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MEAN DIMENSION OF RIDGE FUNCTIONS*
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Abstract. We consider the mean dimension of some ridge functions of spherical Gaussian
random vectors of dimension d. If the ridge function is Lipschitz continuous, then the mean dimension
remains bounded as d — oo. If, instead, the ridge function is discontinuous, then the mean dimension
depends on a measure of the ridge function’s sparsity, and, absent sparsity, the mean dimension can
grow proportionally to v/d. Preintegrating a ridge function yields a new, potentially much smoother
ridge function. We include an example where, if one of the ridge coefficients is bounded away from
zero as d — oo, then preintegration can reduce the mean dimension from O(v/d) to O(1).
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1. Introduction. Numerical integration of high-dimensional functions is a very
common and challenging problem. Under the right conditions, quasi-Monte Carlo
(QMC) sampling and randomized QMC (RQMC) sampling can be very effective. A
good result can be expected from (R)QMC if the following conditions, described in
more detail below, all hold:

(1) the (R)QMC points have highly uniform low-dimensional projections;

(2) the integrand is nearly a sum of low-dimensional parts;

(3) those parts are regular enough to benefit from (R)QMC.
The first condition is a usual property of (R)QMC points. In a series of papers,
Griebel, Kuo, and Sloan [10, 11, 12] address the third condition by showing that
the low-dimensional parts of f (defined there via the analysis of variance (ANOVA)
decomposition) are at least as smooth as the original integrand and are often much
smoother. They include conditions under which lower-order ANOVA terms of func-
tions with discontinuities (jumps) or discontinuities in their first derivative (kinks)
are smooth. An alternative form of regularity, instead of smoothness, is for the low-
dimensional parts to have QMC-friendly discontinuities as described in [38]. In this
article we explore sufficient conditions for the remaining second condition to hold.
We use the mean dimension [28] to quantify the extent to which low-dimensional
components dominate the integrand.

This article is focused on ridge functions defined over R%. Ridge functions take
the form f(x) = g(©Tz) for an orthonormal projection matrix @ € R¥*" where
r < d, with r = 1 being an important special case. Ridge functions are useful here
because we can find their integrals via low-dimensional integration or even closed-form
expressions. That lets us investigate the impact of some qualitative features of f on
the integration problem. Additionally, many functions in science and engineering are
well approximated by ridge functions with small values of r [3], so good performance
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on ridge functions could extend well to many functions in the natural sciences. As
one more example, the value of a European option under geometric Brownian motion
is a ridge function of the Brownian increments, and this is what allows the formula
of Black and Scholes to be applied [9)].

Our main finding is that there is an enormous difference between functions g(-)
with jumps and functions with kinks. This is perhaps surprising. Based on criteria
for finite variation in the sense of Hardy and Krause, one might have thought that a
jump in d dimensions would be similar to a kink in d — 1. Instead, we find that for
Lipschitz continuous ¢ : R — R, the mean dimension of f is bounded as d — oo, and
that bound can be quite low. For g with step discontinuities, we find that the mean
dimension can easily grow proportionally to v/d. These effects were seen empirically
in [31], where ridge functions were used to illustrate a scrambled Halton algorithm.
Preintegration [13] turns a ridge function over [0,1]? with a jump into one with a
kink, and ridge functions of Gaussian variables containing a jump can even become
infinitely differentiable. The resulting Lipschitz constant need not be small. For a
linear step function we find that preintegration can either increase mean dimension
or reduce it from O(v/d) to O(1).

An outline of this paper is as follows. Section 2 provides notation and back-
ground concepts related to QMC and mean dimension. Section 3 introduces ridge
functions and establishes upper bounds on their mean dimension in terms of Hélder
and Lipschitz conditions and some spatially varying relaxations of those conditions.
Corollary 3.2 there shows that a ridge function with Lipschitz constant C' and variance
0?2 cannot have a mean dimension larger than 7C? /02 in any dimension d > r > 1 for
any projection @ € R¥*". Section 4 considers ridge functions with jumps. They can
have mean dimension growing proportionally to v/d, and sparsity of § makes a big
difference. Section 5 considers the effects of preintegration on ridge functions. The
preintegrated functions are also ridge functions with a Holder constant no worse than
the original function had. Preintegration can either raise or lower mean dimension.
We give an example step function where preintegration leaves the mean dimension
asymptotically proportional to v/d with an increased lead constant. In another exam-
ple, preintegration can change the mean dimension from growing proportionally to v/d
to having a finite bound as d — co. Section 6 computes some mean dimensions using
Sobol’ indices, including some problems with nominal dimensions d > 108. Section 7
has conclusions and a discussion of how generally these results may apply. Section 8
is an appendix containing the longer proofs.

2. Background and notation. We use ¢(-) for the standard Gaussian proba-
bility density function and ®(-) for the corresponding cumulative distribution function.
We consider integration with respect to a d-dimensional spherical Gaussian measure,

p= | fl@)en) e 1212 4 = / f(@7H(z)) de,
R (0,1)4

where the quantile function ®~1() is applied componentwise. The (R)QMC ap-

proximations to u take the form i = (1/n) 3.7, f(z;) for points =; € (0,1)% and
f(-) = fo® 1(-). The distribution of z is denoted N(0, I;) or simply N(0,1) if d is
understood from context.

QMC and Koksma—Hlawka. For QMC, the Koksma—Hlawka inequality [16]

(2.1) | — pl < Dy, % || fllic
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bounds the error in terms of the star discrepancy D} = D} (x1,...,x,) of the points
used and the total variation of f in the sense of Hardy and Krause. Constructions with
D# = O(log(n)?'/n) are known [23, 5, 34], proving that QMC can be asymptotically
better than Monte Carlo (MC) sampling which has a root mean squared error of
O(n~'/2). That argument requires ||f|lpx < oo, which in turn requires that f be a
bounded function on R%. Scrambled net RQMC has a root mean squared error that
is o(n=1/2) for any f € L? without requiring bounded variation [26].

Kinks and jumps. A kink function is continuous with a discontinuity in its first
derivative along some manifold. Griewank et al. [13] consider kink functions of the
form max(¢(x), 0), where ¢ is smooth. The kink takes place within the set {x | ¢(x) =
0}. A jump function has a step discontinuity along some manifold. Griewank et al.
[13] consider jump functions of the form 6(x) x max(¢p(x),0), where 6 is also smooth.
There can be jump discontinuities within the set {x | ¢(x) = 0}. When 0(-) = ¢(-),
the result is a kink function. In the rest of this paper, 6 denotes a unit vector.

ANOVA and mean dimension. The ANOVA decomposition applies to any
measurable and square integrable function of d independent random inputs. In our
case, those inputs will be either U(0,1) or A(0,1). For a survey of the ANOVA
including some history, see [30].

We use 1:d for {1,2,...,d}, and for u C 1:d, we write |u| for the cardinality of u
and —u for the complement 1:d \ u. The point € R? has components x; for j € 1:d.
The point x, € Rl has the components x; for j € u. We abbreviate x_(; to x_;.
For u C 1:d and points x, z € R?, the hybrid point y = x,:2_,, has y; =x; for j €u
and y; = z; otherwise.

The ANOVA decomposition [17, 36, 6] of f:[0,1]¢ = Ris f(z) =Y ,c1.q fu(T),
where f,, depends on x only through x,. The functions f, are called effects. They
are what statisticians often consider to be the contribution of x, to f, and they have
a recursive definition,

fulz) = E(f(w) -Y @ | w)
vCu
starting with fz(x) = f[o 14 f(x)dx. The effect f, is what is left over after we

subtract the effects of strict subsets of u and then average over x_,. For these
functions, the line integral E(f,(x) | —;) = 0 whenever j € u, and from that it
follows that E(f,(x)f,(x)) = 0 when u # v, and then

o’ =a’(f) =E((f(x) —p)*) = > o
w:|u|>0
for variance components o2 = 02(f) = E(f.(x)?) for u # 0 and 02 = 0.
The mean dimension of f (in the superposition sense) is

Zuglzd |u‘0’121
Zuglzd O'Z

If we choose u C 1:d with probability proportional to o2, then v(f) is the average of
|u|. Effective dimension is commonly defined via a high quantile of that distribution,
such as the 99th percentile [2]. Such an effective dimension could well be larger than
the mean dimension, but it is more difficult to ascertain.

The mean dimension and a few other quantities that we use are not well defined
when 02 = 0. In such cases, f is constant almost everywhere, and we will not ordi-

v(f) =
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narily be interested in integrating it. We assume below, without necessarily stating
it every time, that o > 0.

Sobol’ indices are used to quantify the importance of a variable or more generally
a subset of them. We will use the (unnormalized) Sobol’ total index for variable j:

?? = Z oﬁ.
ujeEU
More generally, for u C 1:d, we set 72 = > vonuts 02, An easy identity from [21]
gives v(f) = (1/0%) 3¢ 7. Sobol’ [37] shows that

J=1

_ 1 2
T? = iE((f(w,]xj) — f(QZ,jZZj)) )
when x and z are independent random vectors with the same product distribution

on R%, As a result we find that
d

(2.2) (f) = 2;1E<Z(f(w) - f(;cj;zj))2> :

Jj=1

The expectation in the numerator of v(f) is a 2d-dimensional integral over indepen-
dent  and z. It is commonly evaluated by (R)QMC.

Low effective dimension. Applying (2.1) componentwise yields

i — | < Z D:(wl,uv ) wn,U) X ||f~u||HK

The coordinate discrepancies D} (%14, ...,®n,y) are known to decay rapidly as n
increases when |u is small [5]. If also || fu||mk is negligible when |u is not small, then
f can be considered to have low effective dimension, and an apparent O(n~!) error
for QMC can be observed. Some other ways to decompose a function into a sum of
2d functions, one for each subset of 1:d, are described in [19]. For a survey of effective
dimension methods in information-based complexity, see [39].

To avoid the dependence on finite variation and to control the logarithmic terms
we can use a version of RQMC known as scrambled nets. Under scrambled net
sampling [25] each x; ~ U(0,1)4, while collectively @i,...,x, remain digital nets
with probability one, retaining their low discrepancy. The mean squared error of
scrambled net sampling decomposes as

R 1 n B 2 1 n B
23 B0 = X B((1 X ) ) = 3 var( 3 ),
u|>0 i=1 [u]>0 i=1
where expectation refers to randomness in the x; [26]. If f € L?, then
(2.4) Vrlzn:f(») _o(L nd vrlzn:f(») <r"i
. a ni:luwl =ol | a a ni:lua:l <r-

for some gain coefficient I' < oo [27]. If also 9% f, € L?, then

(2.5) Var(rll il fu(:vi)> =0 <W> .
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If large |u| have negligible 02 and small |u| are smooth enough for (2.5) to hold, then
RQMC may attain nearly O(n’S/ %) root mean squared error. The logarithmic factors
in (2.5) cannot make the variance much larger than the MC rate because the bound
in (2.4) applies for finite n. .
The ANOVA decomposition of f on x € R? is essentially the same as that of f
n (0,1)%. Specifically, f,(z) = f.(2~(x)).
Discontinuities can lead to severe deterioration in the asymptotic behavior of
RQMC. He and Wang [15] obtain mean squared error rates of

O(nflfl/(Qdfl) (log n)2d/(2d71))

for jump discontinuities of the form f(z) = g(x)l{z € Q}, where the set Q has a
boundary with (d — 1)-dimensional Minkowski content. When 2 is the Cartesian
product of a hyperrectangle and a d’-dimensional set with a boundary of (d' — 1)-
dimensional Minkowski content, d’ takes the place of d in their rate. The smaller d’
is, the more “QMC-friendly” the discontinuity is.

3. Ridge functions. We let  ~ N(0,I), choose an orthonormal matrix © €
R and define the ridge function

(3.1) f(@) = g(07a),

where g : R” — R. We must always have d > r because otherwise 070 = I, is
impossible to attain. Our main interest is in r < d. Ridge functions can also be
defined for = ~ U[0, 1], but then the domain of g becomes a complicated polyhedron
called a zonotope [3].

When r = 1, we write

(3.2) f@)=g(07),
where g : R — R. Then, because §Tx ~ N(0,1), we find that

o0 o0
p= [ s@e)as and o= [ (o) - nPelz) d.
— 00 — 00

Ridge functions make good (R)QMC test functions because we can get the answer
and the corresponding root mean squared error o/+/n under MC by one-dimensional
integration. For some g, one or both of these quantities could be available in closed
form. Note that x and o2 above are both independent of # and even of d. For more
general 7 > 1 we find that yu and o2 are r-dimensional integrals that do not depend
on O or on d > r. Apart from a few remarks, we focus mostly on the case with » = 1.

It is reasonable to expect that sparse vectors 6 will make the problem of in-
trinsically lower dimension. Sparsity is typically defined via small values of ||flo =
> j=1 Llo;#0. It is common to use instead a proxy measure 0], with smaller values
representing greater sparsity, relaxing an L quantity to an L; quantity. By this mea-
sure, the “least sparse” unit vectors are of the form 6; = +1/ V/d, while the sparsest
are of the form +e;, where e; is the jth standard Euclidean basis vector. We will also
find ||0]|s = maxi<;<a ;| to be useful.

We will need some fractional absolute moments of the A(0,1) distribution. For
n > —1 define

(3.3) M, = /_ O; lyl"o(y) dy = W;r(’@l).
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This is from formula (18) in an unpublished report of Winkelbauer [40]. It can be
verified directly by change of variable to x = y?/2.

THEOREM 3.1. Let f be a ridge function described by (3.1) for 1 < r < d, where
g : R" — R satisfies a Holder condition |g(y) — g(y")| < Clly — y'||* for C < o,
0<a<l, andy,y € R". Then the mean dimension of f satisfies

(3.4) v(f) < (S)zw—le X i(§@§k>a,

where o = Var(f(x)) does not depend on d.

Proof. Let  and z be independent N'(0, I;) random vectors. For j € 1:d, let ©;.
be the jth row of © as a row vector. Then OTz_;:2; —OTx = @;r, (z; — ;). Next

(3.5)
o1 2 c? T 20 a—1,2)1aT |2«
7 = SE((9@) — 9(@-5:%))") < S E(16].(z — 2,)|*) = 2271 O] |1** Maa

because (z; — z;)/v2 ~ N(0,1). Summing over j gives (3.5). Finally, 0> depends on
the distribution of g(y) for y ~ AN(0, I,.), which is independent of d. |

If @« > 1/2, then we recognize Z;‘l=1 (> @?k)a as [|©7]3%,, where || - ||,
is a matrix L, norm [24]. For o < 1/2, we get ¢ < 1, and this is then not a
norm. If Q@ € R¥? is an orthogonal matrix, then ¢g(0Tz) = g((QO)T(Qz)). Now
Qz ~ N(0,1), so we can replace [|©7]|3%, in (3.4) by infg [©TQT|3%,. For a =1,
we get [|©7]|3%, = 2?21 > k=1 9%, = [|©]|%, the squared Frobenius norm of ©, and
the bound in (3.4) simplifies to reveal a proportional dependence on r.

COROLLARY 3.2. Let f be a ridge function described by (3.1), where g is Lipschitz
continuous with constant C and © € R¥*" with 7O = I, forr <d < oo. Then

uuv<rx(f)i

where 0% = Var(f(x)) does not depend on d.
Proof. Take o =1 in Theorem 3.1. 0

The bound in Theorem 3.1 and its corollaries is conservative. It allows for the
possibility that |g(y) — g(vy')| = C|ly — y’||* for all pairs of points y,y’ € R". If that
would hold for » = 1 and a = 1, then it would imply that g is linear. To see why, note
that any triangle with points (y1,9(y1)), (y2,9(y2)), and (ys, g(y3)), for distinct y;,
would have one angle equal to w. A linear function would then have mean dimension
1, the smallest possible value when o2 > 0. A less conservative bound is in section 3.1
below. The next result shows that the bound has a dimensional effect when o < 1.

COROLLARY 3.3. Let f be a ridge function given by (3.2) with r = 1, where g
is Holder continuous with constant C and exponent a € (0,1) and 0 € R? is a unit
vector for 1 < d < co. Then

v(f) < (C

g

2
) 204—1]\42 dl—a.
Proof. From Theorem 3.1, v(f) < 241 My, (C/0)? Z;l:l |0;]12~. The largest value

this can take arises for §; = £1/v/d. Then Z?Zl 012 = d x d=2%/? = @'~ and so
v(f) € 2971 My, C%0~2d = as required. O
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3.1. Spatially varying Holder and Lipschitz constants. A Lipschitz or
Hélder inequality provides a bound on |g(y) — g(y’)| that holds for all y,y’ € R". The
numerator in v(f) is a weighted average of |f(x) — f(x_;:z;)|*> over points x, z and
indices j and for a ridge function that reduces to a weighted average of |g(y) —g(y)|?.
Applying a Lipschitz or Holder inequality bounds an Lo quantity by the square of an
L quantity.

We say that g satisfies a spatially varying Holder condition if for some 0 < o < 1
there is a function C(y) such that

(3.6) lg(y) — gy < Cy)lly —y'|*

holds for all 4y and y’. If o = 1, then g satisfies a spatially varying Lipschitz condi-
tion. The well-known locally Lipschitz condition is different. It requires that every
y be within a neighborhood U, on which ¢ has a finite Lipschitz constant C(y).
Equation (3.6) is stronger because it also bounds |g(y) — g(y’)| for y' & U,,.

We will use a Holder inequality via 1 < p < oo and ¢ satisfying 1/p+1/¢ =1 to
slightly modify the proof in Theorem 3.1. Under (3.6)

d
1
*u(f) < 5 Y E(C(O72)[6] (= — ;) |*)
j=1
1 agy 1 .
< ZE(C@)) VS E(O] (2 — ) (with y ~ A0, 1)
j=1
(3.7) < 2°'E(|C(y)[*) “PM;&ZZ (I

Allowing p = 1 would have made ¢ = oo, and then the supremum norm of |z; — z;|
would be infinite, leading to a useless bound. For p = oo, we interpret E(|C/(y)|??)/?
as sup,, |C(y)|? recovering Theorem 3.1. The bound (3.7) simplifies for 7 = 1 and for
« = 1. Under both simplifications,

V() < —E(C(y)>) 7ML,

g

To get a finite bound for v(f) it suffices for C'(y) to have a finite moment of order
2 4 € for some € > 0.

3.2. A kink function. As a prototypical kink function, consider f given by (3.2)
with g(y) = (y —t)+ for some threshold ¢. This g is Lipschitz continuous with C' = 1.
Using indefinite integrals [ z¢(z)dz = —p(z)+c and [22p(z) dz = &(x) —zp(z)+c,
the first two moments of f(x) are

0=/ " max(y — £,0)p(y) dy = o(t) — 19(—1) and

(1% + o?)( / max(y — t,0)%p(y) dy = ®(—t)(1 +t2) — te(t), so
o? —t)(1+1%) — to(t) — () + 2to(t)(—t) — t2®(—t)2.

Because C = My = 1, we get v(f) < 1/0%(t). For t = 0, we get u = ¢(0) and
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02 =E(g(y)?) — p?> =1/2 — 1/(2m) and then

1 2T .
OO vy e Sk

for any d > 1 and any unit vector § € R%.

3.3. The least sparse case. The least sparse unit vectors have all ; = £1/ V.
Because N(0, ) is symmetric we may take 6; = 1/\/& In this case, it is easy to
compute v(f) using Sobol” indices. By symmetry, v(f) equals a three-dimensional
integral

(38) -2 (<m>g(m

202 Jps Nz Vd

for any d > 1. Furthermore, by comparing results for d’ < d to those for d we can
see some impact from sparsity because the least sparse unit vector for dimension d’
will give the same answer as a very sparse d dimensional vector with d — d’ zeros and
the remaining components equal.

)>2¢<w>w<y>w<z> dedyds

4. Jumps. While both kinks and jumps may have smooth low-dimensional
ANOVA components, jumps do not necessarily have the same low mean dimension.
They are also sensitive to sparsity of 6.

4.1. Linear step functions. First, we consider a step function 1{§Tx > t}. We
get upper and lower bounds for the mean dimension of this function in terms of the
nominal dimension d and sparsity measures ||0]|o and ||0]]1.

THEOREM 4.1. Let f(x) = 1{0Tx > t} for a threshold t > 0 and a unit vector
6 € R%. Then, for d > 2,

v(f) < "’”)m (ve+ 2\/log (16101611 ) ) = o vatoe@).

O(1)D(—t

Proof. See section 8.1 of the appendix. 0

For d = 1, the first inequality in Theorem 4.1 holds because then v(f) = 1. The
implied constant in O(-) holds for any d > 2 but not for d = 1. The O(y/dlog(d))
rate in Theorem 4.1 arises for ||0]; = V/d. If ||0]|o = r, then a “least sparse” such 6
has r > 1 components equal to +1/4/7 and the rest equal to zero. Then the upper
bound is O(y/rlog(r)). There can thus be a significant effect due to sparsity of 6.

THEOREM 4.2. Let f(x) = 1{0Tx > t} for a threshold t > 0 and a unit vector
6 € R%. Then, ford > 1,

16]]2 2
>t .
)2 Goanzm
Proof. See section 8.3 of the appendix. 0

The proof of Theorem 4.2 requires a certain lower bound on a bivariate Gaussian
probability. We did not find many such lower bounds in the literature, so this next
lemma may be new and may be of independent interest.

LEMMA 4.3, Let (ZD ~N ((8) ’ (2 ff))
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with p 2 0, and choose t > 0. Then
t2

1 /1—p\1/2
Pr(z >ty <t >—( ) e (— —1).
( y <t) (-1,

“o2r\1+4p

Proof. See section 8.2 of the appendix. 0

Choosing 0 = (#1,=+1,...,+1)/v/d in Theorem 4.2 provides an example of a set
of jump functions with mean dimension bounded below by a positive multiple of v/d.
Here again sparsity plays a role in the bound.

The bounds in both Theorems 4.1 and 4.2 depend on t. We will see numerically
that they are extremely conservative for large t. They do, however, satisfy our present
purpose of finding rates as d — oo. The upper bound argument in Theorem 4.1 uses
a mean value approximation where ¢(0) could be replaced by a value just over ¢(—t),
yielding for ¢ > 0 that

o) < DEESIE) (000) 4 1)

for [t' —t] < 24/d/||0]|1]|0lo- The ¢(—t') factor would be nearly as small as ®(—t) by
Mills’s ratio, yielding a much less conservative bound that nonetheless would exceed
d for large enough t.

The case t = 0 is simpler to study. We find

1
v(f) = ——5 > Pr(0Tz >0, 0"x+0,(z — ;) <0)
J

I
o~

Z/Ooo e@)0(=pja/V1 =2 ) du, p;=1-02,

j=1

; %(f —arctan(—pj/\/l —p?)),

[\)

Jj=1

using a definite integral from section 2.5.2 of [33]. After some algebra
2 & 2
(4.1) v(f) = 2 aresin(6;]) > 26l
j=1

Now arcsin(z) = z+ O(z3) as |z| — 0. Therefore, v(f) — 2||0||1 /7 holds if |||~ — 0
holds as d — oo. Thus, there is no asymptotic /log(d) factor when ¢t = 0, and we
suspect it is not present for other ¢.

4.2. More general indicator functions. It is reasonable to expect indicator
functions to have such large mean dimension for more general sets than just half-spaces
in R? under a spherical Gaussian distribution. Here we sketch a generalization. First,
for an indicator function f(z) = 1{x € Q} of a measurable set 1 C R%, we have

d

(4.2) v(f) =Y E(Pr(@eQ|a_;)Pr(@ecQ|z_;)) / [u(l—p)]

j=1
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for p = Pr(x € Q). The numerator expectations are with respect to random x_j,
and (4.2) holds for any distribution on @ with independent components, including
U(0,1)¢ and N(0, ). We work with the latter case in what follows.

As in [11, 12] we take Q = {x | ¢(x) > 0} and place conditions on ¢. Let
¢ € C*(R?) be strictly monotone in each coordinate x;. Without loss of generality,
suppose that ¢ is strictly increasing in each z; ~ N(0,1). Suppose additionally that
lim,, o0 ¢(x_j:2;) >0 and lim,, oo ¢(x—;:2;) < 0 for all j and all _; € R,

For any x_j, there is a unique value z; € R for which ¢(x_;:z;) = 0. We
write 2* = x_;:z; and sometimes suppress its dependence on x_;. We can make a
linear approximation to the boundary of Q at z* via '6* = t*, where both #*, the
normalized gradient of ¢, and t* depend on z*. By monotonicity of ¢, each 67 > 0.
Let

Pr(¢p(x) 20| xz—;)Pr(¢(x) < 0| z_;)

_ Ze;ﬁg xgﬁ z_;) —t"(x—)) t(x—j) — Zz;éj 007 (z—;) .
-° @) )‘I’< 0 () ) ¢

Now v(f) = E(6(x))/[s(1 — p)]. In words, E(6(x)) is what we would get by sampling
x ~ N(0,I), finding the d boundary points z* corresponding to the d component
directions z;, summing the corresponding ¢§; values, and averaging the results over
all samples. Each point x leads to consideration of d points z* € 9Q2. This process
produces an unequally weighted average over points z* € 9Q = {z | ¢(z) = 0} of a
sum of ¢; values determined by the tangent plane at z*.

For a linear ¢, we get 92 = {z | Tz = t}, and we find from Theorem 4.2 that
E(5(x)) is then bounded below by a multiple of ||f||; which can be as large as v/d. For
more general ¢, the boundary set 952 is no longer an affine flat, the sparsity measure
||0*]|1 varies spatially over 052, and so does the length ¢*. A large mean dimension,
comparable to v/d, could arise if ¢ has a nonsparse gradient over an appreciable
proportion of 9.

If the assumption that lim,, o ¢(x_;:2;) > 0 fails or if lim., . ¢(x_;:2;) <0
fails, for some value _;, then we can no longer find the corresponding point z;. In
that case, the given values of j and x_; contribute nothing to the numerator of v(f).
The mean dimension can still be large due to contributions from other values of x_;
and from other j. A similar issue came up in [12], where existence of z; for every
x_; proved not to be satisfied by an integrand from computational finance and also
proved not to be necessary for the smoothing effect of ANOVA to hold.

4.3. Cusps of general order. For d > 1 and = € [0,1]%, consider a cusp of
order p > 0 given by

(4.3) fap(a (ng )

+

. d

taklng fd70(83) = 1{Zj:1 T >d— 1}. Now ||fd,OHHK = oo for d > 2 [29}, ||fd,1||HK =
oo for d > 3, and more generally [|faplluxk = oo for d > p + 2. The higher the
dimension is, the greater smoothness is required to have finite variation. The boundary
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{x | 32, xj = d — 1} is not parallel to any of the coordinate axes, so this integrand is
not QMC-friendly in any way.

These functions are carefully constructed to be among the simplest with the
prescribed level of smoothness. As a result, we may find their mean dimension ana-
lytically.

THEOREM 4.4. The function fq, defined above for  ~ U[0,1]? has mean dimen-
sion

r(2p+1) (F(p+1))2 I'(2p+3)
(f ) —dx T'(2p+d+1) T'(p+2)/ T(2p+d+2)
V\ap) = L(2p+1) _ ( _D(p+1) \2
T'(2p+d+1) (F(p+d+1))
Proof. See section 8.4 of the appendix. 0

The functions f; 0 have jumps. Taking p = 0 in Theorem 4.4 yields

(1) T'(1)\2 I(3)
Ay — (te) ) i 1- 45
vao)=—Fq w2 ¢X o1
T(d+1) (F(d+1)) al

Thus, v(f40) = d— 2+ 0(1) as d — oco. For kinks, we take p = 1 in Theorem 4.4,
getting

I'(3) [(2)\2_T(5)
_ d(F(3+d) - (r(s)) F(4+d)) g 1- 335
v(far) = G e 24X T _ara
ERAC) ( (2) ) 1
TB+d)  \T(2+d) 3(d+1)!

Therefore, v(fg1) =d— 3+ o(1) as d — co. We might reasonably have guessed that
v(fap) ~ d—p—1, but we get instead that v(fq,) ~ d— (4dp +2)/(p + 1), and so
even with very large p, limg—,oo d — v(f4p) is not very large.

In this example we see that even when the cusp is very smooth, the integrand does
not end up dominated by its low-dimensional ANOVA components. A key difference
between this example and the ridge functions defined over Gaussian random vectors is
that these cusp functions are zero apart from a set of volume 1/d!. As d increases, the
integrands become ever more dominated by a rare event. The Gaussian integrands
by contrast attained higher mean dimension bounds for large t, but Pr(0Tz > t)
remained constant as d increased.

5. Preintegration. In preintegration we integrate over one component x; either
in closed form or by a univariate quadrature rule that has negligible error. For x ~
N (0, I), the preintegrated function is

Folw) = /OO oz0) f () das.

— 0o

Preintegrating over multiple components yields f, = [; . f(x) [Tcu (@) [ e, dz;
for u C 1:d. Preintegration for * ~ U[0,1]¢ is similar. Preintegration is also
used in conditional MC [14], and in Markov chain MC it is sometimes called Rao—
Blackwellization [8].

The function f, is intrinsically d—1 dimensional but for notational convenience we
leave it as a function of d arguments that is constant with respect to xy. Preintegration
can increase the smoothness of the integrand [13], making it conform to the sufficient

conditions used in (R)QMC and also those used for sparse grid methods [1].
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Here we show some elementary properties about preintegration including its effect
on the ANOVA decomposition and mean dimension. We also show that preintegration
preserves the ridge function property and any Hélder conditions.

PROPOSITION 5.1. Let ¢ € RY have the N'(0,1) distribution. If f(z) = g(x'6),
for a unit vector 0, then fy(x) for £ € 1:d is also a ridge function. If g satisfies a
Hélder condition with constant C and exponent o € (0,1], then so does fo, with the
same a and Cp = (1 — 62)/2C.

Proof. 1f |6,| = 1, then f; is constant and hence trivially a ridge function and also
Holder continuous. For |0 < 1, define 05 = 6_:0,/(1 — 62)'/2. Then

o0

fo(x) = / p(ze)g(Oee + (1 - 07)"20; @) dz = go(0; ®), where

aw = [ " (@)g(Bez + (1 - 62)/2y) da.

This establishes that f; is a ridge function. Next, for y,% € R, |g¢(y') — g¢(y)]
(1 —67)"lg(y") — 9()I-
The mean dimensions before and after preintegration are

Zuglzd |u|0’3 Zu |u|03 B Zu:iEu |u|012L
Zugl:d U?L u 0124 - Zu:lEu 0.124

Preintegration over zy removes |u|o?2 from the numerator and o2 from the denominator
for each u with £ € u. The greatest mean dimension reductions come from preintegrat-
ing variables that contribute to large high-order variance components. Preintegrating
a variable that only contributes to f additively will increase mean dimension (unless f
is entirely additive), although such preintegration may well produce a useful variance
reduction.

After some algebra, preintegration over x, reduces mean dimension if

o /N

u(f) = and  v(f,) =

szvﬂuzz ‘U|O’3 < Z?):Uﬁu;ﬁ@ |’U‘O’3

2 72

(5.1)

2 =
g Tu

The left-hand side of (5.1) is v(f,), and the right-hand side is v(f — f,). To take
an extreme example, if f — f, is additive, then preintegration cannot reduce mean
dimension. Conversely, if f, is additive, then preintegration over @, reduces mean
dimension to one.

u

5.1. Preintegrated step function. In this section we consider the effect on
mean dimension of preintegrating z, from the step function f(x) = g(0"x) for g(y) =
1{y > t} for some threshold ¢ and @ ~ A(0,I). This function has known integral
®(—t), and so one would not need QMC methods to integrate it. The test function
1{0Tx > t} is special enough to allow us to construct a sequence of functions whose
mean dimension grows at least as fast as v/d from the lower bound in Theorem 4.2
prior to preintegration but is O(1) after preintegration. At the end of this section
we have brief remarks about how that finding might generalize. In even more special
cases, such ast =0 and 6 = 1d/\/&, we can get more precise results.

If 0, = 0, then fy(x) = f(x), and there is no reason to preintegrate over x,. For
6, # 0, the preintegrated function f; is a ridge function with

(1 62)1/2y — )

9e(y) Z/Oo o(z) {0z + (1 — 02)1/2y >t}dm:<1>( ]

—0o0
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Differentiating,

Loy =02y —ty (1 - 63)1/?
9:(y) w( o ) T

and so this ridge function is Lipschitz with Cy = ¢(0)(1 — 62)/2/|0,| leading to

(5.2) v(fo) < (%)2 _ 207 1-6f

O(t)2(—t) 0

This bound is minimized by taking ¢ = argmax; [f;| and then

F 90(0)2 -2
v(fe) < WIIGIIM .

Now consider ; = a > 0 with 8, = /(1 —a?)/(d—1) for 2 < j < d. From
Theorem 4.2, we know that without preintegration, v(f) > ¢v/d —1 for some ¢ >
0. Equation (5.2) shows that with preintegration, the mean dimension is v(f;) <
©(0)2/(®(t)®(—t)a?). Preintegration has thus improved the convergence rate of the
mean dimension in addition to reducing variance and changing the integrand from
discontinuous to infinitely differentiable.

In the above example, the large gains come from preintegrating a variable with
importance measured by 9? that is bounded away from zero as d — oo. The finance
example in [13] involves preintegration of an extremely important variable, and it
leads to a great improvement in QMC integration.

In the least sparse case with 6, = +1/v/d the upper bound (5.2) becomes

P02 1-62 1 d-1

D(L)D(—t) 02  2md(L)P(—t)

This bound is only below d — 1 for ¢ near zero. For ¢ = 0 we get a bound of about
0.64(d —1). This bound is asymptotically higher than the O(y/dlog(d)) upper bound
for the step function without preintegration.

As remarked above, these bounds can be conservative. The step function has
a simple enough discontinuity that we can explore the mean dimension of it under
preintegration.

THEOREM 5.2. For @ ~ N(0,1y), let f(x) = 1{0Tax > t}, where ||| = 1. Choose
£ with 6, # 0, and let fo be f preintegrated over xy. Then

20(t) 22540 f;fm % dz

O(1)B(—t) — 20(t) [y £ do’

(5-3) v(fe) =

where a; = |0¢]/(2 — 02)'/2 and ax(j) = (07 + 02)1/2/(2 — 07 — 02)1/2. Ift = 0, then

Zj# (tan_l(QQ(j)) - tan_l(al))
7/4 —tan"t(ay) '

(5-4) v(fe) =

Ift=0 and 0; = 0, = 1/\/d, then

o _ (d=Dftan"'((d = 1)~1/2) —tan~'((2d — 1)71/?)]
(55) l/(ff) - 7r/4—tan_1((d—1)_1/2) )

and then v(fy) = (7/4)Vd + O(d="/?) as d — co.
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If we had not preintegrated 1{}_, x;/ Vd > 0}, the mean dimension would have

been asymptotic to (2/7)v/d from (4.1). For the step function on a least sparse 6,
preintegration brings a small reduction in variance and an enormous improvement in
smoothness but actually brings a small increase in the mean dimension. That increase
is unimportant because neither f nor f, has a small mean dimension when d is large.
It is more important that the v/d rate has not changed.

We do not believe that the linear step function is the only one where preintegra-
tion brings a large improvement in mean dimension. The discontinuity it contains is
qualitatively similar to that in

flx)=1{0Tx >t +e(x)},
where () does not take large values, or
f(@) = g(x) x {0 @ > t},

where ¢ has low mean dimension, as it would have were it a smooth ridge function.
Quantifying how mean dimension depends on either £(-) being close to zero or g(-)
being nearly constant or of low mean dimension, with both (-) and g¢(-) depending
on d, is beyond the scope of this article.

5.2. Smoothing by dimension increase. An earlier smoothing method [22]
replaces step discontinuities by “beveled edges” of some half-width 6 > 0. For a
set Q C R? with a well-behaved boundary, they replace the integral of the indicator
function 1{x € Q} by that of a function which is 0 if « is farther than ¢ from (2, is
1 if x is farther than 6 from ¢, and is a linear function of the signed distance from
x to 0F) in between. They have a similar smoothed rejection technique that involves
replacing the discontinuous function over [0,1]¢ by a smooth one over [0,1]4*!. See
also [38]. We will not compare these to preintegration beyond noting how interesting
it is that dimension increase and dimension reduction have both been proposed as
methods to handle discontinuous integrands.

6. Numerical examples. We can estimate v(f) for § = 14/v/d via the three-
dimensional integral in (3.8). To estimate that integral we used Sobol’ sequences in
[0, 1]¢ [35] with direction numbers from [18] with data from Nuyens’s magic point shop
described in [20]. The points were given a nested uniform scramble as described in [25]
and then transformed via ®~!(-) into Gaussian random vectors. For each dimension
we considered, we did five independent replicates.

Figure 1 shows mean dimensions computed for f(x) = maux(Z;l:1 x;/Vd —t,0),
a kink function, for ¢ € {2,0,—2}. All five replicates are plotted for each threshold;
they overlap considerably. For ¢t = 0 we established that v(f) < 2.933 in section 3.2.
The mean of five replicated v(f) values for d = 227 was 1.47, almost exactly half of
the bound with a standard error of 0.00014. It is conservative because, as remarked
previously, the Lipshitz bound is conservative. The bound in section 3.2 gives about
175.5 for t = 2, which is much larger than the computed values. It also gives just over
1.041 for t = —2.

Figure 2 shows mean dimensions computed for f(x) = 1{2?:1 zj/Vd > t}, a
jump function, for ¢ € {2,0}. The mean dimension is the same for ¢ as for —t, so we
do not include t = —2. All five replicates are plotted for each threshold; they overlap
considerably for d < 10%. For larger d, fluctuations are visible especially for ¢t = 2.
The estimated mean dimensions are very nearly parallel to v/d over this range.
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FiG. 1. Computed mean dimension for f(z) = max(0Tx —t,0), with 0; = 1/+/d versus nominal
dimension d. From top to bottom the thresholds are t = 2,0,—2. There were five independent
computations with using 2'° scrambled Sobol’ points each.

7. Conclusions. Integrands formed as ridge functions over Gaussian random
variables & ~ N(0, ) can have bounded mean dimension as the nominal dimension
increases. It suffices for them to be Lipschitz functions of 8"« for a unit vector 6.

Ridge functions are simple enough that they can be integrated directly via one-
dimensional quadrature and in some cases by closed-form expressions, yielding good
test functions. In applications, an integrand may be close to a ridge function without
the user being aware of it. Constantine [3] finds that many functions in engineering
applications are well approximated by ridge functions. Some of our findings are for
specific functions, such as (07x — t); or 1{#7x > t}, and it remains to see how
generally they apply to other kinks and jumps.

Suppose that f is approximately a ridge function of low mean dimension. We
write f(x) = g(§"x) + e(x). Then under scrambled net sampling, the MSE is

Var( (9(07 ;) +€(mz))> < 2Var<izn:g(0T:ci)> +2Var< z”: )
<2Var< Z 9Tw2 > +2FVar( e(x ))

where T is the largest gain coefficient [27]. The factor of 2 is a conservative upper
bound that lets us ignore the covariance between the averages of g(87z;) and &(x;).
The first term benefits from low mean dimension of ridge functions and the smoothing
effect of the ANOVA, while the second term is small to the extent that f is near a
ridge function.

S|
H'M:
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Jumps at: 2,0
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Nominal dimension

Fia. 2. Computed mean dimension for f(x) = 1{0Tx > t}, with 0; = 1/v/d versus nominal
dimension d. From top to bottom the thresholds are t = 2,0. There were five independent computa-
tions with using 220 scrambled Sobol’ points each. There is a reference line y = \/d in between the
two sets of curves.

In projection pursuit regression [7], a high-dimensional function is approximated
by a sum of a small number of ridge functions. Single-layer (not deep) neural net-
works approximate a function by a linear combination of smooth ridge functions [4].
Historically those ridge functions were smooth cumulative distribution functions like
g(y) = (1+exp(—y)) 1, and more recently the positive part function g(y) = max(y, 0),
also called a rectified linear unit (relu), has been prominent. Both of these g(+) are Lip-
schitz. Those models are often good approximations to real-world phenomena. They
are usually fit to noisy data, but noise is not a critical part of their being a good fit.

Suppose now that f(x) = ijl fj(x), where fi,..., fy_1 are ridge functions and
fs is a residual function with a small mean square. Then under RQMC sampling,
Var(f1) < Jijl Var(fi;), where fi; is the average of f;(x;) over an RQMC sample
x;. The factor J is extremely conservative, as it allows for perfect correlations among
all J integration errors.

We have not addressed whether it is realistic to expect g to remain constant as
d — co. A full discussion of that point is beyond the scope of this article. Instead we
make a few remarks.

If we think of Brownian motion with d time steps to time T = 1, then under
the standard construction, the endpoint is B(T) = (1/v/d) Z?:l x;. In this instance
making 6 a unit vector is a good generalization of infill asymptotics, and a function
of B(T) or B(AT) for 0 < A\ < 1 takes on the form g(#Tz) for ||§|| = 1. If instead
we consider Brownian motion with d time steps to time T = d, then under the

standard construction, the endpoint is B(T') = ijl xj. We might model that via
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f(x) = g(+/d9"z). Introducing v/d within g(-) multiplies any Lipschitz bound for g
by v/d and then raises the upper bound on > j ?? by a factor of d. Whatever effect

this has on v(f) depends on how introducing v/d within g(-) affects o2, the variance
of f. The variance might also increase by a factor of d, leaving the mean dimension
invariant to d. For instance, that would happen for f(x) = (3_; z; —t)+. If instead
the variance remains nearly constant, then the mean dimension could grow with d.
For instance, if f(z) = ®(}_;x;), then for large d it is like a Heaviside function

applied to (1/v/d) S ; %j, and the mean dimension will grow like V.
8. Appendix.
8.1. Upper bound for jumps.

Proof. Here we prove Theorem 4.1. First, we prove that

16112
O(t)D(—t)V2r

If §; = 0, then ?? = 0 too. We may suppose that any such z; have been removed
from the model. Then

7 = %E((l{yﬂc >t -y +z> t})Q)

= E(Hy+ o> -1y +2 > 1)),

(8.1) v(f) < (V2 + 2/10g (10110 /1111))-

where y ~ N(0,1 - 67) and 2, z ~ N(0,67) are all independent. Next, for any e > 0,

2?? SPr(ly+z—t| <e)+Pr(lz—2a| >¢)

(8.2) =®(—t+e)—D(—t—¢) +2<I>(\ﬁ|;|bigg).

As a result,

L d
V(f)SW;:l:‘I’(—tJrej)—@( t—63)+2¢’<\f|9 )
Taking ¢; = n|0;],

1 n d
% g (20(J) + o+ 0) - oo

< s (3¢ (—75) + 1e01ol)

NG 2
< @(t)@(lt)\/ﬂ< sd exp(—1)+77||9||1>.

Choosing n = 2+/log(d/||0]]1),
v(f) <

10111 V2
@(t)@(—t)\/ﬂ(i +a).

To finish proving (8.1) note that 1 < ||0]1 < v/d, so for d > 2, n > 24/log(2/v2) > 1
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Finally, we revisit the proof above looking at what happens when some 6; = 0.
Each such 5 has ?? = 0. Then summing our bound (8.2) over j with 6; # 0 we get

\[ 2
v < 2q>(t)q>(1—t)\/%( 2|7|;6”0 P ( - Z) - ”"9HI>‘

Now take n = 24/log(||6]lo/10]|1) to get

1ol
1)< g (VE+ 2RI, ). :

8.2. A bivariate Gaussian probability lower bound.

Proof. Here we prove Lemma 4.3. For n > 0,

Pr(x > t,y <t)
>Prt<z<t+nt>y>t—n)

1 t+n t 1 ) ) )
= o ——1g -2 1- ) dyad
21 (1 — p2)1/2 /t /t_77 eXp( 2[?/1 py1y2 + y3]/(1 = p7) ) dy2 dys

772

> W exp<—l[(t + 77)2 — 2p(t + ﬂ)(t _ ,7) + (t _ 77)2]/(1 _ pz))

2

because with p > 0 and ¢t > 0, the bivariate normal probability density function is
minimized over [t,t +n] X [t —n,t] at (¢t +n,¢ —n). Simplifying this expression and
then choosing n = /1 — p,

e 2 0
Prz >ty<t) > ——————+ -
Ho >ty <t) 2ﬂ1—ﬁﬂﬂmm( T+ 1p>
1/2 2
1 /1—- t
=g e exp| — —-1]. O
Tm\1+4+p 1+p

8.3. Lower bound for jumps.

Proof. Here we prove Theorem 4.2. Suppose first that d > 2. Then, letting
1 =0Tz and yo = 0T + 0;(2; — x;), we get

Y1 0 L pj =1-6?
<y2> N((()) ) <Pj 1 for p; =1 oj.
Now ?? = Pr(y; > t,y2 < t). From Lemma 4.3,
11— pj\1/2 ?
%25 () ooy )
2 \1 + p; L+p;
116 eXp(_ £ 1)
21 (2 — 62)1/2 203

~ 93/2

Summing over j € 1:d and dividing by 02 = ®(¢)®(—t) completes the proof for d > 2.
For d = 1, revisiting the steps above we find that #? = 1, and then p = 0. Finally,
72 > exp(—2 — 1)/(29/27) = 61 exp(—t2 — 1)/(27). 0
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8.4. Upper bound for kinks.
Proof. Here we prove Theorem 4.4. First, for j € 1:d,

[ as@)an = S fispten),

Applying this result |u| times, for v C 1:d, yields

_ T+
o Jyago o010 = G gy (5,

Applying (8.3) formally for v = 1:d gives

Hdp = / fap(x)de =
[0,1]¢

)

r 1
I‘(p(—i—cil_ﬁ—)l)fo‘“d(wg)'

We can find more rigorously that

'T(p+1) L(p+1) [ T(p+1)
= _ de, = ptd=1 4, = )
pn = || Fg iy ot dna = gy [ e =

and so we get the correct answer from a convention that fo p+q(€e) = 1. The variance
of fap is

r(2p+1 T(p+1) \2
Uﬁ,pzﬂd,%_ﬂz,p: ( ) (F ( ) )) :

I'2p+d+1) p+d+1

For f4,, we get a Sobol’ index of

2
73 /(fdp —(zd—kaj —1) dm) dzg

Hd,2p —/fd,p(w)

/

zd—i—ij —1) dax dzg

F(p+1)\2
hd,2p (F(p+2)) /fd—1p+1 x_g)dz_g
L(p+1)\2
= Hd,2p (F(p+2)) Hd—1,2p+2

I'2p+1) _(F(p—i—l))? I'(2p+3)
S I'(2p+d+1) \I'(p+2)/) T(2p+d+2)

Now because ?? =72 by symmetry for all j € 1:d, we get

d( C(2p+l) (F(p+1))2 ['(2p+3) )
T'(2p+d+1) T(p+2)) T(2ptdt2)
v(fap) =

I'(2p+1) _( I(p+1) )2
T'(2p+d+1) I'(p+d+1)
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8.5. Mean dimension of preintegrated step functions.

Proof. Here we prove Theorem 5.2. We will use

(8.4) /Z O(a+ bx)p(z)de = <\/1(—L&—762>

(8.5) /O:O ®(a + bx)2p(z) dz = @(\/ﬁilﬂ) - 2T<\/1Z_b2, \/141rzb2>’ where

T(h,a) = o(h) /0 ’ fle da.

These are formulas 10,010.8 and 20,010.4, respectively, from [32].
Recall that 6, #£ 0. If 6, > 0, then

o (=20 T —t\ (D Ok —t
) = o (LIS ) g (Zi2t 0t 0

For any 6, # 0 we have fy(x) = @((Zk# Opzr — t)/|0]). So for j # ¢, letting

fyj:,/170]2»70?,
o, 1 7'y4+0>z4—t) (7'y4+942-—t>r
2 JJJ 73 197 iad]
2= E| | XL ) g MUY
T2 Q < |6e| |6e|

m(F (2] %‘yj+9j%‘—t> (%’yj+9jzj—t)>
E(fe(@)’) E((I)< |0 ® 10| ’

where x;,y;, z; are independent A (0, 1) random variables.
First, from (8.5),

E(fe(z)?) = /OO @((1 - 9‘2:(22 - t)Z dz = ®(—t) — 2T(—t, PR —%)1/?)'

Next, applying (8.4) to x; and z;, followed by (8.5) to y;,

]E(q,<%‘yj + 0jz; — t>q)(%'yj +052 — t>>
10| 1]

(62 + 62)1/2
—o(—t) — 2T<—t, e-e—ar 93)1/2).

Recalling a; = [0¢]/(2 — 9?)1/2 and as = a2(j) = (9]2 + 93)1/2/(2 — 9]2 — 93)1/2, o)

(62 + 02)1/2 A “ p(tx)
=0T —t,—Li—— | 2T —t, — == | =2 / :
K < b (2—9?—93)1/2) ( RPETHE o) a 1+a? &

The variance of f; is
2 _ p(—t) — _ & — P(—1)2
o’ = ®(—t) 2T( t, G 05)1/2> D(—t)

— B(1)B(—t) — 20(t) /0 ffil dz,
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and so
f¢12(]) Lp(tib)
V(ﬁ) _ ]754 1—&-x2
(ID(t)CID(— —20(t) [ fﬁfﬁ

establishing (5.3). For t = 0,

= T T e e T (tan~ @) — e @)
v(fe) = 1/4—n=t [((1+22)~tdz /4 — tan~(ay) :

establishing (5.4). Finally, if 6, = ; = 1/V/d, then a; = (2d — 1)7'/2? and ay =
(d—1)"1/2, and so

- (d=Dftan"'((d —1)""/?) —tan"'((2d — 1)~ 1/?)]

v(fe) = 7/4—tan 1((d—1)-1/2)
~(d-D[AY2+0(d™?) — (2d) Y2 + O(d—%/?)]
a 7/4—O(d=1/?) ’
establishing (5.5). d
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