) × (R + C) matrix and then showing that the effect of
this simplification is asymptotically negligible. A second part of this adaptation
comes from the fact that many of the feature variables in the commerce problem
are functions of the product alone or of the customer alone. That brings a
linear dependence that can slow convergence of iterative methods that alternate
between updating random effects and fixed effects. We have devised a ‘clubbing’
algorithm that makes simultaneous updates to avoid this problem as described
in more detail below.

We model a binary variable Yij ∈ {0, 1} in terms of covariates xij ∈ R
p and

row and column random effects ai and bj . We assume that p does not grow
with N . We leave p out of our cost estimates, giving the complexity in N . Con-
ditionally on a = (a1, . . . , aR)T and b = (b1, . . . , bC)T the Yij are independent
with

Pr(Yij = 1 |a, b) = Pr(Yij = 1 |ai, bj) =
exp(xT

ijβ + ai + bj)
1 + exp(xT

ijβ + ai + bj)
. (1)

The random effects are a ∼ N (0, σ2
AIR) independently of b ∼ N (0, σ2

BIC). In
this model the xij are nonrandom, either because they were designed, or more
usually because our analysis is conditional on their observed values.
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We can also write (1) as

Yij =
{

1, xT
ijβ + ai + bj + eij > 0

0, else
(2)

for independent random variables eij with the logistic CDF,

Pr(eij � w) = π(w) ≡ ew

1 + ew
. (3)

The model (1) is a generalized linear mixed model (GLMM) owing to the ap-
pearance of both fixed effects xT

ijβ and random effects ai, bj .
While the linear model Yij = xT

ijβ + ai + bj + eij can be handled by the
method of moments without assuming a distributional form for ai, bj and eij ,
estimation for the model (2) depends on the shape of the distributions for ai and
bj as well as eij . There is a near consensus in the literature that GLMM models
are robust to mild departures from Gaussianity and correspondingly that such
departures are hard to detect. See McCulloch and Neuhaus (2011) for references
and also some contrary points of view. We choose to work with the Gaussian
model because it is of central importance and existing approaches do not scale
adequately for it.

The conditional likelihood of β given a and b is

L(β |a, b) =
∏
(i,j)

π(xT
ijβ + ai + bj)Yij (1 − π(xT

ijβ + ai + bj))1−Yij

=
∏
(i,j)

e(xT
ijβ+ai+bj)Yij

1 + exT
ij

β+ai+bj
(4)

where the product is taken over pairs (i, j) for which (xij , Yij) is observed. The
full likelihood incorporating random effect parameters is

L(β, σ2
A, σ2

B) =
∫
RR+C

L(β |a, b)
R∏

i=1

1
σA

ϕ
( ai

σA

) C∏
j=1

1
σB

ϕ
( bj

σB

)
da db (5)

where a ∈ R
R and b ∈ R

C are vectors with components ai and bj respectively
and ϕ(·) is the N (0, 1) probability density function.

The high dimensional integral in (5) presents a major difficulty to finding
estimates and confidence intervals for β, making the generalized linear mixed
model (1) much harder to work with than Gaussian linear mixed models for
regression studied in Ghosh et al. (2022). The integral is daunting not only be-
cause of its dimension but also because L(β |a, b) is a product of N probabilities
and so it may easily underflow numerically.

A standard way to handle the integral is via Laplace’s method which uses a
single point in R

R+C to represent the integral as Breslow and Clayton (1993)
do in their penalized quasi-likelihood approach. A tensor product integration
with k points per dimension would have a cost proportional to kR+C which is
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infeasible in our setting. The lme4 code (Bates et al., 2015) uses sparse grid
integration with a lower cost (Heiss and Winschel, 2008), but that also becomes
too costly in our settings.

We have chosen to work with the quasi-likelihood formulation of Schall (1991).
That algorithm is an iteratively reweighted penalized least squares solution that
uses some weighted least squares fits to a working response vector in order to
optimize the Laplace approximation of the integral. The estimand in Schall’s
setup is a posterior mode of β under a diffuse prior that we describe below.
It is thought to be close to the MLE except when some Pr(Yij = 1 | ai, bj)
are very close to zero or one. Schall’s algorithm is an iterative procedure with
each iteration having two steps. Both of the steps have a cost that grows like
(R+C)3 = Ω(N3/2). To get around this we use backfitting for the first step and
an approximation to the trace of the inverse of an (R + C) × (R + C) matrix
getting an algorithm that is O(N) per iteration. We then study the impact of
this approximation and find conditions under which is asymptotically negligible.

One of the main difficulties in random effects estimation arises from the fact
that the intercept is hard to estimate. The easiest way to see this is to consider
a balanced Gaussian model with Yij = μ+ai +bj +eij . We would estimate μ by
the average of all RC observations getting variance O(1/R + 1/C + 1/N) which
is much larger than the 1/N rate from settings with N IID observations.

The intercept remains difficult in the unbalanced setting with a binary re-
sponse. The intercept contributes μ1N to the N -vector of logits of Pr(Yij = 1 |
a, b). The vector space spanned by indicators of the ai includes μ1N . So does
the one spanned by the indicators of bj . This overlap among spaces slows the
convergence of iterative algorithms to solve the quasi-likelihood equations. That
motivated Ghosh et al. (2022) to develop a generalized least squares algorithm
that alternates between updating ai along with the intercept and updating bj

also with the intercept.
A related issue arises when one of the predictor variables in xij , say xij� is a

binary variable whose value depends on only the row index i. That is xij� = xi•�

for all j. For instance one of the features in e-commerce might be a property of
the customer or of the product while a feature in agriculture might be a property
of the cultivar of wheat or a property of the environment in which it is grown.
In such cases there is an overlap of vector spaces like the one described above
for the intercept. The penalized likelihood estimate for the corresponding subset
of a must sum to zero. This is true for every such partially aliased column xij�,
so there can be many different such summation constraints. Similarly to the
way the intercept is handled, the coefficient β� can then be efficiently updated
together with ai, a procedure we call clubbing. Clearly the same problem can
happen with variables xij� that are categorical with more than two levels or with
variables whose level is defined by the index j. Our algorithm clubs together all p
variables in β with a when updating a, and also clubs β with b when updating b.
The algorithm analyzed in Ghosh et al. (2022) only clubs the intercept together
with the random effects. The impetus for clubbing is that we found it made
a much greater difference in the binary regression case than we saw in the
generalized least squares setting.
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An outline of this paper is as follows. Section 2 introduces our notation
and describes the missingness mechanism. Section 3 presents a penalized quasi-
likelihood method based on a Laplace approximation. The optimization is done
using Schall’s method after incorporating backfitting and the matrix approxima-
tion referred to above. We then give conditions under which that approximation
makes an asymptotically negligible difference. Section 4 describes in detail our
clubbing strategy where we alternate between updating (β̂, â) and (β̂, b̂). Sec-
tion 5 uses some simulated data to verify that the cost of a standard algorithm
(glmer from Bates et al., 2015) has a cost growing faster than N3/2. Two versions
of that algorithm show the expected superlinear cost and that superlinearity ap-
plies even to a single iteration. Our iteratively reweighted backfitting algorithm
converges in O(N) cost there. This holds in our example even though weight-
ing will ordinarily violate the sufficient conditions that Ghosh et al. (2022) give
for backfitting to cost O(N). We also include a simulation that compares the
accuracy of glmer, and our proposal and a naive logistic regression that ignores
the random effects. Our algorithm’s accuracy lies between that of two glmer
algorithms, both of which have superlinear cost. A naive logistic regression is
seen to be typically inconsistent. For glmer and our algorithm the error in the
intercept coefficient decreases much more slowly than that of the other coeffi-
cients, in line with our earlier remarks. Section 6 illustrates our algorithm on a
data set provided by Stitch Fix. Section 7 has a discussion about the Bayesian
and frequentist perspectives. In Appendix A, we give details about the proofs
and tabulate the results for the Stitch Fix data.

We conclude this section by describing some alternative approaches. Quasi-
Monte Carlo (QMC) sampling (Niederreiter, 1992; Dick et al., 2013) is very
well suited to many high dimensional integration problems but the integrand
in (5) does not appear to be one of them. This integrand is very ‘spiky’ making
it difficult for QMC. See Kuo et al. (2008) for some work in this area. Com-
posite likelihoods (Varin et al., 2011) lower the dimension of the integration
problem by multiplying likelihoods based on selected pairs or k-tuples of obser-
vations instead of all N of them at once. A comparison with composite likelihood
would require consideration of precisely how to choose the k-tuples as well as
the resulting efficiency. That would require an investigation of its own and is
outside the scope of this paper. We have opted to build upon the penalized
quasi-likelihood (PQL) method of Breslow and Clayton (1993). It is the most
commonly used algorithm and there is well tested code in Bates et al. (2015) to
use in comparisons.

It would be of great interest to handle mixed and generalized linear mixed
models that incorporate SVD-like latent variable interactions, but they are be-
yond the scope of this paper. Getting proper confidence intervals for the resulting
predictions would be significantly harder than handling β as we do here. Even
choosing the number of latent variable interactions to include is difficult in such
problems. Furthermore, quantifying the sampling uncertainty on the estimated
interactions brings in difficult random matrix theory problems.
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2. Notation and sampling models

We speak of rows and columns for our two factors. The rows are indexed by
i = 1, . . . , R and the columns by j = 1, . . . , C. Most of the RC possible (i, j)
combinations are not observed in our motivating problems. We let Zij ∈ {0, 1}
take the value 1 if and only if (xij , Yij) has been observed. In our motivating
problems we either never have the same (i, j) combination observed twice, or
we only keep the most recent such observation, or it happens so rarely that we
can neglect it.

Sums over i are from 1 to R and sums over j are from 1 to C. The number of
times row i has been observed is Ni• =

∑
j Zij and similarly, column j has been

observed N•j =
∑

i Zij times. We suppose that the data are ordered so that all
Ni• � 1 and all N•j � 1. The total sample size is N =

∑R
i=1 Ni• =

∑C
j=1 N•j .

The sparsity condition implies that N � RC.
Sometimes we have to make a vector of length N with an element for each

observation or a matrix with N rows, one per observation. We assume that some
consistent ordering of the observations is used in all of these cases and we use a
calligraphic font for most such quantities. The vector Y ∈ {0, 1}N contains all
the observed responses Yij . The matrix ZA ∈ {0, 1}N×R has R columns of which
the i’th column contains ones for observations in row i and zeros everywhere
else. The matrix ZB ∈ {0, 1}N×C is the corresponding incidence matrix for
the columns of our observations. The product ZT

AZB is our observation matrix
Z ∈ {0, 1}R×C .

While the analyst considers Zij to be fixed, we will study random Zij in order
to model the difficulties that the analyst will face and to prove that certain
difficulties have vanishing probability in large samples. The model we use comes
from Ghosh et al. (2022). For a problem size parameter S, the number of rows
and columns are R = �Sρ� and C = �Sκ� respectively. Those values become
very large in cases of interest and, to avoid uninteresting complications, we use
R = Sρ and C = Sκ in our formulas without taking integer parts. Then for
some Υ > 1, we suppose that

Zij
ind∼ Bern(pij) where S

RC
� pij � Υ S

RC
. (6)

The actual problem size N satisfies S � E(N) � ΥS. The model (6) allows
unequal observation probabilities but remains more restrictive than we would
like. Numerical results in Ghosh et al. (2022) show that their generalized least
squares algorithm converges in O(N) cost much more generally than their as-
sumptions imply.

The relevant values of ρ and κ are positive so that R and C grow with N but
below 1 because neither R nor C can be larger than N . We also have ρ + κ > 1
to model sparsity, that is N � RC.

Under the model (6), Ghosh et al. (2022) show that if 2ρ + κ < 2 then all
rows get an adequate sample size and no single row dominates the data:

lim
S→∞

Pr
(
(1 − ε)S1−ρ � min

i
Ni• � max

i
Ni• � (Υ + ε)S1−ρ

)
= 1 (7)
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for any ε > 0. By symmetry, if ρ + 2κ < 2, then

lim
S→∞

Pr
(
(1 − ε)S1−κ � min

j
N•j � max

j
N•j � (Υ + ε)S1−κ

)
= 1 (8)

holds for any ε > 0.
Many settings can be expected to have informative missingness, where Zij

is related to Yij . We do not account for this because to do so would require
problem specific assumptions from outside the data at hand. Also, the prob-
lems we face are already unsolved in the event that Zij are not informative
about Yij .

3. Likelihood approach

We will use the iterative approach of Schall (1991) with further justification
given the in the next paragraph. It alternates between estimating a, b and β
given σ2

A, σ2
B and an overdispersion quantity φ and estimating the variances and

overdispersion given a, b and β. For the optimization over a and b and β we use
weighted least squares for a working response, following the approach in Schall
(1991). His approach requires the trace of the inverse of an (R + C) × (R + C)
matrix and this is too expensive so we replace it by an approximation. We then
give conditions where the approximation makes an asymptotically negligible
difference.

Following Schall (1991), Breslow and Clayton (1993) derived the same set of
estimating equations for (β, a, b) by maximizing the marginal likelihood using
Laplace approximations. We introduce some notation to discuss the relation
between the approach in Schall (1991) and PQL of Breslow and Clayton (1993).
We observe Yij together with predictor variables xij . There are also unobserved
random effects (ai, bj) associated with these data. We assume that given a and
b, the Yij are conditionally independent. Adapting some notation from Breslow
and Clayton (1993) we let μa,b ∈ R

N have components μa,b
ij ≡ E(Yij | ai, bj) =

π(xT
ijβ + ai + bj). The model of Breslow and Clayton (1993) includes

var(Yij |ai, bj) = φv(μij)

for a function v(·) and an overdispersion parameter φ > 0. In our case v(μ) =
μ(1 − μ). Independent Bernoulli observations cannot be overdispersed (McCul-
lagh and Nelder, 1989). However, we include an overdispersion parameter be-
cause that one parameter may help with lack of fit of our model. In the Stitch
Fix data of Section 6 we obtained φ̂ = 0.75 a mild underdispersion.

We write the estimating equations based on approximate quasi-likelihood
from Breslow and Clayton (1993). The gradient in equations (7) and (8) of
Breslow and Clayton (1993) involves the quantity v(μ)π′(μ) which equals 1 for
v and μ in our case. Translating the score equation to our context, we obtain
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the following three equations:

X T(Y − μa,b) = 0,

ZT
A(Y − μa,b) = φ

σ2
A

a, and

ZT
B(Y − μa,b) = φ

σ2
B

b.

(9)

Using the notion of a working response z given by

zij = xT
ijβ + ai + bj + Yij − μij

μij(1 − μij) (10)

with μij = π(xT
ijβ + ai + bj) for the logistic CDF π(·) from equation (3), we

obtain the following estimating equations from (9):

X TW(z − X β − ZAa − ZBb) = 0,

ZT
AW(z − X β − ZAa − ZBb) − 1

σ2
A

a = 0

ZT
BW(z − X β − ZAa − ZBb) − 1

σ2
B

b = 0

(11)

where W = diag(μa,b(1 − μa,b))/φ ∈ [0, 1/(4φ)]N×N .

3.1. Schall’s approach

Schall (1991) considers an iterative procedure to estimate the fixed effects, ran-
dom effects and the variance components. At iteration k we have estimates β̂(k),
â(k), b̂

(k)
, σ̂

2(k)
A , σ̂

2(k)
B and φ̂(k). For k = 0, we initialize them all to zeros ex-

cept the overdispersion and variance parameters start at one. To obtain β̂(k+1),
â(k+1) and b̂

(k+1)
we solve the penalized weighted least squares problem

min
β,a,b

∑
ij

Zij Ŵ
(k)
ij

(
z

(k)
ij − xT

ijβ − ai − bj

)2 + ‖a‖2

σ̂
2(k)
A

+ ‖b‖2

σ̂
2(k)
B

, (12)

with weights Ŵ
(k)
ij = μ̂

(k)
ij (1 − μ̂

(k)
ij )/φ̂(k) and μ̂

(k)
ij = π(xT

ij β̂(k) + â
(k)
i + b̂

(k)
j ).

This optimization problem leads to exactly the same estimating equations (11)
that we found for the approximate quasi-likelihood. A straightforward solution
of equation (11) costs O((R + C + p)3) which is infeasible and so we develop a
backfitting iteration for it in Subsection 3.2.

It remains to update the overdispersion and variance parameters. Consider
the following (R + C) × (R + C) matrix

T (k) =
(

T
(k)
11 T

(k)
12

T
(k)
21 T

(k)
22

)
=

(
ZT

AŴ(k)ZA + σ̂
−2(k)
A IR ZT

AŴ(k)ZB

ZT
BŴ(k)ZA ZT

BŴ(k)ZB + σ̂
−2(k)
B IC

)
(13)
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with Ŵ(k) = diag(Ŵ (k)
ij ) ∈ R

N×N . Let

T ∗(k) =
(
T (k))−1 =

(
T

∗(k)
11 T

∗(k)
12

T
∗(k)
21 T

∗(k)
22

)
.

Schall’s update evaluates (see Algorithm 2 in Sect 2. of Schall (1991))

ν
(k+1)
A = tr(T ∗(k)

11 )/σ̂
2(k)
A and ν

(k+1)
B = tr(T ∗(k)

22 )/σ̂
2(k)
B

and then sets

σ̂
2(k+1)
A = ‖â(k+1)‖2

R − ν
(k+1)
A

and σ̂
2(k+1)
B = ‖b̂

(k+1)‖2

C − ν
(k+1)
B

. (14)

The derivation of this formula is technical and can be found in Harville (1977)
(equation 6.5) for the gaussian case. Schall (1991) adapted the derivation for
generalized linear models. Upon differentiating the log determinant in the quasi-
likelihood, a trace appears that we see in the denominator. The trace term also
occurs in Fellner (1986) and Breslow and Clayton (1993). From these formulas it
is clear that the ν parameters function as degrees of freedom estimates. Finally,
we let

φ̂(k+1) =
∑

ij Zijμ̂
(k+1)
ij (1 − μ̂

(k+1)
ij )

(
z

(k+1)
ij − xT

ij β̂(k+1) − â
(k+1)
i − b̂

(k+1)
j

)2

N − p − (R − ν
(k+1)
A ) − (C − ν

(k+1)
B )

(15)

where p is the number of parameters in β including the intercept.
The quantity Schall computes is almost but not quite the maximum likelihood

estimate of β. It is a quantity studied by Stiratelli et al. (1984). The update (12)
for β, a and b is a Fisher scoring iteration to maximize their posterior density
under a diffuse prior for β independent of a zero-mean Gaussian prior for (a, b)
with plugged in variance components (see Schall, 1991). Stiratelli et al. (1984)
mentioned different approaches like empirical Bayes for the estimation of vari-
ance components of the prior distribution (see Leonard, 1975, Laird, 1978). The
updates (14) and (15) for σ2

A, σ2
B and φ are from an EM iteration to compute

these dispersion components, after approximating the posterior distribution of
(a, b) by a multivariate normal distribution with the same mode and curvature
as the true posterior. In small data sets where we are able to compute the MLE
we find the estimate from Schall’s algorithm is very close to the MLE.

3.2. Modified Schall Approach

We want to solve the equation (12). It is instructive to begin with the case of
just one factor. Then we obtain the following optimization problem:

min
β,a

∑
i,j

ZijŴ
(k)
ij

(
z

(k)
ij − xT

ijβ − ai

)2 + ‖a‖2

σ̂
2(k)
A

. (16)
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The normal equations from (16) yield

0 = X TŴ(k)(z(k) − X β̂ − ZAâ), and (17)

0 = ZT
AŴ(k)(z(k) − X β̂ − ZAâ) − â/σ̂

2(k)
A . (18)

Solving (18) for â and multiplying the solution by ZA yields

ZAâ = ZA

(
ZT

AŴ(k)ZA + σ̂
−2(k)
A IR

)−1ZT
AŴ(k)(z(k) − X β̂)

≡ S(k)
A (z(k) − X β̂)

for an N × N ridge regression “smoother matrix” S(k)
A . (We have rederived one

of the estimating equations in (11).) This smoother matrix implements weighted
shrunken within-group means. Substituting ZAâ into equation (17) yields

β̂ =
(
X TŴ(k)(IN − S(k)

A )X
)−1X TŴ(k)(IN − S(k)

A )z(k). (19)

None of these steps takes superlinear time since weighted shrunken within-group
means cost O(N) time. Also observe that Ŵ(k)S(k)

A is symmetric. We can use
this fact to efficiently compute an estimated (asymptotic) covariance of β̂. With
Ŵ(k)

SA
= Ŵ(k)(IN − S(k)

A ), we have

ĉov(β̂) = (X TŴ(k)
SA

X )−1X TŴ(k)
SA

· Σ̂ · Ŵ(k)
SA

X (X TŴ(k)
SA

X )−1, (20)

with Σ̂ = σ̂
−2(k)
A ZAZT

A +(Ŵ(k))−1 the covariance of the working response. Since
Σ̂ has the form low-rank plus diagonal, we can compute this covariance with
O(N) computations.

With two factors we do not enjoy the same computational simplifications.
The counterpart to equation (19) is

β̂ = (X TŴ(k)(IN − S(k)
AB)X )−1X TŴ(k)(IN − S(k)

AB)z(k) (21)

where
S(k)

AB = Z(ZTŴ(k)Z + (D(k))−1)−1Z
for Z = [ZA : ZB ] and D(k) = diag(σ̂2(k)

A IR, σ̂
2(k)
B IC). Hence we would need

to invert an (R + C) × (R + C) matrix T (k) in (13) to apply S(k)
AB and thereby

solve (21), incurring a cost far greater than O(N).
However, in order to solve (21), all we need to do is apply the operator S(k)

AB

to each column of X , and this can be done more efficiently. Consider a generic
response vector r (such as a column of X ) and the optimization problem

min
a,b

‖r − ZAa − ZBb‖2
Ŵ(k) + σ̂

−2(k)
A ‖a‖2 + σ̂

−2(k)
B ‖b‖2. (22)

It is clear that the fitted values are given by r̂ = S(k)
ABr. Solving (22) leads to

the following two blocks of estimating equations:

ZAâ = S(k)
A (r − ZB b̂),

ZB b̂ = S(k)
B (r − ZAâ).

(23)
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We can solve these equations iteratively by block coordinate descent (backfit-
ting) as done in Ghosh et al. (2022) (see Sect. 3.2). This is done in parallel with
r being each column of X (separately) obtaining S(k)

ABX at convergence.
Similar to (20), we obtain the covariance estimate for the two factor case.

ĉov(β̂) = (X TŴ(k)
SAB

X )−1X TŴ(k)
SAB

· Σ̂ · Ŵ(k)
SAB

X (X TŴ(k)
SAB

X )−1, (24)

with Σ̂ = σ̂
−2(k)
A ZAZT

A + σ̂
−2(k)
B ZBZT

B +(Ŵ(k))−1 the covariance of the working
response. Again, because of the low-rank-plus-diagonal nature of Σ̂, we can
compute the covariance with O(N) computations.

In practice, we will need to repeatedly minimize (12) for each step k as the
weights Ŵ(k) and σ̂

−2(k)
A and σ̂

−2(k)
B vary, and only compute the covariance esti-

mate after convergence. We develop a more efficient algorithm for this purpose
which we describe in Section 4.

Now we consider the second step of Schall’s method. Although the diagonal
blocks in T (k) are diagonal matrices, the off diagonal block have no special
structure. Inverting T (k) would have a cost of N3/2 or worse. Our approximation
to Schall’s algorithm uses

ν
(k+1)
A = tr((T (k)

11 )−1)/σ̂
2(k)
A and ν

(k+1)
B = tr((T (k)

22 )−1)/σ̂
2(k)
B (25)

simply ignoring the off diagonal blocks of T (k). These can be computed in O(N)
time. Getting the trace of (T (k)

11 )−1 and (T (k)
22 )−1 costs O(R + C) because those

matrices are diagonal. The i’th diagonal element of T
(k)
11 is

∑
j ZijŴ

(k)
ij + σ̂

−2(k)
A

and so all elements of (T (k)
11 )−1 and (T (k)

22 )−1 can be computed in O(N) work.
We show in the following subsection that this approximation ignoring the off
diagonal blocks makes an asymptotically negligible difference.

Schall’s approach requires the trace for each of two blocks of the inverse of
the partitioned matrix

T =
(

ZT
AWZA + σ−2

A IR ZT
AWZB

ZT
BWZA ZT

BWZB + σ−2
B IC

)
(26)

with a diagonal weight matrix W ∈ (0, 1/(4φ)]N×N . Computing those traces
directly costs O((R + C)3) because of the inversion step and this is infeasible
in our applications. Instead ignoring the off-diagonal blocks of T as mentioned
above leads to our use of

tr((ZT
AWZA + σ−2

A IR)−1) and tr((ZT
BWZB + σ−2

B IC)−1) (27)

for the two traces of blocks of T −1.
We justify this approximation in two steps. First we give a representation for

the error incurred in ignoring off diagonal blocks when taking the trace of the
inverse. Then we show that error formula is asymptotically negligible under a
sampling model for Zij . We work with the true weights Wij and comment later
on the implications for estimated weights Ŵij .
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We define the weight sums

Wi• =
∑

j

ZijWij and W•j =
∑

i

ZijWij .

Then writing

T =
(

diag(Wi• + σ−2
A ) W

W T diag(W•j + σ−2
B )

)
we see that the traces in (27) involve diagonal matrices and so they can be
computed in O(R + C) work after O(N) work to compute their elements.

For 0 � η � 1 let

T (η) =
(

A ηB
ηBT C

)
(28)

where matrices A, B and C are defined so that T (1) is Schall’s matrix T
from (26). There should be no confusion between the matrix C here and our
number of columns. Blocks A and C are diagonal in our problem and T (η) is
diagonally dominant for all 0 � η � 1. Therefore T = T (1) is invertible. In the
proof of Lemma 3.1 we will see that tr(T (η)−1) − tr(T (0)−1) = O(η2) so that
small perturbations ηB do not bring a large approximation error. However we
need to study η = 1 so a small η analysis is not quite enough, so the following
Lemma 3.2 shows that η = 1 is within the radius of convergence.

Lemma 3.1. Let T (η) ∈ R
(R+C)×(R+C) have the form (28) for positive definite

diagonal matrices A and C. Define B∗ = A−1/2BC−1/2 and let ρ be the spectral
radius of (

0 B∗
BT

∗ 0

)
.

Then for 0 � η < 1/ρ,

tr(T (η)−1) = tr(T (0)−1) + tr
(

A−1
∑
k�1

(η2B∗BT
∗ )k

)
+ tr

(
C−1

∑
k�1

(η2BT
∗ B∗)k

)
.

Proof. See Appendix A.1.

The above Lemma gives the error in the trace. From the proof we see that
the two specific error terms that we need to bound are

tr
(

A−1
∑
k�1

(B∗BT
∗ )k

)
and tr

(
C−1

∑
k�1

(BT
∗ B∗)k

)
(29)

after setting η = 1. To use Lemma 3.1 with η = 1 we need to verify that the
given spectral radius ρ is below 1 for our setting. We use Lemma 3.2 to control
the spectral radius.
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Lemma 3.2. In the notation of Lemma 3.1, let B have nonnegative entries.
Then the spectral radius ρ satisfies

ρ �
(

max
i

∑
j

Bij

Cjj

)1/2(
max

j

∑
i

Bij

Aii

)1/2
.

Proof. See Appendix A.2.

In our present context A = diag(Wi• + σ−2
A ), C = diag(W•j + σ−2

B ) and
B = W . Then

max
i

∑
j

Bij

Cjj
= max

i

∑
j

Wij

Wi• + σ−2
A

= max
i

Wi•

Wi• + σ−2
A

< 1

and we get

ρ <

(
max

i

Wi•

Wi• + σ−2
A

× max
j

W•j

W•j + σ−2
B

)1/2
< 1

as required.
Now Wij = μij(1 − μij)/φ ∈ (0, 1/(4φ)] for all (i, j) in the data. We will

need a strictly positive lower bound Wij � ω > 0. In many applications, we
can reasonably assume that |xT

ijβ| is bounded away from infinity for all (i, j),
even the unobserved (i, j) pairs. However, our model uses xT

ijβ + ai + bj where
both ai and bj are unbounded Gaussian random variables. Now max1�i�R ai is
asymptotically like

√
2 log(R)σA and the bj satisfy a similar bound. Thus we

will assume that

lim
S→∞

Pr
(

max
1�i�R

max
1�j�C

|xT
ijβ + ai + bj | > α log(S)

)
= 0

holds for any α > 0. Then for any ψ > 0,

lim
S→∞

Pr
(

min
1�i�R

min
1�j�C

Wij < S−ψ
)

= 0. (30)

We need to bound the largest eigenvalue of B∗BT
∗ from equation (29). In our

context that matrix equals

diag(Wi• + σ−2
A )−1/2W diag(W•j + σ−2

B )−1W Tdiag(Wi• + σ−2
A )−1/2. (31)

Proposition 1. Let R, C and Zij for 1 � i � R and 1 � j � C be sampled as
in Section 2 with ρ, κ ∈ (0, 1) and max(2ρ + κ, ρ + 2κ) < 2. Let λ1 be the largest
eigenvalue of the matrix at (31). Then if Wij � ω̄ < ∞

lim
S→∞

Pr
(

λ1 � 1
1 + Sρ−1/[(Υ + ε)ω̄σ2

A]
1

1 + Sκ−1/[(Υ + ε)ω̄σ2
B ]

)
= 1

holds for any ε > 0.
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Proof. By equations (7) and (8) both

max
i

Wi• � (Υ + ε)ω̄S1−ρ and max
j

W•j � (Υ + ε)ω̄S1−κ

hold with probability tending to 1 as S → ∞ for any ε > 0. Now

λ1 � max
i

Wi•

Wi• + σ−2
A

× max
j

W•j

W•j + σ−2
B

.

Hence, for any ε > 0

lim
S→∞

Pr
(

λ1 � 1
1 + Sρ−1/[(Υ + ε)ω̄σ2

A]
1

1 + Sκ−1/[(Υ + ε)ω̄σ2
B ]

)
= 1.

Theorem 3.3. Let R = Sρ, C = Sκ and Zij follow the sampling model from
Section 2 for some Υ < ∞. Assume that ρ, κ ∈ (0, 1) with max(2ρ+κ, ρ+2κ) <
2 and that Pr(minij Wij > S−ψ) → 1 for all ψ > 0 as described prior to
equation (30). Let the matrix B∗BT

∗ in (31) have eigenvalues λ1 � λ2 � · · · �
λR � 0. Then there exists α < 1 such that for any δ > 0

lim
S→∞

Pr
( R∑

i=1
1{λi > δ} > Rα

)
= 0. (32)

Proof. See Appendix A.3.

Theorem 3.4. Let R = Sρ, C = Sκ and Zij for 1 � i � R and 1 � j � C
be sampled as in Section 2. Assume that ρ, κ ∈ (0, 1) and that Pr(minij Wij >
S−ψ) → 1 for all ψ > 0 as described prior to equation (30). Then our approxi-
mation error from (29) is

Err ≡ tr
(

A−1
∑
k�1

(B∗BT
∗ )k

)
and for any γ > 0

lim
S→∞

Pr(Err > γR) = 0.

Proof. See Appendix A.4.

3.3. Error with Ŵ versus W

Our algorithm makes a trace approximation to give Schall’s algorithm a feasible
cost. We have proved that this approximation brings a negligible error when the
true Wij = μij(1 − μij)/φ are used. In practice the algorithm uses estimates
Ŵij , σ̂2

A, σ̂2
B and φ̂. The principle difference is that estimates Ŵij might be closer

to zero than the true Wij . We actually do not expect this to happen. The process
of estimating β and a and b biases them towards the origin and consequently
away from very small weights. We could in principle choose a small value ψ and
impose a minimum Ŵij � N−ψ in each stage of the algorithm but this has not
been necessary.
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We have also studied the algorithm assuming that the true σ2
A, σ2

B and φ are
used, while the algorithm runs with estimates σ̂2

A, σ̂2
B and φ̂. The value of φ̂ is not

consequential for Theorem 3.3 because it scales all the weights Ŵij = μ̂ij(1 −
μ̂ij)/φ̂ by the same factor leaving the weight ratios in the proof unchanged.
Smaller σ̂2

A and σ̂2
B reduce the bound on λ1 so they pose no difficulty. Larger

values of σ̂2
A and σ̂2

B imply smaller ridge penalties on the weighted least squares
problems and thereby increase the upper bound on the largest eigenvalue λ1 in
Proposition 1. Very large values are a priori implausible for our target setting.
For instance, enormous σ2

A would tend to make Yij equal 0 or 1 depending
almost entirely on the row index i. In practice one could impose a constraint
like max(σ̂A, σ̂B) � 10 but we have not had to do that. For Theorem 3.4, we
only need σ̂2

A and σ̂2
B to be o(Sδ) for any δ > 0.

4. Clubbed backfitting

The iterative method in Section 3.2 to solve (12) might suffer from slow con-
vergence because of confounding of a factor with one of the variables xij�. Let
us consider the following optimization problem motivated by the single factor
problem (16):

min
β,a

‖z − X β − ZAa‖2
w + σ−2

A ‖a‖2. (33)

It may happen that a column of X is exactly equal to the sum of k columns of
ZA, e.g., columns �1, �2, . . . , �k. For example if the rows in the data represent
customers, this column of X could represent all male customers older than 50.
This linear dependence has consequences for the solution a to (33).

Lemma 4.1. Suppose that column q of X in problem (33) equals the sum of
k � 1 distinct columns I = {i1, i2, . . . , ik} of ZA. If σ−2

A > 0 then the solution
for a satisfies

∑k
�=1 ai�

= 0.

Proof. For any a ∈ R
R, β ∈ R

p and c ∈ R, define a(c) and β(c) via

a
(c)
i =

{
ai, if i ∈ I
ai − c, else

and β
(c)
� =

{
β� + c, if � = q

β�, else.

If we evaluate the quadratic in (33) at (β(c), a(c)) then the first term does not
depend on c and the second term has a unique minimum at c = (1/k)

∑
i∈I ai.

As a result (β, a) can only be the solution if c = (1/k)
∑k

�=1 ai�
= 0.

Lemma 4.1 imposes a constraint on a for every column of X that equals a sum
of columns of ZA. Backfitting will eventually converge to a solution satisfying
those constraints, but it could take a long time to get there. We can speed things
up by enforcing any known constraints. When as usual, X includes a column of
ones for an intercept we get the constraint

∑R
i=1 ai = 0, as a special case.

With two factors we can also have such aliasing with sums of columns of ZB as
well, with particular columns of X . For example a column of X might represent
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a particular category of clothing, corresponding to a number of levels of the col-
umn factor. Furthermore there may be other non-trivial constraints that are im-
plied by X . As we saw in equation (12), we want to obtain arg minβ,a,b pl(β, a, b)
for the penalized least squares problem

pl(β, a, b) =
∑
i,j

ZijŴij

(
zij − xT

ijβ − ai − bj

)2 + σ̂−2
A ‖a‖2 + σ̂−2

B ‖b‖2. (34)

We use the following iterative “clubbing” strategy to enforce all of these con-
straints automatically. Given (β(k), a(k), b(k)) we first optimize pl(·) over β and
a with b = b(k) fixed to get a(k+1) and an intermediate quantity β(k+ 1

2 ). Then
we optimize pl(·) over β and b with a = a(k+1) fixed to get b(k+1) and the next
iterate β(k+1) of the regression vector.

It is convenient to describe the updates in terms of fitted quantities in R
N .

The needed parts β(k), a(k) and b(k) are easily obtained in the process. For the
first part of the iteration we set

X β(k+ 1
2 ) = (X TŴ(IN − SA)X )−1X TŴ(IN − SA)(z − ZBb(k)), and

ZAa(k+1) = SA(z − X β(k+ 1
2 ) − ZBb(k))

(35)

for a smoother matrix SA = ZA(ZT
AŴZA + σ̂−2

A IR)−1ZT
AŴ that simply com-

putes weighted group means. This gets applied to each column of X in the first
equation, and to the residual in the second. The matrix inversion in the formula
is handled by solving a p × p system of equations which adds a cost that is of
constant order in N .

The equations (35) solve the following minimization problem,

min
β,a

∑
i,j

ZijŴij

(
zij − b

(k)
j − xT

ijβ − ai

)2 + σ̂−2
A ‖a‖2. (36)

If we absorb b
(k)
j into zij we see that (36) has the form (33) and so by Lemma 4.1

the solution (β(k+ 1
2 ), a(k+1)) satisfies any constraint that is intrinsic to the de-

sign.
To complete the iteration we fix a = a(k+1) and optimize over β and b, via

X β(k+1) = X (X TŴ(IN − SB)X )−1X TŴ(IN − SB)(z − ZAa(k+1)), and

ZBb(k+1) = SB(z − X β(k+1) − ZAa(k+1))
(37)

for a smoother matrix SB = ZB(ZT
BŴZB + σ̂−2

B IC)−1ZT
BŴ. Again Lemma 4.1

applies to the solution.

Lemma 4.2. If X is of full rank, max(σ̂2
A, σ̂2

B) < ∞ and the weights Ŵij

are positive, then the iterative algorithm converges to a global minimum of the
equation (34).

Proof. See Appendix A.5.
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We can compute these single factor operators in O(N) computation and use
them for each iteration of the inner (solving the weighted least squares problem
for a fixed weight vector) backfitting loop rather than computing it every time
we run this iteration. The iterative algorithm stops when the relative change
in ζ ≡ X β + ZAa + ZBb is below a certain threshold. At convergence of the
clubbed backfitting, we obtain β̂, â, b̂ for a particular set of weights.

Next we update the weights using the new set of parameters and solve a new
optimization problem until convergence. We stop when the relative change in
the fitted values ζ obtained with a different set of weights is negligible. Not only
does this clubbed variant of block-coordinate descent automatically satisfy the
implicit constraints, but we expect (and indeed observe) faster convergence than
other variants that do not enforce the constraints. Here is a concise description
of the modified Schall algorithm with clubbed backfitting:

1) Stage � of the algorithm provides β̂(�), â(�), b̂
(�)

using the weights ob-
tained in the (�−1)’st iteration and the clubbing method described in (35)
and (37). Obtain ζ̂(�) = X β̂(�) + ZAâ(�) + ZB b̂

(�)
.

2) Compute the new probability estimates: μ̂
(�)
ij = exp(ζ̂(�)

ij )/(1 + exp(ζ̂(�)
ij )).

3) Obtain σ̂
2(�)
A , σ̂

2(�)
B , and φ̂(�) using the trace approximation. The trace

approximation for σ̂
2(�)
A uses ν from (25) and has the following form:

‖â(�)‖2/(R − ν
(�)
A ). Similarly σ̂

2(�)
B = ‖b̂

(�)‖2/(C − ν
(�)
B ) and

φ̂(�) =
∑

ij Zijμ̂
(�)
ij (1 − μ̂

(�)
ij )

(
z

(�)
ij − xT

ij β̂(�) − â
(�)
i − b̂

(�)
j

)2

N − p − (R − ν
(�)
A ) − (C − ν

(�)
B )

.

4) Recompute the weights with new estimates: Ŵ
(�)
ij = μ̂

(�)
ij (1 − μ̂

(�)
ij )/φ̂(�).

We iterate until
‖ζ̂(�) − ζ̂(�−1)‖2

‖ζ̂(�−1)‖2
< ε

and then deliver β̂(∞) = β̂(�), â(∞) = â(�), b̂
(∞)

= b̂
(�)

, σ̂
2(∞)
A = σ̂

2(�)
A , σ̂

2(∞)
B =

σ̂
2(�)
B and φ̂(∞) = φ̂(�). Our generalized linear mixed model coefficient estimate

is then β̂GLMM = β̂(∞). Once we obtain the weights and parameter estimates at
convergence we can compute ĉov(β̂GLMM) by backfitting on each column of X
using σ̂

2(∞)
A , σ̂

2(∞)
B , Ŵ(∞) at (24). As a consequence of Lemma 4.1, if X contains

the intercept the penalized least squares problem in (12) is equivalent to solving
a constrained penalized least squares problem with constraint

∑R
i=1 ai = 0 and∑C

j=1 bj = 0. We can make the algorithm more efficient if we use centered
operators (see Ghosh et al., 2022) S̃(k)

A and S̃(k)
B in (23) instead of S(k)

A and S(k)
B .

Our numerical results in the Section 5 use ε = 10−8. Open-source R code at
https://github.com/G28Sw/scalable-logistic-regression-with-crossed-random-
effects does these computations.

https://github.com/G28Sw/scalable-logistic-regression-with-crossed-random-effects
https://github.com/G28Sw/scalable-logistic-regression-with-crossed-random-effects
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5. Timing and accuracy comparisons

In this section we simulate the data from a crossed random effects model with a
binary response. A simulated setting with known β lets us compare accuracy of
the methods. We also can verify linear costs for backfitting and superlinear costs
for a state of the art algorithm, glmer from Bates et al. (2015). We assume that
the observation pattern follows the probability model from Section 2. We look
at timings and we also consider accuracy. These experiments were carried out
in R language (R Core Team, 2021) on a computer with the macOS operating
system, 16 GB of memory and an Intel i7 processor.

5.1. Timings

To study how the computation time varies with N we generated data over a
range of sample sizes using ρ = κ = 0.56. We used Υ = 1.2716 in our simulations
to generate Zij . Our predictors were xij

iid∼ N (0, Σ) in seven dimensions, plus
an intercept, making p = 8. The covariance matrix had Σk� = γ|k−�| with
autoregression parameter γ = 1/2. We used two different set of β:

a) β� = 0 for � = 1, . . . , 7 and β0 = −2, and
b) β� = −2 + 0.5 × � for � = 1, . . . , 7 and β0 = −2.

We took σA = 0.8 and σB = 0.4.
The rationale for our choices is as follows. The point (ρ, κ) = (0.56, 0.56)

is just barely inside the region in Figure 1 of Ghosh et al. (2022) where it is
proved that backfitting for generalized least squares converges in O(1) iterations.
Larger values would severely raise the computational times for glmer that we
simulate. The value of Υ = 1.2716 is the largest one for which Ghosh et al.
(2022) were able to prove that O(1) iterations are required. We do not expect
the computational time should depend on β. We took β0 < 0 to reflect that our
cases of interest have E(Y ) < 1/2. We are interested in studying the accuracy
of estimation for intercept and other coefficients separately. The cases we chose
show different behavior in comparison to naive logistic regression in Section 5.3.
The variance component values we chose for simulation are close to those we
have fit to the Stitch Fix data where we obtained σ̂2

A = 0.68 (customers), and
σ̂2

B = 0.21 (items).
We included our backfit iteratively reweighted least squares algorithm, a naive

logistic regression ignoring random effects and two versions of the glmer R code
with maximum number of function evaluations set at 1000.

One version of glmer is the default using 1 Gaussian quadrature point. The
other uses no such points and is obtained by calling glmer with the option
nAGQ = 0. Not surprisingly, we will see that this version of glmer is faster than
the default, but less accurate. Theory suggests the computation time for glmer
should be of the order Nmax(3ρ,3κ). So we expect the order of computation to
be N1.68 in this case, whereas Schall backfitting with the trace approximation
should have a cost that is linear in N .
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Fig 1. Time versus N at (ρ, κ) = (0.56, 0.56) for β� = 0 (other than intercept) and the
linearly trending β�. The left panel plots the computational time for logistic regression when
true β0 = −2 and rest of the β’s are zero. The right panel has trending β. The cost for glmer
is roughly O(Nmax(3ρ,3κ)). The cost for naive logistic regression and backfitting is O(N).

Figure 1 shows our timings for two choices of β. We see that for the largest
values of N in our simulation, the cost of glmer starts to follow a trend close
to N1.68. As expected the default algorithm is slower. It appears to be slower
by a constant factor. The cost of backfitting appears to grow more slowly than
O(N) over the given range but we believe this is because of startup costs and
we see that by the end of the range of N values that cost is growing nearly
proportionally to N as expected.

For both the choices of β in a) and b), backfitting took 10–12 iterations to
converge for the smaller values of N and 8–9 iterations for the larger ones. Our
convergence criterion was a relative change of 10−8 as described in Section 4.
At the largest values of N , the timings follow the same asymptotic rates, ap-
proximately O(N1.68) and O(N). The costs tend to approach these asymptotes
from above. That could be startup costs or it might arise because the number
of iterations tends to decrease with N .

5.2. Accuracy

It is also important to compare the accuracy of these algorithms. We computed
estimates of β using logistic regression, clubbed backfitting, and glmer from
Bates et al. (2015) with maximum number of function evaluations set at 1000.
For each we computed the estimates and compute the mean squared error (MSE)
of the parameters over 100 replicates.

For accuracy we chose S to get log10(N) in the range from 3 to 4.5 approx-
imately for glmer algorithms. The value of N varies only slightly given S with
S � E(N) � ΥS and we plot the average N for each S that we used. Because
naive logistic regression and backfitting have cost O(N) we were able to study
them over a greater sample size range, up to log10(N) ≈ 5.5.
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Fig 2. MSE of β̂ vs average sample size at (ρ, κ) = (0.56, 0.56) for β� = 0 (other than
the intercept). The left panel plots the MSE of non intercept β with true value being zero.
The right panel plots the MSE for the intercept with true intercept being −2. MSE for glmer,
backfitting and Schall seems to scale at O(1/N) for non intercept regression coefficients. MSE
for intercept seems to scale at a slower rate compared to O(1/N), whereas logistic regression
appears to be inconsistent.

Figure 2 handles case a) above with all β� = 0 except for the intercept. The
left panel shows the MSE for all β� except the intercept. The right panel shows
the intercept. The intercept error in naive logistic regression does not decrease
with N although the error for the other coefficients does. The RMSE for non-
intercept components is close to a reference line parallel to O(1/N) and this
holds for backfitting, naive logistic regression and both glmer algorithms. The
RMSE for the intercept follows close to O(1/

√
N) for backfitting and glmer

with nAGQ=0. The RMSE for default glmer appears to get a rate in between
O(1/

√
N) and O(1/N). We had expected the intercept coefficient to show slow

convergence based on its partial confounding with the random effects described
in the introduction. If the true MSE rate for the intercept really is o(N−1/2) for
default glmer, then we are unable to explain that.

Figure 3 shows case b) with nonzero β�. Plain logistic regression appears to
be inconsistent for both intercept and non-intercept parameters. Once again
backfitting is less accurate than the default glmer but more accurate than the
other glmer choice. The default glmer has an RMSE close to O(N−1) for non-
intercept parameters. Backfitting and the faster glmer show evidence of having
a worse than O(N−1) convergence rate for non-intercept terms.

5.3. About naive logistic regression

This section provides an explanation for some of the biases we see for naive
logistic regression. It may seem odd to consider plain logistic regression in this
random effects problem. We suspect however that naive logistic regression is
widely used, because logistic regression is a very popular algorithm in electronic
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Fig 3. MSE of β̂ vs average sample size at (ρ, κ) = (0.56, 0.56) for trending β. The left panel
plots the MSE of non intercept β. The right panel plots the MSE for the intercept with true
intercept being −2. MSE for glmer and backfitting seems to scale slightly worse than O(1/N)
whereas logistic regression appears to be inconsistent. The MSE for the intercept scales at a
much slower rate than O(1/N).

commerce where random effects models have hitherto been computationally
infeasible. The following analysis preceded the simulations and it influenced our
choice of simulation settings.

Suppose we have a mixed effects model with one random effect (no crossing).
The responses Yij satisfy Pr(Yij = 1 | xij , ai) = π(xT

ijβ + ai) for i = 1, . . . , R.
Since the columns are not linked we let j = 1, . . . , Ni• The random effects are
ai

iid∼ N (0, σ2). The xij are fixed either by design or by running a conditional
analysis. We will suppose at first that σ is ‘small’.

If an analyst ignores the random effects and uses likelihood

L̃ =
R∏

i=1

Ni•∏
j=1

π(xT
ijβ)Yij (1 − π(xT

ijβ))1−Yij

then their log likelihood function is

�̃ =
R∑

i=1

Ni•∑
j=1

YijxT
ijβ − log(1 + exp(xT

ijβ)).

Their naive score function is

∂�̃

∂β
=

R∑
i=1

Ni•∑
j=1

(
Yij − π(xT

ijβ)
)
xij .

If the population mean of the score at the true parameter value is not zero, then
eventually a statistical test based on the score would reject the true parameter
value and we would expect an inconsistent MLE.
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Randomness enters that expectation via Yij which includes randomness from
ai.

Now

E

(
∂�̃

∂β

)
=

R∑
i=1

Ni•∑
j=1

( ∫ ∞

−∞

exp(−a2
i /(2σ2))√
2πσ

π(xT
ijβ + ai) dai − π(xT

ijβ)
)

xij .

For small σ, we anticipate that small a will dominate, so we make a Taylor
approximation

π(xT
ijβ + ai) ≈ π(xT

ijβ) + aiπ
′(xT

ijβ) + 1
2a2

i π′′(xT
ijβ)

and using this approximation

E

(
∂�̃

∂β

)
≈ σ2

2

R∑
i=1

Ni•∑
j=1

π′′(xT
ijβ)xij . (38)

In light of equation (38), the analyst needs each variable xij� to be nearly
orthogonal to π′′(xT

ijβ) with the true unknown β. This is virtually impossible
to arrange.

In one special case we could have β equal to zero apart from a negative
intercept component. Then π′′(xT

ijβ) is a positive constant and for any centered
variables xij� the �’th component of (38) will vanish. Of course the intercept
variable is all ones and cannot be centered and it will therefore have a non
vanishing score component and hence a bias.

6. Stitch Fix data example

Stitch Fix is an online personal styling service. One of their business models
involves sending customers a sample of clothing items. The customer may keep
and purchase any of those items and return the others. They have provided
us with some of their client ratings data. That data was anonymized, void of
personally identifying information, and as a sample it does not reflect their
total numbers of clients or items at the time they provided it. It is also from
2015. While it does not describe their current business, it is a valuable data
set for illustrative purposes. The binary response of interest was whether the
customer thought an item was a top rated fit. There were N = 5,000,000 ratings
from 744,482 clients on 3,547 items. We want to treat both clients and items as
random effects. The data are not dominated by a single row or column because
maxi Ni•/N

.= 1.24 × 10−5 and maxj N•j/N
.= 0.0276. The data are sparse

because N/(RC) .= 0.0018.
One of the predictors was the primary material of which an item was made

with 20 levels such as ‘linen’ or ‘wool’. The material is a property of the item or
to put it another way, the item factor is nested within the levels of the material
predictor. The other predictors for this response were ‘client dress size’, ‘client
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chest size’, ‘client fit profile’, ‘item fit profile’, ‘client edgy’ and ‘client boho’. For
instance the fit profiles had these levels: ‘Fitted’, ‘Loose’, ‘Oversize’, ‘Straight’
and ‘Tight’ as well as ‘Missing’. Some clients indicated that they like ‘edgy’
styles and some that they like ‘boho’ styles.

In a business setting one would fit and compare a wide variety of different
binary regression models in order to understand the data. Our purpose here
is to understand large scale generalized linear mixed effects models and so we
choose just one model for illustration. That model has

logit(Pr(Yij = 1 |ai, bj)) = β0 + β1 client fit profilei + β2I{client edgy}i

+ β3I{client boho}i + β4 client chest sizei

+ β5 client dress sizei + β6 materialj
+ β7 item fit profilej + ai + bj .

The categorical variables were incorporated using a one-hot encoding with a
binary indicator variable for each level other than the most common level. The
model has p = 34 parameters. Our backfitting algorithm took 14 iterations to
convergence with a tolerance of 10−8.

Let β̂LR and β̂GLMM be the logistic regression and GLMM estimates of β ob-
tained by clubbed backfitting, respectively. We can compute their correspond-
ing variance estimates ĉovLR(β̂LR) and ĉovGLMM(β̂GLMM). We can also find
ĉovGLMM(β̂LR), the variance under our GLMM model of the β̂LR. The esti-
mated coefficients β̂LR, β̂GLMM and their standard errors are presented in Ap-
pendix A.6.

We can quantify the naivete of logistic regression, coefficient by coefficient, via
the ratio ĉovGLMM(β̂LR,�)/ĉovLR(β̂LR,�). The left panel of Figure 4 plots these
values. They range from 2.72 to 1467.05 and can be interpreted as factors by
which logistic regression naively overestimates its sample size. The largest and
second largest ratios are for material indicators corresponding to ‘Modal’ and
‘Rayon’, respectively. Not only is logistic regression estimating β with significant
bias, it greatly underestimates its sampling uncertainty. We can also identify
the linear combination of β̂LR for which LR is most naive. We maximize the
ratio

xTĉovGLMM(β̂LR)x/xTĉovLR(β̂LR)x
over x 
= 0. The resulting maximal ratio is the largest eigenvalue of

ĉovLR(β̂LR)−1ĉovGLMM(β̂LR)

and it is about 1507 for the Stitch Fix data.
We can also quantify the inefficiency of logistic regression, coefficient by co-

efficient, via the ratio ĉovGLMM(β̂LR,�)/ĉovGLMM(β̂GLMM,�). The right panel in
Figure 4 plots these values. They range from just over 1 to 11.42 and can be
interpreted as factors by which using logistic regression reduces the effective
sample size. The two largest inefficiencies corresponds to item material ‘Rayon’
and ‘Modal’ respectively. The most inefficient linear combination of β̂ reaches a
variance ratio of 15.50.



Scalable logistic regression with crossed random effects 4627

Fig 4. The left panel is a histogram of naivete of logistic regression quantified by
ĉovGLMM(β̂LR,�)/ĉovLR(β̂LR,�) for coefficients β� in the Stitch Fix data. The right panel
is the inefficiency ĉovGLMM(β̂LR,�)/ĉovGLMM(β̂GLMM,�).

Figure 5 plots inefficiency versus naivete for the 34 coefficients in our logistic
regression model. The very worst coefficients by one measure tend to be worst by
the other as well. This trend was also seen for the naive and inefficient ordinary
least squares in Ghosh et al. (2022).

7. Discussion

The most critical inference problems are at the margins where we can just barely
resolve real effects from noise. Ignoring a crossed random effects correlation
structure can be very naive, underestimating the true sampling variance of a
parameter by several hundred-fold, leading to very unreliable findings lacking
reproducibility and even internal validity much less external validity.

The crossed random effects setting makes many of our standard methods
going back to Searle et al. (2006) and Henderson (1953) computationally pro-
hibitive. A cost that grows faster than N3/2 is not possible for somebody with
big data.

There has been recent progress in speeding up these computations includ-
ing frequentist approaches for least squares problems with crossed effects in
Gao (2017), Gao and Owen (2020), and Ghosh et al. (2022) as well as Gibbs
sampling in Papaspiliopoulos et al. (2020). Our contribution is to extend the
backfitting approach to logistic regression. A critical step was our clubbing of
β̂ with one random effect at a time. This can be viewed as a frequentist coun-
terpart to the collapsed Gibbs sampler in Papaspiliopoulos et al. (2020). There
remains a theoretical gap between what the Bayesian and frequentist algorithms
accomplish in practice and what can be proved about them.

Our goal remains partly achieved. There are several places in generalized
linear mixed effects models where usual algorithms impose a cost that is � N3/2

per iteration making them completely infeasible. We have removed all of those
costs so that iterations cost O(N) each. In our numerical examples we see a total
cost of O(N) so that the number of iterations has scaled as O(1). What remains
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Fig 5. Inefficiency vs naivete for logistic regression coefficients in the Stitch Fix data.

is to find more explanations of this phenomenon and sufficient conditions to
bound the iteration count.

Appendix A: Some proofs

A.1. Proof of Lemma 3.1

The first derivative of T −1 with respect to η is

d
dη

T (η)−1 = −T (η)−1T ′(η)T (η)−1 for T ′(η) = d
dη

T (η) =
(

0 B
BT 0

)
.

Higher order derivatives of T (η)−1 simplify greatly because T ′′(η) = 0. For
integers k � 1 we find by induction that

dk

dηk
T (η)−1 = (−1)kk!

(
T (η)−1T ′(η)

)k
T (η)−1

= (−1)kk!T (η)−1/2
(

T (η)−1/2T ′(η)T (η)−1/2
)k

T (η)−1/2.

Next, for B∗ = A−1/2BC−1/2, we find that

T (0)−1/2T ′(0)T (0)−1/2 =
(

0 −B∗
−BT

∗ 0

)
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and then taking a Taylor series around η = 0 we have

T (η)−1 = T (0)−1 + T (0)−1/2
∑
k�1

(
0 −ηB∗

−ηBT
∗ 0

)k

T (0)−1/2. (39)

This Taylor series converges for |η| < 1/ρ.
Therefore, for 0 � η < 1/ρ,

tr(T (η)−1) = tr(T (0)−1) + tr
(
T (0)−1/2E(η)T (0)−1/2)

= tr
(
T (0)−1(I + E(η)

)
, for

E(η) =
∑
k�1

(
0 −ηB∗

−ηBT
∗ 0

)k

.

Recalling that T (0) is diagonal, the k = 1 term does not contribute to the trace
of the inverse. That is also true for any every odd integer k � 1. It follows that

tr(T (η)−1) = tr
(
T (0)−1(I + E2(η)

)
, for

E2(η) =
∑
k�1

(
0 −ηB∗

−ηBT
∗ 0

)2k

=
∑
k�1

(
η2B∗BT

∗ 0
0 η2BT

∗ B∗

)k

.

Now we can write the difference tr(T (η)−1) − tr(T (0)−1) as∑
k�1

η2k
(

tr
(
A−1(B∗BT

∗ )k
)

+ tr
(
C−1(BT

∗ B∗)k
))

.

A.2. Proof of Lemma 3.2

First ρ2 is no larger than the spectral radius of(
0 B∗

B∗ 0

)2

=
(

B∗BT
∗ 0

0 BT
∗ B∗

)
.

The eigenvalues of this matrix are the same as those of BT
∗ B∗ and of

B∗BT
∗ = A−1/2BC−1BTA−1/2

which has by similarity, the same eigenvalues as BC−1BTA−1.
Now BC−1 is a nonnegative matrix and so its largest eigenvalue is a real num-

ber no larger than its largest row sum, which in this case is maxi

∑
j Bij/Cjj .

Applying the same to BTA−1 gives us a bound on ρ2 that is the square of the
claimed bound for ρ.
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A.3. Proof of Theorem 3.3

The is element of B∗BT
∗ is

(B∗BT
∗ )is =

∑
j

ZijWij√
Wi• + σ−2

A

√
W•j + σ−2

B

ZsjWsj√
Ws• + σ−2

A

√
W•j + σ−2

B

.

Therefore the i’th diagonal element of B∗BT
∗ is

(B∗BT
∗ )ii =

∑
j

ZijW 2
ij

(Wi• + σ−2
A )(W•j + σ−2

B )
� 1

Wi•

∑
j

ZijW 2
ij

W•j
.

With probability tending to 1

(B∗BT
∗ )ii � S2ψω̄2 1

Ni•

∑
j

Zij

N•j
� S2ψω̄2(1 − ε)−2Sρ+κ−2

∑
j

Zij

by equations (7) and (8). Now
∑

j Zij = Ni• � (Υ + ε)S1−ρ by equation (7).
Therefore with probability approaching one,

tr(B∗BT
∗ ) � ω̄2(1 − ε)−2(Υ + ε)S2ψ+ρ+κ−1 = o(R)

because R = Sρ and κ < 1 and we can choose any ψ > 0. Now none of the
eigenvalues of B∗BT

∗ can be negative. If there are Rα = Sαρ eigenvalues larger
than δ then

tr(B∗BT
∗ ) > δSαρ.

That cannot hold for large S if

α > α ≡ 1 + 2ψ + κ − 1
ρ

< 1

for small enough ψ. Therefore any α ∈ (α, 1) satisfies the condition in (32).

A.4. Proof of Theorem 3.4

Let B∗BT
∗ have eigenvalues λ1 � λ2 � · · · � λR � 0 with corresponding unit

norm eigenvectors vi. Then

Err = tr
(

A−1
∑
k�1

R∑
i=1

λk
i viv

T
i

)
=

∑
k�1

R∑
i=1

λk
i tr(vT

i A−1vi).

Now with probability tending to 1 as S → ∞,

tr(vT
i A−1vi) � λmax(A−1) = max

s
(Ws• + σ−2

A )−1 � Sψ(1 − ε)−1Sρ−1
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because Ws• � S−ψ mini Ni• � S−ψ(1 − ε)S1−ρ with overwhelming probability.
Therefore with probability tending to 1 as S → ∞

Err � Sψ+ρ−1(1 − ε)−1
R∑

i=1

λi

1 − λi
.

Now choose the α < 1 provided by Theorem 3.3 and suppose that for δ > 0
that fewer than Rα of the λi are larger than δ. Under this event which has
probability tending to one,

Err � Sψ+ρ−1(1 − ε)−1
(

δλ1Rα

1 − λ1
+ R

1 − δ

)
.

The second term above is O(Sψ+ρ−1R) = o(R) because ρ < 1 and we can choose
any ψ > 0.

To control the first term, we use Proposition 1 to bound 1/(1 − λ1). The
bound there takes the form λ1 � (1 + a)−1(1 + b)−1 for a = Sρ−1/[(Υ + ε)ω̄σ2

A]
and b = Sκ−1/[(Υ + ε)ω̄σ2

B ]. Therefore

1
(1/λ1 − 1) � 1

a + b + ab
� min

(1
a

,
1
b

)
= min(S1−ρσ2

A, S1−κσ2
B)ω̄(Υ + ε).

It now follows that the first term in Err is O(SψRα) = o(R) because α < 1 and
we can choose any ψ > 0.

A.5. Proof of Lemma 4.2

Our iterative algorithm is designed to minimize

pl(β, a, b) =
∑

ij

ZijŴij(zij − xT
ijβ − ai − bj)2 + σ̂−2

A ‖a‖2 + σ̂−2
B ‖b‖2,

where all Ŵij > 0, min(σ̂−2
A , σ̂−2

B ) > 0, the matrix X with rows xT
ij has full

rank, and zij are fixed numbers. This quadratic function has a positive definite
Hessian and a unique global minimum (β∗, a∗, b∗).

We introduce pl(β, a; b) which for any b ∈ R
C gives us a function of β ∈ R

p

and a ∈ R
C . Similarly, we introduce pl(β, b; a) where this time a is the pa-

rameter while β and b are the function’s arguments. Given β(k), a(k) and b(k)

we minimize pl(β, a; b(k)) over β and a to get β(k+ 1
2 ) and a(k+1). Then we

minimize pl(β, b; a(k+1)) over β and b to get β(k+1) and b(k+1). Both mini-
mizations choose arguments that make their respective gradients equal to zero.
Therefore

pl(β(k), a(k); b(k)) − pl(β(k+ 1
2 ), a(k+1); b(k))
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= 1
2

(
β(k) − β(k+ 1

2 )

a(k) − a(k+1)

)T

H(β(k+ 1
2 ), a(k+1); b(k))

(
β(k) − β(k+ 1

2 )

a(k) − a(k+1)

)
using H to denote the Hessian of the parameterized function. Considering both
steps at once we get

Δ(k+1) ≡ pl(β(k), a(k), b(k)) − pl(β(k+1), a(k+1), b(k+1))

= 1
2

(
β(k) − β(k+ 1

2 )

a(k) − a(k+1)

)T

H(β(k+ 1
2 ), a(k+1); b(k))

(
β(k) − β(k+ 1

2 )

a(k) − a(k+1)

)
+ 1

2

(
β(k+ 1

2 ) − β(k+1)

b(k) − b(k+1)

)T

H(β(k+1), b(k+1); a(k+1))
(

β(k+ 1
2 ) − β(k+1)

b(k) − b(k+1)

)
.

Now Δ(k+1) � 0 and
∞∑

k=0

Δ(k+1) � pl(β(0), a(0), b(0)) − pl(β∗, a∗, b∗) < ∞

and so this sum converges. Noting that H(β, a; b) and H(β, b; a) are indepen-
dent of (β, a, b) and strictly positive definite, we conclude that (β(k), a(k), b(k))
converges. At the limit point, the gradients of both pl(β, a; b) and pl(β, b; a)
must vanish and so therefore the gradient of pl(β, a, b) also vanishes there.

A.6. Results of the binary regression in Section 6

Table 1 shows coefficient estimates and standard errors for plain logistic re-
gression and a generalized linear mixed model logistic regression for the Stitch
Fix data in Section 6. Logistic is estimated to be naive when ŜELR(β̂LR) <

ŜEGLMM(β̂LR) and inefficient when ŜEGLMM(β̂LR) > ŜEGLMM(β̂GLMM). Esti-
mates that are more than double their corresponding standard error get an
asterisk.

For the Stitch Fix data we obtained σ̂2
A = 0.68 (customers), σ̂2

B = 0.21
(items).
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Table 1

Stitch Fix Binary Regression Results

β̂LR ŜELR(β̂LR) ŜEGLMM(β̂LR) β̂GL ŜEGLMM(β̂GL)
Intercept 0.677∗ 0.022 0.048 0.584∗ 0.036
I{CFP missing} 0.099∗ 0.015 0.025 0.127∗ 0.023
I{CFP loose} 0.016∗ 0.002 0.006 0.208∗ 0.004
I{CFP oversize} −0.094∗ 0.010 0.019 −0.048∗ 0.015
I{CFP straight} 0.125∗ 0.003 0.005 0.154∗ 0.004
I{CFP tight} −0.229∗ 0.011 0.130 −0.250∗ 0.009
I{client edgy} −0.042∗ 0.002 0.005 −0.044∗ 0.003
I{client boho} 0.147∗ 0.002 0.006 0.194∗ 0.003
I{client chest size} −0.008∗ 0.001 0.001 −0.011∗ 0.001
I{client dress size} −0.002∗ 0.000 0.001 −0.000 0.001
I{IFP missing} −0.281∗ 0.024 0.188 −0.079 0.151
I{IFP fitted} 0.061∗ 0.004 0.089 0.277∗ 0.029
I{IFP loose} 0.209∗ 0.003 0.082 0.038 0.029
I{IFP oversize} −0.066∗ 0.016 0.135 −0.020 0.111
I{IFP tight} 0.186 0.010 0.431 0.251 0.359
I{material missing} −0.203∗ 0.022 0.190 −0.227 0.135
Acrylic −0.187∗ 0.005 0.060 −0.206∗ 0.031
Angora −0.305∗ 0.024 0.222 −0.279 0.151
Cashmere 0.367∗ 0.057 0.462 −0.744 0.399
Cotton −0.246∗ 0.004 0.060 −0.245∗ 0.028
Faux Fur 0.321 0.250 0.516 0.547 0.479
Fur −0.459∗ 0.128 0.489 −0.619 0.480
Linen −0.494∗ 0.025 0.182 −0.374∗ 0.163
Modal 0.035∗ 0.007 0.262 −0.057 0.080
Nylon 0.096∗ 0.013 0.188 0.070 0.108
Patent Leather −0.789∗ 0.110 0.454 −0.531 0.379
Pleather −0.215∗ 0.020 0.194 −0.121 0.130
PU 0.390∗ 0.042 0.046 0.509 0.035
Rayon −0.033∗ 0.002 0.068 −0.013 0.020
Silk −0.041∗ 0.009 0.133 0.053 0.068
Spandex 0.025 0.050 0.355 0.210 0.335
Tencel −0.107∗ 0.025 0.181 −0.041 0.158
Viscose −0.081∗ 0.008 0.086 −0.084 0.054
Wool −0.217∗ 0.024 0.235 −0.194 0.150
In the table, β̂GL denotes the GLMM estimates of β obtained by clubbed backfitting. The
abbreviations CFP and IFP are used for client fit profile and item fit profile respectively.
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