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ABSTRACT

Cross-validation is a widely used technique to estimate prediction error, but its behavior is complex and not
fully understood. Ideally, one would like to think that cross-validation estimates the prediction error for the
model at hand, fit to the training data. We prove that this is not the case for the linear model fit by ordinary
least squares; rather it estimates the average prediction error of models fit on other unseen training sets
drawn from the same population. We further show that this phenomenon occurs for most popular estimates
of prediction error, including data splitting, bootstrapping, and Mallow’s Cp. Next, the standard confidence
intervals for prediction error derived from cross-validation may have coverage far below the desired level.
Because each data point is used for both training and testing, there are correlations among the measured
accuracies for each fold, and so the usual estimate of variance is too small. We introduce a nested cross-
validation scheme to estimate this variance more accurately, and show empirically that this modification
leads to intervals with approximately correct coverage in many examples where traditional cross-validation
intervals fail. Lastly, our analysis also shows that when producing confidence intervals for prediction accuracy
with simple data splitting, one should not refit the model on the combined data, since this invalidates the
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confidence intervals. Supplementary materials for this article are available online.

1. Introduction

When deploying a predictive model, it is important to under-
stand its prediction accuracy on future test points, so both
good point estimates and accurate confidence intervals for pre-
diction error are essential. Cross-validation (CV) is a widely-
used approach for these two tasks, but in spite of its seeming
simplicity, its operating properties remain opaque. Considering
first estimation, it is challenging to precisely state the estimand
corresponding to the cross-validation point estimate. In this
work, we show that the estimand of CV is not the accuracy of the
model fit on the data at hand, but is instead the average accuracy
over many hypothetical datasets. Specifically, we show that the
CV estimate of error has larger mean squared error (MSE)
when estimating the prediction error of the final model than
when estimating the average prediction error of models across
many unseen datasets for the special case of linear regression.
Turning to confidence intervals for prediction error, we show
that naive intervals based on CV can fail badly, giving coverage
far below the nominal level; we provide a simple example soon
in Section 1.1. The source of this behavior is the estimation of
the variance used to compute the width of the interval: it does
not account for the correlation between the error estimates in
different folds, which arises because each data point is used for
both training and testing. As a result, the estimate of variance is
too small and the intervals are too narrow. To address this issue,
we develop nested cross-validation (NCV) that achieves coverage
near the nominal level.

1.1. A Simple Illlustration

As a motivating example where naive cross-validation confi-
dence intervals fail, we consider a sparse logistic regression
model

1
PYi=1|Xij=%)= ——— i=1,...

,n, (1
1+ exp{—x;re} M

with n = 90 observations of p = 1000 features, and a coefficient
vector = ¢ - (1,1,1,1,0,0,...)" € R? with four nonzero
entries of equal strength. The feature matrix X € R"* is com-
prised of iid standard normal variables, and we chose the signal
strength ¢ so that the Bayes misclassification rate is 20%. We
estimate the parameters using ¢;-penalized logistic regression
with a fixed penalty level. In this case, naive confidence intervals
for prediction error are far too small: intervals with desired
miscoverage of 10% give 31% miscoverage in our simulation. We
visualize this in Figure 1. The intervals need to be made larger
by a factor of about 1.6 to obtain coverage at the desired level in
this case.

1.2. Related Work

Cross-validation is used ubiquitously to estimate the prediction
error of a model (Allen 1974; Geisser 1975; Stone 1977). The
enduring popularity of CV is due to the fact that it is a con-
ceptually simple improvement over a one-time train-test split
(Blum, Kalai, and Langford 1999). CV is part of a broader land-
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Figure 1. A plot of the true error of a model versus the CV estimates for 1000 replicates of the model from Section 1.1. The blue curve shows the average midpoint of the
naive CV confidence intervals. The green bands show the average 90% confidence interval for prediction error given by naive CV. The red curves show the 5% and 95%
quantiles from a quantile regression fit. To achieve nominal coverage, the green curves should approximate the red curves, but they are too narrow in this case.

scape of resampling techniques to estimate prediction error, with
bootstrap-based techniques as the most common alternative
(Efron 1983, 1986; Efron and Tibshirani 1997, 1993). The other
main category of prediction error estimates are based on analytic
adjustments such as Mallow’s C, (Mallows 1973), AIC (Akaike
1974), BIC (Schwarz 1978), and general covariance penalties
(Stein 1981; Efron 2004). The present work is primarily con-
cerned with CV, but also addresses the properties of bootstrap,
data splitting and covariance penalty methods.

In spite of CV’s apparent simplicity, the formal properties of
this procedure are subtle; the seemingly basic question “what
is cross-validation estimating?” has engendered considerable
debate. Although the predictive accuracy of the model fit on
the observed training data may seem like a natural estimand,
it has been observed that the CV estimator tracks this quantity
only weakly, suggesting that CV should instead be treated as
an estimator of the average prediction error across training sets
(Zhang 1995; Hastie, Tibshirani, and Friedman 2009; Yousef
2020). See also Rosset and Tibshirani (2020) and Wager (2020)
for a discussion about different potential estimands. In this work,
we discuss this phenomenon in detail for the case of the linear
model. Our main result uses a conditional independence argu-
ment to explain the aforementioned weak relationship between
CV and the instance-specific error.

Turning to the question of inference, one important use of
CV is to deliver confidence intervals for the prediction error
(or, similarly, an estimate of the standard error) to accompany
a point estimate. The second primary goal in this work is to
provide such confidence intervals, which cannot be reliably
created with naive methods, as shown in our example in Figure 1.
A fundamental prior result shows that there is no unbiased
estimator of the standard error of the CV point estimate based
on one instance of CV (Bengio and Grandvalet 2004). As a
result, to obtain standard error estimates, one would either need
to modify the CV procedure or make additional assumptions.
Pursuing the former, Dietterich (1998) and Nadeau and Bengio
(2003) proposes sampling schemes where the data is split in half,
and CV is carried out within each half separately. This yields
an estimate of standard error, but it will typically be much too
conservative since the internal CV model fits each use a samples
size that is less than half of the full sample. A related proposal

due to Austern and Zhou (2020) involves repeatedly performing
leave-one-out CV with datasets of half of the original size, but
this proposed estimator is not computationally feasible for most
learning algorithms.

In a different direction, Nadeau and Bengio (2003) and
Markatou et al. (2005) propose alternative estimates of standard
error, but these are based only on the sample size and higher
moments of the errors and so do not address the source of the
problem: a covariance term that we describe in Section 4.1.
For bootstrap estimators, there are proposals to estimate the
standard error of the (bootstrap) point estimates of prediction
error with methods based on influence functions (Efron 1983;
Efron and Tibshirani 1997). The CV proposal of Austern and
Zhou (2020) similarly involves leave-one-out resampling, which
can be interpreted as an empirical estimate of the influence
functions.

Accompanying these algorithmic proposals, there is some
theoretical understanding of the asymptotic behavior of CV.
Dudoit and van der Laan (2005) proves a central limit theo-
rem (CLT) for a cross-validation estimator, showing asymptotic
coverage with a non-CV plug-in estimator for standard error.
LeDell, Petersen, and van der Laan (2015) provides a consistent
estimator for the standard error in the special case of estimating
the AUC, and Benkeser, Petersen, and van der Laan (2020)
conducts a higher-order asymptotic analyses for AUC and other
metrics, yielding a more efficient estimator for accuracy with
a consistent standard error estimate. Further theoretical results
establish the asymptotic normality of the CV estimate in more
general cases (Austern and Zhou 2020; Bayle et al. 2020). The
former considers the average prediction error across training
sets (similar to our goal herein), and introduces an asymptot-
ically valid estimate of the standard error; see Supplementary
Appendix E9 for an experiment with this estimator. The latter
estimates a different estimand: the average prediction error of
the models fit on the subsamples, and introduces a valid estimate
of standard error for this quantity. We explain this estimand and
the proposed standard error estimator in more detail in Sup-
plementary Appendix I. Both use arguments relying on notions
of algorithmic stability (Kale, Kumar, and Vassilvitskii 2011;
Kumar et al. 2013; Celisse and Guedj 2016). At present, it is not
clear how the large-sample regime considered in these works



relates to the behavior we see in small samples such as in the
experiment in Section 1.1. In particular, algorithmic stability
may not be satisfied in high-dimensional settings or with small
sample sizes; see Supplementary Appendix I and Bayle et al.
(2020) for more discussion.

Lastly, we note that CV is often used to compare predictive
models, such as when selecting a model or a good value of a
learning algorithm’s hyperparameters (e.g., Stoica et al. 1986;
Shao 1993; Zhang 1993; Dietterich 1998; Xu and Liang 2001).
To this end, Yang (2007) and Wager (2020) show that for CV,
comparing two models is a statistically easier task than estimat-
ing the prediction error, in some sense. While we expect that
our proposed estimator would be of use for hyperparameter
selection because it yields more accurate confidence intervals for
prediction error, we do not pursue this problem further in the
present work.

1.3. Our Contribution

This work has two main thrusts. First, we study the choice
of estimand for CV, giving results for the special case of the
linear model. We prove a finite-sample conditional indepen-
dence result (Theorem 1) with a supporting asymptotic result
(Theorem 2) that together show that CV does not estimate the
error of the specific model fit on the observed training set,
but is instead estimating the average error over many training
sets (Corollaries 2 and 3). We also show that this holds for
the other common estimates of prediction error: data splitting
(Section 3.4), Mallow’s C, (Section 3.5), and bootstrap (Supple-
mentary Appendix A). Second, we introduce a modified cross-
validation scheme to give accurate confidence intervals for pre-
diction error. We prove that our estimate for the MSE of the CV
point estimate is unbiased (Theorem 3). Moreover, we validate
our method with extensive numerical experiments, confirming
that the coverage is consistently better than that of standard
cross-validation (Section 5).

2. Setting and Notation

We consider the supervised learning setting where we have fea-
tures X = (X1,...,X,) € X" andresponse Y = (Yy,...,Y,) €
V", and we assume that the data points (Xj, ;) fori =1,...,n
are iid from some distribution P. We wish to understand how
well fitted models generalize to unseen data points, which we
formalize with a loss function £(3,y) : ¥ x J — Rsg such
that £(y, y) = 0 for all y. For example, ¢ could be squared error
loss, misclassification error, or deviance (cross-entropy). Now
consider a class of models parameterized by 6. Let f‘ (x,0) be
the function that predicts y from x € R? using the model with
parameters 6, which takes values in some space ©. Let A be a
model-fitting algorithm that takes any number of data points
and returns a parameter vector 0 c®. Leth = A(X,Y) be the
fitted value of the parameter based on the observed data X and
Y. We are interested in the out-of-sample error with this choice
of parameters:

Errxy i=E [ € (Xu41,0), Yurn) | 1) ]

where (Xj+1, Yu+1) ~ P is an independent test point from the
same distribution. Notice Erryy is a random quantity, depending
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on the training data. We denote the expectation of this quantity
across possible training sets as

Err := E [Errxy] .

We will discuss the relationship between these two quantities
further in Section 3. We note that out-of-sample error is materi-
ally different from in-sample-error which is the focus of methods
like the C, and AIC statistics, and covariance penalties. These are
discussed in Section 3.5.

In cross-validation, we partition the observations Z =
{1,...,n} into K disjoint subsets (folds) Z,..., Ix of size
m = n/K at random. Throughout this work, we will assume
K divides n for convenience, and we will choose K = 10 in
all of our numerical results. Consider the first fold, and let
oD = A((Xj, Y)jez\7, be the model fit to only those points
that are not in fold one. Then, let ¢; = E(f(xi,é(_l)),yi) for
each i € 7;. The errors e; for points in other folds are defined
analogously. We let

F(CV) |

I
Err .:e:;;ei (2)
i=

be the average error, which is the usual CV estimate of prediction
error. If one desires a confidence interval for the prediction
error, a straightforward approach is to compute the empirical
standard deviation of the ¢; divided by +/n to get an estimate
of the standard error:

~ 1 1
S

— . C_3)2
E:= NG =1 ;(e, e)”’.

From here, we can create a confidence interval as
(6 — z1—g/2 * SE, €+ Z1—q/2 - SE),

where z1_q /2 is the 1 — /2 quantile of the standard normal
distribution. We call these the naive cross-validation intervals
and they serve as our baseline approach. Importantly, we find
that these naive CV intervals are on average too small because
the true standard deviation of e is larger than the naive estimate
SE would suggest, so a better estimate of the standard error is
needed.

3. What Prediction Error are We Estimating?

We next discuss targets of inference when assessing predic-
tion accuracy. We discuss both Err and Errxy, and also intro-
duce an intermediate quantity Errx that explains the connection
between these two. While cross-validation is our focus, our
results hold identically for other estimates of prediction error:
covariance penalties (Section 3.5), data splitting (Section 3.4),
and bootstrap (Supplementary Appendix A).

3.1. Errx: A Different Target of Inference

The two most natural estimands of interest to the analyst are
Errxy, the error of the model that was fit on our actual train-
ing set, and Err, the average error of the fitting algorithm run
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on same-sized datasets drawn from the underlying distribu-
tion P. The former quantity is of the most interest to a practi-
tioner deploying a specific model, whereas the latter may be of
interest to a researcher comparing different fitting algorithms.
While it may initially appear that the quantity Errxy is eas-
ier to estimate—since it concerns the model at hand—it has
been observed that the cross-validation estimate provides little
information about Errxy (Zhang 1995; Hastie, Tibshirani, and
Friedman 2009; Yousef 2020), a phenomenon sometimes called
the weak correlation issue.

We now prove that CV has lower MSE for estimating Err than
it does for Errxy, for the special case of the linear model. In this
sense, CV should be viewed as an estimate of Err rather than
of Errxy. In order to state this formally, for this section only,
assume the homoscedastic linear model holds:

iid
y;i=x 6 +¢ where & ~N@O0cY i=1...,n (3)

with € = (€1,...,€,) independent of X. In this setting, a key
quantity in our analysis is

Erry := E[Errxy | X],

which falls between Err and Errxy; see Figure 2 for a visual-
ization. This quantity is also considered by Hastie et al. (2019)
in a high-dimensional regression setting, but to the best of
our knowledge has not been considered in the literature on
estimation of prediction error.

While our current focus is on cross-validation, the conclu-
sions hold for a broad class of estimates of prediction error. In
particular, we consider estimators of prediction error that satisfy
the following property:

Definition 1 (Linearly invariant estimator). We say that an esti-
mator of prediction error Err((Xy, Y1),. .., Xy, Ya), U) is lin-
early invariant if for all x;, y;, u we have

Er\l'((xb)’l)a s (xn,)/n), Ll)
= Er\r((xl,yl —}—x;r/c),...,(xn,y,, —}—x,TK),u). (4)

Here « is any p-vector and the random variable U is included
to allow for randomized procedures like cross-validation, and
without loss of generality it is taken to be unif[0, 1] and inde-
pendent of (X, Y).

With ordinary least square (OLS) fitting, cross-validation satis-
fies this property:

Lemma 1. When using OLS as the fitting algorithm and
squared-error loss, the cross-validation estimate of prediction

=~ (CV) ., .. . .
error, Err( ) , is linearly invariant.

Note that linear invariance is a deterministic property of an
estimator and does not rely on any distributional assumptions.

Recall from classical linear regression theory that when using
ordinary least squares (OLS), the estimated coefficient vector is
independent of the residual sum of squares. This implies that the
sum of squared residuals is independent of the true predictive
error. It turns out that even further, the CV estimate of error
(and all linearly invariant estimates of error) is independent of
the true error, conditional on the feature matrix X.

Err Erry Erryy

average over X,Y average over Y instance-specific error

Figure 2. Possible targets of inference for cross-validation. Here, (X, Y) is the train-
ing data and Erryy is the average error of the model fit on (X, Y) on a test dataset of
infinite size. From left to right, the random variables above are a constant, a function

of X only, and a function of (X, Y).

Theorem 1. Assume the homoscedastic Gaussian linear model
(3) holds and that we use squared-error loss. Let Err be a linearly

invariant estimate of prediction error (such as Err' @ using OLS
as the fitting algorithm). Then,
Err 1l Erryy | X. (5)

The proof of this theorem rests primarily on the fact that the
OLS residuals are independent of the fitted coefficient vector
in the linear model, together with the observation that linearly
invariant estimators are a function only of the residuals of an OLS
model fit. Due to its simplicity, we give the proof explicitly here;
all other proofs are given in Supplementary Appendix D.

Proof of Theorem 1. The true predictive error (Erryy) is a func-
tion only of §, the OLS estimate of 6 based on the full sample
(X1,%1)> - - -» (Xn, ¥n). On the other hand, any linearly invari-
ant Err is a function only of the residuals Y — X0 = (I —
X(XTX)7'XT)Y, by the invariance property (see Supplemen-
tary Appendix Lemma 6). Since 6 1 (Y — X6) | X, from
classical linear model results, the proof is complete. O

As a result, any linearly invariant estimator (such as cross-
validation) has lower MSE as an estimate of Erry than as an
estimate of Errxy:

Corollary 1. Under the conditions of Theorem 1,

E [(Er\r - Eery)z] =K [(Er\r — Errx)2]+E [var(Errxy | X)].
—_————
>0

We demonstrate this in an experiment in a simple linear
model with n = 100 observations and p = 20 features, where
the features are iid standard normal variables; see Figure 3. As
predicted by Corollary 1, we see that the CV point estimate
has lower MSE for Erry than for Erryy. Similarly, the naive CV
intervals cover Erry more often than they cover Erryy.

3.2. Relationship with Average Error

The results of the previous section suggest that Errx is a more
natural target of inference than Erryy. Next, we examine the
relationship between Err and Erry, showing that Errx is close to
Err, in that the variance of Erryx (which has mean Err) is small
compared with the variance of Errxy (which also has mean Err).
Combined with the results of the previous section, this gives a
formal statement that cross-validation is a better estimator for
Err than for Errxy.

To make this precise, consider the conditional variance
decomposition of the variance of Erryy,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION . 5

: 2.5
0.060 - o 0.22- ©
g ©
0055+ g 0201 £
p 8 @
® 0.18 , =/ . ;J
()] . = —
0.050 EF 2 2
€ O
0.16 1
0.045
rr E”’ X E”’ _Xy Err Err_x Err_xy 1.2 14 1.6
target of inference target of inference Err XY

Figure 3. Left: mean squared error of the CV point estimate of prediction error relative to three different estimands: Err, Erry, and Erryy. Center: coverage of Err, Erry,
and Erryy by the naive cross-validation intervals in a homoscedastic Gaussian linear model. The nominal miscoverage rate is 10%. Each pair of points connected by a line

represents 2000 replicates with the same feature matrix X. Right: 2000 replicates with
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the same feature matrix and the line of best fit (blue).
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Figure 4. The relationship among various notions of prediction error in the proportional asymptotic limit (7). Recall that o2isthe Bayes error: the error rate of the best
possible model. See Figure 5 for a simulation experiment demonstrating these rates. *The variance of Err scales as 1/./n; see Section 3.3 for details about the bias.

(6)

var(Errxy) = Ex [var(Errxy | X)] 4+ var(Erry) .
——

vardueto Y | X var due to X

To quantify the relative contribution of the two terms in the
right-hand side of (6), we will use a proportional asymptotic limit,
where

n/p— x> 1. (7)

n>p, n,p — 00,

We use the proportional asymptotic limit rather than traditional
p fixed, n — oo asymptotics, because in the latter asymptotic
regime, the difference between Err, Erry, and Errxy is asymp-
totic order lower than 1/4/n, so one always estimates these three
targets with equal precision, and the analysis is less informative.
See supplementary Appendix H for a complementary analysis
in the traditional p fixed, n — 00 asymptotic regime and Yang

(2007) and Wager (2020) for a related discussion. By contrast,

(61%
in the proportional asymptotic limit we will see that Err' Y i

closer to Err and Erry than to Erryy.

Theorem 2. Suppose the homoscedastic Gaussian linear model
in (3) holds and that we use squared-error loss. In addition,
assume that feature vectors X; ~ N(0, %) for any full-rank
%p. Then, in the proportional asymptotic limit in (7), we have
Ex [var(Errxy | X)] ®(1/n) and var(Erry) = E(Erry —
Err)? = O(1/n?),as n,p — oo.

We summarize the asymptotic relationship among the vari-
ous estimands in Figure 4. We see that the randomness caused
by Y given X is of a larger order than that due to the randomness
in X. This explains why in Figure 3, the coverage and MSE of
cross-validation is similar when estimating either Err or Erry,
but is significantly different when estimating Errxy. As a result,
Erry and Errxy are asymptotically uncorrelated, and moreover,

. L —~ (CV
combining this with Theorem 1 shows that Err @Y
ically uncorrelated with Erryy, as stated next.

is asymptot-

Corollary 2. In the setting of Theorem 2, cor(Errxy, Erry) —

0 asn,p — 00. Moreover, for any linearly invariant estimator

v

Err (such as Err using OLS as the fitting algorithm),

cor(Errxy,Err) - 0 asn,p — oo.

Notice that this is a marginal result, whereas the similar The-
orem 1 is conditional on X. With respect to Figure 4, this result
means that the fluctuations of Errxy around Err are asymp-
totically uncorrelated with the fluctuations of Err around Err.
Combining Theorem 2 with Theorem 1, we conclude that CV
has larger error for estimating Erryy than for Err or Errx:

Corollary 3. In the setting of Theorem 2, let Err be any lin-

early invariant estimator (such as Err ¥ using OLS as the
fitting algorithm). Suppose in addition that Var(Err) — 0 (an
extremely weak condition satisfied by any reasonable estimator).
Then,

E [(Err — Errxy 2] E [ Err — Errx)z] = Q(1/n),
E [(Err — Errxy)z] —E [(Er\r — Err)z] =Q(1/n), and

‘E [(Eﬁr — Err)z] —E [(Er\r - Errx)z]‘ = o(1/n).

The asymptotic theory perfectly predicts the experimental
results presented in Figure 5; we see that even for moderate
sample size, the scalings is exactly as anticipated. The main con-
clusion is that for a linearly invariant estimate of prediction error
that has precision 1/4/n, our results show that asymptotically
one has lower estimation error when estimating Err compared
to Errxy. Similarly, the correlation between a linearly invariant
estimate and Errxy goes to zero. These theoretical predictions
are also corroborated by the experimental results presented
in supplementary Appendix Figure 6. Thus, cross-validation is
estimating the average error Err more so than the specific error
Errxy.
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Figure 5. Simulation results demonstrating the asympotic scaling presented in
Figure 4. The fitted slopes of the lines (after log-transforming both axes) are
0.00, —0.46, —0.50, —1.01, from top to bottom. See Section 3.3 for details about the
rate of Err.

Remark 1. Note that the results in this section apply both
to K-fold cross-validation with fixed K, and leave-one-out
cross-validation where K = n. Formally, the results require only
that one is using some sequence of linearly invariant estimators.

3.3. The Bias of Cross-Validation

Up until this point, we have not explicitly mentioned the bias
in the CV point estimate } Err that comes from the difference
in sample size. That is, Err uses models of size n(K — 1)/K,
whereas Err and Erryy are defined for models fit on data of
size 1, so ]E[Er\r] is typically smaller than Err = E[Errxy].
We now pause for a few remarks about this bias. First, notice
that Corollary 3 sidesteps the bias issue by considering differ-
ences between two mean squared error quantities. The bias is
important, however, if we wish to understand absolute quantities
such as E[(Igr\r — Err)?]. To this end, the bias exhibits different
behavior in different regimes!:

o The parametric regime. Suppose p is fixed, n — 00, and the
model class has fixed dimension. Here, the bias will typically
be of order 1/n, which means that it is negligible compared
to the variance. (In fact, the dimension of the model class can
grow, provided the rate is slow enough; see Wager (2020) for
discussion.)

o The proportional, dense regime. Consider the setting above
in (7), ﬁtting\a dense model. If the number of folds is fixed,
the bias of Err will converge to a nonzero constant as n and
p grow (e.g., Liu and Dobriban 2020). What this means is
that in Figure 5, the |Err — Err| curve will eventually cease
to decay at a 1/./n rate, bottoming out due to the constant
bias. We do not see this behavior in the plot, because the bias
is still much smaller than the variance at the sample sizes we
consider; supplementary Appendix Figure E1 reports the bias
and variance in this setting.

o The proportional, sparse regime. The setting is the most deli-
cate. Here, the behavior of sparse regression algorithms may
have very different behavior on samples of size n(K — 1) /K

'We thank an anonymous reviewer for feedback on this topic.

versus samples of size n (e.g., Reeves, Xu, and Zadik 2019).
Thus, the bias here may be appreciable.

In all cases, the bias can be mitigated by taking a larger number
of folds as n grows.

Incorporating bias alongside our results from Section 3.2
leads to an interesting bias-variance-variance decomposition of
E[(Eﬁ' — Errxy)?]. Since both Err and Erryy are random quan-
tities, we cannot use the usual bias-variance decomposition.
However, by Corollary 2, these two quantities are asymptotically
uncorrelated, yielding the following:

2
E[(E?r - Errxy)z] A (E [Err] — Err) + E[(EArr - E[EArr])z]

bias variance of Err

+ E|:(Errxy — Err)z] .

variance of Errxy

The first two terms on the right hand side are the bias-variance
decomposition for Err as an estimate of Err. Thus, because the
additional third term is positive, we again see that Err is a more
precise estimate of Err than of Errxy.

3.4. Data Splitting

Perhaps the simplest way to estimate prediction error is to split
the data into two disjoint sets, one for training and one for esti-
mating the prediction accuracy. The previous results also shed
light on the properties of data splitting. In particular, we will
show that when estimating prediction error with data splitting,
refitting the model on the full data incurs additional variance
that can make the confidence intervals slightly too small, even
asymptotically. This is not a cause for practical concern, but
it is another manifestation of the fact that linearly invariant
estimators are estimating average prediction error, and Errxy
contains additional, independent variation. We report on the
details in supplementary Appendix B.

3.5. Connection with Covariance Penalties

For parametric models, there is an alternative theory of the
estimation of prediction accuracy based on covariance penalties;
see Stein (1981), Efron (2004), Rosset and Tibshirani (2020) for
overviews of this approach. For the linear model with OLS and
squared error loss, this approach specializes to the well-known
Mallows C, (Mallows 1973; Akaike 1974) estimate of prediction
error:

n ~2
~(C 1 A A 2po
B .= - E i — f(xi,0))* + PT

i=1

We first consider the estimation of prediction error with
Mallows Cj, showing that (like cross-validation) it is a worse
estimator for Errxy than for Err. The results from Sections 3.1
and 3.2 continue to hold for Err'“ (RCp)

» and Err "%, since they are
linearly invariant:



. —~(C
Lemma 2. The estimators Err"?

invariant.

RCp)

and Er\r( are linearly

This result is immediate from the fact the Err'?’ and Err "’
are functions only of the residuals of the OLS fit. Thus, the
conclusions of Theorem 1, Corollaries 1-3 hold for Er\r(cp ).
In particular, Er\r(c” ) has lower error for estimating Err and
Erryx than for estimating Erryxy, and Err'? is asymptotically
uncorrelated with Erryy. In summary, as before with cross-
validation, Mallow’s C, is not able to estimate Errxy, but is rather
an estimate of Err(in), Err or Erry (the latter two are close for

large samples).

3.6. Bootstrap Estimates of Prediction Error

Bootstrap estimates of prediction error are also linearly invari-
ant, and so they are also estimates of the average prediction
error. For brevity, we present these results in supplementary
Appendix A.

4. Confidence Intervals with Nested Cross-Validation

In this section, we develop an estimator for the MSE of the cross-
validation point estimate. Our ultimate goal is then to use the
estimated MSE to give confidence intervals for prediction error
with approximately valid coverage.

4.1. Dependence Structure of CV Errors

Before developing our estimator for the cross-validation MSE,
we pause here to build up intuition for why the naive CV con-
fidence intervals for prediction error can fail, as seen previously

in our example in Section 1.1. The naive CV intervals are too

. . =~ (CV
small, on average, because the true sampling variance of Err' @

is larger than the naive estimate SE would suggest. In particular,
this estimate of the variance of the CV point estimate assumes
that the observed errors ey, ...,e, are independent. This is
not true—the observed errors have less information than an
independent sample since each point is used for both training
and testing, which induces dependence among these terms. In
particular, the covariance matrix of the errors ey, . . ., e, has the
block structure shown in Figure 6; see (Bengio and Grandvalet

. . =~ (CV) .
2004). Thus, the usual estimate of the variance of Err' ™Y is too
small, resulting in poor coverage. To remedy this issue, we now
develop an estimator that empirically estimates the variance of

Err' @ across many subsamples. Avoiding the faulty indepen-
dence approximation leads to intervals with superior coverage.
4.2. Our Target of Inference

In this section, our primary goal will be to give confidence
intervals for test accuracy by estimating the mean-squared error
(MSE) of cross-validation:

Definition 2. For a sample of size n split into K folds, the cross-
validation MSE is

— 2
MSEk, :=E |:<Err(CV) — Errxy> :| . (8)
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Figure 6. Covariance structure of the CV errors. Red corresponds to the covariance
between points in the same fold, and blue corresponds to the covariance between
points in different folds.

In particular, we define MSE with respect to Errxy and thus
will calibrate our test intervals to cover the quantity Errxy. At
this point, the reader should wonder why we define the MSE
with respect to Errxy in view of the results from Section 3 that

show that Er\r(cv) is a more precise estimate of Err than of Erryy,
and we will next discuss this issue carefully.

To be clear, we choose to pursue confidence intervals for
Errxy because we are able to do so; the MSE quantity above
can be estimated in a convenient way due to an upcoming
decomposition (Lemma 3). At present, we do not know how
to obtain a similar MSE estimate with respect to Err. Second,
we emphasize that our results from Section 3 do not mean that
giving confidence intervals for Erryy is impossible. Rather, our
results say that in the linear model, confidence intervals for Errxy
will be larger than confidence intervals for Err. Still, confidence
intervals for either Err or Errxy would be of interest to the
analyst. We are able to derive an estimator for the MSE with
respect to Errxy, and we will turn to the details next.

The MSE in (8) contains both a bias term (due to the reduced
sample size used by ]gr\r(cv)) and variance term. See Section 3.3
for a discussion of the bias. Thus, we can view the MSE as
a slightly conservative version of the variance of the cross-
validation estimator. In any case, the MSE is the relevant quantity
for creating confidence intervals around a possibly biased point
estimate, since it accounts for both bias and variance. With
this in mind, we will use an estimate of the MSE to construct
confidence intervals for Errxy. Previewing the remainder of
this section, we will produce confidence intervals for Errxy as
follows:

(EITI'(NCV) — b/1;s — Zl—a/2 " m,
Err™Y — bias + z1_a/2 - VMSE) . 9)

sS(NCV) oL .
Above, Err Y is similar to the CV estimate of error except

across many random splits, and MSE is our estimator for MSE—
the heart of this section. In addition, we allow for the possibility
of correcting for the sample size bias with an estimator bias;
we use one that arises naturally from the computations already
carried out to estimate the MSE (Section 4.3.3).

4.3. A Nested CV Estimate of MSE

4.3.1. A Holdout MSE Identity
We now give a generic decomposition of the mean-squared
error of an estimate of prediction error, which will enable use
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Figure 7. Visualization of nested CV. Using only the folds on left of the vertical line, we perform the usual cross-validation by holding out one fold at a time (the dark grey
fold) and then fitting on the remaining folds (the light grey folds). The fresh holdout points (the blue fold) are never used in the inner CV step.

to estimate MSEk ,. Consider a single split of the data into a
training set and holdout set, that is, we partition Z = {1, ..., n}
into I,Qragl) and Zyy calling the training set (X,Y). Using
only (X,Y), we use our fitting procedure to obtain estimated
parameters G(trai“) A()N( T’) and further assume we have
some estimate of EerY of the prediction error Errgy defined
in Supplementary Appendix (12). Here, Err;(; is any estimator
of Erryﬁ based only on (X, Y) such as cross-validation using

only (X, Y). Let {egout) }ieZ oy De the losses of the fitted model

f‘(~, ) (traii)\) on the holdout set, and let ¢©°"Y) be their average. The
MSE of Errgy can be written as follows:

Lemma 3 (Holdout MSE identity). In the setting above

E [ (Brryy — Brrzy)’| = E [(Err~~ — o) ]

MSE @)

_E [(E@ut) _ Em)z] ,

(b)

(10)

The expectations above are over the complete data (X, Y).
The lemma follows from adding and subtracting Errgy within
term (a) then showing the cross-term is zero Wlth a nested
conditional expectation argument.

This identity is of interest, since both (a) and (b) can be
estimated from the data, which leads to an estimate of the MSE
term. Specifically, we propose the following estimation strategy:

1. Repeatedly split the data into Z(train) and Z(out), and for each
split, do the following:

(i) Apply cross-validation to Z(train) to obtain Errii; and use
I(Out) to obtain 2(°"Y, and then estimate (a) with (EerY
(out) )2
(ii) Estimate (b) with empirical variance of {eitieZ oy divided
by the size of Zouy).

2. Average together estimates of (a) and (b) across all random
splits and take their difference as in (10) to obtain an estimate
of MSE.

Note that the estimates for both (a) and (b) are unbiased, so
the resulting MSE estimate is unbiased for the MSE term in (10).
In the next section, we will pursue this strategy for the particular
case where Err;(; is itself a cross-validation estimate based only
on (X Y)

4.3.2. The MSE Estimator

Building from Lemma 3, we now turn to our proposed estimate
of MSE, the heart of this section. We follow the estimation
strategy described above, using (K — 1)-fold CV as the estimator
lgr\r;ﬂ;. This gives an estimate of (a) and (b), and hence an
estimate for the MSE, as described above. We also get a point
estimate of error by taking the empirical mean of Er\r;(; across
the many splits. See Figure 7 for a visualization of the nested
CV sample splitting, and see Algorithm 1 in the Supplementary

Appendix for a detailed description. We denote the resulting

NCV
estimate of mean squared error by MSENY
estimate for prediction error Err( )

and the point

NCV
In view of Lemma 3, we see that the estimator MSE( &

is targeting the MSE of Err'©
record formally next.

as an estimate of Erryy, as we

Theorem 3 (Estimand of nested CV). For a nested CV with a
sample of size n, E[MSE(NCV)] = MSEk_1,, where ' =

n(K — 1)/K.

This result shows that MSE™C"" obtained by nested CV is
estimating the MSE of (K — 1)-fold cross-validation on a sample
of size n(K — 1)/K. Since nested CV uses an inner loop with
samples of size n(K — 1)/K, we recommend rescaling to obtain
an estimate for a sample of size n by instead taking MSE =

(K - 1/K - MSENEY) (although this rescaled version is not
guaranteed to be exactly unbiased for MSEk ). As a minor
detail, in practice we also restrict ¥ MSE to fall between SE
(the estimated standard error if one had n independent points)
and VK - SE (the estimated standard error if one had only
n/K independent points). This is a minor implementation detail

prevents implausible values of MSE from arising. After adjusting

. . =~ (NCV . . . .
the point estimate Err ™" with a bias correction discussed

next, we form our final confidence intervals as in (9).

Remark 2 (The sample size difference and the target of inference.).
Note that the estimator Err~ " uses models fit on with n(K —
2)/K data points, whereas the target of inference in Theorem 3,
MSEg_1,y, is defined with respect to the prediction accuracy
of a model fit with n(K — 1)/K points. How can the former
be used to estimate the latter? The answer is that the nested
CV procedure relies also on fits of size n(K — 1)/K, see the
definition of 4 in the “nested_crossval” subroutine of Algorithm
1. Nested CV compares the predicted accuracy on the models
from n(K — 2)/K data points to the estimated accuracy of the
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Table 1. Performance of cross-validation (CV), nested cross-validation (NCV), and data splitting with refitting (DS) in the low-dimensional logistic regression model from

Section 5.1.1.
Setting Width Point estimates Miscoverage
cv NCV DS

Bayes Error Target NCV DS Err v NCV DS Hi Lo Hi Lo Hi Lo
33.2% Erryy 1.23 223 39.1% 39.6% 39.0% 40.1% 10% 8% 3% 5% 7% 6%
" Err " " " " " " 9% 8% 3% 4% 6% 5%
22.5% Erryy 1.47 2.25 28.7% 30.4% 28.1% 33.3% 11% 3% 4% 1% 16% 4%
" Err " " " " " " 10% 2% 5% 0% 15% 3%

NOTE: Each row is a setting with a different signal strength, indexed by the Bayes error: the error of the true model. The nominal total error rate is 10%, that is, 5% above
and below. A “Hi"” miscoverage is one where the confidence interval is too large and the point estimate falls below the interval; conversely for a “Lo” miscoverage. The
standard error in each coverage estimate reported is about 0.5%. The “Target” column indicates the target of coverage—the intervals are always generated identically,

but we report the coverage of both Err and Erryy.

models with n(K — 1)/K data points, using the extra holdout
data to asses this accuracy.

4.3.3. Estimation of Bias
The nested CV computations also yield a convenient estimate of

the bias of the NCV point estimate of error, Err "V, They key
idea is that nested CV considers both models fit with n(K—2)/K
data points and with n(K — 1)/K data points, and comparing
their these models gives an estimate of bias; see Supplementary
Appendix C. This aspect of nested CV is not critical—the MSE
estimation above is the core of our proposal.

5. Simulation Experiments

We now explore the coverage of nested CV in a variety of
settings. In each case, we will report the coverage of naive CV
(CV), nested CV (NCV), and data splitting with refitting (DS),
where the nominal miscoverage rate is 10% (5% miscoverage
in each tail). We also report on the width of the intervals,
expressed relative to the width of the standard CV intervals. (We
wish to produce intervals that are as narrow as possible while
maintaining correct coverage.) We use 10-fold CV (the number
of folds has little impact; see Supplementary Appendix E4) and
NCV, with 200 random splits for the latter; see Supplementary
Appendix E2 for the runtime of each experiment. For clas-
sification examples we use binary loss, and form confidence
intervals for CV, NCV; and data splitting after taking the bino-
mial variance-stabilizing transformation, described in detail in
Supplementary Appendix G. For regression examples, we use
squared error loss.

For data splitting, we use 80% of the samples for training and
20% for estimating prediction error. Note that the data splitting
without refitting intervals are the same as the data splitting
with refitting intervals; the difference is that they are intended
to cover different quantities. To make this comparable to CV
and nested CV, we report on the coverage of Err and Errxy
here, which corresponds to data splitting with refitting. Data
splitting without refitting (which seeks to cover the quantity in
Supplementary Appendix (12)) will typically have better cover-
age; we observed relatively accurate coverage in the classification
examples and worse coverage in the regression examples, but do
not explicitly report these results herein.

Scripts reproducing these experiments are available at https://
github.com/stephenbates19/nestedcv_experiments.

5.1. Classification

5.1.1. Low-Dimensional Logistic Regression

We consider the logistic regression data generating model 1
with n = 100 observations and p = 20 features, sampled as
ii.d. standard Gaussian variables. Due to the rotational sym-
metry of the features, the only parameter that affects behavior
is the signal strength, and we explore models with Bayes error
of either 33% or 23%. Here, we use (un-regularized) logistic
regression as our fitting algorithm. We report the results in
Table 1, finding that nested CV gives coverage much closer to
the nominal level. Moreover, the point estimates have slightly
less bias. We report the size of the NCV intervals relative to
their CV counterparts per instance in Supplementary Appendix
Figure F.2.

Next, we return to the question of estimands, as in Section 3.
Since we do not have analytical results for the logistic regression
model, we explore this in simulation. Here, we consider prob-
lems where the Bayes error rate is 22.5%, and vary n and p. We
investigate two quantities. First, we investigate the correlation of

Er\r(cv) and Errxy, and we find that it is small but large/r\ than
in the OLS case. See Figure 8. Next, we check whether Err has
higher precision for Err than for Errxy. To this end, we compute

the expected value of |1§r\r(cv) — Err| and of |l§r\r(cv) — Errxyl,
and plot their relative difference in the right panel of Figure 8.
We find that the CV point estimate is again slightly more precise
as an estimate of Err than of Errxy in this setting.

5.1.2. High-Dimensional Sparse Logistic Regression

We return to the high-dimensional logistic regression model
introduced in Section 1.1, generalizing slightly. We consider
n € {90,200} with p = 1000 features. The feature matrix
has standard normal entries with an autoregressive covariance
pattern such that adjacent columns have covariance p. In each
case, we take k = 4 nonzero entries of the covariance matrix and
use sparse logistic regression. We report on the results in Table 2
and give the width? in Figure 9. Again, NCV gives intervals with
coverage much closer to the nominal level.

2The width in Figure 9 is reported relative to the version of cross-validation
that holds out two folds at a time, since this is what is computed internally
during NCV. In table Table 2 and elsewhere, we instead report widths
relative to the usual K-fold CV.
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Figure 8. Behavior of cross-validation with a logistic regression model. Left: the correlation between the point estimate and instance-specific error. Right: fraction change

in mean absolute deviation of the point estimate with respect to Erryy versus Err.

Table 2. Performance of cross-validation (CV), nested cross-validation (NCV), and data splitting (DS) in the high-d logistic regression model from Section 5.1.2.

Setting Width Point estimates Miscoverage
v NCV DS
n P Target NCV DS Bayes error Err v NCV Hi Lo Hi Lo Hi Lo
90 0 Erryy 1.53 2.24 22% 41.3% 41.8% 41.1% 16% 12% 6% 7% 9% 7%
" " Err " " " " " " 17% 13% 6% 8% 11% 9%
200 0 Erryy 1.66 2.26 22% 25.6% 26.7% 25.6% 14% 7% 3% 5% 9% 4%
" " Err " " " " " " 15% 7% 4% 6% 8% 5%
90 0.5 Erryy 1.80 2.25 13% 25.6% 27.5% 28.6% 20% 10% 5% 8% 15% 4%
" " Err " " " " " " 20% 11% 7% 9% 14% 3%
NOTE: The nominal (target) error rate is 10%, that is, 5% above and below. Other details as in Table 1.
200 - 200
150 o 1504 2004
100 4 1004
100
50 A 504
0 L T T T O ) T T T T 0 ) T T T T
1.2 1.6 2.0 1.0 1.2 14 16 1.25 150 1.75 2.00
NCV width NCV width NCV width

(a) n=90,p=0

(b) n =200, p=0

(¢) n=290,p=0.5

Figure 9. Size of the nested CV intervals relative to the size of the naive CV intervals in the high-dimensional sparse logistic regression experiment from Section 5.1.2.

5.2. Regression

We next consider an OLS example. We take X € R™*? with
p = 20 comprised of iid A/(0, 1). Further, we generate a response
from the standard linear model: Y = X6 + ¢, where € is likewise
iid A/(0,1). We use OLS to estimate 6. Note that by Lemma 1,
the choice of 6 does not affect the coverage rate of CV. The
same argument shows that the choice of 6 will not affect the
coverage rate of nested CV, so we can take 6 to be 0 without loss
of generality. Similarly, both CV and NCV are unchanged when
X is transformed by an full-rank linear operator, so the results in
this section would remain unchanged for Gaussian features with
any full-rank correlation structure. We report the coverage of
nested CV in Figure 10. We find that this scheme works well and
has good coverage for any n, overcovering somewhat for very
small n. By contrast, naive CV has poor coverage until # is 400.
In Supplementary Appendix Figure F.3 we report on the width of
the NCV intervals relative to their CV counterparts—the usual
ratio is not that large for samples sizes of n = 100 or greater.

See Supplementary Appendix Section E.11 for an experiment in
a high-dimensional regression setting.

6. Real Data Examples

Lastly, we evaluate the nested CV procedure on real datasets
from the UCI repository (Dua and Graff 2017). In each case, we
repeatedly subsample a small number of observations, perform
nested CV on the subsample, and then use the many remaining
observations to determine the accuracy of the fitted model. We
consider the following datasets:

Communities and crimes (CC). This dataset is comprised
of measurements of 1994 communities in the United States.
We predict the crime rate of each community, a real number
normalized to be between 0 and 1, based on 99 demographic
features of the community.

Crop mapping (crp). This dataset is comprised of optical
radar measurements of cropland in Manitoba in 2012. We filter
the dataset to contain two classes, corn and oats, and then do
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Figure 10. Coverage of CV, data splitting, and nested CV in the OLS case.
Table 3. Performance of cross-validation (CV), nested cross-validation (NCV), and data splitting (DS) with the real datasets.
Setting Width Point estimates Miscoverage
@Y NCV DS

data n Target NCV DS Err v NCV DS Hi Lo Hi Lo Hi Lo
cC 50 Erryy 2.82 1.77 0.029 0.031 0.029 .034 4% 20% 1% 13% 1% 33%
" " Err " " " " " " 2% 22% 0% 12% 1% 37%
cC 100 Erryy 1.46 2.05 0.023 0.024 0.023 .025 4% 13% 2% 7% 1% 24%
" " Err " " " " " " 2% 12% 1% 4% 1% 24%
crp 50 Errxy 1.21 1.89 10.6% 10.7% 10.6% 10.8% 6% 8% 2% 6% 4% 31%
" " Err " " " " " " 7% 12% 3% 8% 2% 31%
cp 100 Erryy 1.52 2.00 9.5% 9.7% 9.5% 9.4% 6% 6% 4% 5% 4% 15%
" " Err " " " " " " 8% 9% 5% 7% 4% 15%

NOTE: The nominal (target) error rate is 10%, that is, 5% above and below. Other details as in Table 1.

binary classification based on 174 features. Here, we add a small
amount of label noise so that the best possible classifier has a
misclassification rate of about 5%.

We again use sparse linear or logistic regression as our fitting
algorithm. The results are reported in Table 3. We find that
nested CV generally has coverage that is much closer to the
nominal rate than naive CV. Data splitting has poor coverage in
this case due to the small sample size, but is significantly better
with = 100 samples than with n = 50 samples.

7. Discussion

Our investigation had two main components. First, we discussed
point estimates of prediction error via subsampling techniques.
Our primary result is that common estimates of prediction
error—cross-validation, bootstrap, data splitting, and covari-
ance penalties—should be viewed as estimates of the average
prediction error, averaged across other hypothetical datasets
from the same distribution. The formal results here were all
for the special case of the linear model using unregularized
OLS for model-fitting, although we also saw similar behavior
in simulation for logistic regression; see Figure 8. A further
important question is how regularization affects this behavior.
In an additional experiment, we find that Err does track Errxy,
albeit weakly, when there is regularization; see Supplementary
Appendix F10. We look forward to future work explaining the
behavior of cross-validation and other estimates of prediction
error in these settings.

Second, we discussed inference for cross-validation, deriving
an estimator for the MSE of the CV point estimate, nested

CV. The nested CV scheme has consistently superior coverage
compared to naive cross-validation confidence intervals, which
makes it an appealing choice for providing confidence intervals
for prediction error. Nonetheless, we wish to be clear that nested
CV is more computationally intensive than standard CV—we
use about 1000 times more model fits per example because of
the repeated splitting. For example, in the logistic regression
example from Section 1.1, nested CV takes about 10 sec on a
personal computer.

A fundamental open question is to understand under what
conditions the standard CV intervals will be badly behaved,
making the nested CV computations necessary. Roughly speak-
ing, we expect the standard CV intervals to perform better
when n/p is larger and when more regularization is used. In
our experiments, we saw that even in the mundane linear model
with n/p = 10, the miscoverage rate of standard CV was about
50% larger than the nominal rate. As n increases, however, the
violation decreases. Moreover, the asymptotic results in Austern
and Zhou (2020) and Bayle et al. (2020) show that the coverage
is correct in the p fixed, n — oo limiting regime. The stability
conditions therein may also be able to shed light on settings with
small samples or high-dimensions. We look forward to future
work in this direction.

Supplementary Materials

Results for bootstrap estimates of prediction error, additional results for data
splitting, details of bias estimation, proofs, additional technical results, addi-
tional simulation results, variance stabilization details, low-dimensional
asymptotic analyses, and connection with k-fold test error.
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