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Abstract. Preintegration is an extension of conditional Monte Carlo to quasi-Monte Carlo and
randomized quasi-Monte Carlo. Conditioning can reduce but not increase the variance in Monte
Carlo. For quasi-Monte Carlo it can bring about improved regularity of the integrand with potentially
greatly improved accuracy. We show theoretically that, just as in Monte Carlo, preintegration can
reduce but not increase the variance when one uses scrambled net integration. Preintegration is
ordinarily done by integrating out one of the input variables to a function. In the common case of a
Gaussian integral one can also preintegrate over any linear combination of variables. For continuous
functions that are differentiable almost everywhere, we propose to choose the linear combination
by the first principal component in an active subspace decomposition. We show that the lead
eigenvector in an active subspace decomposition is closely related to the vector that maximizes a
computationally intractable criterion using a Sobol’ index. A numerical example of Asian option
pricing finds that this active subspace preintegration strategy is competitive with preintegrating the
first principal component of the Brownian motion, which is known to be very effective. The new
method outperforms others on some basket and rainbow options where there is no generally accepted
counterpart to the principal components construction.

Key words. conditional Monte Carlo, option pricing, quasi-Monte Carlo, randomized quasi-
Monte Carlo
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1. Introduction. Preintegration [15] is a strategy for high dimensional numer-
ical integration in which one variable is integrated out in a closed form (or by a very
accurate quadrature rule) while the others are handled by quasi—-Monte Carlo (QMC)
sampling. This strategy has been used since the 1950s in Monte Carlo (MC) sampling
[16, 45], where it is known as conditional Monte Carlo. It can reduce variance but not
increase it. In the Markov chain Monte Carlo (MCMC) literature, such conditioning is
called Rao-Blackwellization, although it does not generally bring the optimal variance
reduction that results from the Rao—Blackwell theorem. In the MCMC setting it is
possible for conditioning to increase variance [10]. See [40] for a survey of conditioning
in MCMC.

The advantage of preintegration in QMC goes beyond the variance reduction that
arises in MC. After preintegration, a d-dimensional integration problem with a dis-
continuity or a kink (discontinuity in the gradient) can be converted into a much
smoother (d — 1)-dimensional problem [15]. QMC exploits regularity of the integrand
and this additional smoothness brings a benefit on top of the variance reduction that
comes from conditioning. It is known that the resulting smoothness depends criti-
cally on a monotonicity property of the integrand with respect to the variable being
integrated out [11, 14, 15]. Hoyt and Owen [19] give conditions where preintegration
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reduces the mean dimension (that we will define later) of the integrand. It can re-
duce the mean dimension from proportional to v/d to O(1) as d — oo in a sequence
of ridge functions with a discontinuity that the preintegration smooths out. He [17]
studied the error rate of preintegration for scrambled nets applied to functions of the
form f(x) = h(x)1{¢(x) >0} for a Gaussian variable . That work assumes that h
and ¢ are smooth functions and ¢ is monotone in the variable to be preintegrated.
Then preintegration has a smoothing effect that when combined with some boundary
growth conditions yields a root mean squared error rate of O(n~1*¢), where n is the
number of samples. In some very early uses of preintegration in QMC, L’Ecuyer and
Lemieux [23] integrate some variables out of a stochastic activity network problem to
improve smoothness for applying a lattice rule.

There is presently very little guidance in the literature about which variable to
preintegrate over, beyond the monotonicity condition recently studied in [11] and a
remark for ridge functions in [19]. Many of the use cases for preintegration involve
integration with respect to the multivariate Gaussian distribution, especially for prob-
lems arising in finance. In the Gaussian context, we have more choices for the variable
to preintegrate over. In addition to preintegration over any one of the d coordinates,
preintegration over any linear combination of the variables remains integration with
respect to a univariate Gaussian variable. Our proposal is to preintegrate over a linear
combination of variables chosen to optimize a measure of variable importance derived
from active subspaces [5].

When sampling from a multivariate Gaussian distribution by QMC, even without
preintegration, one must choose a square root of the covariance matrix by which to
multiply some sampled scalar Gaussian variables. While the choice of square root
does not affect MC error, it does affect the QMC error. There are numerous choices
for that square root. One can sample via the principal component matrix decompo-
sition as [2] and many others do. For integrands defined with respect to Brownian
motions, one can use the Brownian bridge construction studied by [26]. These choices
have some potential disadvantages. It is always possible that the integrand is little af-
fected by the first principal component. In a pessimistic scenario, the integrand could
depend only on a principal component that is orthogonal to the first one. This is a
well-known pitfall in principal components regression [22]. In a related phenomenon,
Papageorgiou [36] exhibits an integrand where QMC via the standard construction is
more effective than via the Brownian bridge.

Not only might a principal component direction perform poorly, but the first prin-
cipal component is not necessarily well defined. Although the problem may be initially
defined in terms of a specific Gaussian distribution, by a change of variable we can
rewrite our integral as an expectation with respect to another Gaussian distribution
with a different covariance matrix that has a different first principal component. Or,
if the problem is posed with a covariance equal to the d-dimensional identity matrix,
then every unit vector (i.e., L?-norm is 1) is a first principal component direction.

Some proposed methods take account of the specific integrand while formulating
a sampling strategy. These include stratifying in a direction chosen from exponential
tilting [13], exploiting a linearization of the integrand at d + 1 special points start-
ing with the center of the domain [20], and a gradient principal component analysis
(GPCA) algorithm [47] that we describe in more detail later.

The problem we consider is to compute an approximation to p=E(f(x)), where
x € RY has the spherical Gaussian distribution denoted by A(0,1) and f is a con-
tinuous function with a gradient almost everywhere that is square integrable. Let
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C =E(Vf(z)Vf(x)") € R4 The r-dimensional active subspace [5] is the space
spanned by the r leading (i.e., top) eigenvectors of C. We always rank the eigenvalues
and corresponding eigenvectors in descending order. Active subspace methods have
been generalized to vector-valued functions [49] and nonlinear dimension reduction
[3]. For other uses of the matrix C' in numerical computation, see the references in
[6]. For r =1, let 6 be the leading eigenvector of C' normalized to be a unit vector
in L?-norm. We propose to preintegrate f over 8Tz ~ N(0, 1). Preintegration can
smooth out both kinks and jumps. Because the active subspace direction is derived
for continuous integrands it provides a principled preintegration choice for integrands
with kinks, but its motivation does not extend to integrands with jumps.

The eigendecomposition of C' is an uncentered principal components decomposi-
tion of the gradients, also known as the GPCA. The GPCA method [47] also uses the
eigendecomposition of C' to define a matrix square root for a QMC sampling strategy
to reduce effective dimension, but it involves no preintegration. The algorithm in [46]
preintegrates the first variable 1 out of f. Then it applies GPCA to the remaining
d — 1 variables in order to find a suitable (d — 1) x (d — 1) matrix square root for the
remaining Gaussian variables. They preintegrate over a coordinate variable, while we
always preintegrate over the leading eigenvector which is not generally one of the d
coordinates. All of the algorithms that involve C typically take a sample to estimate
it.

This paper is organized as follows. Section 2 provides some background on ran-
domized QMC (RQMC) and preintegration. Section 3 shows that preintegration never
increases the variance of scrambled net integration, regardless of the smoothness of
the integrand. Thus this well-known property of conditional MC, which does not
always extend to conditional MCMC, does extend to conditional RQMC. In section
4, we describe using the unit vector # which maximizes the Sobol’ index for 7zx.
This strategy is to find a matrix square root for which the first column maximizes the
criterion from section 3. We show that this Sobol” index 77 is well defined in that it
does not depend on how we parameterize the space orthogonal to 8. We apply active
subspace preintegration to option pricing examples in section 5. These include an
Asian call option, a basket option, and call on max and call on min options. Section
6 has our conclusions.

2. Background. In this section, we introduce some background of RQMC,
preintegration, and active subspaces. First we introduce some notation.

For a positive integer d, we let 1:d = {1,2,...,d}. For a subset u C 1:d, we let
—u=1:d\u. For an integer j € 1:d, we use j to represent {j} when the context is clear
and —j = 1:d\{j}. Let |u| denote the cardinality of u. For € R%, we let x, be the
|u|-dimensional vector containing only the x; with j € u. For @,z € R? and u C 1:d,
we let x,:z_, be the d-dimensional vector, whose jth entry is z; if j € v and z; if
Jj ¢ u. Weuse N={1,2,...} for the natural numbers and Ny = N U {0}. We denote
the density and the cumulative distribution function (CDF) of the standard Gaussian
distribution N'(0,1) as ¢ and @, respectively. We let ®~1 denote the inverse CDF of
N(0,1). We also use ¢ to denote the density of the d-dimensional standard Gaussian
distribution N(0, 1), p(x) = (27)~%? exp(—||x||?/2), where ||z|| always denotes the
L2-norm unless otherwise stated. We use N'(0,]) when the dimension of the random
variable is clear from context. For a matrix © € R¥*¢, we let O[u] denote the columns
of ® whose indices are in u. For an event A, we define the indicator function 14 to be
1 if A happens and 0 otherwise. When A contains many levels of subscripts and/or
superscripts we use 1{A} instead.
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2.1. QMC and RQMC. QMC provides a way to estimate y = fo pa f(x)de
with typically greater accuracy than can be done by MC, while sharing Wlt MC the
ability to handle larger dimensions d than can be handled well by classical quadrature
methods such as those in [7]. The QMC estimate, like the MC one, takes the form fi,, =
(1/n) Z?;OI f(x;), except that instead of x; g U[0, 1]¢ the sample points are chosen
strategically and deterministically to cover the unit cube more evenly as quantified
by a discrepancy measure (see [4]) such as the star discrepancy D? (defined in the
supplementary material (supplement.pdf [local/web 411KB])).

The QMC methods we study are digital nets and sequences. To define them, for an
integer base b > 2 let E(k, c) = H?:l[b%v CZ:;I) for k= (k1,...,kq) and c= (c1,...,cq),
where k; € Ny and 0 < ¢; < b¥. The sets E(k,c) are called elementary intervals in
base b. They have volume b~¥ where |k| = Z;l:l k;. For integers m >t > 0,
the points xg, ..., T,—1 with n =0" are a (t,m,d)-net in base b if every elementary
interval E(k,c) with |k| < m — t contains "~ !¥l of those points, which is exactly n
times the volume of E(k,c). Here, t is known as the quality parameter and smaller
values are better. It is not always possible to get ¢ = 0. The power of digital nets is
that the points x; satisfy (mfdtfffl) such stratifications simultaneously. They attain a
star discrepancy [27] of D = O((logn)?~!/n) after approximating each [0, a) by sets
E(k,c) [27, Theorem 4.10]. An infinite sequence {x;};>¢ is called a (¢, d)-sequence if
for all £ >0 and m >t the points Typm, ..., T(41)pm—1 are a (t,m,d)-net in base b.

Randomization techniques can be applied so that one can estimate the error by
multiple independent replicates. In RQMC, the points x; ~ U([0,1]?) individually
while collectively they form a (¢,m,d)-net or sequence with probability 1. One ran-
domization technique that has this property is nested uniform scrambling introduced
by [29]. The estimate fi,, taken over a scrambled (¢,d)-sequence satisfies a strong law
of large numbers if f € L2[0,1] [35]. If f € L?[0,1]%, then Var(j,) = o(1/n), giving the
method asymptotically unbounded efficiency versus MC which has variance o2 /n for
02 = Var(f(z)). For smooth enough f, Var(ji,) = O(n=3(logn)?!) [31, 33] with the
sharpest sufficient condition in [48]. Also there exists I' < oo with Var(ji,) < To?/n
for all f € L2[0,1]¢ [32]. This bound involves no powers of log(n).

For more background about QMC and RQMC, see the supplement (SM1).

2.2. Preintegration. For j € 1:d, f[O,l]d f(x)dx = f[o it fo x)dx;de_j,
which we can also erte as E(f( ) =E(E(f(x )\a;_J)) for x ~ U[O 1]4. For = € [0,1]¢,
define g(x) fo x)dx;. It simplifies the presentation of some of our results,
espe(zlally Theorem 3.2 on variance reduction, to keep g defined as above on [0, 1]¢
even though it only depends on x_;. In preintegration,

,un,] Zgj a’z

which, as we noted in the introduction, is conditional MC except that we now use
RQMC inputs.

Preintegration can bring some advantages for RQMC. The plain MC variance
of g(x) is no larger than that of f(x) and is generally smaller unless f does not
depend at all on z;. Thus the bound I'c?/n is reduced. Moreover, the preintegrated
integrand g can be much smoother than f and (R)QMC improves on MC by exploiting
this additional smoothness. For example, it has been observed that for some option
pricing integrands, preintegrating certain variables can remove the discontinuities in
the integrand or its gradient [15, 46].
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The integrands we consider here are defined with respect to a Gaussian random
variable. We are interested in p = E(f(y)) for y ~ A (0,%) with a positive definite
covariance ¥ € R4*4. Letting Ry € R¥*¢ with RyR} =X we can write p=E(f(Roz))
for z ~ N(0,1). For an orthogonal matrix Q € R4*? we also have Qz ~N(0,I). Then
taking z = ®~!(x) componentwise leads us to the estimate 4=+ ngol f(R®™(x;))
with R = Ry for RQMC points x;. The choice of @) or equivalently R does not affect
the MC variance of { but it can change the RQMC variance. We will consider some
examples later. The mapping ® ! from U0, 1]¢ to (0, 1) can be replaced by another
one such as the Box—Muller transformation. The choice of transformation does not
affect the MC variance but does affect the RQMC variance. Most researchers use ® !
but [28] advocates for Box—Muller.

When we are using preintegration for a problem defined with respect to an A/(0, )
random variable we must choose R and then the coordinate j over which to prein-
tegrate. Our approach is to fix j = 1 while choosing R so that x; is the most im-
portant linear combination of & in an active subspace approximation as described in
section 4.

2.3. The ANOVA decomposition. For f € L?[0,1]% we can define an analysis
of variance (ANOVA) decomposition from [9, 18, 42]. For details see [34, Appendix
A.6]. This decomposition reads

fl@)=">" fulx)

uCl:d

where f,, depends on @ only through z; with j € u and also fol fu(z)dz; = 0 whenever
j € u. The term fy is the constant function everywhere equal to pu = f[O,l]d f(x)de.
The decomposition is orthogonal in that f[0,1]d fu(@) fo(x)de =0 if u # v. To each
effect f, there corresponds a variance component

(x)2 de, >0
72 = Var(f (a)) = { Joa Ful@ 1
0 else.
The variance components sum to o2 = Var(f(z)).
The formula for f,, can be written recursively as fz = and then for |u| >0,

fu(z) = (@)=Y ful@) ) de.
Jo )

vCu

The integral above is an expectation with respect to independent random z; for
J € u. For Gaussian or indeed any other distribution on components x; one replaces
the integral by the analogous expectation. We will use the ANOVA decomposition
below when describing how to choose a preintegration variable.

Sobol” indices [43] are derived from the ANOVA decomposition. For u C 1:d these
are

2 _ 2 =2 __ 2
1o = E o. and T.= E liunvzo}oy-
vCu vCl:d

They provide two ways to judge the importance of the set of variables z; for j € wu.
They are usually normalized by o2 to get an interpretation as a proportion of variance
explained.
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The mean dimension of fisv(f) =", ;.4 |ulo2/o?. Tt satisfies v(f) = Z‘j:l 73 /o”.
A ridge function takes the form f(x) = h(0Tz) for © € R™" with 676 = I, and
a function h : R” — R. For @ ~ N (0, 1), the distribution of f(x) does not depend
on d and the mean dimension is O(1) as d — oo if h is Lipschitz [19]. If h is an
indicator function and 7 = 1, then it is possible to have v(f) = Q(v/d) reduced to O(1)
by preintegration over a component variable x; with ©;; bounded away from zero as

d — oo. See [19] for an example.

3. Preintegration and scrambled net variance. Conditional MC can reduce
but not increase the variance of plain MC integration. Here we show that the same
thing holds for scrambled nets using the nested uniform scrambling of [29]. The
affine linear scrambling of [25] has the same variance and hence the same result.
We assume that f € L2[0,1)¢. For any f € L?[0,1]? we could set f(x) = 0 for
any £ € D = [0,1]7\[0,1)? and get an equivalent function with the same integral
and, almost surely, the same RQMC estimate because all a; ~ U[0, 1]d avoid D with
probability one.

We will preintegrate over one of the d components of x € [0,1)%. Tt is also possible
to preintegrate over multiple components and reduce the RQMC variance each time,
though the utility of that strategy is limited by the availability of suitable closed forms
or effective quadratures.

3.1. Walsh function expansions. To get variance formulas for scrambled nets
we follow Dick and Pillichshammer [8], who work with Walsh function expansion in
L2[0,1)4, for which they credit Pirsic [38]. Let wy, = €2™/? with i being the imaginary
unit. For k € No write k =3, r;b with base b digits x; € {0,1,...,b — 1}. For
z€[0,1) write x =3, 5, §;b77 with base b digits {; € {0,1,...,b— 1}. This is unique
in the sense that infinitely many &;’s must be different from b — 1.

Using the above notation we can define the kth b-adic Walsh function pwal:[0,1) —
C as pwalg(x) = wljzjglgjnjfl. The summation in the exponent is finite because
k < co. Note that ywalg(z) =1 for all z € [0,1). For = (z1,...,24) € [0,1)¢ and
k = (ky,...,kq) € N&, the d-dimensional Walsh functions are defined as ,walg(x) =
H?Zl pwalg; (). The Walsh series expansion of f(x) is

f(x) ~ Z f(k)pwalg (), where f(k) :/ f(x)pwalg(x) de.

d
keNg [0,1)

The d-dimensional b-adic Walsh function system is a complete orthonormal basis in
Ly([0,1)4) [8, Theorem A.11] and the series expansion converges to f in L.
For & ~([0,1]¢), the variance of f(z) has the decomposition

Var(f(z))= Y |/ (k).

keNG\{0}

The variance under scrambled nets is different. To study it we group the Walsh
coefficients. For £ € N§ let Cp, = {k € N | [b%71] < k; < 09,1 < j < d}.
Then define fe(x) = > 1cq, f(k)pwalg (). The functions B are orthogonal in that
f[071)d Be(x)B,(z) de =0 when £ # £. For £+ 0, B¢(z) has variance

20\ _ 22 de = F(k) 2.
A= [ | s aa= 3 1)

keCy
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Let ag,...,a,_1 be a point set in [0, 1]d and let xq,...,x,_1 be the scrambled version
of a;’s. Then for the estimator i = fi,, = % E?:_OI f(x;) we have

(3.1) Var(fi,) = Z Teoi(f
EGNd\{O}

for a collection of gain coefficients I'y > 0 that depend on the a;. This expression can
also be obtained through a base b Haar wavelet decomposition [30]. Our T'y equals
nGy from [8]. The variance of fi,, under independent and identically distributed MC
sampling is (1/1) 3 pcna (o) o2(f), so I'g < 1 corresponds to integrating the term
Be(x) with less variance than MC does.

If scrambling of [29] or [25] is applied to a;, then

(32) Te— 1 nl ﬁ b1 { (b a; ;] = Lbfjai/’jj} -1 { b4 ~1a; | = Lberlai/’jj}
| i j b—1 :
ii'=0J=1

This holds for any a;, not just digital nets. When a; are the first b™ points of a (¢, d)-
sequence in base b, then I' = sup, 'y < oo (uniformly in m) so that Var(i) < T'o?/n.
Similarly, for any £ € Ng we have I'y — 0 as n=b" — oo in a (t,d)-sequence in base b
from which we get Var(fi,) =o(1/n). For a (t,m,d)-net in base b, one can show that
the gain coefficients I'y = 0 for all £ with |[£] <m —¢.

3.2. Walsh decomposition after preintegration.
PROPOSITION 3.1. For f € L?[0,1)¢ and j € 1:d, let g be f preintegrated over x;.
Then for k € Nd,

(33 (k) = {g““% U

Proof. We write

17
g(k) _/ / x)ywaly () dz; dfcfj—/ g(m)/ pwalg (z) dz; dz_;
[0,1)a [0,1)d-1 0

because g(x) does not depend on z;. If k; > 0, then the inner integral vanishes,
establishing the second clause in (3.3). If k; = 0, then ywal, (z;) = 1 for all x; and
the inner integral equals [],; vwaly, (x;) = pwalk (), establishing the first clause. O

THEOREM 3.2. For aq,...,a,_1 €[0,1)% let xg,...,x,_1 be a scrambled version
of them using the algorithm from [29] or [25]. Let f € L?[0,1)%, and for j € 1:d, let g
be f preintegrated over x;. Then

ar (i ig(azﬂ) < Var (i z_: f(acﬁ) .
i=0 i=0

Proof. With either f or g we have the same gain coefficients T'p for £ € Ng.
However

=Y lgRP=" > FRE<Y IR =)

keC,y kECA,kJ':O keCy

The result now follows from (3.1). d
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Theorem 3.2 shows that preintegration does not increase the variance under
scrambling. This holds whether or not the underlying points are a digital net, though
of course the main case of interest is for scrambling of digital nets and sequences.
It holds because the RQMC error is a sum of uncorrelated errors (one per Walsh
coefficient) and preintegration can decrease but not increase their variances. A simi-
lar phenomenon happens for RQMC by random shifting of lattice rules or by digital
shifting of digital nets. For those RQMC methods also, preintegration cannot increase
the variance. The proofs for those cases are in supplementary material, section SM3.

A variance reduction for conditional RQMC was previously found by [1]. Their
Theorem 4.3 shows that after conditioning on a certain linear combination of variables,
the variance of a randomly shifted lattice rule approach for some barrier options
cannot be greater than the unconditional sampling variance. Their proof is specific
to barrier options. They note that their argument would also apply to digital shifts.

Preintegration has another benefit that is not captured by Theorem 3.2. By
reducing the input dimension from d to d — 1 we will be using a (¢,m,d — 1)-net in
base b with ¢ < ¢ and possibly ¢ < t, since the lowest possible quality parameter
commonly increases with the dimension. For scrambled net sampling, reducing the
dimension reduces an upper bound on the variance. For any function f € L2[0,1)<,
the variance using a scrambled (t,m,d)-net is at most b'T¢ times the MC variance.
Reducing the dimension reduces the bound to bt/er’1 times the MC variance.

As remarked above, preintegration of f over a variable that f uses will reduce
the variance under scrambled net sampling. This reduction does not require f to be
monotone in x;, though such cases have the potential to bring a greater improvement
[14, 15].

3.3. Choice of preintegration variable. In order to choose x; to preintegrate
over, we can look at the variance reduction we get. Preintegrating over x; reduces
the scrambled net variance by

(3.4) % > Flag(f)1{£j>0}:% S Te ) (k)P k50

£eNE\ {0} LeNI\{0}  KkEC:

Evaluating this quantity for each j € 1:d might be more expensive than getting a good
estimate of . However, we don’t need to find the best j. Any j where f depends on
x; will bring some improvement. Below we develop a principled and computationally
convenient strategy of choosing the j which is most important as measured by a Sobol’
index [43] from global sensitivity analysis [39].

A convenient proxy replacement for (3.4) is

1 A 1
(3.5) - > \f(k)|21{kj>0}25 > oileuw,

keNd\ {0} uClid

where 02 is the ANOVA variance component of f for the set u. The equality above
follows because the ANOVA can be defined by collecting up the terms involving x;
for j € w from the orthogonal decomposition as Sobol’ did similarly in [42] using
Haar functions. The right-hand side of (3.5) equals 77 /n. It counts all the variance
components in which variable j participates. Conditioning on x; removes ?? /n from
the plain MC variance [46]. From the orthogonality properties of ANOVA effects it
follows that

1
7? =3 /[0’1](”1 (f(zjm_y;) — f(:c))2 dz;dz.
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The Jansen estimator [21] is an estimate of the above integral that can be done by
a d + 1 dimensional MC or QMC or RQMC sampling algorithm. Our main interest
in this Sobol’ index estimator is that we use it as a point of comparison to the use
of active subspaces in choosing a projection of a Gaussian vector along which to
preintegrate.

4. Active subspace method. An expectation defined with respect to @ ~
N(0,%) for positive definite ¥ € R9*? can always be written as an expectation with
respect to @ ~ N(0,1). For a unit vector § € R?, we will preintegrate over x'6 ~
N(0,1) and then the problem is to make a principled choice of 6. It would not be
practical to seek an optimal choice.

Our proposal is to use active subspaces [5]. As mentioned in the introduction we
let

C=E(Vf(x)Vf(x)")

and then let ©[1:r] comprise the r leading eigenvectors of C. The original purpose for
using active subspaces is to approximate f(x) ~ f (©[1:7]Tx) for some function f on
R". It is well known that one can construct functions where the active subspace will be
a bad choice over which to approximate. For instance, with f(z) = sin(10%z;) + 100z
the r =1 active subspace provides a function of z; alone, while a function of x5 alone
can provide a better approximation. Active subspaces remain useful for approximation
because the motivating problems are usually not so pathological and there is a human
in the loop to catch such things. They also have an enormous practical advantage in
that one set of evaluations of Vf can be used in the search for © instead of having
every candidate © require its own evaluations of Vf. Using active subspaces for
integration retains that advantage.

In our setting, we take r = 1 and preintegrate over #'x, where 8 is the leading
eigenvector of C. That is, § maximizes §TE(V f(z)Vf(z)")0 over all d-dimensional
unit vectors. Now suppose that instead of using f(x) we use fg(x) = f(Qz) for an
orthogonal matrix @ € R4*?. Then E(V fo(z)Vfo(z)") = QTCQ, which is similar to
C. Tt has the same eigenvalues and the leading eigenvector is 8 = Q7.

4.1. Connection to a Sobol’ index. The discussion in section 3 motivates
preintegration of f(z) for @ ~ N(0,I) over a linear combination 87z having the
largest Sobol” index over unit vectors §. For 6; =6, let © = (01,0s,...,04) € R¥*? be
an orthogonal matrix and write

fo(x) = f(Ox) = f(x101 + 2202 + - - - 4+ 2404).

Then we define 73(f) to be 72 in the ANOVA decomposition of fg(z). First we show
that 72 does not depend on ©_; = ©[2:d], the last d — 1 columns of ©.

Let 2, 2z, and y be independent with distributions A (0,1), N'(0,1), and N'(0, I4_1),
respectively. Let x =201 + ©_1y and = 26, + ©_1y. Using the Jansen formula for
0= 017

o 1 - 2 .
@) =g [ [ [ (G019~ 138+ 019) ol dyele) dzp(2) d,
Now for an orthogonal matrix Q € R(¢=1)x(d=1) et

6-0 (od_l ; > — (01,0s.....0,)
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where 6; = 6. In this parameterization we get

=3 / / / (P +02Qy) — F(38,+©1Q)) p(y) dyp(2) dZp(z) 2

which matches (4.1) after a change of variable. There is an even stronger invariance
property in this setup. The random variable E(fo(x)|2_1) has a distribution that
does not depend on 60s,...,0,.

THEOREM 4.1. Let f satisfy E(f(x)?) < oo for @ ~ N(0,1;) and let © € R¥*4
be an orthogonal matriz with columns 0; for j =1,...,d. Then the distribution of
E(fo(x)|x_1) does not depend on the last d — 1 columns of ©.

The proof is in the supplementary material (SM2). Another consequence of The-
orem 4.1 is that 72(f) = 73(fe) is unaffected by 6s,...,04. Because the variance
of f is unchanged by making an orthogonal matrix transformation of its inputs, the
normalized Sobol” indices 72/0? and 73 /02 are also invariant.

Finding the optimal # would ordinarily require an expensive search because every
estimate of 72 for a given § would require its own collection of evaluations of f. Using
a Poincaré inequality from [44] we can bound that Sobol” index by

7o(f) <E((0TVf(x))?) =0T Co.

The active subspace direction thus maximizes an upper bound on the Sobol’ index for
a projection. Next we develop a deeper correspondence between these two measures.

For a unit vector # € R, we can write f(x)= f(00 x + (I —00")x). If x,z are
independent N (0,1) vectors, then we can change the component of x parallel to 6
by changing the argument of f to be 07z + (I — 00T )x. This leaves the resulting
point unchanged in the d — 1 dimensional space orthogonal to 6. Let & = §Ta and
Z=07z. Then 7,%Z ~N(0,1) and (I —007)x ~N(0,I —00") are all independent. If
f is differentiable, then by the mean value theorem

f00Tz+ (I —00T)x)— f(00 T2+ (I —00")x)=0"V (05 + (I —00T)x)(2 - 7)

for a real number § between z and z. Using the Jansen formula, the Sobol’ index for
this projection is

(4.2) %0T]E((2 — BV + (I — 00 )V (05 + (I — aeT)m)T)o

which matches 0TE(Vf(z)Vf(x)")0 over a d — 1 dimensional subspace but differs
from it as follows. First, it includes a weight factor (Z —Z)? that puts more emphasis
on pairs of inputs where 872 and 7 z are far from each other. Second, the evaluation
point projected onto 6 equals ¢, which lies between two independent A'(0, 1) variables
instead of having the A/(0,1) distribution, and its exact location depends on details
of f and there could be more than one such ¢ for some f. The formula simplifies in
an illustrative way for quadratic functions f.

PROPOSITION 4.2. If f: R = R is a quadratic function and 6 € R?® is a unit
vector, then the Sobol’ index T3 is

.
43) 6" (Vf (GQJ; - eeT)x) v (99T$ - ee%) > 6.

V2
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Proof. If f is quadratic, then § = (2 4+ Z)/2 ~ N(0,1/2) and z — T ~ N(0,2)
and (I — 00T )x are all independent. Then E((Z — #)2) = 2 and 67 has the same
distribution as 672 //2 which is also independent of (2 — &) and (I — 60T )x. Making
those substitutions in (4.2) yields (4.3). d

The Sobol’ index in (4.3) matches the quantity optimized by the first active
subspace apart from the divisor /2 affecting one of the d dimensions. We can also
show directly that for & ~ N(0,1) and f(x) = (1/2)2" Az+b " for a symmetric matrix
A, the Sobol’ criterion (4.1) reduces to 8T A20 + (07b)% — (1/2)(67 A9)? compared to
an active subspace criterion of 67 A%26 + (7h)2.

4.2. Active subspace for preintegration. Because C' = E(Vf(z)Vf(z)T")
is positive semidefinite, it has the eigen-decomposition C = ©DOT, where © =
(01,...,04) € R¥4 is an orthogonal matrix consisting of eigenvectors of C, and
D = diag(\1,...,Aq) with Ay > --- > Ay > 0 being the eigenvalues. Constantine,
Dow, and Wang [6] prove that there exists a constant ¢ such that

(4.4) E((f(2) ~ E(f(@)[O[1:r]72))%) < chrs1 + -+ Ad)

for all f with a square integrable gradient. In general, the Poincaré constant ¢ depends
on the support of the function and the probability measure. But for the multivariate
standard Gaussian distribution, the Poincaré constant is always 1 [37].

In our problem, we take 7 = 1 and compute E(f(z)|6Tx), where 6 is the first
column of ©. In practice, it is convenient to preintegrate the last variable of fg, not
the first. For instance, one would use the first d — 1 components in a Sobol’ sequence
not components 2 through d. Taking 6 to be the first column of ©, we compute

sa-i)= [ " f(Ora+ Vo _a)p(wa) dea,

where W is orthogonal to 6 (i.e., 6T¥ = 0), using a quadrature rule of negligible
error or, if possible, a closed form. We then integrate this g over d — 1 variables
by RQMC. We can use ¥ = ©[2:d]. Or if we want to avoid the cost of computing
the full eigendecomposition of C' we can find # by a power iteration and then use
a Householder transformation © = I — 2ww", where w = (6 — e1)/||# —e1| and
e1 = (1,0,0,...,0)T. This © is an orthogonal matrix whose first column is 6. In our
numerical work, we have used ¥ = 0[2:d] instead of the Householder transformation
because of the effective dimension motivation for those eigenvectors given by [47].

We note that active subspaces use an uncentered PCA analysis of the matrix of
sample gradients. One could use instead a centered analysis of E((V f(x)—n)(V f(x)—
n)7), where = E(Vf(x)). The potential advantage of this is that Vf(z) — n is
the gradient of f(x) —n"2 which subtracts a linear approximation from f before
searching for #. The rationale for this alternative is that RQMC might already do
well integrating a linear function and we would then want to choose a direction 6
that performs well for the nonlinear part of f. In our examples, we found very little
difference between the two methods and so we proposed the simpler uncentered active
subspace preintegration.

In practice, we must estimate C. In the above description, we replace C by

o Mo
(4.5) C=3 > V@)V,
=0
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Algorithm 4.1 Preintegration with active subspace

Input: Integrand f, number of samples M to compute C, number of samples n to
compute [i
> Find active subspaces
Take :co,...,wM 1~N(0,1;) by RQMC.
Compute C = i Zf\/lo ! Vf(a:z)Vf(:cl) .
Compute the eigen-decomposition C=0DeT.
> Preintegration
Let # = O[1] and ¥ = 6[2:d]
Define g:R*"! - R by g(z) = [*_ f(0za+ Y& _q)p(zq) dzg
> RQMC integration
Take xg,...,Tp_1 NN(O I;_1) by RQMC and compute ¥z, ..., ¥z, 1.
return = - 1 it ' g(xi).

for an RQMC generated sample with ; ~N(0,1;) and then define 6 and ©_; using
C in place of C. We summarize the procedure in Algorithm 4.1.

Using our prior notation we can now describe the approach of [46] more precisely.
They first preintegrate one variable in closed form, producing a d — 1 dimensional
integrand. They then apply GPCA to the preintegrated function to find a good d —1
dimensional rotation matrix [6]. That is, they first find h(@a.q) :=E(f(2)|z2.4), then
compute

M—
(4.6) Z () Vh(z;)T e RU=DXE=D g0 0 N(0, I4—1),
i=0

using RQMC points ;. Then they find the eigen-decomposition C=VAVT. Finally,
they use RQMC to integrate the function h(Vx), where © ~ N(0,1;_1). The main
difference is that they apply preintegration to the original integrand f(a), while we
apply preintegration to the rotated integrand fo(x) = f(Ox). They conduct GPCA
in the end as an approach to reduce effective dimension, while we conduct a similar
GPCA (active subspace method) at the beginning to find the important subspace.

5. Application to option pricing. Here we study some Gaussian integrals
arising from financial valuation. We assume that an asset price S, such as a stock,
follows a geometric Brownian motion satisfying the stochastic differential equation
(SDE)

dSt = TSt dt + O'St dBt,

where B; is a Brownian motion under the risk-neutral measure. Here, r is the interest
rate and o > 0 is the constant volatility for the asset. For an initial price Sy, the SDE
above has a unique solution

2

St:SOexp<<rf %)tJraBt).

Suppose that the maturity time of the option is T'. In practice, we simulate a discrete
Brownian motion. We call B a d-dimensional discrete Brownian motion if B follows
a multivariate Gaussian distribution with mean zero and covariance ¥ with 3;; =
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Atmin(i, ), where At = T/d is the length of each time interval and 1 < 4,5 < d.
To sample a discrete Brownian motion, we can first find a d x d matrix R such that
RR" =Y, then generate a standard Gaussian variable z ~ N(0,1;), and let B = Rz.
Taking R to be the lower triangular matrix in the Cholesky decomposition of ¥ yields
the standard construction. Using the usual eigen-decomposition ¥ = UAUT, we can
take R =UA'/2. This is called the principal component analysis (PCA) construction.
For explicit forms of both these choices of R, see [12].

5.1. Option with one asset. When we use the matrix R, we can approximate
SjAt by

2
Sj:Soexp(<rf%)jAt+aBj>, 1<j5<d

where B = Rz is the discrete Brownian motion and B, is the jth coordinate of B.
The arithmetic average of the stock price is given by

Zexp <<r — 2) AL+ O’ZR]kzk>

k=1

Then the expected payoff of the arithmetic average Asian call option with strike price
K is E((S(R,z) — K)4), where the expectation is taken over z ~N(0, ).

Suppose that we want to preintegrate with respect to z; before computing the
expectation E((S(R,z)— K)4). If Rj; >0 for all 1 < j <d, then S(R, 2) is increasing
in z; for any value of z9.4. If we can find v =~(z2.4) such that

(51) S(Rv (’YaZQtd)) :Ka

then the preintegration step becomes

E((S(R K)+|2z2:4)
= (S(R,(21,22.4)) — K)p(21)dz
Z1>’Y(Z2 a)
So o?R3\ - =
:gZeX ( 7“—— jAt—I—UZR )@(’Y—Ule)—Kq)(’y),
j=1
where ®(z) =1 — . In practice, (5.1) can be solved by a root finding algorithm

[15]. For example7 Newton iteration usually converges in only a few steps. The
monotonicity in z; is important for the preintegration step to be carried out easily.
Without monotonicity, there might exist multiple roots for (5.1). For instance, if
there are two roots v1,72, we need to integrate over [y1,72] or (—00,7v1) U (72, +00).
In more general cases, we might have to use a high-precision quadrature rule for the
preintegration step.

The condition that R;; > 0 for 1 < j < d is satisfied when we use the standard
construction or PCA construction of Brownian motion. With the active subspace
method, we are using R = RO in the place of R where © consists of the eigenvectors
of C=E(Vf(2)Vf(2)"), and here f(z) = (S(R,z) — K)4. In this example, f is not
differentiable at those z where S(R, z) = K. But those nondifferentiable points have
zero probability, so with probablhty one Vf(z) exists. We use the analytic form of
the gradients when computing C in (4.5). Now we show that le >0 for all j. We
start from the standard construction, meaning that R;; = /A;1{i > j}; then f(2) is
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increasing in all coordinates of z. So V f A(z), whenever it exists, is always nonnegative
in all coordinates, which means that C;; > 0 for all 1 < 4,5 < d. Therefore, the
first eigenvector of C has the same sign in all of its components. Without loss of
generality, we can take ©;; > 0. So the first column of R = RO is also nonnegative.
This proves that the preintegration step for the active subspace integrand can also be
easily conducted by a Newton search.

The arXiv preprint of this paper [24] includes numerical results for some of the
Greeks for the Asian option. Those Greeks have integrands that are not only non-
differentiable but actually discontinuous at z, where S (R, z) = K, so the motivation
for active subspaces does not apply to them. Our method in that report estimated C
by the expected value of Vf(z)Vf(z)T taken over z where V f(z) exists. This leads
to a direction € influenced by the gradient information while ignoring the jump dis-
continuities. Preintegrating over the resulting active subspace direction cannot raise
variance and it produced very competitive results for those examples but this may be
because the options ended up in the money (i.e., with S(R,z) > K) about half of the
time. Choosing a direction 0 to preintegrate over for discontinuous integrands is out
of the scope of the present paper.

We compare Algorithm 4.1 with other methods in the option pricing example
considered in [46] and [17]. We take the parameters d =50, T =1, c = 0.4, r =0.1,
So =K =100 the same as in [17]. We consider five methods:

e AS+preint: our proposed active subspace preintegration method (Algorithm
4.1), which applies the active subspace method to find the direction to prein-
tegrate;

e preint+DimRed: the method proposed in [46], which first preintegrates z; and
applies GPCA to conduct dimension reduction for the other d — 1 variables;

e preint: preintegrating z; with no dimension reduction;

e RQMC: usual RQMC; and

e MC: plain Monte Carlo.

The first three methods, AS + preint, preint+DimRed, and preint, all use RQMC
sampling unless otherwise specified.

For each sample size n, we repeat the simulation 50 times and compute the
standard error across the 50 replicates. The standard error (std. err.) is plotted
versus the sample size (n) on the log-log scale. For the methods AS+preint and
preint+DimRed, we use M = 128 samples to estimate C as in (4.5). We approximate
the gradients of the preintegrated integrand g by the finite difference

PRI

Vg(z) ~ <9(-’B + ee;) —g(@) gzt 6ed5—1) —9() > ! , e=1075,

matching the choice in [46]. We chose a small value of M to keep the costs comparable
to plain RQMC. Also because 6 is a local maximizer of §7CH, we have §TCO =
0TCO + O(||0 — 0]]2), so there are diminishing benefits to accurate estimation of 6.
Finally, any 6 where f varies along 8" brings a variance reduction.

In Figure 1, we show the results under the standard construction (left) and the
PCA construction (right) of the Brownian motion. We observe that AS+preint
makes a huge improvement under the standard construction and is about the same
as preint+DimRed under the PCA construction. The performance of active subspace
preintegration is the same under either the standard or the PCA construction by in-
variance. For the Asian call option, it is already well known that the PCA construction
is especially effective. Active subspace preintegration finds something almost as good
without special knowledge.
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Payoff (Standard construction) Payoff (PCA construction)
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Fic 1. Single-asset call option.

Running time is another measure of efficiency. In our examples, preintegration
increases the running time by roughly 12-fold compared to methods that do not
preintegrate. But that is not enough to offset the gains from preintegrating the first
principal component or the first active subspace component for large n. In Figure 1,
the improvement of AS + preint over plain RQMC is about 1000-fold under standard
construction and 30-fold under PCA construction for large n. We also observe that
the proposed AS + preint method is faster than preint+DimRed in terms of computing

C and C. This is because we only need to evaluate the original integrand to compute

C but we need to evaluate the preintegrated integrand to compute C. Evaluating the
preintegrated integrand is more expensive because we need to apply Newton iterations
for root-finding. The cost of computing estimates of C' is negligible because it is done
by inspecting only M < n points in the domain of f. We put more details of the
timings in the supplement (SM4).

5.2. Basket option. A basket option depends on a weighted average of several
assets. Suppose that under the risk-neutral measure the L assets S, ..., S(X) follow
the SDE

sy =rs{? dt +ap5” aB?,

where { B}, /<1, are standard Brownian motions with correlation Corr(Bt(é)7 Bt(k)) =
pex for all t > 0. For some nonnegative weights wy + - - - + wp =1, the payoff function
of the Asian basket call option is given by

L
(ZWS“) - K)
(=1

where S is the arithmetic average of St(e) in the time interval [0,T]. Here, we only
consider L = 2 assets. To generate B(), B?) with correlation p, we can generate
two independent standard Brownian motions W W2 and let B =w 1) B2 =
oW 4+ /1 — p2W ), Following the same discretization as before, we can generate
(27,27) ~ N(0,I54). Then for time steps j=1,...,d, let

9 d
SV =55V exp ((T - 021) JAt+ o Z&%%) , and

k=1

2 d d
2 2 05\ . Z %Z .
SJ(‘ )= Sé exp ((r a 22) JAtT oz (Pk_leka Vi k—1Rijk>> .

+
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Again, the matrix R can be constructed by the standard construction or the PCA
construction. We call these methods the ordinary standard construction and ordinary
PCA construction.

A sharper principal components analysis would merge the two Brownian motions
into a single 2d-dimensional process and use the principal components from their joint
covariance matrix. The processes B(1)-71 = ¢y B() and B®)72 = ¢, B(?) have joint

distribution
BM):o1 0’%2 pPO102%
(B(2)7<72> ~N (0’ <p01022 o3y ’

Let 3 be the joint covariance matrix above. We can pick R with RRT =3 and let

B ~ [z z
(B2 <a (). e (2) o0t
The matrix R can be found by either a Cholesky decomposition or eigendecomposition

of R. We call this method joint standard construction or joint PCA construction.
With B1:71 and B9t generated, we can compute

2 d
Sj@) = (()e) exp (r — U;) JAL + ZB,(CU’W
k=1

In the preintegration step, we choose to integrate out z;. This can be easily carried
out similarly as in (5.1) and (5.2) provided that the first column of R is nonnegative.
This is true if R is found by the active subspaces method, following a similar argument
in the previous example. We take d =50, T =1, p=0.5, S{" = 8 =100, r = 0.1,
01 =0.1, 02 = 0.2, wy = 0.8, wy = 0.2. The standard errors under ordinary standard
construction and PCA construction are plotted in Figures 2 and 3. The results for
joint standard and PCA constructions are in Figure 4. The three columns correspond
to K =80, 100, and 120, respectively. A few observations are in order:

Standard construction (K = 80) Standard construction (K = 100) Standard construction (K = 120)
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F1G 2. Basket options under ordinary standard construction.
PCA construction (K = 80) PCA construction (K = 100) PCA construction (K = 120)
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F1c 3. Basket options under ordinary PCA construction.
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Joint PCA (K = 80) Joint PCA (K = 100) Joint PCA (K = 120)
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Fic 4. Basket options under joint standard or joint PCA construction with preintegration.

1. For the standard construction, preintegrating over z; brings little improve-
ment over plain RQMC. But for the PCA construction, preintegrating over
z1 brings a big variance reduction for K =100 and 120.

2. The dimension reduction technique from [46] largely improves the error rate
compared to preintegration without dimension reduction under the ordinary
standard construction and ordinary PCA construction. This improvement is
particularly significant for the ordinary standard construction and for smaller
K.

3. The proposed method AS +preint has the best performance in all settings.
It is even better than preintegrating out the first joint principal component of
the Brownian motion with dimension reduction. In this example, the active
subspace method is able to find a better direction than the first principal
component over which to preintegrate.

4. For the K =120 case, the probability that the option is exercised is about
2%. When we compute C' with 128 samples, we only get five gradients that
are not zero vector. But it is enough to find a better preintegration direction.

5.3. Rainbow option. A rainbow option is also a multiasset option whose pay-
off depends on the maximum or the minimum price across the assets. Here we consider
the Asian call on max and call on min options, whose payoffs are defined as

call on max: E [(max(S’(l),S‘(z)) — K)J and
call on min: E [(min(g(l),g(Z)) — K)J ,

respectively. Here, S and S®) are the same as in the basket option.

For the above two integrands, we still have the monotonicity in z; if Ry >
0; thus we can find the threshold v = v(z_;) such that max(S®,S®) = K or
min(S™M,S?)) = K by Newton iterations. After finding v, the expectation over
x1 can be written as

/ max(SY, 8@ p(xy) dey — KB (y).
.

For the call on min option, “max” is replaced by “min” in the last display. However,
the above integral does not have a closed form. Therefore, we use a Gaussian quad-
rature to compute the integral over the interval [, 10] using the quadrature function
from SciPy [41].

We take r =0.1, 04 = 0.2, 05 = 0.1, Sél) = 120, 552) = 80. For the call on max
option, we take K € {100,120}. For the call on min option, we take K € {80,100}.
The results are shown in Figure 5. The call on min option with K" =100 is extremely
out-of-money so we increase M to 2048 when computing C' for the active subspace
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FI1G 5. Rainbow options. The top panel is for the call on maz option with K € {100,120} and
the bottom panel is for the call on min option with K € {80,100}.

method. We get three nonzero gradients. We also increase the number of replicates to
100 for this integrand. In the plot, n starts from 2* because for n =23 some methods
only get 0 in all 100 replicates.

Several observations are in order:

1. For the call on max option, preintegration with ordinary PCA is slightly
better than preintegration with joint PCA. This is because for the call on
max option, the maximum is most likely achieved by S™). So the integrand
behaves like the single asset payoff in section 5.1. When we preintegrate z;
under the ordinary PCA construction, we are preintegrating the first principal
component of the Brownian motion for S, And this is known to be quite
effective.

2. For the call on min option, preintegration with joint PCA is better than
preintegration with ordinary PCA. This is because the minimum is mostly
achieved by S®. So to make preintegration under ordinary PCA more ef-
fective, one might consider exchanging the order of S and S®). But it is
still not as effective as the active subspace method. See Figure SM4 in the
supplement.

3. The proposed method, preintegration with the active subspace integrand,
outperforms all other methods without using any specific knowledge about
the integrands.
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6. Discussion. In this paper we have studied a kind of conditional RQMC
known as preintegration. We found that, just like conditional MC, the procedure
can reduce variance but cannot increase it. We proposed to preintegrate over the first
component in the active subspace. We showed a close relationship between this choice
of preintegration variable and what one would get using a computationally infeasible
but well-motivated choice by maximizing the Sobol’ index of a linear combination
of variables. The proposed method outperforms previous methods in some option
pricing problems, especially when there is no strong incumbent construction of the
Brownian motion.
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