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Abstract

Gaussian mixtures are commonly used for modeling heavy-tailed error distributions in robust linear regression. Com-
bining the likelihood of a multivariate robust linear regression model with a standard improper prior distribution yields
an analytically intractable posterior distribution that can be sampled using a data augmentation algorithm. When the
response matrix has missing entries, there are unique challenges to the application and analysis of the convergence
properties of the algorithm. Conditions for geometric ergodicity are provided when the incomplete data have a “mono-
tone” structure. In the absence of a monotone structure, an intermediate imputation step is necessary for implementing
the algorithm. In this case, we provide sufficient conditions for the algorithm to be Harris ergodic. Finally, we show
that, when there is a monotone structure and intermediate imputation is unnecessary, intermediate imputation slows
the convergence of the underlying Monte Carlo Markov chain, while post hoc imputation does not. An R package for
the data augmentation algorithm is provided.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are frequently used for sampling from intractable probability
distributions in Bayesian statistics. We study the convergence properties of a class of MCMC algorithms designed
for Bayesian multivariate linear regression with heavy-tailed errors. Contrary to most existing works in the area of
MCMC convergence analysis, we focus on scenarios where the data set is incomplete. The existence of missing data
substantially complicates the analysis.

Gaussian mixtures are suitable for constructing heavy-tailed error distributions in robust linear regression models
[4, 13, 33]. In a Bayesian setting where a simple improper prior is used, the mixture representation facilitates a data
augmentation (DA) MCMC algorithm, proposed by Liu [15], that can be used to sample from the posterior distribution
of the regression coefficients and error scatter matrix. When there are no missing data, this algorithm is geometrically
ergodic under regularity conditions [9, 29]. Loosely speaking, geometric ergodicity means that the Markov chain
converges to the posterior distribution at a geometric, or exponential rate. Geometric ergodicity is important because
it guarantees the existence of a central limit theorem for ergodic averages, which is in turn crucial for assessing the
accuracy of Monte Carlo estimators [2, 5, 10–12, 31, 32].

The current work studies Liu’s DA algorithm [15] when the response matrix has missing entries. An incomplete
data set brings unique challenges to the implementation and analysis of the DA algorithm. For instance, establishing
posterior propriety becomes much more difficult than when there are no missing values. If the posterior measure is
not proper, the DA algorithm will produce nonsensical results [8]. However, if one can show that the algorithm is
geometrically ergodic, then the posterior distribution is guaranteed to be proper.

When the missing data have a certain “monotone” structure, the DA algorithm can be carried out without an inter-
mediate step to impute the missing data. In this case, we establish geometric ergodicity under conditions on the error
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distribution and the amount of incomplete response components. Roughly speaking, when the mixing distribution
in the Gaussian mixture representation of the error distribution places little mass near the origin and the number of
incomplete components is not too large, the DA algorithm is geometrically ergodic. The conditions are satisfied by
many mixing distributions, including distributions with finite support, log-normal, generalized inverse Gaussian, and
inverse Gamma or Fréchet with shape parameter greater than d/2, where d is the dimension of the response variable.
Some Gamma, Weibull, and F distributions also satisfy the conditions. A post hoc imputation step can be added to fill
in the missing values and the convergence properties of the DA algorithm will be unaffected.

When the missing data do not possess a monotone structure, some missing entries need to be imputed to implement
the DA algorithm. This results in a data augmentation algorithm with an intermediate (as opposed to post hoc)
imputation step, which we call a DAI algorithm for short. We provide sufficient conditions for the DAI algorithm to
be Harris ergodic. Harris ergodicity is weaker than geometric ergodicity, but it guarantees posterior propriety as well
as the existence of a law of large numbers for ergodic averages [17, Theorem 17.1.7].

When the missing data have a monotone structure, both the DA (with or without post hoc imputation) and DAI
algorithms can be applied. However, we show that the DA algorithm converges in L2 at least as fast as the DAI
algorithm.

Our key strategy is to draw a connection from cases where the data set is incomplete to the standard case where
the data set is fully observed. This allows for an analysis of the former using tools built for the latter.

Finally, we provide an R package Bayesianrobust that implements the DA and DAI algorithms. The R package
is available from https://github.com/haoxiangliumn/Bayesianrobust. While the algorithms were proposed
by Liu [15], we do not know of software that implements them.

The reminder is organized as follows. Section 2 recounts the Bayesian robust linear regression model with incom-
plete data. In Section 3, we describe the DA and DAI algorithms. Our main results are in Section 4, where we provide
conditions for geometric ergodicity of the DA algorithm and Harris ergodicity of the DAI algorithm. The section also
contains a comparison between the DA and DAI algorithms in terms of L2 convergence rate. Section 5 presents a
numerical experiment. We conclude our paper in Section 6.

2. Robust Linear Regression with Incomplete Data

Let (Yi, xi), i ∈ {1, . . . , n}, be n independent data points, where xi = (xi,1, . . . , xi,p)⊤ is a p × 1 vector of known
predictors, and Yi = (Yi,1, . . . ,Yi,d)⊤ is a d × 1 random vector. Consider the multivariate linear regression model

Yi = B⊤xi + Σ
1/2εi, i ∈ {1, . . . , n},

where B is a p × d matrix of unknown regression coefficients, Σ is a d × d unknown positive definite scatter matrix,
and εi, i ∈ {1, . . . , n}, are d × 1 iid random errors. Let Y be the n × d response matrix whose ith row is Y⊤

i , and let x
be the n × p design matrix whose ith row is x⊤i .

To allow for error distributions with potentially heavy tails, assume that the distribution of each εi is described by
a scale mixture of multivariate normal densities, which takes the form

ferr(ϵ) =
∫ ∞

0

wd/2

(2π)d/2 exp
(
−

w
2
ϵT ϵ

)
Pmix(dw), ϵ ∈ Rd,

where Pmix(·) is a probability measure on (0,∞) referred to as the mixing distribution. Gaussian mixtures constitute a
variety of error distributions, and are widely used for robust regression. For instance, when Pmix(·) corresponds to the
Gamma(v/2, v/2) distribution for some v > 0, i.e., Pmix(·) has a density with respect to the Lebesgue measure given
by

pmix(w) ∝ wv/2−1 exp(−vw/2), w > 0,

the errors follow the multivariate t distribution with v degrees of freedom, which has density function

ferr(ϵ) ∝ (1 + ϵ⊤ϵ/v)−(d+v)/2, ϵ ∈ Rd.

See Section 4.2 for more examples.
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Consider a Bayesian setting. Throughout, we use (β, ς) to denote values of (B,Σ). Assume that (B,Σ) has the
following prior density:

pprior(β, ς) ∝ |ς|−(m+1)/2 exp
{
−

1
2

tr
(
ς−1a

)}
, β ∈ Rp×d, ς ∈ S d×d

+ , (1)

where m ∈ R, a ∈ S d×d
+ , and S d×d

+ is the convex cone of d × d (symmetric) positive semi-definite real matrices.
Equation (1) defines a class of commonly used default priors [3, 15]. For instance, the independence Jeffrey’s prior
corresponds to m = d and a = 0. Denote by Pprior the measure associated with pprior. The model of interest can then
be written in the hierarchical form:

Yi | W, B,Σ ind
∼ Nd

(
B⊤xi,W−1

i Σ
)
, Wi | B,Σ ind

∼ Pmix(·), i ∈ {1, . . . , n}; B,Σ ∼ Pprior(·),

where Nd denotes d-variate normal distributions, and W := (W1, . . . ,Wn)⊤ is a vector of latent random variables. The
joint measure of (Y,W, B,Σ) is given by

Pjoint(dy, dw, dβ, dς) = pjoint(y,w,β, ς) dy Pmix(dw) dβ dς,

where, for y = (y1, . . . , yn)⊤ ∈ Rn×d, w = (w1, . . . ,wn)⊤ ∈ (0,∞)n, β ∈ Rp×d, and ς ∈ S d×d
+ ,

pjoint(y,w,β, ς) ∝ pprior(β, ς)
n∏

i=1

wd/2
i

|ς|1/2
exp

{
−

1
2

wi

(
yi − β

⊤xi

)⊤
ς−1

(
yi − β

⊤xi

)}
. (2)

Throughout, conditional distributions concerning (Y,W, B,Σ) are to be uniquely defined through the density pjoint.
We assume that x is fully observed, but Y may contain missing values. The missing structure can be described by

an n×d random matrix K = (Ki, j)n
i=1

d
j=1, with Ki, j = 1 indicating Yi, j is observed, and Ki, j = 0 indicating Yi, j is missing.

For a realized response matrix y = (yi, j)n
i=1

d
j=1 ∈ Rn×d and a realized missing structure k = (ki, j)n

i=1
d
j=1 ∈ {0, 1}n×d, let

y(k) be the array (yi, j)(i, j)∈A(k), where A(k) = {(i, j) : ki, j = 1}. Then Y(K) gives the observable portion of Y. In practice,
instead of observing Y, one sees (K,Y(K)). Throughout, we assume that the missing data mechanism is ignorable,
which means the following.

Definition 1. The missing data mechanism is ignorable if, for any k ∈ {0, 1}n×d and almost every y ∈ Rn×d, the
posterior distribution of (B,Σ) given (K,Y(K)) = (k, y(k)) is the same as the conditional distribution of (B,Σ) given
Y(k) = y(k).

If, given (B,Σ) = (β, ς), the distribution of K does not depend on (β, ς), and the data are “realized missing at random”
[30, Theorem 2], which holds if K is independent of Y, then the missing data mechanism is ignorable. From here
on, fix a realized missing structure k = (ki, j)n

i=1
d
j=1 ∈ {0, 1}n×d, and only condition on Y(k) when studying posterior

distributions. Without loss of generality, assume that each row of k contains at least one nonzero element, i.e., for
each i, Yi has at least one observed entry.

To write down the exact form of the posterior, we introduce some additional notation. Suppose that given i ∈

{1, . . . , n}, ki, j = 1 if and only if j ∈ { j1, . . . , jdi } for some di ∈ {1, . . . , d}, where j1 < · · · < jdi . Given i, let ci,(k) be the
di × d matrix that satisfies the following: For ℓ ∈ {1, . . . , di}, in the ℓth row of ci,(k), all elements except the jℓth one
are 0, while the jℓth one is 1. For instance, if d = 4, di = 2, j1 = 1, j2 = 3, then

ci,(k) =

(
1 0 0 0
0 0 1 0

)
.

Then Yi,(k) := ci,(k)Yi is a vector consisting of the observed components of Yi if K = k, and we can write Y(k)
as (Yi,(k))n

i=1. For a realized value of Y, say y = (yi, j)n
i=1

d
j=1 ∈ Rn×d, denote by yi the ith row of y transposed, let

yi,(k) = ci,(k)yi, and let y(k) = (yi,(k))n
i=1. Based on (2), the posterior density of (B,Σ) given Y(k) = y(k) has the following

form:

πk
(
β, ς | y(k)

)
∝ pprior(β, ς)

n∏
i=1

∫ ∞

0

wdi/2∣∣∣∣ci,(k)ςc⊤i,(k)

∣∣∣∣1/2 exp
(
−

ri,(k)w
2

)
Pmix(dw),
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Pattern 1
y1,1 y1,2 · · · y1,d
...

...
. . .

...
yn1,1 yn1,2 · · · yn1,d

Pattern 2
yn1+1,2 · · · yn1+1,d
...

. . .
...

yn1+n2,2 · · · yn1+n2,d
...

. . .
...

Pattern d
yn−nd+1,d
...

yn,d

Fig. 1: The observed response under a monotone structure. For a realized response matrix y = (yi, j)n
i=1

d
j=1 ∈ Rn×d , a realized missing structure

k = (ki, j)n
i=1

d
j=1 ∈ {0, 1}n×d is monotone if the observed response, i.e., the elements in y(k), can be arranged in the format above.

where, for i ∈ {1, . . . , n},

ri,(k) =
(
yi,(k) − ci,(k)β

⊤xi

)⊤ (
ci,(k)ςc⊤i,(k)

)−1 (
yi,(k) − ci,(k)β

⊤xi

)
. (3)

Remark 1. Because the prior distribution is not proper, πk(· | y(k)) may not be a proper probability density. As a side
product of our convergence analysis, we give sufficient conditions for posterior propriety in Section 4.

The posterior density πk(· | y(k)) is almost always intractable in the sense that it is hard to calculate its features
such as expectation and quantiles. Liu [15] proposed a data augmentation (DA) algorithm, or two-component Gibbs
sampler, that can be used to sample from this distribution. This is an MCMC algorithm that simulates a Markov chain
(B(t),Σ(t))∞t=0 that is reversible with respect to the posterior. In the next section, we describe the algorithm in detail.

3. The DA and DAI Algorithms

3.1. Missing structures
To adequately describe the DA and DAI algorithms, we need to introduce some concepts regarding missing struc-

ture matrices.
A realized missing structure k = (ki, j)n

i=1
d
j=1 ∈ {0, 1}n×d is said to be monotone if the following conditions hold:

(i) If ki, j = 1 for some i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, then ki′, j′ = 1 whenever i′ ≤ i and j′ ≥ j.
(ii) ki,d = 1 for i ∈ {1, . . . , n}.

The monotone missing structure occurs, for example, in studies with attrition, where units drop out prior to the
end of the study and do not return [14, Example 1.6]. In practice, there are cases where the observed missing structure
can be re-arranged to become monotone by permuting the rows and columns of the response matrix. If there are no
missing data, the corresponding missing structure is monotone.

Let k = (ki, j)n
i=1

d
j=1 be monotone. Then, for a realized response matrix y = (yi, j)n

i=1
d
j=1 ∈ Rn×d, the elements in y(k)

can be arranged as in Fig. 1. We say that the ith observation belongs to pattern ℓ for some ℓ ∈ {1, . . . , d} if ki, j = 1
for j ≥ ℓ and ki, j = 0 for j < ℓ. There are d possible patterns. For ℓ ∈ {1, . . . , d}, denote by nℓ(k) the number of
observations that belong to pattern ℓ. Let y(k,ℓ) be the [

∑ℓ
j=1 n j(k)] × (d − ℓ + 1) matrix whose ith row is (yi,ℓ, . . . , yi,d),

and let x(k,ℓ) be the submatrix of x formed by the first
∑ℓ

j=1 n j(k) rows of x. Denote by y(k,ℓ) : x(k,ℓ) the matrix formed
by attaching x(k,ℓ) to the right of y(k,ℓ). We say that Condition (4) holds for the pair (k, y(k)) if

r
(
y(k,ℓ) : x(k,ℓ)

)
= p + d − ℓ + 1,

ℓ∑
j=1

n j(k) > p + d − m + ℓ − 1, ℓ ∈ {1, . . . , d}. (4)

Here, r(·) returns the rank of a matrix. This condition is crucial for the DA algorithm to be well-defined and imple-
mentable.
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3.2. The DA algorithm
Fix a realized response y ∈ Rn×d and a realized missing structure k ∈ {0, 1}n×d. Given the current state (B(t),Σ(t)) =

(β, ς), the DA algorithm for sampling from πk(· | y(k)) draws the next state (B(t + 1),Σ(t + 1)) using the following
steps.

1. I step. Draw W∗ = (W∗
1 , . . . ,W

∗
n ) from the conditional distribution of W given (B,Σ,Y(k)) = (β, ς, y(k)). Call the

sampled value w.
2. P step. Draw (B(t + 1),Σ(t + 1)) from the conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)).

This algorithm simulates a Markov chain (B(t),Σ(t))∞t=0 that is reversible with respect to πk(· | y(k)).
For i ∈ {1, . . . , n}, let di be the number of nonzero entries in the ith row of k. (Note: if k is monotone, and the ith

observation belongs to some pattern ℓ, then di = d − ℓ + 1.) Then the conditional distribution of W = (W1, . . . ,Wn)
given (B,Σ,Y(k)) = (β, ς, y(k)) is

Pk(dw | β, ς, y(k)) ∝
n∏

i=1

wdi/2
i exp

(
−

ri,(k)wi

2

)
Pmix(dwi), (5)

where ri,(k) is defined in (3) for i ∈ {1, . . . , n}. To ensure that this conditional distribution is always proper, we assume
throughout that ∫ ∞

0
wd/2 Pmix(dw) < ∞. (6)

The conditional distribution Pk (· | β, ς, y(k)) corresponds to n independent univariate random variables. For most
commonly used mixing distributions Pmix(·), this is not difficult to sample. For instance, if Pmix(·) is a Gamma
distribution, Pk (· | β, ς, y(k)) is the product of n Gamma distributions.

The conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)) is

pk(β, ς | w, y(k)) ∝ pprior(β, ς)
n∏

i=1

1∣∣∣∣ci,(k)ςc⊤i,(k)

∣∣∣∣1/2 exp
(
−

ri,(k)wi

2

)
, (7)

where, for i ∈ {1, . . . , n}, ri,(k) is defined in (3). Under general missing structures, the conditional distribution pk(· |
w, y(k)) is not always tractable. In fact, since an improper prior is used, this conditional is possibly improper. Liu
[15] provided a method for sampling from this distribution when k is monotone. When Condition (4) holds for
(k, y(k)), the conditional of (B,Σ) given (W,Y(k)) = (w, y(k)) is proper for any w = (w1, . . . ,wn) ∈ (0,∞)n. The
monotone missing structure allows for a factorization of this conditional distribution after appropriate transformations.
Similar techniques are commonly used in missing data literature [14, Chapter 7]. Then the conditional distribution
pk(· | w, y(k)) can be sampled using chi-square and normal distributions. The method is intricate, so we relegate the
details to Appendix A.

Let k0 ∈ {0, 1}n×d be the missing structure that corresponds to a completely observable response, i.e., all elements
of k0 are 1. Denote by Y(k0−k) the missing parts in the response. Sometimes, we are interested in the posterior
distribution of Y(k0−k) given Y(k) = y(k), which takes the following form:

PY(k0−k)

(
dz | k, y(k)

)
∝ dz

∫
S d×d
+

∫
Rp×d

∫
(0,∞)n

pjoint(yz,w,β, ς)Pmix(dw)dβdς,

where pjoint is given in (2), and yz is a realized value of Y such that yz
(k) = y(k) and yz

(k0−k) = z. To sample from
PY(k0−k)

(
· | k, y(k)

)
, one can add a post hoc imputation step at the end of each DA iteration.

3. Post hoc imputation step. Draw Z(t + 1) from the conditional distribution of Y(k0−k) given (Y(k),W, B,Σ) =

(y(k),w,β∗, ς∗), where (β∗, ς∗) is the sampled value of (B(t + 1),Σ(t + 1)).

Recall that, given (W, B,Σ) = (w,β∗, ς∗), Y has a multivariate normal distribution. Then the conditional distribution
of Y(k0−k) given (Y(k),W, B,Σ) = (y(k),w,β∗, ς∗) is also (univariate or multivariate) normal, and (B(t),Σ(t), Z(t))∞t=0 is
a Markov chain whose stationary distribution is the posterior distribution of (B,Σ,Y(k0−k)) given Y(k) = y(k).
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The imputation step is post hoc because it can be implemented at the end of the whole simulation, as long as
the value of w is recorded in the I step of each iteration. Post hoc imputation is possible because the I and P steps
do not rely on the value of Z(t). Naturally, post hoc imputation does not affect the convergence properties of the
Markov chain. Indeed, a standard argument [22, Theorem 1] shows that (B(t),Σ(t), Z(t))∞t=0 is geometrically ergodic
if and only if (B(t),Σ(t))∞t=0 is geometrically ergodic. Moreover, the proof of Theorem 1 in Roberts and Rosenthal
[22] implies that the L2 convergence rate of the two chains, as defined in Section 4.1, are the same. Thus, when
studying the convergence properties of the DA algorithm, we can restrict our attention to (B(t),Σ(t))∞t=0 instead of
(B(t),Σ(t), Z(t))∞t=0 even if there is post hoc imputation.

3.3. The DAI algorithm

For two realized missing structures k = (ki, j) ∈ {0, 1}n×d and k′ = (k′i, j) ∈ {0, 1}n×d, write k ≺ k′ if (i) k , k′ and
(ii) k′i, j = 1 whenever ki, j = 1. That is, k ≺ k′ if the observed response entries under structure k is a proper subset of
those under k′. If k ≺ k′, then k′ − k is a missing structure matrix that gives the entries that are missing under k, but
not under k′. In other words, when k ≺ k′, Y(k′−k) is observed under k′, but not under k.

Fix a realized response y ∈ Rn×d and missing structure k. One may imagine that k is not monotone, and the DA
algorithm cannot be implemented efficiently. The DAI algorithm [15] overcomes non-monotonicity by imputing the
value of Y(k′−k) in the I step, where k′ is a monotone realized missing structure such that k ≺ k′ chosen by the user.
We now describe the details of this algorithm.

The DAI algorithm associated with the triplet (y, k, k′) simulates a Markov chain (B(t),Σ(t))∞t=0 that is reversible
with respect to πk(· | y(k)). Given the current state (B(t),Σ(t)) = (β, ς), the DAI algorithm draws the next state
(B(t + 1),Σ(t + 1)) using the following steps.

1. I1 step. Draw W∗ = (W∗
1 , . . . ,W

∗
n ) from the conditional distribution of W given (B,Σ,Y(k)) = (β, ς, y(k)), whose

exact form is given in (5). Call the sampled value w.
2. I2 step. Draw Z(t + 1) from the conditional distribution of Y(k′−k) given

(Y(k),W, B,Σ) = (y(k),w,β, ς). Call the sampled value z.
3. P step. Draw (B(t+ 1),Σ(t+ 1)) from the conditional distribution of (B,Σ) given (W,Y(k),Y(k′−k)) = (w, y(k), z).

Recall that, given (W, B,Σ) = (w,β, ς), Y has a multivariate normal distribution. Then in the I2 step, the condi-
tional distribution of Y(k′−k) given (Y(k),W, B,Σ) = (y(k),w,β, ς) is (univariate or multivariate) normal. In the P step,
one is in fact sampling from the conditional distribution of (B,Σ) given (W,Y(k′)) = (w, y∗(k′)), where y∗ is a realized
value of Y such that y∗(k) = y(k) and y∗(k′−k) = z. To ensure that this step can be implemented efficiently, we need
two conditions: (i) k′ is monotone, and (ii) Condition (4) holds for (k′, y∗(k′)). If these two conditions hold, then one
can use methods in Appendix A to implement the P step. Of course, in each step of the DAI algorithm, z = y∗(k′−k)
changes. Despite this, due to the following result, which is easy to verify, we do not have to check (ii) in every step.

Proposition 1. Let k′ be a monotone missing structure such that k ≺ k′, and let y∗ ∈ Rn×d be such that y∗(k) = y(k).
Suppose that there exists a monotone structure k′′ such that k′′ ≺ k, and that Condition (4) holds for (k′′, y(k′′)). Then
Condition (4) holds for (k′, y∗(k′)) regardless of the value of y∗(k′−k).

The DAI algorithm can be used to impute the missing values of Y. Indeed, (B(t),Σ(t), Z(t))∞t=0 is a Markov chain
whose stationary distribution is the posterior distribution of (B,Σ,Y(k′−k)) given Y(k) = y(k). This is similar to the DA
algorithm with post hoc imputation described in Section 3.2, especially if all the entries of k′ are 1. Compared to
the DA algorithm with post hoc imputation, the DAI algorithm can be implemented even when k is not monotone.
However, the intermediate imputation step I2 cannot be performed after the whole simulation process since the P step
of DAI relies on the value of Z(t + 1).

The Markov chain (B(t),Σ(t), Z(t))∞t=0 is geometrically ergodic if and only if (B(t),Σ(t))∞t=0 is geometrically ergodic
[22, Theorem 1]. The proof of Theorem 1 in Roberts and Rosenthal [22] shows that the two chains have the same L2

convergence rate. Thus, when studying the convergence properties of the DAI algorithm, we can restrict our attention
to (B(t),Σ(t))∞t=0 instead of (B(t),Σ(t), Z(t))∞t=0 even if we care about imputing missing data.
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4. Convergence Analysis

4.1. Preliminaries

We start by reviewing some general concepts regarding the convergence properties of Markov chains. Let (X,F )
be a measurable space. Consider a Markov chain (X(t))∞t=0 whose state space is (X,F ), and let K : X × F → [0, 1] be
its transition kernel. For a signed measure µ and a measurable function f on (X,F ), let

µ f =

∫
X

f (x) µ(dx),

and K can act on µ and f as follows:

µK(A) =
∫
X

K(x, A) µ(dx), A ∈ F , K f (x) =
∫
X

f (y)K(x, dy), x ∈ X,

assuming that the integrals are well-defined. Suppose that the chain has a stationary distribution π, i.e., πK(·) = π(·).
The chain is said to be reversible if, for A1, A2 ∈ F ,∫

A1×A2

π(dx)K(x, dy) =
∫

A2×A1

π(dx)K(x, dy).

For two probability measures µ1 and µ2 on (X,F ), denote the total variation (TV) distance between the two
probability measures by ||µ1(·) − µ2(·)||TV . For t ∈ Z+, let Kt : X × F → [0, 1] be the t-step transition kernel of the
chain, so that K1 = K, and µKt+1(·) = (µKt)K(·) for any probability measure µ on (X,F ). A ϕ-irreducible aperiodic
Markov chain with stationary distribution π is Harris ergodic if and only if limt→∞ ||Kt(x, ·)−π(·)||TV = 0, for all x ∈ X

[17, 24]. The chain is said to be geometrically ergodic if

||Kt(x, ·) − π(·)||TV ≤ M(x)ρt, x ∈ X, t ∈ Z+, (8)

for some ρ ∈ [0, 1) and M : X → [0,∞). As mentioned in the Introduction, Harris ergodicity guarantees a law of large
numbers [17, Theorem 17.1.7], and geometric ergodicity guarantees a central limit theorem [5, 10, 11].

Another commonly used distance between probability measures is the L2 distance. Let L2(π) be the set of mea-
surable functions f : X → R such that

π f 2 :=
∫
X

f 2(x) π(dx) < ∞.

The L2 distance between two probability measures µ1 and µ2 on (X,F ) is

∥µ1(·) − µ2(·)∥2 = sup
f∈L2(π)

|µ1 f − µ2 f |.

Denote by L2
∗(π) the set of probability measures µ on (X,F ) such that µ is absolutely continuous to π and that dµ/dπ,

the density of µ with respect to π, is in L2(π). We say the chain is L2 geometrically ergodic if

∥µKt(·) − π(·)∥2 ≤ C(µ)ρt, µ ∈ L2
∗(π), t ∈ Z+, (9)

for some ρ ∈ [0, 1) and C : L2
∗(π) → [0,∞). For a ϕ-irreducible reversible Markov chain, geometric ergodicity implies

L2 geometric ergodicity [21, Theorem 2.1 and Remark 2.3]. See also [25] Theorem 2 and [20] Section 3.3.
The infimum of ρ ∈ [0, 1] such that (9) holds for some C : L2

∗(π) → [0,∞) is called the L2 convergence rate of the
chain. The smaller this rate is, the faster the convergence.

7



4.2. Geometric ergodicity of the DA algorithm
Define three classes of mixing distributions based on their behaviors near the origin. These classes were first

examined in an analysis of the DA algorithm when the response matrix is fully observed [9]. We say that the mixing
distribution Pmix(·) is zero near the origin if there exists θ > 0 such that

∫ θ
0 Pmix(dw) = 0. Assume now that Pmix(·)

admits a density function pmix(·) : (0,∞) → [0,∞) with respect to the Lebesgue measure. If there exists c > −1, such
that limw→0 pmix(w)/wc < ∞, we say that Pmix(·) is polynomial near the origin with power c. The mixing distribution
Pmix(·) is faster than polynomial near the origin if, for all c > 0, there exists κc > 0 such that the ratio pmix(w)/wc is
strictly increasing on (0, κc).

Most commonly used mixing distributions fall into one of these three classes. Examples will be given after we
state the main result of this section.

Again, fix an observed missing structure k and observed response y(k). Let di be the number of nonzero elements
in the ith row of k. Recall that n is the number of observations, p is the number of predictors, d is the dimension of
the responses, and m is a parameter in the prior distribution (1).

Theorem 1. Consider the DA algorithm targeting πk(· | y(k)), as described in Section 3.2. Suppose that (6) holds, and
that the conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)) is proper for every w = (w1, . . . ,wn)⊤ ∈ (0,∞)n.
If any one of the following conditions holds, then the posterior πk(· | y(k)) is proper and the underlying Markov chain
is geometrically ergodic.

(i) Pmix(·) is zero near the origin;
(ii) Pmix(·) is faster than polynomial near the origin;

(iii) Pmix(·) is polynomial near the origin with power c > c1, where

c1 =
n − p + m − min{d1, . . . , dn}

2
.

Remark 2. Recall that when k is monotone, the conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)) is proper
for every w = (w1, . . . ,wn)⊤ ∈ (0,∞)n if Condition (4) holds for (k, y(k)).

Remark 3. When Pmix(·) has a density function with respect to the Lebesgue measure and Y is fully observed,
Theorem 1 reduces to an existing result [9, Theorem 1].

The proof of Theorem 1 is in Appendix B. In what follows, we list commonly used mixing distributions that fall
into the three categories in Theorem 1. We also check whether each mixing distribution satisfies (6).

When the mixing distribution Pmix(·) is discrete with finite support, the mixing distribution is zero near the origin.
This is the case when errors follow finite mixtures of Gaussian. Obviously, (6) holds in this case.

A Pareto(a, b) distribution has density p(w | a, b) ∝ w−b−1, w ∈ [a,∞), where a > 0, b > 0. It is zero near the
origin as the support is [a,∞). Condition (6) holds if b > d/2.

A generalized inverse Gaussian distribution GIG(a, b, q) with density

p(w | a, b, q) ∝ wq−1 exp
(
−

aw + b/w
2

)
,

where a > 0, b > 0, q ∈ R, is faster than polynomial near the origin. Condition (6) holds for any GIG distribution.
When the mixing distribution is GIG, the distribution of the error is called Generalized Hyperbolic [1].

The density of an inverse gamma distribution IG(a, b) is p(w | a, b) ∝ w−a−1 exp(−b/w), where a > 0, b > 0.
IG(a, b) is faster than polynomial near the origin. Condition (6) is satisfied if a > d/2.

For µ ∈ R and v > 0, a Log-normal(µ, v) distribution has density

p(w | µ, v) ∝
1
w

exp
{
−

(ln w − µ)2

2v2

}
.

This distribution is faster than polynomial near the origin and (6) holds.
A Fréchet distribution with the shape α > 0 and scale s > 0 is given by

p(w | α, s) ∝ w−(1+α) exp {− (s/w)α} .
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It is faster than polynomial near the origin. Moreover, (6) holds whenever α > d/2.
A Gamma(a, b) distribution has density p(w | a, b) ∝ wa−1 exp(−bw), where a > 0 and b > 0. Gamma(a, b) is

polynomial near the origin with power c = a − 1. The power c > c1 if

a >
n − p + m − min{d1, . . . , dn}

2
+ 1,

where c1 is given in Theorem 1. Condition (6) always holds for Gamma distributions. In particular, when a = b = v/2,
the error has multivariate t distribution with degrees of freedom v, and c > c1 if

v > n − p + m − min{d1, . . . , dn} + 2.

A Beta(a, b) distribution has density p(w | a, b) ∝ wa−1(1 − w)b−1, w ∈ (0, 1), where a > 0 and b > 0. When
b = 1, the error is called multivariate slash distribution [13, 26]. Beta(a, b) is polynomial near the origin with power
c = a − 1. Condition (6) always holds for Beta distributions.

A Weibull(a, b) distribution has density p(w | a, b) ∝ wa−1 exp{−(w/b)a}, where a > 0 and b > 0. Weibull(a, b) is
polynomial near the origin with power c = a − 1. Condition (6) always holds for Weibull distributions.

An F(a, b) distribution has density p(w | a, b) ∝ wa/2−1(aw + b)−(a+b)/2, where a > 0 and b > 0. F(a, b) is
polynomial near the origin with power c = a/2 − 1. The power c > c1 if

a > n − p + m − min{d1, . . . , dn} + 2.

Condition (6) is satisfied if b > d.

4.3. Harris ergodicity of the DAI algorithm

Now we give sufficient conditions for the DAI algorithm to be Harris ergodic.

Theorem 2. Assume that (6) holds. Let k be a missing structure. Suppose that there is a missing structure k′ and
a realized value of Y(k′) denoted by z such that k′ ≺ k, and that πk′ (· | z), the conditional density of (B,Σ) given
Y(k′) = z, is proper. Then, for Lebesgue almost every z′ in the range of Y(k−k′), the posterior density πk(· | y(k)),
where y satisfies y(k′) = z and y(k−k′) = z′, is proper, and any DAI chain targeting this posterior is Harris ergodic.

Proof. The posterior density πk(· | y(k)) can be regarded as the posterior density of (β,Σ) given Y(k−k′) = z′ when the
prior density is πk′ (· | z). Since πk′ (· | z) is assumed to be proper, this posterior is proper for almost every possible
value of z′.

Under (6) and posterior propriety, a DAI chain targeting the posterior is Harris ergodic [24, Theorem 6 and
Corollary 13].

By Theorem 1, a posterior density πk′ (· | y(k′)) is proper if each of the following conditions holds:

• k′ is monotone, and Condition (4) holds for (k′, y(k′));

• Pmix(·) satisfies (6);

• Pmix(·) is either zero near the origin, or faster than polynomial near the origin, or polynomial near the origin
with power c > c1, where

c1 =
n − p + m − min{d′

1, . . . , d
′
n}

2
,

and for i ∈ {1, . . . , n}, d′
i is the number of nonzero entries in the ith row of k′.

By Theorem 2, under (6), to ensure Harris ergodicity of a DAI algorithm targeting πk(· | y(k)) in an almost sure sense,
one only needs to find a missing structure k′ ≺ k that satisfies the conditions above. In theory, when such a k′ exists,
it is still possible that the posterior πk(· | y(k)) is improper – even though it only happens on a zero measure set [3].
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4.4. Comparison between the DA and DAI algorithms

Again, fix a missing structure k and a realized response y, and let di be the number of nonzero elements in the
ith row of k. Assume that there is at least one missing entry, i.e., di < d for some i ∈ {1, . . . , n}. Assume also that
πk(· | y(k)) is proper. In principle, one can either use the DA algorithm (with or without post hoc imputation) or the
DAI algorithm associated with (y, k, k′) where k ≺ k′ to sample from the posterior. In this subsection, we compare
the two algorithms in terms of their L2 convergence rates. This comparison is important when k is monotone, and
Conditions (4) and (6) hold. In this case, both algorithms can be efficiently implemented.

Let S and T be two random elements. Denote by π the marginal distribution of S . A generic data augmentation
algorithm for sampling from π simulates a Markov chain (S (t))∞t=0 that is reversible to π. Given the current state S (t),
the next state S (t + 1) is generated through the following procedure.

1. I step. Draw T ∗ from the conditional distribution of T given S = S (t). Call the observed value t∗.
2. P step. Draw S (t + 1) from the conditional distribution of S given T = t∗.

The DA and DAI algorithms for Bayesian robust linear regression are special cases of the above method. Indeed,
let S 1, T1, and T2 be three random elements such that the joint distribution of S 1, T1, and T2 is the conditional joint
distribution of (B,Σ), W, and Y(k′−k) given Y(k) = y(k). Then, taking S = S 1 and T = T1 in the generic algorithm
yields the DA algorithm; taking S = S 1 and T = (T1,T2) yields the DAI algorithm associated with (y, k, k′).

The L2 convergence rate of the generic data augmentation chain is precisely the squared maximal correlation
between S and T [16]. The maximal correlation between S and T is

γ(S ,T ) := sup corr[ f (S ), g(T )],

where corr means linear correlation, and the supremum is taken over real functions f and g such that the variances of
f (S ) and g(T ) are finite. Evidently,

γ(S 1,T1) ≤ γ(S 1, (T1,T2)).

We then have the following result.

Theorem 3. Suppose that πk(· | y(k)) is proper, and that the conditional distributions in the DA and DAI algorithms
are well-defined. Then, the L2 convergence rate of the DA chain targeting πk(· | y(k)) is at least as small as that of any
DAI chain targeting πk(· | y(k)).

Recall that a smaller convergence rate means faster convergence. Thus, when computation time is not considered
and the observed missing structure is monotone, the DA algorithm is faster than the DAI algorithm. In this case,
imputation of missing data, if needed, should be performed in a post hoc rather than intermediate manner. In Section 5
we use numerical experiments to show that this appears to be the case even after computation cost is taken into account.

5. Numerical Experiment

We compare the performance of the DA and DAI algorithms using simulated data. All simulations are imple-
mented through the Bayesianrobust R package.

Suppose that we have n = 50 observations in a study. Assume that for each observation, the response has d = 2
components, while the predictor has the form xi = (1, xi)⊤ where xi ∈ R. We generate the xis using independent
normal distributions. The response matrix y is generated according to the robust linear regression model, with the
mixing distribution being Gamma(1, 1). The simulated data set is fixed throughout the section.

On the modeling side, we consider an independence Jeffreys prior with m = d = 2 and a = 0 (see (1)) and three
mixing distributions:

• G: The mixing distribution is Gamma(2, 2). The error is t distribution with degrees of freedom 4. By (5), in the
I step of the DA algorithm, one draws n independent Gamma random variables.

• GIG: The mixing distribution is GIG(1, 1,−0.5). The error is generalized hyperbolic. By (5), in the I step of the
DA algorithm, one draws n independent generalized inverse Gaussian random variables.
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• P: The mixing distribution is the point mass at 1. The error is multivariate normal distribution. In this case, the
posterior can be exactly sampled by the DA algorithm.

We study three realized missing structures. Under these missing structures, the response matrix y has, respectively,
45, 40, and 35 rows fully observed. The other rows all have only the second entry observed. It is clear that all three
missing structures are monotone.

In total, we consider nine combinations of mixing distributions and missing structures. We apply both the DA and
DAI algorithms in each scenario. In the I2 step of the DAI algorithm (see Section 3.3), k′ is taken to be the n × d
matrix whose entries are all 1, i.e., k′ corresponds to the case that the response matrix is fully observed. At the end
of each iteration of the DA algorithm, a post hoc imputation step is performed, so both algorithms impute all missing
response entries.

Consider estimating the regression coefficients B and scatter matrix Σ using the posterior mean computed via the
DA or DAI algorithm. We compare the efficiency of the two algorithms based on the effective sample size (ESS) of
each component separately and all components jointly. The ESS is estimated by the mcmcse R package [6]. At a given
simulation length N, the univariate ESS of an MCMC estimator is defined to be N times the posterior variance divided
by the asymptotic variance of the estimator [7]. For a multivariate Markov chain on R p̃, where p̃ is the dimension of
the Markov chain, letΛ be the posterior covariance matrix andΦ be the asymptotic covariance matrix of the estimator.
The multivariate ESS of an MCMC estimator is defined to be N (|Λ|/|Φ|) 1/p̃ [32]. To account for computation cost,
we also consider the ESS per minute, ESSpm = ESS/tN , where tN is the number of minutes needed to run N iterations
of the algorithm. The simulation length is set to be N = 30, 000 without burn-in, and the initial values are the ordinary
least squares estimates using the observations that belong to pattern 1, i.e., the observations without missing elements.

Fig. 2: The ESS and ESS per minute (ESSpm) of all components jointly in different scenarios. The x axis lists the mixing distributions and samplers
used, and the legend labels the missing structures by the number of fully observed rows.

Fig. 2 gives the ESS and ESSpm of all components jointly for each of the 3 × 3 × 2 combinations of mixing
distributions, missing structures, and MCMC algorithms. The ESS and ESSpm of each component separately are
included in Table C.1 and C.2 in Appendix C. We see that the DA algorithm gives a larger ESS compared to the DAI
algorithm. For the DAI algorithm, the ESS is lower when there are more missing data. Similar trends appear when
we consider the ESSpm. In short, imputation of missing responses values slows an algorithm down. This is consistent
with our theoretical results. (Strictly speaking, our theoretical results concern convergence rate, not effective sample
size, but for data augmentation chains which are reversible and positive, these two concepts are closely related. See,
e.g., [28], Section 3.)

In addition to the experiment above, we consider another series of mixing distributions, namely Gamma(v, v) with
v = 2, 8, 25. The resultant error distributions are multivariate t distributions with 2v degrees of freedom. Applying the
DA and DAI algorithms to these models, we obtain Fig. 3, the ESS and ESSpm of all components jointly. The ESS
and ESSpm of each component separately are in Table C.3 and C.4 in Appendix C. Our simulation shows that when
the model assumes that the error distribution has a lighter tail, the MCMC algorithms tend to be more efficient.
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Fig. 3: The ESS and ESS per minute (ESSpm) of all components jointly in different scenarios. The x axis lists the Gamma(v, v) mixing distributions
and samplers used, and the legend labels the missing structures by the number of fully observed rows.

6. Discussion

We conduct convergence analysis for data augmentation algorithms used in Bayesian robust multivariate linear
regression with incomplete data. The algorithms were first proposed by Liu [15]. But, previously, little was known
about its theoretical properties when the response matrix contains missing values. We consider two versions of the
algorithm, DA and DAI. The DA algorithm can only be applied when the missing structure is monotone, whereas the
DAI algorithm can be implemented for an arbitrary missing structure. We establish geometric ergodicity of the DA
algorithm under simple conditions. For the DAI algorithm, we give conditions for Harris ergodicity. We compare
the L2 convergence rates of the DA and DAI algorithms. The L2 convergence rate of the DA algorithm is at least as
small as a corresponding DAI algorithm. A numerical study is provided. Under monotone missing structures, the DA
algorithm outperforms the DAI computationally and theoretically.

When the responses are completely observed, Qin and Hobert [19] in 2018 provided conditions for the DA Markov
chains to be trace-class, i.e., compact with summable eigenvalues, which is a property stronger than geometric ergod-
icity. It is reasonable to speculate that the trace-class property may persist even in scenarios where the data are in-
complete. However, establishing this, if feasible at all, demands a nuanced and intricate analysis. This is an intriguing
topic for future studies.
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Appendix A. Details of the DA algorithm

The DA algorithm consists of two steps, the I step and the P step. The I step is shown in Section 3.2. In this
section, we describe the P step when the missing structure k is monotone and Condition (4) holds.

Recall from Section 3.1 that the monotone missing structure k has d possible patterns. For ℓ ∈ {1, . . . , d}, nℓ(k)
is the number of observations that belong to pattern ℓ. x(k,ℓ) and y(k,ℓ) are submatrices of x and y respectively
defined in Section 3.1. Define an n × n diagonal matrix λℓ = diag(w1, . . . ,w∑ℓ

j=1 n j(k)
, 0, . . . , 0). That is, the first∑ℓ

j=1 n j(k) diagonal entries of λℓ are w1, . . . ,w∑ℓ
j=1 n j(k)

, listed in order, and all the other entries are 0. Similarly, let

λ′ℓ = diag(w1, . . . ,w∑ℓ
j=1 n j(k)). Denote β̂ℓ as the weighted least squares estimates of the regression coefficient of y(k,ℓ)
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on x(k,ℓ) with weight (w1, . . . ,w∑ℓ
j=1 n j(k)

), and sℓ as the corresponding weighted total sum of residual squares and cross-
products matrix, i.e.,

β̂ℓ =
(
x⊤λℓx

)−1
x⊤(k,ℓ)λ

′
ℓy(k,ℓ), sℓ =

(
y(k,ℓ) − x(k,ℓ)β̂ℓ

)⊤
λ′ℓ

(
y(k,ℓ) − x(k,ℓ)β̂ℓ

)
.

Let aℓ be the lower right (d− ℓ+ 1)× (d− ℓ+ 1) submatrix of the positive semi-definite matrix a given in the prior (1).
P step. Draw (B(t + 1),Σ(t + 1)) from the conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)) using the

following procedure.

1. Draw Σ(t + 1) given (W,Y(k)) = (w, y(k)):
For ℓ ∈ {1, . . . , d}, let cℓ = aℓ + sℓ, and let eℓ be the lower triangular Cholesky factor of c−1

ℓ (so that c−1
ℓ = eℓe⊤ℓ ).

Draw a sequence of random vectors F1, . . . , Fd such that Fℓ = (Fℓ,ℓ, . . . , Fd,ℓ)⊤ is (d − ℓ + 1) dimensional, and
that

(a) Fi j ∼ N(0, 1) for 1 ≤ j < i ≤ d,
(b) F2

ii ∼ χ
2(d fi) for i ∈ {1, . . . , d}, where d fi = (

∑i
j=1 n j) − i + m − p − d + 1,

(c) Fi j are independent for all 1 ≤ j ≤ i ≤ d.
Denote the sampled values by f1, . . . , fd.
Let hℓ = eℓ fℓ for ℓ ∈ {1, . . . , d}, and let h be a d × d lower triangular matrix with its lower triangular non-zero
part formed by columns h1, . . . , hd. Then ς = (hh⊤)−1 serves as a sampled value of Σ(t + 1).

2. Draw B(t + 1) given (Σ(t + 1),W,Y(k)) = (ς,w, y(k)):
Independently, draw p-dimensional standard normal random vectors Z1, . . . , Zd, and call the sampled values
z1, . . . , zd. For ℓ ∈ {1, . . . , d}, let uℓ be the lower triangular Cholesky factor of (x⊤λℓx)−1. Then

(u1 z1, . . . ,ud zd)h−1 + (β̂1h1, . . . , β̂d hd)h−1

serves as a sampled value of B(t + 1).

Let us consider a special case. Recall that k0 ∈ {0, 1}n×d is the missing structure that corresponds to a completely
observable response, i.e., all elements of k0 are 1. Then Y(k0) = Y, y(k0) = y, and k0 is monotone. Let y : x be the
matrix obtained by attaching x to the right of y. Then Condition (4) for (k0, y(k0)) is equivalent to

r(y : x) = p + d, n > p + 2d − m − 1. (A.1)

Note that if there is some monotone k such that Condition (4) holds for (k, y(k)), then (A.1) necessarily holds. Under
(A.1), the conditional distribution of (B,Σ) given (W,Y) = (w, y) is proper and rather simple. We say Z ∼ Np,d(µ,u, v)
for µ ∈ Rp×d, u ∈ S p×p

+ , and v ∈ S d×d
+ if Z is a p × d random matrix associated with the probability density function

exp
[
− 1

2 tr
{
v−1(z − µ)T u−1(z − µ)

}]
(2π)pd/2|v|p/2|u|d/2

, z ∈ Rp×d.

Np,d is called a matrix normal distribution. We say Z ∼ IWd(ν,ψ) for ν > d − 1 and ψ ∈ S d×d
+ if Z is a d × d random

matrix associated with the probability density function

|ψ|ν/2

2νd/2Γd(ν/2)
|z|−(ν+d+1)/2 exp

{
−

1
2

tr
(
ψz−1

)}
, z ∈ S d×d

+ ,

where tr(·) returns the trace of a matrix, and Γd(·) is a multivariate gamma function. IWd is called an inverse Wishart
distribution, and it is well-known that a random matrix follows the IWd(ν,ψ) distribution if and only if its inverse
follows the Wishart distribution Wd(ν,ψ−1), which has density

|ψ|ν/2

2νd/2Γd(ν/2)
|z|(ν−d−1)/2 exp

{
−

1
2

tr (ψz)
}
, z ∈ S d×d

+ .

For w = (w1, . . . ,wn) ∈ (0,∞)n, let λ = diag(w1, . . . ,wn), i.e., the diagonal matrix whose diagonal elements are
w1, . . . ,wn, listed in order. Let

β̂ =
(
x⊤λx

)−1
x⊤λy, s =

(
y − xβ̂

)⊤
λ
(
y − xβ̂

)
,

and ξ = (x⊤λx)−1. Then it is easy to see from (2) that

Σ | (W,Y) = (w, y) ∼ IWd (n − p + m − d, s + a) , B | (Σ,W,Y) = (ς,w, y) ∼ Np,d

(
β̂, ξ, ς

)
.
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Appendix B. Proof of Theorem 1

We prove posterior propriety and geometric ergodicity by establishing drift and minorization (d&m) conditions,
which we now describe. Let (X,F ) be a measurable space. Consider a Markov chain (X(t))∞t=0 whose state space
is (X,F ), and let K : X × F → [0, 1] be its transition kernel. We say that (X(t)) satisfies a d&m condition with
drift function V : X → [0,∞), minorization measure ν : F → [0, 1], and parameters (η, ϱ, δ, ϵ) ∈ R4 if each of the
following two conditions holds:

Drift condition: For x ∈ X,

KV(x) :=
∫
X

V(x′)K(x, dx′) ≤ ηV(x) + ϱ,

where η < 1 and ϱ < ∞. Note that KV(x) can be interpreted as the conditional expectation of V(X(t + 1)) given
X(t) = x, where t can be any non-negative integer.

Minorization condition: Let ν be a probability measure, ϵ > 0, and δ > 2ϱ/(1 − η). Moreover, whenever V(x) < δ,

K(x, A) ≥ ϵν(A) for each A ∈ F .

It is well-known that if a d&m condition holds, then the Markov chain has a proper stationary distribution, and it is
geometrically ergodic [11, 17, 23, 27].

We begin by establishing a minorization condition for the DA algorithm associated with a realized response y and
missing structure k. As before, di will be used to denote the number of nonzero elements in the ith row of k. Let
(B(t),Σ(t))∞t=0 by the underlying Markov chain, and denote its Markov transition kernel by K. Set X = Rp×d × S d×d

+ ,
and let F be the usual Borel algebra associated with X. Define a drift function

V(β, ς) =
n∑

i=1

ri,(k),

where, for i ∈ {1, . . . , n},

ri,(k) =
(
yi,(k) − ci,(k)β

⊤xi

)⊤ (
ci,(k)ςc⊤i,(k)

)−1 (
yi,(k) − ci,(k)β

⊤xi

)
.

Then the following holds.

Lemma 1. For any δ > 0, there exist a probability measure ν : F → [0, 1] and ϵ > 0 such that whenever V(β, ς) < δ,

K((β, ς), A) > ϵν(A) for each A ∈ F .

Proof. One can write
K((β, ς), A) =

∫
(0,∞)n

Qk(A | w, y(k)) Pk(dw | β, ς, y(k)),

where Pk(· | β, ς, y(k)) is the conditional distribution of W given (B,Σ,Y(k)) = (β, ς, y(k)), and Qk(· | w, y(k)) is the
conditional distribution of (β,Σ) given (W,Y(k)) = (w, y(k)), both derived from (2). As stated in Section 3.2,

Pk(dw | β, ς, y(k)) =
n∏

i=1

wdi/2
i exp

(
−ri,(k)wi/2

)
Pmix(dwi)∫ ∞

0 wdi/2 exp
(
−ri,(k)w/2

)
Pmix(dw)

, w = (w1, . . . ,wn)⊤ ∈ (0,∞)n.

Assume that V(β, ς) < δ for some δ > 0. Then ri,(k) < δ for each i. It follows that, for any measurable A′ ∈ (0,∞)n,

Pk(A′ | β, ς, y(k)) ≥ ϵ
∫

A′

n∏
i=1

wdi/2
i exp (−δwi/2) Pmix(dwi)∫ ∞

0 wdi/2 exp (−δw/2) Pmix(dw)
,

where

ϵ =


∫ ∞

0 wdi/2 exp (−δw/2) Pmix(dw)∫ ∞

0 wdi/2 Pmix(dw)


n

.
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Thus, for each A ∈ F ,
K((β, ς), A) ≥ ϵν(A),

where ν(·) is a probability measure given by

ν(A) =
∫

(0,∞)n
Qk(A | w, y(k))

n∏
i=1

wdi/2
i exp (−δwi/2) Pmix(dwi)∫ ∞

0 wdi/2 exp (−δw/2) Pmix(dw)
.

To establish d&m, it remains to show the following.

Lemma 2. Suppose that (6) holds, and that the conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)) is proper
for every w = (w1, . . . ,wn)⊤ ∈ (0,∞)n. If any one of the following conditions holds, then there exist η < 1 and ϱ < ∞

such that, for (β, ς) ∈ X,
KV(β, ς) < ηV(β, ς) + ϱ.

(i) Pmix(·) is zero near the origin;
(ii) Pmix(·) is faster than polynomial near the origin;

(iii) Pmix(·) is polynomial near the origin with power c > c1, where

c1 =
n − p + m − min{d1, . . . , dn}

2
.

Proof. We will prove the result when k contains at least one vanishing element. When there are no missing data
under k, the result is proved by Hobert et al. [9]. (To be absolutely precise, Hobert et al. [9] assumed that Pmix(·) is
absolutely continuous with respect to the Lebesgue measure in the “zero near the origin” case, but their proof can be
easily extended to the case where absolute continuity is absent.)

For β ∈ Rp×d and ς ∈ S d×d
+ , let Pk(· | β, ς, y(k)) be the conditional distribution of W given (B,Σ,Y(k)) = (β, ς, y(k)).

For w ∈ (0,∞)n, let Qk(· | w, y(k)) be the conditional distribution of (B,Σ) given (W,Y(k)) = (w, y(k)). Then

KV(β, ς) =
∫

(0,∞)n

∫
Rp×d×S d×d

+

V(β∗, ς∗) Qk(dβ∗, dς∗ | w, y(k)) Pk(dw | β, ς, y(k)). (B.1)

Let k0 ∈ {0, 1}n×d be a matrix such that all its entries are 1. In other words, K = k0 if there are no data missing.
Y(k0−k) denotes the unobservable entries of Y under the missing structure k. By our assumptions, given (W,Y(k)) =

(w, y(k)), (B,Σ,Y(k0−k)) has a proper conditional distribution. For w ∈ (0,∞)n, denote by Q1,k(· | w, y(k)) the conditional
distribution of Y(k0−k) given (W,Y(k)) = (w, y(k)). For w ∈ (0,∞)n and a realized value of Y(k0−k), say, z ∈ R

∑n
i=1(d−di),

let Q2,k(· | w, z, y(k)) be the conditional distribution of (B,Σ) given (W,Y(k0−k),Y(k)) = (w, z, y(k)). We now describe
this distribution (see Appendix A). Let y∗ be a realized value of Y such that y∗(k) = y(k). Let λ = diag(w1, . . . ,wn),
where w1, . . . ,wn are the components of w. Let

β̂ =
(
x⊤λx

)−1
x⊤λy∗, s =

(
y∗ − xβ̂

)⊤
λ
(
y∗ − xβ̂

)
,

and ξ = (x⊤λx)−1. Then Q2,k(· | ω, y∗(k0−k), y(k)) is given by

Σ | (W,Y) = (w, y∗) ∼ IWd (n − p + m − d, s + a) , B | (Σ,W,Y) = (ς,w, y∗) ∼ Np,d

(
β̂, ξ, ς

)
.

It is easy to verify that Qk, Q1,k, and Q2,k are connected through the following tower property:

Qk
(
· | w, y(k)

)
=

∫
R

∑n
i=1(d−di )

Q2,k
(
· | w, y∗(k0−k), y(k)

)
Q1,k

(
dy∗(k0−k) | w, y(k)

)
. (B.2)

In light of (B.1) and (B.2), let us first investigate the integral∫
Rp×d×S d×d

+

V(β∗, ς∗) Q2,k
(
dβ∗, dς∗ | w, y∗(k0−k), y(k)

)
=

∫
S d×d
+

∫
Rp×d

V(β∗, ς∗) Q4,k
(
dβ∗ | ς∗,w, y∗(k0−k), y(k)

)
Q3,k

(
dς∗ | w, y∗(k0−k), y(k)

)
,

(B.3)
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where Q3,k(· | w, , y∗(k0−k), y(k)) is the IWd(n − p + m − d, s + a) distribution, and Q4,k(· | ς∗,w, y∗(k0−k), y(k)) is the
Np,d(β̂, ξ, ς∗) distribution. It follows from basic properties of matrix normal distributions that∫

Rp×d
V(β∗, ς∗) Q4,k

(
dβ∗ | ς∗,w, y∗(k0−k), y(k)

)
=

n∑
i=1

{(
yi,(k) − ci,(k)β̂

⊤xi

)⊤ (
ci,(k)ς

∗c⊤i,(k)

)−1 (
yi,(k) − ci,(k)β̂

⊤xi

)
+ dix⊤i ξxi

}
.

If Σ∗ is a random matrix that follows the IWd(n − p + m − d, s + a) distribution, then (ci,(k)Σ
∗c⊤i,(k))

−1 follows the
Wdi (n − p + m − 2d + di, [ci,(k)(s + a)c⊤i,(k)]

−1) distribution [18, Theorem 3.2.11]. Then by basic properties of Wishart
distributions,∫

S d×d
+

∫
Rp×d

V(β∗, ς∗) Q4,k
(
dβ∗ | ς∗,w, y∗(k0−k), y(k)

)
Q3,k

(
dς∗ | w, , y∗(k0−k), y(k)

)
=

n∑
i=1

(n − p + m − 2d + di)
[(

yi,(k) − ci,(k)β̂
⊤xi

)⊤ {
ci,(k)(s + a)c⊤i,(k)

}−1 (
yi,(k) − ci,(k)β̂

⊤xi

)]
+

n∑
i=1

dix⊤
i ξxi.

(B.4)

For i ∈ {1, . . . , n}, denote by y∗i the ith row of y∗, and note that ci,(k)y∗i = yi,(k). It follows from Lemma 3, which is
stated right after this proof, that, for i ∈ {1, . . . , n},

x⊤i ξxi = x⊤i

 n∑
j=1

w jx jx⊤j

−1

xi ≤
1
wi
,

and(
yi,(k) − ci,(k)β̂

⊤xi

)⊤ {
ci,(k)(s + a)c⊤i,(k)

}−1 (
yi,(k) − ci,(k)β̂

⊤xi

)
=

(
yi,(k) − ci,(k)β̂

⊤xi

)⊤ ci,(k)


n∑

j=1

w j

(
y∗j − β̂

⊤x j

) (
y∗j − β̂

⊤x j

)⊤ c⊤i,(k) + ci,(k)ac⊤i,(k)


−1 (

yi,(k) − ci,(k)β̂
⊤xi

)

=
(
yi,(k) − ci,(k)β̂

⊤xi

)⊤ 
n∑

j=1

w j

(
y j,(k) − c j,(k)β̂

⊤x j

) (
y j,(k) − c j,(k)β̂

⊤x j

)⊤
+ ci,(k)ac⊤i,(k)


−1 (

yi,(k) − ci,(k)β̂
⊤xi

)
≤

1
wi
.

Notice that 1/ωi is a constant, and does not depend on y∗(k0−k). It then follows from (B.1) to (B.4) that

KV(β, ς) ≤
∫

(0,∞)n

 n∑
i=1

n − p + m − 2d + 2di

wi

 Pk(dw | β, ς, y(k)) ≤
∫

(0,∞)n

 n∑
i=1

n − p + m
wi

 Pk(dw | β, ς, y(k)),

where Pk(dw | β, ς, y(k)) is given by (5). By Lemma 4 below, there exist η′ < 1/(n − p + m) and ϱ′ < ∞ such that, for
(β, ς) ∈ X, ∫

(0,∞)n

 n∑
i=1

n − p + m
wi

 Pk(dw | β, ς, y(k)) ≤
n∑

i=1

(n − p + m)(η′ri,(k) + ϱ
′).

Then desired result holds with η = (n − p + m)η′ < 1 and ϱ = n(n − p + m)ϱ′ < ∞.

Lemma 3 ([29, Lemma 3]). Let φ be a positive definite matrix, and υ be a vector, such that the matrix φ − υυT is
positive semidefinite, then υTφ−1υ ≤ 1.

Lemma 4. Suppose that (6) holds and that Pmix(·) is either zero near the origin, or faster than polynomial near the
origin, or polynomial near the origin with power c > c1, where

c1 =
n − p + m − min{d1, . . . , dn}

2
.
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Then there exist η ∈ [0, 1/(n − p + m)) and ϱ < ∞, such that for all d̃ ∈ [min{d1, . . . , dn}, d] and r̃ ∈ [0,∞),∫ ∞

0 w(d̃−2)/2 exp(−r̃w/2)Pmix(dw)∫ ∞

0 wd̃/2 exp(−r̃w/2)Pmix(dw)
≤ ηr̃ + ϱ.

Proof. We will make use of existing results [9].
When Pmix(·) is zero near the origin, there exists θ > 0, such that

∫ θ
0 Pmix(dw) = 0. Then, for all d̃ ∈ [min{d1, . . . , dn}, d]

and r̃ ∈ [0,∞),∫ ∞

0 w(d̃−2)/2 exp(−r̃w/2)Pmix(dw)∫ ∞

0 wd̃/2 exp(−r̃w/2)Pmix(dw)
=

∫ ∞

θ
(1/w)wd̃/2 exp(−r̃w/2)Pmix(dw)∫ ∞

θ
wd̃/2 exp(−r̃w/2)Pmix(dw)

≤
(1/θ)

∫ ∞

θ
wd̃/2 exp(−r̃w/2)Pmix(dw)∫ ∞

θ
wd̃/2 exp(−r̃w/2)Pmix(dw)

= 1/θ.

When Pmix(·) is polynomial near the origin or faster than polynomial near the origin, recall that pmix(·) is the
density function of Pmix(·) with respect to the Lebesgue measure. Let S (pmix) be the set of η ∈ [0,∞) such that there
exists ϱη ∈ R, satisfying ∫ ∞

0 w−1/2 exp(−r̃w/2)Pmix(dw)∫ ∞

0 w1/2 exp(−r̃w/2)Pmix(dw)
≤ ηr̃ + ϱη

for all r̃ ∈ [0,∞). If S (pmix) is non-empty, let ηpmix = inf S (pmix); otherwise, set ηpmix = ∞.
Consider a Gamma (α, 1) mixing distribution with density

pG(α)(w) = {Γ1(α)}−1wα−1 exp(−w).

It is easy to see that if α > 1/2, for all r̃ ∈ [0,∞),∫ ∞

0 w−1/2 exp(−r̃w/2)pG(α)(w)dw∫ ∞

0 w1/2 exp(−r̃w/2)pG(α)(w)dw
=

1
2α − 1

r̃ +
2

2α − 1
.

Therefore, if α > 1/2, ηpG(α) = 1/(2α − 1).
Let pd̃

mix(·) be a mixing density proportional to w(d̃−1)/2 pmix(·). Note that∫ ∞

0 w(d̃−2)/2 exp(−r̃w/2)Pmix(dw)∫ ∞

0 wd̃/2 exp(−r̃w/2)Pmix(dw)
=

∫ ∞

0 w−1/2 exp(−r̃w/2)pd̃
mix(w)dw∫ ∞

0 w1/2 exp(−r̃w/2)pd̃
mix(w)dw

.

Therefore, it suffices to prove that ηpd̃
mix
< 1/(n − p + m).

When Pmix(·) is polynomial near the origin with power c > c1, the distribution associated with pd̃
mix(·) is polynomial

near the origin with power c + (d̃ − 1)/2. Let pd̃
G(·) be a mixing density following Gamma (c + (d̃ + 1)/2, 1). We have

lim
w→0

pd̃
mix(w)

pd̃
G(w)

∈ (0,∞).

By Lemma 1 in Hobert et al. [9], for all d̃ ∈ [min{d1, . . . , dn}, d],

ηpd̃
mix

= ηpd̃
G
=

1
2c + d̃

<
1

n − p + m
.

When Pmix(·) is faster than polynomial near the origin, again let pd̃
mix(·) be a mixing density proportional to

w(d̃−1)/2 pmix(·). The distribution associated with pd̃
mix(·) is faster than polynomial near the origin. Let α > 1/2. Recall

that pG(α)(w) is the density of the Gamma (α, 1) mixing distribution. By the definition of faster than polynomial near
the origin, there exists κα−1 > 0, such that pd̃

mix(w)/wα−1 is strictly increasing on (0, κα−1). Thus, pd̃
mix(w)/pG(α)(w) is

strictly increasing on (0, κα−1). By Lemma 2 in Hobert et al. [9],

ηpd̃
mix

≤ ηpG(α) =
1

2α − 1
.

Since α can be any value larger than 1/2, ηpd̃
mix

= 0, for all d̃ ∈ [min{d1, . . . , dn}, d].
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Appendix C. The ESS and ESSpm of Each Component in Section 5

Table C.1: The ESS of each component in different scenarios. The model column lists the mixing distributions and samplers used, and the data
column labels the missing structures by the number of fully observed rows. The B11, B21, B12, and B22 columns store the ESS of each component
of the regression coefficients B in different scenarios. The Σ11, Σ21, and Σ22 columns store the ESS of each component of the scatter matrix Σ.

Model Data B11 B21 B12 B22 Σ11 Σ21 Σ22

DAG 45 19332 17450 19098 16447 10290 11646 10528
DAG 40 20001 18399 17549 19992 10315 12061 10714
DAG 35 16960 18459 16786 16967 11605 12442 11551
DAIG 45 16471 19242 17976 19443 9970 10723 9888
DAIG 40 14292 15528 18045 17066 8335 11155 9897
DAIG 35 13330 17612 17745 16203 9676 8988 10064
DAGIG 45 16843 17429 14810 15401 13796 13232 13422
DAGIG 40 20661 20371 21888 14722 13375 14279 12765
DAGIG 35 17729 15738 17347 15574 15619 12788 12722
DAIGIG 45 18267 15193 17571 15148 11803 12759 13323
DAIGIG 40 16540 18311 16763 17924 14042 14860 14749
DAIGIG 35 12246 14077 18134 15717 8973 9506 12939
DAP 45 30000 30000 30000 30000 30000 29724 30000
DAP 40 30000 30000 30000 30000 30000 30000 30438
DAP 35 30000 30000 29216 30000 30000 30000 30000
DAIP 45 22822 26402 30000 30000 25435 29601 30000
DAIP 40 20145 23817 30000 30000 20160 26305 30000
DAIP 35 13894 22094 30000 30000 16530 13943 30000

Table C.2: The ESS per minute (ESSpm) of each component in different scenarios. The model column lists the mixing distributions and samplers
used, and the data column labels the missing structures by the number of fully observed rows. The B11, B21, B12, and B22 columns store the ESSpm
of each component of the regression coefficients B in different scenarios. The Σ11, Σ21, and Σ22 columns store the ESSpm of each component of
the scatter matrix Σ.

Model Data B11 B21 B12 B22 Σ11 Σ21 Σ22

DAG 45 4421 3990 4367 3761 2353 2663 2407
DAG 40 4886 4495 4287 4884 2520 2947 2618
DAG 35 4213 4585 4170 4215 2883 3090 2869
DAIG 45 3286 3838 3586 3878 1989 2139 1972
DAIG 40 2891 3141 3651 3452 1686 2257 2002
DAIG 35 2850 3766 3794 3464 2069 1922 2152
DAGIG 45 1611 1667 1417 1473 1320 1266 1284
DAGIG 40 2072 2043 2195 1477 1341 1432 1280
DAGIG 35 1803 1601 1765 1584 1589 1301 1294
DAIGIG 45 1701 1415 1636 1410 1099 1188 1240
DAIGIG 40 1543 1709 1564 1672 1310 1387 1376
DAIGIG 35 1201 1381 1779 1542 880 932 1269
DAP 45 6959 6959 6959 6959 6959 6895 6959
DAP 40 7793 7793 7793 7793 7793 7793 7907
DAP 35 7478 7478 7282 7478 7478 7478 7478
DAIP 45 4929 5702 6479 6479 5493 6393 6479
DAIP 40 4415 5219 6574 6574 4418 5765 6574
DAIP 35 3183 5062 6873 6873 3787 3194 6873
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Table C.3: The ESS of each component in different scenarios. The model column lists the Gamma(v, v) mixing distributions and samplers used,
and the data column labels the missing structures by the number of fully observed rows. The B11, B21, B12, and B22 columns store the ESS of each
component of the regression coefficients B in different scenarios. The Σ11, Σ21, and Σ22 columns store the ESS of each component of the scatter
matrix Σ.

Model Data B11 B21 B12 B22 Σ11 Σ21 Σ22

DAG2 45 19332 17450 19098 16447 10290 11646 10528
DAG2 40 20001 18399 17549 19992 10315 12061 10714
DAG2 35 16960 18459 16786 16967 11605 12442 11551
DAIG2 45 16471 19242 17976 19443 9970 10723 9888
DAIG2 40 14292 15528 18045 17066 8335 11155 9897
DAIG2 35 13330 17612 17745 16203 9676 8988 10064
DAG8 45 26359 23824 25032 25504 16537 19326 16185
DAG8 40 26122 26707 25362 26588 14952 19118 15616
DAG8 35 25470 24347 24819 25501 18445 16390 16759
DAIG8 45 20631 23024 25552 26183 13685 15991 15078
DAIG8 40 18122 21684 23664 25824 13061 18082 16806
DAIG8 35 14837 22029 24967 26256 11553 11712 15336
DAG25 45 29041 29055 27919 28865 21494 22572 23345
DAG25 40 28018 29302 28548 29081 23303 21042 23013
DAG25 35 29310 29162 29052 30000 18884 16623 20118
DAIG25 45 23968 24454 27999 29108 17254 20737 22495
DAIG25 40 18613 23362 28295 28963 15049 18725 21078
DAIG25 35 17014 20338 28073 29150 10450 9397 22567

Table C.4: The ESS per minute (ESSpm) of each component in different scenarios. The model column lists the Gamma(v, v) mixing distributions
and samplers used, and the data column labels the missing structures by the number of fully observed rows. The B11, B21, B12, and B22 columns
store the ESSpm of each component of the regression coefficients B in different scenarios. The Σ11, Σ21, and Σ22 columns store the ESSpm of each
component of the scatter matrix Σ.

Model Data B11 B21 B12 B22 Σ11 Σ21 Σ22

DAG2 45 4421 3990 4367 3761 2353 2663 2407
DAG2 40 4886 4495 4287 4884 2520 2947 2618
DAG2 35 4213 4585 4170 4215 2883 3090 2869
DAIG2 45 3286 3838 3586 3878 1989 2139 1972
DAIG2 40 2891 3141 3651 3452 1686 2257 2002
DAIG2 35 2850 3766 3794 3464 2069 1922 2152
DAG8 45 6129 5539 5820 5930 3845 4494 3763
DAG8 40 6495 6641 6306 6611 3718 4754 3883
DAG8 35 6632 6339 6462 6640 4803 4268 4364
DAIG8 45 4095 4570 5072 5197 2717 3174 2993
DAIG8 40 3894 4659 5085 5549 2806 3885 3611
DAIG8 35 3265 4847 5494 5777 2542 2577 3375
DAG25 45 7115 7118 6840 7072 5266 5530 5719
DAG25 40 7097 7423 7232 7367 5903 5330 5830
DAG25 35 7728 7689 7660 7910 4979 4383 5304
DAIG25 45 5067 5170 5919 6154 3648 4384 4755
DAIG25 40 4099 5144 6231 6378 3314 4123 4642
DAIG25 35 3898 4660 6432 6679 2394 2153 5170
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