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Abstract. This article provides a strong law of large numbers for integration on digital nets random-
ized by a nested uniform scramble. The motivating problem is optimization over some
variables of an integral over others, arising in Bayesian optimization. This strong law
requires that the integrand have a finite moment of order p for some p > 1. Previously
known results implied a strong law only for Riemann integrable functions. Previous gen-
eral weak laws of large numbers for scrambled nets require a square integrable integrand.
We generalize from L2 to LP for p > 1 via the Riesz—Thorin interpolation theorem.
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I. Introduction. Numerical integration is a fundamental building block in many
applied mathematics problems. When the integrand is a smooth function of a low-
dimensional input, then classical methods such as tensor products of Simpson’s rule
are very effective [10]. For nonsmooth integrands or higher-dimensional domains,
these methods may perform poorly. One then turns to Monte Carlo methods, where
the integrand is expressed as the expected value of a random variable which is then
sampled in a simulation and averaged. Sample averages converge to population aver-
ages by the law of large numbers (LLN), providing a justification for the Monte Carlo
method.

The Monte Carlo method converges very slowly to the true answer as the number
n of sampled values increases. The root mean squared error is O(n~/2). Quasi-
Monte Carlo (QMC) methods [12, 13, 41] replace random sampling by deterministic
sampling methods. These may be heuristically described as space filling samplers
using n points constructed to reduce the unwanted gaps and clusters that would
arise among randomly chosen inputs. Because the inputs are not random, we cannot
use the LLN to ensure that the estimate converges to the integral as n — co. Such
consistency is a minimal requirement of an integration method. For QMC, consistency
requires additional assumptions of Riemann integrability or bounded variation, whose
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Fig. |

Each panel depicts 512 points in the unit square [0,1]2.

Carlo points, Sobol’ points, scrambled Sobol’ points.

From left to right: plain Monte

descriptions we defer. Under the latter condition, the integration error is O(n =) for
any € > 0. QMC has proved valuable in financial valuation [18], graphical rendering

[30], and solution of PDEs in random environments [34].

In addition to knowing that a method would work as n — oo, users also need to
have some estimate of how well it has worked for a given sample size n. Monte Carlo
methods make it easy to quantify uncertainty by using the central limit theorem in
conjunction with a sample variance estimate. Plain QMC lacks such a convenient error
estimate. Randomized QMC (RQMC) methods, surveyed in [36], produce random

points with QMC properties.
whole RQMC process support uncertainty quantification.

Then a few statistically independent repeats of the
One of these methods,

scrambled nets [44, 45], provides estimated integrals that are consistent as n — oo
under weaker conditions than plain QMC requires. It can also reduce the root mean
squared error to O(n~3/2+¢) [46, 52] under further conditions on the integrand.

The first panel in Figure 1 shows 512 MC points in the unit square [0, 1]2. We see
clear gaps and clumps among those points. The second panel shows 512 QMC points
from a Sobol’” sequence described in section 3. The points are very structured and fill
the space quite evenly. The third panel shows a scrambled version of those 512 points
also described in section 3.

Up to this point, we have considered the LLN as just one result. There are in
fact strong and weak forms of the LLN that we discuss below. The distinction does
not come up for plain Monte Carlo sampling because both laws hold at once. For
RQMC, mostly weak laws of large numbers have been proved. Our contribution here
is to establish strong laws. The motivation to do this comes from the PyTorch [3]
tool for Bayesian optimization. A prototypical Bayesian optimization problem is to
find mingeo [pq 9(0, ) de for some function g(6, ) and a set © of allowed values for
a parameter 6. In a simulation-optimization framework [2] the integral over & values
may be approximated by a Monte Carlo average. Integration is then a building block
in a larger problem. PyTorch has a version using RQMC points instead of plain Monte
Carlo. Consistent estimation of the optimal 6 could be proved assuming a strong LLN

for some sample values

L1y

, . Such a strong law was available for plain Monte

Carlo but not for RQMC, yet RQMC shows much better empirical results in [3].
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An outline of this paper is as follows. Section 2 presents the strong and weak
LLNs referred to above as well as plain Monte Carlo and QMC and RQMC sampling,
making more precise some of the conditions stated in this introduction. It includes a
lemma to show that functions of bounded variation in the sense of Hardy and Krause
(the usual regularity assumption in QMC) must also be Riemann integrable. That is
either a new result or one that is hard to find in the literature. Section 3 defines the
QMC method known as digital nets, whose RQMC counterparts are called scrambled
nets. Section 4 has the main result. It is a strong LLN for scrambled net sampling.
The integrand is assumed to be square integrable. The first new strong law is a form
of consistency for scrambled net integration as n — oo through the set of values that
can be written as n = rb™ for r = 1,..., R using some integers m > 0, b > 2, and
R > 1. While those are the best sample sizes to use for reasons given in that section,
we next extend the result to the ordinary limit as n — oo through all integer values.
Section 5 replaces the assumption that f? is integrable by one that |f|P has a finite
integral for some p > 1. This result uses the Riesz—Thorin interpolation theorem [6].
Section 6 provides some additional context and discussion, including randomly shifted
lattice versions of RQMC.

2. Background on LLNs, QMC, and RQMC. We begin with the unit cube [0, 1]¢
in dimension d > 1. For p > 1, the space LP[0, 1]¢ consists of all measurable functions

f on [0,1]¢ for which || f|, = (f[o 14 | f()|P da) Y7 56, We consider the problem of
computing an estimate [ of the integral u = f[o 14 f(x)de. Here p is the expected

value of f(x) when x has the uniform distribution on [0,1]?. We write u = E(f(x))
for  ~ U[0, 1]¢ and use Pr(A) below to denote the probability of the event A. Many
problems that do not originate as integrals over [0, 1]% have such a representation using
transformations to generate nonuniformly distributed random variables over the cube
and other spaces [11]. We suppose that those transformations are subsumed into f.
Also, while our theory works for genuinely random numbers, in practice one ordinarily
uses deterministic output of a random number generator that simulates randomness.
The plain Monte Carlo (MC) method takes independent x; ~ U[0,1]¢ and esti-
mates p by fi, = MC = (1/n) 321, f(z;). There are many more sophisticated Monte
Carlo methods but when we refer to Monte Carlo below we mean this simple one.
The weak law of large numbers (WLLN) implies that for any e > 0,

. ~MC _
(2.1) nh_)ngC Pr(| i, pl > €) =0.
The strong law of large numbers (SLLN) implies that

(2.2) Pr( lim AMC = u) —1,
n—0o0

which we may write as Pr(limsup,,_, . [2M° —pu| > €) = 0 to parallel the WLLN. Both
the WLLN and SLLN hold for independent and identically distributed (IID) random
variables f(x;) when f € L'[0,1]. For proofs of these laws, see [15, Chapter 2]. For
an example of a sequence of independent random variables that satisfies the WLLN
but not the SLLN, let fi,, = g with probability 1 — 1/n, and fi, = p + 1 otherwise.

In QMC sampling, the x; are constructed so that the discrete distribution placing
probability 1/n on each of x4, ..., x, (with repeated points counted multiple times)
is close to the continuous uniform distribution on [0, 1]%. There are various ways,
called discrepancies [7], to quantify the distance between these discrete and continuous
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measures. For a set S C [0,1]¢ define 1{x € S} to be 1 if € S, and 0 otherwise.
The most widely used discrepancy is the star discrepancy

n

d
S tme0.0)) - [T o
. 1

i=1

Y

DZ:D:(w177$n): sup
ac(0,1]4

where [0,a) = {z € [0,1]? |0< z; <aj, j=1,...,d}.

To keep this paper at a manageable length, the relevant properties of QMC and
RQMC methods are presented, but the details of their constructions are omitted. For
the latter, see [12, 13, 41, 36] among others.

Because QMC is deterministic, it has no analogue of the WLLN (2.1). There is
an analogue of the SLLN (2.2), as follows. Let gQMC = (1/n) >, f(z:), where now
the points a; have been chosen to have small discrepancy. If f is Riemann integrable
and D} — 0, then [32, p. 3]

(2.3) lim @MC = 4,

n—oo
providing the QMC version of the SLLN (2.2). There is a converse, where if |fi, —p| —
0 whenever D} — 0, then f must be Riemann integrable. See the references and
discussion in [39]. That is, QMC could fail to be consistent when f is not Riemann
integrable. Riemann integrable f must also be bounded.

A better known result about QMC is the Koksma—Hlawka inequality below, which
uses the notion of bounded variation. Recall that a differentiable function f on [0, 1]
has total variation V(f) = fol |f'(z)|dz and is of bounded variation for V(f) < oo.
There are numerous generalizations of the total variation for functions on the unit
cube [0, 1]¢ when d > 1 (see [8]). Of those, the total variation in the sense of Hardy [22]
and Krause [31], denoted by Vik (f), is the most useful one for QMC. If Vak (f) < oo,
then we write f € BVHK[0, 1]?. Although we don’t need f to have bounded variation
to get the SLLN (2.3) for QMC, bounded variation gives us some information on the
rate of convergence, via the Koksma—Hlawka inequality

(2.4) M = pl < Dy (@, 0) Vi (f)

(see [26]). Typical QMC constructions provide infinite sequences @; whose initial
subsequences satisfy
) log(n)?
D} (xy,...,xn) = 0(7)
n
Then |aS@M€ — u| = O(n=1*¢) by (2.4) for any € > 0.
The counterpart in MC to the Koksma—Hlawka inequality is that

(2.5) E((an'© — )2 =020 (f)

when, for  ~ U[0, 1]¢, the variance of f(z) is 0 = o%(f) = E((f(z) — p)?) < oc.
Whereas the rate for QMC comes after strengthening the regularity requirement on f
from Riemann integrability to bounded variation, the rate for MC comes about after
strengthening the requirement from f € L'[0,1] to f € L?[0,1]¢. The MC counter-
part (2.5) is exact, while the QMC version (2.4) is an extremely conservative upper
bound, in that it covers even the worst f € BVHK|O, 1]d for any given x1,...,x,.
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A Riemann integrable function is not necessarily in BVHK. For instance, f(x) =
1{2?21 xz; < 1} is Riemann integrable but, for d > 2, it is not in BVHK [49]. A
function in BVHK is necessarily Riemann integrable. This result is hard to find in
the literature. It must almost certainly have been known to Hardy, Krause, Hobson,
and others over a century ago, at least for d = 2, which earlier work emphasized. Here
is a short proof based on some recent results.

LemMA 2.1. If f € BVHK]|0, 1]¢, then f is also Riemann integrable.

Proof. If f € BVHK]|0,1]¢, then f(z) = f(0) + f(x) — f_(x), where fi are
completely monotone functions on [0, 1]¢ with fi(0) = 0 [1, Theorem 2]. Completely
monotone functions are, a fortiori, monotone. Now both fi are bounded monotone
functions on [0, 1]¢. They are then Riemann integrable by the corollary in [35]. |

While QMC has a superior convergence rate to MC for f € BVHK, MC has
an advantage over QMC in that E((aM€ — u)?) = 02/n is simple to estimate from
independent replicates, while D2 is very expensive to compute [14] and Vigk (f) is much
harder to estimate than p. In a setting where attaining accuracy is important, it must
also be important to estimate the attained accuracy. RQMC methods, described next,
are hybrids of MC and QMC that support error estimation.

In RQMC [36, 44] one starts with points a1, ..., a, € [0,1]¢ having a small star
discrepancy and randomizes them to produce points «1,...,x,. These points satisfy
the following two conditions: individually z; ~ U[0,1]¢, and collectively, xy,...,x,
have small star discrepancy. The RQMC estimate of p is gFMC = (1/n) Y7, f(=:).
From the uniformity of the points x; we find that E(aR9MC) = . Their small star
discrepancy means that they are also QMC points, and so they inherit the accuracy
properties of QMC. To estimate the error, one takes several independent randomiza-
tions of a; producing independent replicates of JRMC whose sample variance can be
computed.

3. Scrambled Nets and Sequences. In this section, we describe digital nets and
sequences and scrambled versions of them. Many authors reserve the term “digital”
to mean only points obtained from some certain specific classes of algorithms. Since
the overwhelming majority of nets and sequences in use are constructed with such
algorithms, we lose little by this simplification.

Let b > 2 be an integer base. Let k = (k1,...,kq) for integers k; > 0 and
c=(c,...,cq), where ¢; € {0,1,...,b% —1}. Then the set

)

is called an elementary interval in base b. It has volume b~ ¥l where |k| = Z;l:l kj.

Cj+1
vJ

d
.
(3.1) Blk,e) = [T |4, %5
j=1b7 by

DEFINITION 3.1. Forintegersm >t > 0,b > 2, andd > 1, the pointsxy,...,x, €
[0, 1)¢ for n = b™ are a (t,m,d)-net in base b if

n

Z 1{xz; € E(k,c)} = bmIFl

i=1
holds for every elementary interval E(k,c) from (3.1) with |k| < m —t.

An elementary interval of volume b~ ¥l should ideally contain nb— Ikl = pm—I¥l
points from x1,...,x,. In a (¢t,m,d)-net in base b, every elementary interval that
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should ideally contain b¢ of the points does so. For any given b, m, and d, smaller ¢
imply finer equidistribution. It is not always possible to attain ¢ = 0.

DEFINITION 3.2. For integers t > 0, b > 2, and d > 1, the points x; € [0,1)? for
i > 1 are a (t,d)-sequence in base b if every subsequence of the form @, _1yym 41, . -, Trpm
for integers m =t and r > 1 is a (t,m,d)-net in base b.

The best available values of ¢ for nets and sequences are recorded in the online
resource MinT described in [55], which also includes lower bounds. The Sobol’ se-
quences of [57] are (¢, d)-sequences in base b = 2. There are newer versions of Sobol’s
sequence with improved “direction numbers” in [29, 60]. The Faure sequences [17]
have ¢t = 0 but require that the base be a prime number b > d. Faure’s construction
was generalized to prime powers b > d in [40]. The best presently attainable values
of t for base b = 2 are in the Niederreiter-Xing sequences of [42, 43].

Randomizations of digital nets and sequences operate by applying certain random
permutations to their base b expansions. For details, see the survey in [48]. We will
consider the “nested uniform” scramble from [44].

If ay,...,a, is a (t,m,d)-net in base b, then after applying a nested uniform
scramble, the resulting points @1, ..., x, are a (¢, m,d)-net in base b with probability
one [44]. If a; for i > 1 are a (¢, d)-sequence in base b, then after applying a nested
uniform scramble, the resulting points x; for i > 1 are a (¢, d)-sequence in base b with
probability one [44]. In either case, each resulting point satisfies x; ~ U[0, 1]%.

If f € L20,1]7 and aR2MC is based on a nested uniform scramble of a (¢, d)-
sequence in base b with sample sizes n = b* for integers k > 0, then E((aRMC —;)2) =
o(1/n) as n — oo. It is thus asymptotically better than MC for any f. For smooth
enough f, B((ARMC — 1))2) = O(n=3%¢) for any e > 0. See [46, 52] for sufficient
conditions.

The main result that we will use is as follows. Let f € L2[0,1]¢ and write o2 for
the variance of f(x) when x ~ U[0,1]¢. Then for a (¢,m,d)-net in base b, scrambled
as in [44], we have

~RQMC 2 To?

(3.2) E((An =" —m)?) < ==

for some I' < oo [47, Theorem 1]. That is, the RQMC estimate for these scrambled
nets cannot have more than I" times the mean squared error that an MC estimate
has. The value of I' is found using some conservative upper bounds. We can use
I = b+1)/(b—1)]% If t = 0, then we can take I' = [b/(b — 1)]¢, and for d = 1
we can take I' = b'. The quantity I' arises as an upper bound on an infinite set of
“gain coefficients” relating the RQMC variance to the MC variance for parts of a basis
expansion of f. The worst case bound o+/I'/n for the RQMC root mean squared error
does not contain the factor log(n)? that makes the QMC worst case error so large for
large d and n of practical interest.

4. RQMC Laws of Large Numbers. This section outlines some very simple
LLNs for RQMC before going on to prove two SLLN results for scrambled net in-
tegration when f € L2[0,1]%. The first SLLN requires sample sizes to be of the form
rb™ for 1 < r < R and m > 0, where b is the base of those nets. The second SLLN
extends the first one to include all integer sample sizes.

If f € BVHK]0, 1]¢, then there is an SLLN for RQMC from the Koksma-Hlawka
inequality (2.4) when Pr(lim,_,oc D} (x1,...,x,) = 0) = 1. More generally, for Rie-
mann integrable f we get an SLLN for RQMC as an immediate consequence of (2.3).
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THEOREM 4.1. Let f : [0,1]¢ — R be Riemann integrable. For i > 1, let x; €
[0,1]¢ be RQMC points with Pr(lim,_, D} (z1,...,x,) =0) = 1. Then

( lim MRQMC u) =1.

n—roo

Proof. From (2.3),
Pr(hm [RAMC — ) }Pr(lim D;(wl,...7wn)=0> =1
n—00

Theorem 4.1 is not strong enough for some important applications. It does not
cover integration problems where the integrand f is not in BVHK][0, 1]¢, including
many where f is not even Riemann integrable. Integrands with jump discontinuities
or kinks (jumps in their gradient) [19, 20, 21, 24] commonly fail to be in BVHK, and
integrands containing singularities [5, 23, 51, 58] are not even Riemann integrable.

Sobol’ [58], after noticing that some of his colleagues were using his QMC points
with apparent success on problems with integrable singularities, initiated a theory in
which QMC could be consistent provided the points x; avoided the singularities in a
suitable and problem-specific way. Uniform random points show no preference for the
region near a singularity no matter where it is, and this is enough to get consistent
integral estimates on some problems with integrable singularities [5, 50, 51].

In those cases, we can easily get a WLLN if the integrand is in L?. The usual
results for RQMC show that E((gEMC — 1)2) — 0 as n — oo for f € L?[0,1]¢. From
that a WLLN follows by Chebyshev s inequality. A WLLN proves to be not quite
enough for some problems, so we seek an SLLN for scrambled net quadrature.

First we prove an SLLN for sample sizes equal to 7™ for 1 <r < Rand b > 2
and f € L?[0,1]¢. These are the best sample sizes to use in a (t,d)-net, with values
n = b™ being the best of those because they are the smallest sample sizes to properly
balance elementary intervals of size b*=™.

Sobol” [59] recommends using sample sizes in a geometric, rather than an arith-
metic, progression such as ny = 2¢, and there is a lengthier discussion of this point in
[53]. To see informally how this works, suppose that |fi, —u| < An='=° for § > 1 and
A > 0, while |fi, — fin+1] = B/n. The first is an instance of better than 1/n error,
and the second will be common because fin+1 = fin(n/(n+ 1)) + f(xpe1)/(n + 1).
Then |fint1 — ] = |fint1 — fin] — |fn — 1|, and so for large n, fin+1 will commonly
be worse than fi,. A rate like n~'7% can be attained only on geometrically spaced
sample sizes n under conditions in [53].

THEOREM 4.2. Let x1,x3,... be a (t,d)-sequence in base b, with gain coeffi-
cients no larger than T' < oo and randomized as in [44]. Let f € L?[0,1]¢ with
f[o 14 f(x)dx = pu. For an integer R > 1, let N = {rb™ |1 <r < R,m > 0}. Then

Pr( lim MRQMC ) =1,

where ny for £ > 1 are the unique elements of N arranged in increasing order.

Proof. Pick any € > 0. Let 02 < oo be the variance of f(x) for  ~ U[0, 1]¢. First
we consider ny = rb™ for some m >t and 1 < r < R. Because m > t, the definition
of a (¢, d)-sequence implies that

T = 1
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where each fig ; is the average of f over a scrambled (¢, m, d)-net in base b. We don’t
know the covariances cov(ji,;, fe,j/), but we can bound them by assuming conserva-
tively that the corresponding correlations are 1. Then

I'o?

var(jig M) = Z Z cov(fieg fe.y) < var(fes) < o

Jj=1j'=1

Next, by Chebyshev’s inequality, Pr(|aReMC — | > €) < rTo?/(nee?). Now

oo o~ R
S Pr(|anMC —pl =€) < Y0 Pr(lagynC —ul =6
=1 m=0r=1
(4.1) <tR+i§:F02
. h m=t r=1 bm€2 .

The first inequality arises because some sample sizes ny may have more than one
representation of the form rb™. Because the sum (4.1) is finite,

RQMC — p| > € for infinitely many ¢) =0

Pr(|iy,
by the Borel-Cantelli lemma [15, Chapter 2]. Therefore Pr(limy_ o fin?MC = 1) =
1. ]

Next we extend this SLLN to a limit as n — oo without a restriction to geo-
metrically spaced sample sizes. While geometrically spaced sample sizes should be
used, it is interesting to verify this limit as well. The proof method is adapted from
the way that Etemadi [16] extends an SLLN for pairwise IID random variables from
geometrically spaced sample sizes to all sample sizes.

THEOREM 4.3. Let x1,x2,... be a (t,d)-sequence in base b, with gain coeffi-
cients no larger than T < oo and randomized as in [44]. Let f € L?[0,1]% with

f[O,l]d f(x)dx = p. Then

Pr( lim ,uRQMC p) =1.

n—oo

Proof. First we suppose that f(x) > 0. There is no loss of generality because
J(@) = f+ (@) — f_(x), where [ (z) — max(f(x),0) and f_(z) = max(—f(z),0). It
f € L?[0,1]¢, then both fy € L?[0,1]? and an SLLN for fi would imply one for f.

Because f(z;) > 0, we know that T'(n) = Y .| f(2;) is nondecreasing in n.
Choose R = b* for k > 1 and let N' = N(R) = {rb™ | 1 < r < R,m > 0}. For any
integer n > 1 define 7 = n(n) = min{r € N | v > n} and n = n(n) = max{r € N |
v < n}. Monotonicity of T(n) combined with gRMC = T'(n)/n gives

( ) L RQMC

n N
n(n )MEQMC < MRQMC < B

n

~RQMC _ ~RQMC __

By Theorem 4.2, Pr(limsup,,_, . fin
1. What remains is to bound #/n and n/n.

= p) =1 and Pr(liminf, . fi,, =p) =

We can suppose that n > b*. The base b expansion of n is ZeL:o aeb®, where
ag = ag(n) € {0,1,...,b—1} and L = L(n) = 1+ |log,(n)]| is the smallest number of
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base b digits required to write n. Choosing m = L —k+ 1, we know that n > v = rb™
for r = Zf;om amsb® < b = R. As a result

L ¢ L 14 L
n(n) S dorep g1 @b S Dl hy b b
Z i Z o T Z I k4l 2 }L°
n > o aeb Pkl 4 37 bt D +b

It follows that
Pr(liminfﬂEQMC > (1+ bl_k)_1u> =1,

n—oo
and since we may choose k as large as we like, Pr(liminf, o gRMC > p) = 1.
Similarly, if n = AzbY, then n € N and we may take 7 = n. Otherwise, i < v+ b™ =
(r + 1)b™ with 7 + 1 < R and then Pr(lim inf,,_, ., gRMC < y) = 1. O

5. An SLLN without Square Integrability. The SLLN for Monte Carlo requires
only that f € L[0,1]¢. The results in section 4 for RQMC require the much stronger
condition that f € L2[0,1]¢. In this section, we narrow the gap by proving an SLLN
for scrambled nets when f € LP[0, 1]¢ for some p > 1.

The proof is based on the Riesz—Thorin interpolation theorem from [6, Chapter
4]. Let £ be the operator that takes an integrand f and returns the integration error

1 n
~RQMC _, _ © N
fin, p= Z_E:l flxi) —p

The integration error is a function of xi,...,x, € [0,1]¢. Together these belong
to [0,1]9". Let © be the set [0,1]9" equipped with the distribution induced by the
scrambled net randomization producing «1,...,&,. If n = b™, then £ is a bounded

linear operator from L2[0,1]¢ to L2(2). The norm of & is

~ 1/2
1€ 220,174 120 = sup (B - p)?) 2 < \/T/n.
2

The operator £ is also a bounded linear operator from L[0,1]¢ to L'(€). Here
the norm is

I lrones i = sup BUAMC = u) < sup u(n)|+ [ |f(@)lde <2
71 (KIS [0,1]¢

By the Riesz—Thorin theorem below, £ is also a bounded linear operator from L?|0, 1]
to LP(Q) for any p with 1 < p < 2.

THEOREM 5.1 (Riesz—Thorin). For 1 < ¢1 < g2 < 00 and 6 € [0,1], let p > 1

satisfy L o1oe s

p q1 q2

For probability spaces ©1 and O, let T be a linear operator from L1 (01) to LT (O5)
and at the same time a linear operator from L% (©1) to L% (O9) satisfying

||T||Lq1 (@1)_>qu(@2) g M1 and ||THL‘12(®1)—>L‘12(@2) < M2~
Then T is a linear operator from LP(©1) to LP(O3) satisfying

[Tl Lr(@1)—Lr(0s) < M=o Mf.
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Proof. This is a special case of Theorem 2.2(b) in [6]. |

Because 1/p is a convex combination of 1/¢; and 1/g2 we must have ¢; < p < ¢a.
Our interest is in g1 = 1 and g3 = 2 and 1 < p < 2. The following corollary handles
that case.

COROLLARY 5.2. Let T be a linear operator from L*(©1) to L'(©3) and at the
same time from L*(©1) to L*(Og) with

[Tl —L1@n) < My and [T L20,)—12(0,) < Ma.
Then for 1 < p< 2,

ITlr 00 2n0n) < MLZ 20507012,

Now we are ready to use the Riesz—Thorin theorem to get an SLLN. The operator
T will be the RQMC error &, the space ©; will be [0,1]? under the uniform distribu-
tion, and the space Oy will be [0,1]"? under the distribution induced by the RQMC
points x1,...,T,.

THEOREM 5.3. Let €1, x2,... be a (t,d)-sequence in base b, with gain coefficients

no larger than T' < oo and randomized as in [44]. For p > 1, let f € LP[0,1]¢ with
f[o,ud f(x)dx = p. Then

Pr( fim i =) =1

Proof. For p > 2, the conclusion follows from Theorem 4.3, and so we assume now
that 1 < p < 2. Choose any € > 0 and suppose that n = rb™ for 1 <r < R < oo and
m > 0. The error operator & for this n satisfies ||€||z1 < 2 and ||€]|z2 < (rT/n)Y/2.
Taking 7 = £ in Corollary 5.2,

Iy (=1)/p
sup (B(iMC — puf?) " < 220/ ()
I£lp<1 n

)

from which E(|aRMC — 4|} < 227P(y['/n)P~! and then
Pr(|anMC — | > €) < 2°7Pe P ()P flDnt P,
This probability has a finite sum over r =1,..., R and m > 0, and so

Pr( lim (RQMC = u) =1
n—oo

when the limit is over n € {rb™ | 1 < r < R,m > 0}. We have thus established
a version of Theorem 4.2 for p > 1, and the extension to the unrestricted limit as
n — oo uses the same argument as Theorem 4.3. 0

The Riesz—Thorin theorem has been previously used to bound pth moments in
similar problems. See, for instance, [25, 54, 33].

6. Discussion. We have proved a strong law of large numbers for scrambled digi-
tal net integration, first for geometrically spaced sample sizes and a square integrable
integrand, then removing the geometric spacing assumption, and, finally, reducing the
squared integrability condition to E(|f(x)|?) < oo for some p > 1. It is interesting
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that this strong law for p > 1 is obtained before an equally general weak law was
found.

There are other ways to scramble digital nets and sequences. The linear scrambles
of [38] require less space than the nested uniform scramble. They have the same mean
squared discrepancy as the nested uniform scramble [28], and so they might also satisfy
an SLLN. A digital shift [36, 48] does not produce the same variance as the nested
uniform scramble, and it does not satisfy the critically important bound (3.2) on gain
coefficients, so the methods used here would not provide an SLLN for it. The nested
uniform scramble is the only one for which central limit theorems have been proved
[4, 37].

A second major family of RQMC methods has been constructed from lattice rules
[56]. Points ai,...,a, on a lattice in [0, 1]¢ are randomized into x; = a; + © mod 1
for u ~ U[0,1]¢. That is, they are shifted with wraparound in what is known as a
Cranley—Patterson rotation [9]. Then the estimate of p is ARUAT = (1/n) Y7, f(2:).
For an extensible version of shifted lattice rules, see [27]. The Cranley—Patterson
rotation does not provide a I bound like (3.2) because there are functions f € L2[0, 1]¢
with var(aRAT) = o2(f) [36], and so a proof of an SLLN for this form of RQMC
would require a different approach. The fact that var(aR*AT) = ¢2(f) is possible
does not provide a counterexample to an SLLN because this equality might only hold
for a finite number of n, in the infinite sequence. Given a class of functions F with
var(AREAT) < Bo?(f)/ng for all f € F, all £ > 1, and some B < oo, we get an
SLLN for f € F if },2,1/ny < co. Some such bounds B for randomly shifted
lattices appear in [36], though they hold for specific n, and not necessarily an infinite
sequence of them.
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an SLLN for randomized QMC. Thanks also to Ektan Bakshy, Wei-Liem Loh, and
Fred Hickernell for discussions.
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