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Random-scan Gibbs samplers possess a natural hierarchical structure.
The structure connects Gibbs samplers targeting higher dimensional distri-
butions to those targeting lower dimensional ones. This leads to a quasi-
telescoping property of their spectral gaps. Based on this property, we de-
rive three new bounds on the spectral gaps and convergence rates of Gibbs
samplers on general domains. The three bounds relate a chain’s spectral gap
to, respectively, the correlation structure of the target distribution, a class of
random walk chains, and a collection of influence matrices. Notably, one of
our results generalizes the technique of spectral independence, which has re-
ceived considerable attention for its success on finite domains, to general state
spaces. We illustrate our methods through a sampler targeting the uniform
distribution on a corner of an n-cube.

1. Introduction. Gibbs samplers are among the most popular Markov chain Monte
Carlo (MCMC) approaches to sample from multivariate probability distributions. They have
been applied and studied for sampling, counting, inference, and optimization in a variety
of disciplines, including mathematics, statistics, physics, and computer science. This work
concerns theoretical properties of random-scan Gibbs samplers, also known as Glauber dy-
namics. Our key observation is that these types of samplers possess a natural hierarchical,
or recursive, structure that facilitates convergence analysis of the underlying Markov chains.
Exploiting this structure, we derive a “quasi-telescoping" property for the spectral gaps of
these chains, which leads several new convergence rate bounds.

Our motivation mainly stems from the spectral independence technique recently developed
in the theoretical computer science community, which we now briefly review. Spectral inde-
pendence was initially introduced in Anari, Liu and Gharan (2021) to establish a polynomial
mixing time of the Gibbs sampler for hardcore models. It has since received a tremendous
amount of attention in computer science as it provides a powerful tool for proving fast, and
sometimes optimal, mixing time bounds for Gibbs samplers for several important discrete
models. It is particularly useful for samplers with many components, and despite being very
recently developed, it is already regarded as an attractive alternative to more traditional tools
for convergence analysis, such as Dobrushin’s uniqueness condition. See Feng et al. (2021),
Chen et al. (2021), Jain, Pham and Vuong (2021), Chen, Liu and Vigoda (2022), Blanca et al.
(2022), Chen et al. (2022), and the references therein. In the original framework, spectral
independence was defined to bound the spectral gaps of samplers on the Boolean domain
{0,1}n, but it has since been improved and extended in various directions. Some notable
extensions include entropy factorization (Chen et al., 2021; Blanca et al., 2022), entropic
independence (Anari et al., 2021, 2022), localization schemes (Chen and Eldan, 2022), and
spectral independence on general finite domains (Feng et al., 2021).
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On continuous domains, convergence analysis of Gibbs samplers with many components
remains challenging, despite impressive analyses for some interesting models (Roberts and
Sahu, 1997; Smith, 2014; Pillai and Smith, 2017, 2018; Janvresse, 2001; Carlen, Carvalho
and Loss, 2003). Practically speaking, the only existing tools that are designed specifically
for convergence analysis of Gibbs samplers on general state spaces are based on the classi-
cal Dobrushin’s uniqueness condition (see Wang and Wu, 2014, and references therein). A
framework that can be applied to chains outside finite domains thus seems ever so appealing.

The main contribution of this paper is Theorem 2, which describes the aforementioned
quasi-telescoping property concerning the spectral gaps of Gibbs samplers on general state
spaces. We refer to this property as “the spectral telescope." Derived from a hierarchical
structure of Gibbs samplers, the spectral telescope puts forward a flexible framework for
bounding the spectral gap for these samplers on both discrete and continuous state spaces.
Based on it, we construct three types of bounds, given in Corollaries 3 to 5. These three
corollaries connect the spectral gap to, respectively, the correlation (dependence) structure of
the target distribution, a collection of low-dimensional random walk chains, and a set of “in-
fluence matrices" which define a spectral-independence-type condition. Corollaries 4 and 5
extend/generalize results in Alev and Lau (2020) and Feng et al. (2021), while Corollary 3 ap-
pears to be new even for finite state spaces. In particular, Corollary 5 generalizes Feng et al.’s
(2021) spectral-independence-based bound in two ways. Firstly, Feng et al.’s (2021) result is
extended from finite state spaces to general ones. Moreover, whereas Feng et al. (2021) cal-
culate influence matrices based on total variation distances between conditional distributions,
Corollary 5 uses influence matrices based on a more general class of Wasserstein divergences.
Compared to methods based on the total variation distance, Wasserstein-based methods are
often more effective for convergence analysis of Markov chains in high-dimensional settings
(see, e.g., Hairer, Mattingly and Scheutzow, 2011; Qin and Hobert, 2022a).

Theorem 2 and its corollaries arm us with techniques to bound the spectral gap beyond
those relying on spectral independence. These techniques can further be combined with vari-
ous tools, such as orthogonal polynomials (see, e.g., Diaconis, Khare and Saloff-Coste, 2008)
and one-shot coupling (see, e.g., Roberts and Rosenthal, 2002), to attain broader applicability.
This is illustrated by a concrete example in Section 4. In this example, we study a random-
scan Gibbs sampler targeting the uniform distribution on the corner of an n-cube. We first
invoke Corollary 3 and establish a tight spectral gap bound by analyzing the correlation struc-
ture of the target distribution using orthogonal polynomials. In contrast, a straightforward
generalization of spectral independence where the influence matrices are calculated from to-
tal variation distances would give only trivial bounds. A second non-trivial, but sub-optimal
bound is obtained using Corollary 5, where we utilize spectral independence based on suit-
able Wasserstein divergences. The example also shows that constructing a tight bound via our
method requires adequate information on the target distribution. Our method is not a panacea,
but rather one of the many steps towards understanding the convergence properties of Gibbs
samplers. Applying it to Gibbs samplers in various fields is a direction for future research.

Properties similar to the spectral telescope have been derived for some models prior to
our research. In particular, the spectral telescope is reminiscent of an inductive property of
spectral gaps for Kac models, which are commonly used to study the distribution of physical
particles (Carlen, Carvalho and Loss, 2003, Theorem 2.2). The general mathematical setting
in Carlen, Carvalho and Loss (2003) is quite different from ours, but some of the models they
studied can be thought as Gibbs samplers whose target distributions satisfy certain symmetric
properties.

The rest of this paper is organized as follows. In the remainder of this section, we briefly
explain the hierarchical structure of Gibbs samplers, without getting into technical details.
After introducing some preliminaries in Section 2, we formally define the Gibbs algorithm,
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describe its hierarchical structure, and state our main results in Section 3. Section 4 con-
tains the aforementioned example. The detailed proofs of our main results are provided in
Section 5.

1.1. The hierarchical structure: High level ideas. Now we briefly explain the hierarchi-
cal (or recursive) structure of the random-scan Gibbs sampler, and defer the formal descrip-
tions to Section 3. Let X1, . . . ,Xn be random elements whose joint distribution is Π. For
i ∈ [n] := {1, . . . , n} and x in the range of Xi, let Π−{i}|{i}(· | x) denote the conditional
distribution of

(X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

given Xi = x. Consider a Gibbs algorithm targeting Π that updates one component at a time.
Given the current state (x1, . . . , xn), in each iteration, the sampler randomly and uniformly
selects one component to update using its full conditional distribution. Of course, selecting
one component to update is equivalent to selecting n− 1 components to fix. This is, in turn,
equivalent to selecting one component, say xi, to fix, and then calling one step of the Gibbs
sampler targeting Π−{i}|{i}(· | xi), which randomly selects n− 2 of the remaining compo-
nents to fix, and updates the component that was not selected. We can then rewrite the Gibbs
sampler as a recursive algorithm, as we can replace Π with Π−{i}|{i}(· | xi), and repeat the
argument until the target distribution is univariate.

For illustration, suppose that n= 4, and the current state is (x1, . . . , x4). One step of the
Gibbs sampler targeting Π proceeds as follows:

1. Randomly and uniformly select an index j from [4] = {1,2,3,4}.
2. Update xj .

This is equivalent to the following procedure:

1’. Randomly and uniformly select an index i1 from [4].
2’. Randomly and uniformly select an index i2 from [4] \ {i1}.
3’. Randomly and uniformly select an index i3 from [4] \ {i1, i2}.
4’. Update xj , where {j}= [4] \ {i1, i2, i3}.

Note the hierarchical structure: Steps 2’-4’ form one step of the Gibbs sampler targeting
Π−{i1}|{i1}(· | xi1). Step 3’-4’ make up one step of the Gibbs sampler targeting the condi-
tional distribution of Xi3 and Xj given Xi1 = xi1 and Xi2 = xi2 . Finally, step 4’ alone can be
regarded as one step of the Gibbs sampler targeting the conditional distribution of Xj given
all other components.

As we will see, this hierarchical structure not only reformulates the original Gibbs sampler,
but also leads to non-trivial bounds on the spectral gap.

2. Preliminaries. Consider a probability space (E,F , ν). We use L2(ν) to denote the
set of measurable functions f :E →R such that∫

E
f(x)2 ν(dx)<∞.

For f, g ∈ L2(ν), one can define their inner product

⟨f, g⟩ν =
∫
E
f(x)g(x)ν(dx).

In particular, the L2 norm of a function f ∈ L2(ν) is ∥f∥ν =
√

⟨f, f⟩ν . Two functions in
L2(ν) are equal if their difference has a vanishing L2 norm. L2(ν) forms a Hilbert space. We
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use L2
0(ν) to denote the subspace of L2(ν) consisting of functions f such that

⟨f,1⟩ν =
∫
E
f(x)ν(dx) = 0.

Also, L2
∗(ν) is used to denote the set of probability measures ω : F → [0,1] such that ω is

absolutely continuous with respect to ν, and that dω/dν ∈ L2(ν). For ω1, ω2 ∈ L2
∗(ν), their

L2 distance is

∥ω1 − ω2∥ν =
∥∥∥∥dω1

dν
− dω2

dν

∥∥∥∥
ν

.

Let K :E×F → [0,1] be a transition kernel that describes the transition law of a Markov
chain (X(t))∞t=0. We say that ν is a stationary distribution of (X(t)) if

νK(·) :=
∫
E
K(x, ·)ν(dx) = ν(·).

Suppose that νK = ν. For f ∈ L2(ν) and x ∈E, define

Kf(x) =

∫
E
f(x′)K(x,dx′).

If f ∈ L2
0(ν), then Kf ∈ L2

0(ν). Then we can view K as a linear operator on L2
0(ν), referred

to as a Markov operator. Using Cauchy-Schwarz inequality, one can show that

∥K∥ν := sup
f∈L2

0
(ν)

f ̸=0

∥Kf∥ν
∥f∥ν

≤ 1,

where ∥K∥ν is called the L2 norm of K .
The above framework is particularly useful in the study of reversible chains. A chain asso-

ciated with K , where νK = ν, is said to be reversible with respect to ν if K is self-adjoint,
i.e., for f, g ∈ L2

0(ν),

⟨Kf,g⟩ν = ⟨f,Kg⟩ν .
All chains studied in this paper are reversible with respect to their respective stationary dis-
tributions. Suppose that K is self-adjoint. Then the spectral gap of K (or that of a chain as-
sociated with K) is 1−∥K∥ν . The magnitude of the spectral gap governs how fast a Markov
chain associated with K converges to its stationary distribution ν, with a larger gap indicating
faster convergence. Indeed, the following well-known result, which is part of Theorem 2.1 in
Roberts and Rosenthal (1997), states that ∥K∥ν is in fact the geometric convergence rate of
the chain.

LEMMA 1. (Roberts and Rosenthal, 1997, Theorem 2.1) Let (X(t))∞t=0 be a chain re-
versible with respect to ν and let K be its Markov operator. For ω ∈ L2

∗(ν) and t ≥ 0, let
ωKt be the distribution of X(t) if X(0)∼ ω. Then, for ρ < 1, the following statements are
equivalent:

1. ∥K∥ν ≤ ρ;
2. for ω ∈ L2

∗(ν), there exists a constant Cω <∞ such that, for t≥ 0,

∥ωKt − ν∥ν ≤Cωρ
t;

3. for ω ∈ L2
∗(ν), there exists a constant C ′

ω <∞ such that, for t≥ 0,

dTV(ωK
t, ν)≤C ′

ωρ
t,

where dTV denotes the total variation distance, which is the maximal difference between
the probabilities of a measurable set assigned by two probability measures.
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The Markov operator K is said to be positive semi-definite if it is self-adjoint, and
⟨f,Kf⟩ν ≥ 0 for f ∈ L2

0(ν). In this case, the following formula holds:

∥K∥ν = sup
f∈L2

0
(ν)

f ̸=0

⟨f,Kf⟩ν
∥f∥2ν

.

It is well-known (see, e.g., Liu, Wong and Kong, 1995) that operators of random-scan Gibbs
algorithms are positive semi-definite.

3. A Hierarchical Structure.

3.1. Gibbs samplers and their recursive forms. Let (X1,B1, µ1), . . . , (Xn,Bn, µn) be σ-
finite measure spaces, where n is a positive integer that is at least 2. Assume that in each
space, singletons are measurable. Suppose that, for i= 1, . . . , n, Xi is an Xi-valued random
element, and that X= (X1, . . . ,Xn) has a joint distribution Π.

Assume that Π is absolutely continuous with respect to the base measure µ1 × · · · × µn

with Radon-Nikodym derivative (density) π, so that π is a measurable function on X :=
X1 × · · · × Xn. Although Radon-Nikodym derivatives only need to be defined outside a null
set, for concreteness we insist that π is specified everywhere on X. While these assumptions
would seem more rigid than necessary, they bring a great deal of technical and notational
convenience. For a nonempty set of indices Γ = {γ1, . . . , γ|Γ|} ⊂ [n], where γ1 < · · ·< γ|Γ|,
let XΓ = Xγ1

× · · · × Xγ|Γ| , µΓ = µγ1
× · · · × µγ|Γ| , and XΓ = (Xγ1

, . . . ,Xγ|Γ|). Also, for Γ
given above and x = (x1, . . . , xn) ∈ X, where xi ∈ Xi for each i, let xΓ = (xγ1

, . . . , xγ|Γ|).
For any Γ such that 1≤ |Γ| ≤ n− 1, the marginal density of XΓ evaluated at any y ∈ XΓ is

πΓ(y) =

∫
X−Γ

π(x)dx−Γ, where x ∈ X satisfies xΓ = y.

In the above equation, −Γ = [n] \ Γ, and dx−Γ is a short-hand notation for µ−Γ(dx−Γ).
By convention, π[n] = π. For nonempty sets Λ,Γ⊂ [n] such that Λ ∩ Γ = ∅, the conditional
density of XΓ given XΛ = y ∈ XΛ, denoted by πΓ|Λ(· | y), is defined for y ∈ XΛ such that
πΛ(y)> 0, and given by

πΓ|Λ(z | y) =
πΛ∪Γ(xΛ∪Γ)

πΛ(y)
, where x ∈ X satisfies xΛ = y and xΓ = z.

If πΛ(y) = 0, we let πΓ|Λ(· | y) be an arbitrary probability density function on XΓ. By con-
vention, if Λ= ∅, πΓ|Λ(· | y) means πΓ(·), even though y ∈ X∅ cannot be specified.

A random-scan Gibbs sampler targeting π with block size l is described in Algorithm 1. In
short, given the current state x ∈ X, the sampler randomly selects a subset Γ of indices, and
updates xΓ using the conditional distribution of XΓ given X−Γ = x−Γ. In many applications,
a block size of 1 is used because it becomes more difficult to draw from the corresponding
full conditional distributions when the block size increases. Regardless of the block size, the
underlying Markov chain is reversible with respect to π.

Algorithm 1 One step of the Gibbs sampler targeting π, block size ℓ, where ℓ ∈ {1, . . . , n}:
Input: Current state x ∈ X.
Randomly and uniformly choose a subset of indices Γ⊂ [n] under the constraint |Γ|= ℓ.
Draw w ∈ XΓ from πΓ|−Γ(· | x−Γ).

Let x′ ∈ X be such that x′Γ =w and x′−Γ = x−Γ.
Return: Next state x′.
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Algorithm 1 is a special case of Algorithm 2, which follows the same procedure, but
targets π−Λ|Λ(· | y) for some Λ⊂ [n] such that |Λ| ≤ n− 1 and y ∈ XΛ. When πΛ(y)> 0,
the underlying Markov chain is reversible with respect to π−Λ|Λ(· | y). Taking Λ = ∅ in
Algorithm 2 yields Algorithm 1.

Algorithm 2 One step of the Gibbs sampler targeting π−Λ|Λ(· | y), block size ℓ, where ℓ ∈
{1, . . . , n− |Λ|}:

Input: Current state z ∈ X−Λ.
Let x ∈ X be such that xΛ = y and x−Λ = z.
Randomly and uniformly choose a set of indices Γ⊂−Λ under the constraint |Γ|= ℓ.
Draw w ∈ XΓ from πΓ|−Γ(· | x−Γ).

Let x′ ∈ X be such that x′Γ =w and x′−Γ = x−Γ.
Return: New state z′ = x′−Λ.

Algorithm 3 One step of the recursive Gibbs sampler targeting π−Λ|Λ(· | y), block size ℓ,
where ℓ ∈ {1, . . . , n− |Λ|}:

Input: Current state z ∈ X−Λ.
Let x ∈ X be such that xΛ = y and x−Λ = z.
if |Λ|= n− ℓ then

Draw z′ ∈ X−Λ from π−Λ|Λ(· | xΛ).
Return: New state z′.

else
Randomly and uniformly choose a coordinate i ∈−Λ.
Draw w ∈ X−(Λ∪{i}) by running one step of the recursive Gibbs sampler targeting π−(Λ∪{i})|Λ∪{i}(· |

xΛ∪{i}) with block size ℓ and current state x−(Λ∪{i}).

Let x′ ∈ X be such that x′−(Λ∪{i}) =w and x′Λ∪{i} = xΛ∪{i}.

Return: New state z′ = x′−Λ.
end if

Our analysis begins with the observation that Algorithm 2 has a hierarchical, or recursive
structure. Indeed, following arguments given in Section 1.1, we see that Algorithm 2 can be
written into a recursive form as in Algorithm 3. In particular, Algorithm 1 is equivalent to
Algorithm 3 for Λ= ∅.

Consider the significance of the recursive representation. It connects the Gibbs sampler
targeting π−Λ|Λ to ones targeting lower dimensional distributions, given by π−Λ′|Λ′ where
Λ′ ⊃ Λ. While one would rarely implement the recursive algorithm in practice, based on it
we can establish multiple intriguing relations concerning the convergence rate and spectral
gap of the standard Algorithm 1. We now list these relations. The detailed derivation is given
in Section 5.

3.2. The spectral telescope. For Λ ⊂ [n] such that |Λ| ∈ {0, . . . , n − 1}, y ∈ XΛ, and
ℓ ∈ {1, . . . , n − |Λ|}, let gap(Λ,y, ℓ) be the spectral gap associated with Algorithm 2. For
ℓ ∈ {1, . . . , n} and m ∈ {ℓ, . . . , n}, let

Gap(m,ℓ) = min
Λ⊂[n]

|Λ|=n−m

inf
y∈XΛ

πΛ(y)>0

gap(Λ,y, ℓ).

In particular, Gap(n, ℓ) is simply the spectral gap of Algorithm 1. Our main result is a con-
sequence of the hierarchical structure of Gibbs samplers.
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THEOREM 2 (Spectral Telescope). For ℓ ∈ {1, . . . , n− 1} and m ∈ {ℓ+ 1, . . . , n},

Gap(m,ℓ)≥ Gap(m,m− 1)Gap(m− 1, ℓ).

In particular, for ℓ ∈ {1, . . . , n− 1},

(1) Gap(n, ℓ)≥
n∏

m=ℓ+1

Gap(m,m− 1).

The product
∏n

m=ℓ+1 Gap(m,m−1) can be viewed as a “quasi-telescoping" product. The
term “quasi" is used since (1) is an inequality rather than an equality. We dub this property of
spectral gaps the “spectral telescope." From here we see that it is possible to bound Gap(n, ℓ)
from below via lower bounds on Gap(m,m − 1) for m ∈ {ℓ + 1, . . . , n}. All other major
results in this section are obtained via this strategy.

3.3. Spectral gaps and correlation coefficients. Let (Y1, . . . , Ym) be a vector of random
elements taking values in a product space Y1 × · · · × Ym. For i = 1, . . . ,m, let ϖi be the
marginal distribution of Yi, and note that L2

0(ϖi) represents the collection of real functions f
on Yi such that

E[f(Yi)] =
∫
Yi

f(y)ϖi(dy) = 0, E[f(Yi)2] =
∫
Yi

f(y)2ϖi(dy)<∞.

Define the summation-based correlation coefficient of (Y1, . . . , Ym) to be

s∗(Y1, . . . , Ym) = sup
fi∈L2

0
(ϖi) ∀i

∃i s.t. E[fi(Yi)2]>0

E
{
[
∑m

i=1 fi(Yi)]
2
}

m
∑m

i=1E[fi(Yi)2]
.

s∗(Y1, . . . , Ym) can range from 1/m to 1. To establish the lower bound, take fi = 0 for i≥ 2.
To establish the upper bound, use Cauchy-Schwarz inequality. If Y1, . . . , Ym are independent,
then this coefficient is 1/m. If there exists a sequence of functions f1, . . . , fm such that
fi ∈ L2

0(ϖi) and fi ̸= 0 for i ∈ [m], and fi(Yi) = fj(Yj) for i, j ∈ [m], then the correlation
coefficient is 1.

For Λ⊂ [n] such that |Λ| ≤ n− 1 and y ∈ XΛ, let

s(Λ,y) = s∗(Y1, . . . , Yn−|Λ|),

where (Y1, . . . , Yn−|Λ|) is distributed according to π−Λ|Λ(· | y), i.e., the conditional distribu-
tion of X−Λ given XΛ = y. For m ∈ {2, . . . , n}, let

S(m) = max
Λ⊂[n]

|Λ|=n−m

sup
y∈XΛ

πΛ(y)>0

s(Λ,y).

Then the following holds.

COROLLARY 3. For m ∈ {2, . . . , n},

Gap(m,m− 1)≥ 1− S(m).

As a result, by Theorem 2, for ℓ ∈ {1, . . . , n− 1},

Gap(n, ℓ)≥
n∏

m=ℓ+1

[1− S(m)].

This result relates the convergence rate of Algorithm 1 to the dependence structure of Π.
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3.4. Spectral gaps and random walks. Let Λ ⊂ [n] be such that |Λ| ≤ n − 1, and let
y ∈ XΛ. We can define a random walk on the space

⋃
i∈−Λ({i}×Xi), given by Algorithm 4.

The random walk in state (j, x) can either stay with probability 1/(n − |Λ|) or move to a
random index j′ ∈ −(Λ ∪ {j}) and update the associated x′ ∈ Xj′ based on its conditional
distribution. Whenever πΛ(y)> 0, this is a Markov chain reversible with respect to the prob-
ability measure φΛ,y given by

φΛ,y({i} ×A) =
1

n− |Λ|

∫
A
π{i}|Λ(x | y)dx, i ∈−Λ, A ∈ Bi,

where dx is a short-hand notation for µi(dx). Let g(Λ,y) be the spectral gap of this chain.
For m ∈ {2, . . . , n}, let

G(m) = min
Λ⊂[n]

|Λ|=n−m

inf
y∈XΛ

πΛ(y)>0

g(Λ,y).

We then have the following result:

Algorithm 4 One step of a random walk associated with Λ⊂ [n] and y ∈ XΛ:
Input: Current state (j, x) ∈

⋃
i∈−Λ({i} ×Xi).

Let x ∈ X be such that xΛ = y and x{j} = x.

Randomly and uniformly choose a coordinate j′ ∈−Λ.
if j′ = j then

Set x′ = x.
else

Draw x′ ∈ X{j′} from π{j′}|Λ∪{j}(· | xΛ∪{j}).
end if
Return: New State (j′, x′).

COROLLARY 4. For m ∈ {2, . . . , n},

Gap(m,m− 1)≥G(m).

As a result, by Theorem 2, for l ∈ {1, . . . , n− 1},

Gap(n, ℓ)≥
n∏

m=ℓ+1

G(m).

This extends a result in Alev and Lau (2020), which concerns random walks on pure
simplical complexes, a discrete structure frequently studied in computer science.

3.5. Spectral independence. Let Λ⊂ [n] be such that |Λ| ≤ n−2, and let y ∈ XΛ be such
that πΛ(y)> 0. Suppose that, for i ∈−Λ, there is a measurable semimetric dΛ,y,i : Xi×Xi →
[0,∞) such that (i) x = y if and only if dΛ,y,i(x, y) = 0, and (ii) dΛ,y,i(x, y) = dΛ,y,i(y,x)

for x, y ∈ Xi. For j ∈ −Λ such that i ̸= j and x ∈ Xi, let Πj
Λ,y,i,x be the probability measure

associated with π{j}|Λ∪{i}(· | xΛ∪{i}), where xΛ = y and x{i} = x. In other words, Πj
Λ,y,i,x

is the conditional distribution of Xj given Xi = x and XΛ = y. Assume that the following
conditions hold:

(H1) For i ∈−Λ,∫
Xi

[∫
Xi

dΛ,y,i(x,x
′)π{i}|Λ(dx | y)

]2
π{i}|Λ(dx

′ | y)<∞.
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(H2) The map x→ Πj
Λ,y,i,x satisfies the following stability condition in the total-variation

distance: There exists k <∞ such that, for i, j ∈ −Λ satisfying i ̸= j and π{i}|Λ(· | y)-
almost every x,x′ ∈ Xi,

dTV(Π
j
Λ,y,i,x,Π

j
Λ,y,i,x′)≤ kdΛ,y,i(x,x

′),

where dTV denotes the total variation distance. The constant k may depend on (Λ,y) but
not on (i, j, x,x′).

Note that if, for i ∈ −Λ, dΛ,y,i is the discrete metric, i.e., dΛ,y,i(x,x′) = 1x̸=x′ , then (H1)
and (H2) are satisfied.

For two probability distributions ν1 and ν2 on Bi, where i ∈ [n], denote by C(ν1, ν2) the
collection of couplings of ν1 and ν2. That is, ν ∈ C(ν1, ν2) if and only if ν is a probability
measure on Bi ×Bi such that ν(A×Xi) = ν1(A) and ν(Xi ×A) = ν2(A) for A ∈ Bi.

A coupling kernel associated with (Λ,y, i, j), where i, j ∈ −Λ and i ̸= j, is a Markov
transition kernel Ki,j : Xi × Xi →Bj ×Bj such that Ki,j((x,x

′), ·) is a probability measure
in C(Πj

Λ,y,i,x,Π
j
Λ,y,i,x′) for x,x′ ∈ Xi. (Of course, Ki,j also depends on Λ and y, but to

suppress notation we do not include them in the subscript. The same goes for ϕi,j given
below.) We say that a contraction condition holds for (Λ,y, i, j) with coefficient ϕi,j ∈ [0,∞)
if there exists a coupling kernel Ki,j associated with (Λ,y, i, j) such that

(2)
∫
Xj×Xj

dΛ,y,j(x
′′, x′′′)Ki,j

(
(x,x′),d(x′′, x′′′)

)
≤ ϕi,j dΛ,y,i(x,x

′)

for π{i}|Λ(· | y)-almost every x,x′ ∈ Xi. Note that (2) implies that the Wasserstein divergence
induced by dΛ,y,j between Πj

Λ,y,i,x and Πj
Λ,y,i,x′ is upper bounded by ϕi,j dΛ,y,i(x,x

′). In
particular, if dΛ,y,i and dΛ,y,j are the discrete metric, then (2) is equivalent to contraction in
the total variation distance, i.e.,

dTV(Π
j
Λ,y,i,x,Π

j
Λ,y,i,x′)≤ ϕi,j1x ̸=x′ .

An influence matrix associated with (Λ,y), denoted by Φ(Λ,y), is a square matrix of
dimension n−|Λ| whose i, jth element (where i ̸= j) is the contraction coefficient ϕi,j given
above, assuming that a contraction condition holds for (Λ,y, i, j). The diagonal elements of
Φ(Λ,y) are set to be zero. Let r(Φ(Λ,y)) be the spectral radius of Φ(Λ,y).

Now, allow Λ and y to vary. Given ℓ ∈ {1, . . . , n − 1} and (ηℓ+1, . . . , ηn) ∈ Rn−ℓ such
that ηm < m − 1 for each m, we say that the full joint distribution Π is (ηℓ+1, . . . , ηn)-
spectrally independent if the following holds: For every m ∈ {ℓ + 1, . . . , n}, Λ ⊂ [n] such
that n− |Λ|=m, and y ∈ XΛ such that πΛ(y)> 0, there exists an influence matrix Φ(Λ,y)
associated with (Λ,y) such that r(Φ(Λ,y))≤ ηm.

Recently, spectral independence has received tremendous attention in the theoretical com-
puter science community. It is regarded as a potentially powerful tool for bounding the spec-
tral gaps of Gibbs chains. All existing works on this topic focus on chains on finite state
spaces. Moreover, the semimetric dΛ,y,i is always set to be the discrete metric. Our next
corollary extends existing results, particularly Feng et al.’s (2021) Theorem 3.1, with regard
to these two aspects.

COROLLARY 5. Let m ∈ {2, . . . , n}. Suppose that, for Λ ⊂ [n] such that n− |Λ| =m
and y ∈ XΛ such that πΛ(y)> 0, there is an influence matrix Φ(Λ,y) associated with (Λ,y)
such that

r(Φ(Λ,y))≤ η,
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where η <m− 1. Then

Gap(m,m− 1)≥ m− 1

m
− η

m
.

In particular, it follows from Theorem 2 that, for ℓ ∈ {1, . . . , n− 1}, if Π is (ηℓ+1, . . . , ηn)-
spectrally independent, then

Gap(n, ℓ)≥
n∏

k=ℓ+1

(
k− 1

k
− ηk

k

)
=

ℓ

n

n∏
k=l+1

(
1− ηk

k− 1

)
.

REMARK 6. Dobrushin’s uniqueness condition (Dobrushin, 1970), which is useful for
convergence analysis and concentration inequalities (Föllmer, 1982; Wang and Wu, 2014;
Kontorovich and Raginsky, 2017), is based on another form of influence matrix that resembles
the ones that we consider. Suppose that for i ∈ [n], there is a metric di : Xi × Xi → [0,∞).
Suppose further that for Λ ⊂ [n] such that |Λ| = n − 2, y ∈ XΛ such that πΛ(y) > 0, and
i, j ∈−Λ such that i ̸= j, there is a coupling kernel Ki,j associated with (Λ,y, i, j) such that∫

Xj×Xj

dj(x
′′, x′′′)Ki,j

(
(x,x′),d(x′′, x′′′)

)
≤ φi,j di(x,x

′), x,x′ ∈ Xi,

where φi,j does not depend on the value of y. (Compare this with (2).) Let Φ be the n× n
matrix whose i, jth element is φi,j when i ̸= j. The diagonal elements of Φ are set to be zero.
Dobrushin’s uniqueness condition holds if the spectral radius (or in some works, the ∞-
norm) of Φ is less than 1. Under this type of condition, it is possible to establish convergence
results that loosely translates to Gap(n,1)≥ 1− ∥Φ∥∞ (Wang and Wu, 2014).

Dobrushin’s uniqueness condition is usually easier to verify than spectral independence.
However, when n is large, spectral independence seems more likely to hold. Indeed, when
|Λ| = n−m, the influence matrix we consider, Φ(Λ,y), is m by m, and spectral indepen-
dence only requires that r(Φ(Λ,y)) is less than m − 1 − εm for some positive constant
εm > 0. This appears to be quite milder than Dobrushin’s uniqueness condition, which re-
quires that an n× n matrix has spectral radius or ∞-norm less than unity.

As will be seen from Section 5, Corollary 5 is derived from Corollary 4, which is in turn
derived from Corollary 3, which is in turn derived from Theorem 2.

3.6. Additional remarks. We observe the lower bounds on Gap(n, ℓ) in Corollaries 3
and 5 are at most ℓ/n. The quantity ℓ/n is in fact an upper bound on the spectral gap of the
random-scan Gibbs sampler targeting π with block size ℓ. To see this, let K be the Markov
operator associated with the algorithm. Then, for f ∈ L2

0(Π) and x ∈ X,

Kf(x) =
1(
n
ℓ

) ∑
Γ⊂[n]

|Γ|=ℓ

E [f(X) |X−Γ = x−Γ] .
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Let f ∈ L2
0(Π) be such that ∥f∥Π = E[f(X)2] = 1. Suppose that f(x) depends on x ∈ X

only through x{1}. One can verify that, whenever n≥ ℓ+ 1,

⟨f,Kf⟩Π =
1(
n
ℓ

) ∑
Γ⊂[n]

|Γ|=ℓ

E
{
E [f(X) |X−Γ]

2
}

≥ 1(
n
ℓ

) ∑
Γ⊂[n]

|Γ|=ℓ, 1̸∈Γ

E
{
E [f(X) |X−Γ]

2
}

=
1(
n
ℓ

) ∑
Γ⊂[n]

|Γ|=ℓ, 1̸∈Γ

E[f(X)2]

=
n− ℓ

n
.

Then the spectral gap satisfies

1− ∥K∥Π ≤ 1− ⟨f,Kf⟩Π ≤ ℓ

n
.

Although our current results are presented in terms of spectral gaps, it is possible to express
them in terms of Dirichlet forms. Consider a Markov chain with a transition kernel Q that is
reversible with respect to Π. The Dirichlet form for Q and a function f ∈ L2

0(Π) is defined as
E(Q,f) := ⟨f, (I −Q)f⟩Π. Let K̄ be the transition kernel of Algorithm 1 with a block size
of n− 1. In the proof of Lemma 9, after the step mentioned in Equation (18), we can directly
derive the following inequality:

E(K,f)≥ Gap(n− 1, ℓ)E(K̄, f).

This is a slightly stronger version of the inequality

Gap(n, ℓ)≥ Gap(n− 1, ℓ)Gap(n,n− 1)

in the spectral telescope.
Our framework leaves several interesting open questions and directions for further ex-

tension. It is unclear when the lower bound in Theorem 2 will give the exact spectral
gap. Moreover, the existing bound relies on uniform lower bounds on the spectral gap of
lower-dimensional Gibbs samplers. Generalizing existing results to position-dependent lower
bounds may increase the applicability of our method.

Perhaps more importantly, in many models, Π does not have a Radon-Nikodym deriva-
tive π. It seems that many of our results could still hold if we replace the existence of π
with some weaker regularity conditions. However, establishing this rigorously would likely
require extremely careful (and possibly tedious) analysis. This is an important topic for future
studies.

4. An Example. The relations derived in Section 3 can be used to construct convergence
bounds for Gibbs algorithms. The following example illustrates the strengths and limitations
of this framework.

Let X1 = · · ·= Xn = (0,1), and let µ1 = · · ·= µn be Lebesgue measures. Let

π(x1, . . . , xn)∝

{
1
∑n

i=1 xi < 1,

0 otherwise.
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That is, π corresponds to the uniform distribution on the corner of an n-cube given by{
(x1, . . . , xn) ∈ (0,1)n :

n∑
i=1

xi < 1

}
.

Consider the random-scan Gibbs algorithm targeting π with block size l= 1. In each iteration
of the algorithm, given the current state x= (x1, . . . , xn) ∈ X= (0,1)n, where

∑n
i=1 xi < 1,

one randomly and uniformly selects i ∈ [n], then updates the value of x{i} = xi by drawing
from the density

π{i}|−{i}(x | x−{i}) =
1

1−
∑

j∈−{i} xj
, x < 1−

∑
j∈−{i}

xj .

We will use Corollary 3 to construct a sharp lower bound on the spectral gap of this chain. We
then briefly illustrates how Corollary 5 can be used to construct a similar but looser bound.

4.1. A spectral gap bound based on correlation coefficients. We will prove the following
result for the chain in question.

PROPOSITION 7. Let m ∈ {2, . . . , n}. Let Λ ⊂ [n] be such that |Λ| = n − m, and let
x= (x1, . . . , xn) ∈ X. Assume that

∑
i∈Λ xi < 1. Then

s(Λ,xΛ)≤

{
3/4 m= 2,

1/m+ 2(m− 1)/[(m+ 1)m2] m≥ 3.

By Corollary 3, when n≥ 3, the spectral gap satisfies

Gap(n,1)≥ 1

4

n∏
m=3

[
1− 1

m
− 2(m− 1)

(m+ 1)m2

]
.

Note that 1/m+ 2(m− 1)/[(m+ 1)m2]≤ 1/(m− 2). Thus, if n≥ 4, then

Gap(n,1)≥ 5

36

n∏
m=4

m− 3

m− 2
=

5

36(n− 2)
.

Recall that the spectral gap is upper bounded by 1/n. Thus, the bound here gives the correct
order as n→∞.

To prove Proposition 7, fix m ∈ {2, . . . , n}, Λ ⊂ [n] such that |Λ| = n − m, and x =
(x1, . . . , xn) ∈ X. Suppose that

∑
i∈Λ xi < 1. Without loss of generality, assume that −Λ =

{1, . . . ,m}. Let Y1, . . . , Ym be distributed as π−Λ|Λ(· | xΛ). For i= 1, . . . ,m, let fi ∈ L2
0(ϖi),

where ϖi denotes the distribution given by the density

(3) π{i}|Λ(x | xΛ) =
m
(
1−

∑n
j=m+1 xj − x

)m−1(
1−

∑n
j=m+1 xj

)m , x < 1−
n∑

j=m+1

xj .

It suffices to prove that

(4) E


[

m∑
i=1

fi(Yi)

]2≤Am

m∑
i=1

E
[
fi(Yi)

2
]
,
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where

(5) Am =

{
3/2 m= 2,

1 + 2(m− 1)/[(m+ 1)m] m≥ 3.

We will prove this using orthogonal polynomials. The techniques we employ are similar to
those in Diaconis, Khare and Saloff-Coste (2008).

Let i, j ∈−Λ be such that i ̸= j. Then, for x ∈ Xi such that π{i}|Λ(x | xΛ)> 0 and x′ ∈ Xj ,
the conditional density of Yj given Yi = x is
(6)

π{j}|Λ∪{i}(x
′ | x,xΛ) =

(m− 1)
(
1−

∑n
a=m+1 xa − x− x′

)m−2(
1−

∑n
a=m+1 xa − x

)m−1 , x′ < 1−
n∑

a=m+1

xa−x,

where (x,xΛ) = (x,xm+1, . . . , xn). For f ∈ L2
0(ϖj), let Pi,jf be a function on Xi such that

Pi,jf(x) =

∫
Xj

f(x′)π{j}|Λ∪{i}(x
′ | x,xΛ)dx

′, x ∈ Xi.

Using Cauchy-Schwarz inequality, it is easy to show that Pi,jf ∈ L2
0(ϖi). In fact, Pi,j :

L2
0(ϖj) → L2

0(ϖi) is a bounded linear transformation. Let Pi,i be the identity on L2
0(ϖi).

Then, for i, j ∈−Λ,

(7) ⟨fi, Pi,jfj⟩ϖi
= ⟨Pj,ifi, fj⟩ϖj

= E [fi(Yi)fj(Yj)] .

It follows that

(8)

m∑
i=1

E
[
fi(Yi)

2
]
=

m∑
i=1

⟨fi, Pi,ifi⟩ϖi
=

m∑
i=1

∥fi∥2ϖi
,

E


[

m∑
i=1

fi(Yi)

]2=

m∑
i=1

m∑
j=1

⟨fi, Pi,jfj⟩ϖi
.

Now, for a positive integer k and i, j ∈−Λ such that i ̸= j, the following holds if π{i}|Λ(x |
xΛ)> 0:

(9)
∫
Xj

x′kπ{j}|Λ∪{i}(x
′ | x,xΛ)dx= ζkx

k + qk−1(x),

where

ζk =
(−1)kk!(m− 1)!

(m+ k− 1)!
,

and qk−1(x) is a polynomial of x whose degree is k − 1. Standard arguments show that, for
i ∈ −Λ, L2

0(ϖi) has an orthonormal basis {pi,k}∞k=1, where pi,k is a polynomial function of
degree k. By (9), when i ̸= j,

Pi,jpj,k = ζkpi,k + ri,j,k−1,

where ri,j,k−1 is in the span of {pi,1, . . . , pi,k−1}. We claim that for k ≥ 1 and i ̸= j, ri,j,k = 0.
This can be proved through induction on k. The claim holds for k = 1, because the only
polynomial of order 0 in L2

0(ϖi) is 0. Assume that it holds for k = k′ − 1≥ 1. Then, by (7)
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and the fact that {pk} is an orthonormal basis, for k = 1, . . . , k′ and i ̸= j,

⟨ri,j,k′ , pi,k⟩ϖi
= ⟨Pi,jpj,k′+1 − ζk′+1pi,k′+1, pi,k⟩ϖi

= ⟨Pi,jpj,k′+1, pi,k⟩ϖi

= ⟨pj,k′+1, Pj,ipi,k⟩ϖj

= ζk⟨pj,k′+1, pj,k⟩ϖj

= 0.

This implies that ri,j,k′ = 0. Thus, for k ≥ 1 and i ̸= j,

Pi,jpj,k = ζkpi,k.

For i ∈ −Λ, we can decompose fi ∈ L2
0(ϖi) into fi =

∑∞
k=1 ai,kpi,k. Then (8) can be

written as
m∑
i=1

E
[
fi(Yi)

2
]
=

m∑
i=1

∞∑
k=1

a2i,k,

E


[

m∑
i=1

fi(Yi)

]2=

m∑
i=1

m∑
j=1

∞∑
k=1

ai,kaj,k[1i=j + 1i ̸=jζk].

Elementary matrix algebra shows that, given a positive integer k,
m∑
i=1

m∑
j=1

ai,kaj,k[1i=j + 1i ̸=jζk]≤max{1− ζk,1 + (m− 1)ζk}
m∑
i=1

a2i,k.

It follows that
m∑
i=1

m∑
j=1

∞∑
k=1

ai,kaj,k[1i=j + 1i ̸=jζk]≤
(
sup
k

max{1− ζk,1 + (m− 1)ζk}
) ∞∑

k=1

m∑
i=1

a2i,k

= [max{1− ζ1,1 + (m− 1)ζ2}]
∞∑
k=1

m∑
i=1

a2i,k

=Am

∞∑
k=1

m∑
i=1

a2i,k,

where Am is given in (5). This establishes (4), and in turn, Proposition 7.

4.2. A spectral gap bound based on influence matrices. One can also use Corollary 5
to bound the spectral gap. However, the bound would be looser than the one obtained in
the previous subsection. Hence, we will not present the full calculation for this alternative
bound. Instead, we only present parts of the calculation to illustrate how influence matrices
are computed.

We will establish the following result for our example.

PROPOSITION 8. Assume that n ≥ 4. Let m ∈ {4, . . . , n}. Then, for Λ ⊂ [n] such that
|Λ|= n−m and y ∈ XΛ such that πΛ(y)> 0, there is an influence matrix Φ(Λ,y) associated
with (Λ,y) such that r(Φ(Λ,y)) = (m− 1)/(m− 2).
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By Corollary 5, Proposition 8 implies that

Gap(m,m− 1)≥ m− 1

m
− (m− 1)

m(m− 2)

for m ≥ 4. If one can obtain a non-trivial lower bound c > 0 on Gap(2,1) and Gap(3,2)
(which can be achieved through Corollary 5, as we demonstrate in the Appendix), then, by
Theorem 2,

Gap(n,1)≥ c2
n∏

m=4

[
m− 1

m
− (m− 1)

m(m− 2)

]
=

3c2

n(n− 2)
.

The bound is looser than the one obtained from Corollary 3. This is unsurprising, since Corol-
lary 5 is derived from Corollary 3. Of course, there could be situations where the bound from
Corollary 5 is easier to calculate than the one from Corollary 3.

Let us now prove Proposition 8. Assume that n ≥ 4 and let m ∈ {4, . . . , n}. Fix Λ ⊂ [n]
such that |Λ| = n − m. Let y ∈ XΛ, and let x = (x1, . . . , xn) ∈ X be such that xΛ = y.
Assume that

∑
i∈Λ xi < 1, so that πΛ(y)> 0. Without loss of generality, assume that −Λ=

{1, . . . ,m}.
For i ∈−Λ, define a distance-like function

dΛ,y,i(x,x
′) =

|x− x′|
1−

∑
j∈Λ xj − x∨ x′

, x, x′ ∈ Xi,

where x ∨ x′ =max{x,x′}. We first need to verify that (H1) and (H2), which are given in
Section 3.5, hold. Establishing (H1) through (3) is rather straightforward. To establish (H2),
recall that the total variation distance between two distributions equals half of the integration
of the absolute difference of their density functions. Then, based on (6), one can find that, for
i, j ∈−Λ such that i ̸= j and x,x′ < 1−

∑
a∈Λ xa,

dTV(Π
j
Λ,y,i,x,Π

j
Λ,y,i,x′)

=
|x− x′|m−1∣∣∣(1−∑a∈Λ xa − x

)(m−1)/(m−2) −
(
1−

∑
a∈Λ xa − x′

)(m−1)/(m−2)
∣∣∣m−2

≤
(
m− 2

m− 1

)m−2

dΛ,y,i(x,x
′).

This establishes (H2).
It remains to establish a set of appropriate contraction conditions. For i, j ∈−Λ such that

i ̸= j, define a coupling kernel associated with (Λ,y, i, j), denoted by Ki,j , as follows. Let X
follow the distribution given by the density function

x 7→ (m− 1)(1− x)m−2, x ∈ (0,1).

For x,x′ ∈ Xi, let Ki,j((x,x
′), ·) be the distribution of((

1−
∑
a∈Λ

xa − x

)
X,

(
1−

∑
a∈Λ

xa − x′

)
X

)
.
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One can verify that this is a valid coupling kernel. In particular, Ki,j((x,x
′), ·) is a coupling

of Πj
Λ,y,i,x and Πj

Λ,y,i,x′ . Now,∫
Xj×Xj

dΛ,y,j(x
′′, x′′′)Ki,j

(
(x,x′),d(x′′, x′′′)

)
=E

[
|x− x′|X

1−
∑

a∈Λ xa −
(
1−

∑
a∈Λ xa − x∧ x′

)
X

]

≤ |x− x′|
1−

∑
a∈Λ xa − x∧ x′

E
(

X

1−X

)
≤
dΛ,y,i(x,x

′)

m− 2
,

where x ∧ x′ =min{x,x′}. The above calculation shows that there exists an influence ma-
trix Φ(Λ,y) associated with (Λ,y) whose non-diagonal elements are 1/(m − 2). Then
r(Φ(Λ,y)) = (m− 1)/(m− 2). This proves Proposition 8.

If one instead use the discrete metric to construct the influence matrix Φ(Λ,y), then all the
off-diagonal entries of Φ(Λ,y) would be 1. The spectral gap obtained through Corollary 5
would then be trivial.

4.3. Discussion. We see from this example that both Corollaries 3 and 5 are capable
of giving reasonably sharp bounds on the spectral gap. However, to construct these bounds,
we need sufficient information on π{j}|Λ∪{i} for every Λ ⊂ [n] such that |Λ| ∈ {0, . . . , n −
2} and i, j ∈ −Λ such that i ̸= j. For many practical problems, π{j}|Λ∪{i} is intractable,
especially when Λ ∪ {i} ∪ {j} ̸= [n]. Indeed, even for chains on finite state spaces, spectral
independence is often non-trivial to establish. A subject for future research would be to apply
spectral telescope to analyze Gibbs chains used in various fields. Our results may be useful to
study certain physics models, similar to those studied in Janvresse (2001), Carlen, Carvalho
and Loss (2003), and Pillai and Smith (2018); and statistical models such as the de Finetti’s
priors for almost exchangeable data (Gerencsér, 2019; Gerencsér and Ottolini, 2020) and
random effects models (Johnson and Jones, 2015).

5. Derivation of Main Results.

5.1. Hierarchical Structure of the Spectral Gap. In this subsection, we derive Theorem 2.
It suffices to prove the following lemma, which, as we will see, follows from the recursive
representation of Algorithm 2 given in Algorithm 3.

LEMMA 9. Let ℓ ∈ {1, . . . , n − 1} and m ∈ {ℓ + 1, . . . , n}. Let Λ ⊂ [n] be such that
|Λ|= n−m, and let y ∈ XΛ be such that πΛ(y)> 0. Then

gap(Λ,y, ℓ)≥ Gap(m,m− 1)Gap(m− 1, ℓ).

To begin our analysis, fix ℓ ∈ {1, . . . , n − 1}, Λ ⊂ [n] such that |Λ| = n − m where
m ∈ {ℓ + 1, . . . , n}, and y ∈ XΛ where πΛ(y) > 0. Denote by ϖ the probability measure
given by π−Λ|Λ(· | y). For i ∈ −Λ and x ∈ Xi, let ϖi,x be the probability measure given by
π−(Λ∪{i})|Λ∪{i}(· | xΛ∪{i}) where x ∈ X satisfies xΛ = y and x{i} = x.

Denote the Mtk of Algorithm 2 targeting ϖ with block size ℓ by K(·, ·). Then, for f ∈
L2(ϖ) and x ∈ X,

Kf(x−Λ) =
1(
m
ℓ

) ∑
Γ⊂−Λ

|Γ|=ℓ

E
[
f(X−Λ) |X−(Λ∪Γ) = x−(Λ∪Γ),XΛ = y

]
.
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It is straightforward to check that K defines a positive semi-definite operator on L2
0(ϖ). Its

spectral gap is 1− ∥K∥ϖ = gap(Λ,y, ℓ).
Denote the Mtk of Algorithm 2 targeting ϖ with block size m− 1 by K̄(·, ·). Then, for

f ∈ L2(ϖ) and x ∈ X,

K̄f(x−Λ) =
1

m

∑
i∈−Λ

E
[
f(X−Λ) |Xi = x{i},XΛ = y

]
.

K̄ defines a positive semi-definite operator on L2
0(ϖ), and its spectral gap satisfies

(10) 1− ∥K̄∥ϖ ≥ Gap(m,m− 1).

Denote the Mtk of Algorithm 2 targeting ϖi,x with block size ℓ, where i ∈−Λ and x ∈ Xi,
by Ki,x(·, ·). Then, for f ∈ L2(ϖi,x) and x ∈ X,

Ki,xf(x−(Λ∪{i}))

=
1(

m−1
ℓ

) ∑
Γ⊂−(Λ∪{i})

|Γ|=ℓ

E
[
f(X−(Λ∪{i})) |X−(Λ∪Γ∪{i}) = x−(Λ∪Γ∪{i}),Xi = x,XΛ = y

]
.

One can check that, for π{i}|Λ(· | y)-almost every x ∈ Xi, Ki,x defines a positive semi-definite
operator on L2

0(ϖi,x), and its spectral gap satisfies

(11) 1− ∥Ki,x∥ϖi,x
≥ Gap(m− 1, ℓ).

For f ∈ L2(ϖ), i ∈ −Λ, and x ∈ Xi, let fi,x : X−(Λ∪{i}) → R be such that f(x−Λ) =
fi,x(x−(Λ∪{i})) whenever x{i} = x. In other words, fi,x is just f with the Xi-component of its
argument fixed at x. For instance, if f is a function on X1 ×X2, then f1,x(x2) = f(x,x2) for
x ∈ X1 and x2 ∈ X2, whereas f2,x(x1) = f(x1, x) for x1 ∈ X1 and x ∈ X2. Given f ∈ L2(ϖ),
for π{i}|Λ(· | y)-almost every x ∈ Xi, fi,x ∈ L2(ϖi,x). For f ∈ L2(ϖ), the following holds
ϖ-almost everywhere on X−Λ:
(12)

1

m

∑
i∈−Λ

Ki,x{i}fi,x{i}(x−(Λ∪{i}))

=
1

m

∑
i∈−Λ

1(
m−1
ℓ

) ∑
Γ⊂−(Λ∪{i})

|Γ|=ℓ

E
[
fi,x{i}(X−(Λ∪{i})) |X−(Λ∪Γ∪{i}) = x−(Λ∪Γ∪{i}),Xi = x{i},XΛ = y

]

=
1

m

∑
i∈−Λ

1(
m−1
ℓ

) ∑
Γ⊂−(Λ∪{i})

|Γ|=ℓ

E
[
fi,Xi

(X−(Λ∪{i})) |X−(Λ∪Γ∪{i}) = x−(Λ∪Γ∪{i}),Xi = x{i},XΛ = y
]

=
1

m

∑
i∈−Λ

1(
m−1
ℓ

) ∑
Γ⊂−(Λ∪{i})

|Γ|=ℓ

E
[
f(X−Λ) |X−(Λ∪Γ∪{i}) = x−(Λ∪Γ∪{i}),Xi = x{i},XΛ = y

]

=
1

m

∑
i∈−Λ

1(
m−1
ℓ

) ∑
Γ⊂−(Λ∪{i})

|Γ|=ℓ

E
[
f(X−Λ) |X−(Λ∪Γ) = x−(Λ∪Γ),XΛ = y

]

=
1

m

1(
m−1
ℓ

)(m− l)
∑
Γ⊂−Λ

|Γ|=ℓ

E
[
f(X−Λ) |X−(Λ∪Γ) = x−(Λ∪Γ),XΛ = y

]
=Kf(x−Λ).
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This formula gives precisely the equivalence between Algorithms 2 and 3.
To prove Lemma 9, fix f ∈ L2

0(ϖ). For i ∈ −Λ, let ∆if = f − Pif , where Pif ∈ L2
0(ϖ)

satisfies

Pif(x−Λ) = E
[
f(X−Λ) |Xi = x{i},XΛ = y

]
.

Then, for π{i}|Λ(· | y)-almost every x ∈ Xi, (Pif)i,x ∈ L2(ϖi,x), and (∆if)i,x ∈ L2
0(ϖi,x).

(In fact, fi,x 7→ (Pif)i,x corresponds to the orthogonal projection on L2(ϖi,x) associated
with the subspace of constant functions.) By the tower property of conditional expectations,
(13)

⟨f,Kf⟩ϖ
=E [f(X−Λ)Kf(X−Λ) |XΛ = y]

=
1

m

∑
i∈−Λ

E
[
f(X−Λ)Ki,Xi

fi,Xi
(X−(Λ∪{i})) |XΛ = y

]
(by (12))

=
1

m

∑
i∈−Λ

E
[
fi,Xi

(X−(Λ∪{i}))Ki,Xi
fi,Xi

(X−(Λ∪{i})) |XΛ = y
]

(by definition of fi,Xi
)

=
1

m

∑
i∈−Λ

∫
Xi

E
[
fi,x(X−(Λ∪{i}))Ki,xfi,x(X−(Λ∪{i})) |Xi = x,XΛ = y

]
π{i}|Λ(x | y)dx

=
1

m

∑
i∈−Λ

∫
Xi

⟨(Pif)i,x + (∆if)i,x,Ki,x[(Pif)i,x + (∆if)i,x]⟩ϖi,x
π{i}|Λ(x | y)dx.

The integrand in the last line equals

(14)

⟨(Pif)i,x + (∆if)i,x, (Pif)i,x +Ki,x(∆if)i,x⟩ϖi,x

=⟨(Pif)i,x, (Pif)i,x⟩ϖi,x
+ ⟨(∆if)i,x,Ki,x(∆if)i,x⟩ϖi,x

+

⟨(Pif)i,x,Ki,x(∆if)i,x⟩ϖi,x
+ ⟨(∆if)i,x, (Pif)i,x⟩ϖi,x

=⟨(Pif)i,x, (Pif)i,x⟩ϖi,x
+ ⟨(∆if)i,x,Ki,x(∆if)i,x⟩ϖi,x

+ 2⟨(∆if)i,x, (Pif)i,x⟩ϖi,x
,

where the last equality follows from the fact that Ki,x is self-adjoint and that Ki,x(Pif)i,x =
(Pif)i,x.

Let us examine the three terms in the last line of (14). Firstly, one can verify that, for
π{i}|Λ(· | y)-almost every x ∈ Xi,
(15)
⟨(Pif)i,x, (Pif)i,x⟩ϖi,x

= E{f(X−Λ)E [f(X−Λ) |Xi = x,XΛ = y] |Xi = x,XΛ = y}

= ⟨fi,x, (Pif)i,x⟩ϖi,x
.

It follows that

(16)

1

m

∑
i∈−Λ

∫
Xi

⟨(Pif)i,x, (Pif)i,x⟩ϖi,x
π{i}|Λ(x | y)dx

=
1

m

∑
i∈−Λ

∫
Xi

⟨fi,x, (Pif)i,x⟩ϖi,x
π{i}|Λ(x | y)dx

=
1

m

∑
i∈−Λ

⟨f,Pif⟩ϖ

=⟨f, K̄f⟩ϖ.
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Secondly, by (11), for π{i}|Λ(· | y)-almost every x ∈ Xi, since (∆if)i,x ∈ L2
0(ϖi,x),

⟨(∆if)i,x,Ki,x(∆if)i,x⟩ϖi,x
≤∥Ki,x∥ϖi,x

∥(∆if)i,x∥2ϖi,x

≤[1− Gap(m− 1, ℓ)]∥(∆if)i,x∥2ϖi,x
.

By (15),

∥(∆if)i,x∥2ϖi,x

=⟨fi,x, fi,x⟩ϖi,x
+ ⟨(Pif)i,x, (Pif)i,x⟩ϖi,x

− 2⟨fi,x, (Pif)i,x⟩ϖi,x

=∥fi,x∥2ϖi,x
− ⟨fi,x, (Pif)i,x⟩ϖi,x

.

Therefore,

(17)

1

m

∑
i∈−Λ

∫
Xi

⟨(∆if)i,x,Ki,x(∆if)i,x⟩ϖi,x
π{i}|Λ(x | y)dx

≤[1− Gap(m− 1, ℓ)]

[
∥f∥2ϖ − 1

m

∑
i∈−Λ

∫
Xi

⟨fi,x, (Pif)i,x⟩ϖi,x
π{i}|Λ(x | y)dx

]
=[1− Gap(m− 1, ℓ)] (∥f∥2ϖ − ⟨f, K̄f⟩ϖ),

where the final equality follows from (16).
Finally, by (15), for π{i}|Λ(· | y)-almost every x ∈ Xi,

⟨(∆if)i,x, (Pif)i,x⟩ϖi,x
= ⟨fi,x, (Pif)i,x⟩ϖi,x

− ⟨(Pif)i,x, (Pif)i,x⟩ϖi,x
= 0,

so

(18)
1

m

∑
i∈−Λ

∫
Xi

⟨(∆if)i,x, (Pif)i,x⟩ϖi,x
π{i}|Λ(x | y)dx= 0.

Combining (10) and (13) to (18) shows that

⟨f,Kf⟩ϖ ≤[1− Gap(m− 1, ℓ)]∥f∥2ϖ + Gap(m− 1, ℓ)⟨f, K̄f⟩ϖ

≤[1− Gap(m− 1, ℓ)]∥f∥2ϖ + Gap(m− 1, ℓ)[1− Gap(m,m− 1)]∥f∥2ϖ
=[1− Gap(m− 1, ℓ)Gap(m,m− 1)]∥f∥2ϖ.

Since K is positive semi-definite, and f ∈ L2
0(ϖ) is arbitrary, Lemma 9 holds.

5.2. Spectral gap and correlation coefficients. In this subsection, we derive Corollary 3.
It suffices to show the following.

LEMMA 10. Let m ∈ {2, . . . , n}. Then, for Λ⊂ [n] such that |Λ|= n−m and y ∈ XΛ

such that πΛ(y)> 0,

gap(Λ,y,m− 1)≥ 1− s(Λ,y).

In particular,

Gap(m,m− 1)≥ 1− S(m).

To prove the lemma, fix Λ⊂ [n] such that |Λ|= n−m where m ∈ {2, . . . .n} and y ∈ XΛ

such that πΛ(y)> 0. As in the previous section, denote by ϖ the probability measure given
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by π−Λ|Λ(· | y), and let K̄(·, ·) be the Mtk of Algorithm 2 targeting ϖ with block size m− 1.
Then

gap(Λ,y,m− 1) = 1− ∥K̄∥ϖ.

For f ∈ L2
0(ϖ),

K̄f =
1

m

∑
i∈−Λ

Pif,

where Pi : L
2
0(ϖ)→ L2

0(ϖ) satisfies

Pif(x−Λ) = E
[
f(X−Λ) |Xi = x{i},XΛ = y

]
.

For i ∈−Λ, P 2
i = Pi, and for f, g ∈ L2

0(ϖ),

⟨Pif, g⟩ϖ = ⟨Pif,Pig⟩ϖ = ⟨f,Pig⟩ϖ.

In fact, Pi is the orthogonal projection onto the space of L2
0(ϖ) functions x−Λ 7→ f(x−Λ)

that depend on x−Λ only through x{i}. Denote the range of Pi by Li. Let L =
∑

i∈−ΛLi.
That is, L ⊂ L2

0(ϖ) consists of functions that are sums of functions from Li. Obviously, K̄
maps a function in L2

0(ϖ) to a function in L. Let K̄|L be K̄ restricted to L. We then have the
following lemma.

LEMMA 11.

(19) ∥K̄∥ϖ = ∥K̄|L∥ϖ.

PROOF. It is clear that ∥K̄∥ϖ ≥ ∥K̄|L∥ϖ . It remains to prove the reverse inequality.
Since K̄ is self-adjoint, its norm equals its spectral radius. Then, by Gelfand’s formula,

(20) ∥K̄∥ϖ = lim
t→∞

∥K̄t∥1/tϖ .

For any f ∈ L2
0(ϖ) and positive integer t such that t≥ 2,

∥K̄tf∥ϖ = ∥K̄|t−1
L K̄f∥ϖ ≤ ∥K̄|L∥t−1

ϖ ∥K̄∥ϖ∥f∥ϖ.

Then

lim
t→∞

∥K̄t∥1/tϖ ≤ lim
t→∞

∥K̄|L∥(t−1)/t
ϖ ∥K̄∥1/tϖ = ∥K̄|L∥ϖ.

It then follows from (20) that

∥K̄∥ϖ ≤ ∥K̄|L∥ϖ.

To derive Lemma 10, we combine Lemma 11 with a simple result from Bjørstad and
Mandel (1991) concerning norms of sums of orthogonal projections.

LEMMA 12. (Bjørstad and Mandel, 1991, Theorem 3.2)

∥K̄|L∥ϖ ≤ sup
fi∈Li ∀i

∃i s.t. fi ̸=0

∥∥∑
i∈−Λ fi

∥∥2
ϖ

m
∑

i∈−Λ ∥fi∥2ϖ
.
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Note that for f ∈ L2
0(ϖ),

∥f∥2ϖ = E
[
f(X−Λ)

2 |XΛ = y
]
.

Moreover, if we let ϖi be the probability measure on (Xi,Bi) given by π{i}|Λ(· | y), then
there is a natural isomorphism from Li to L2

0(ϖi). It follows that

sup
fi∈Li ∀i

∃i s.t. fi ̸=0

∥∥∑
i∈−Λ fi

∥∥2
ϖ

m
∑

i∈−Λ ∥fi∥2ϖ
= sup

fi∈L2
0
(ϖi) ∀i

∃i s.t. E[fi(Xi)2|XΛ=y]>0

E
{[∑

i∈−Λ fi(Xi)
]2 |XΛ = y

}
m
∑

i∈−ΛE[fi(Xi)2 |XΛ = y]

=s(Λ,y).

Lemma 10 then follows from Lemmas 11 and 12.

5.3. Spectral gap and random walks. In this section, we derive Corollary 4. In light of
Corollary 3, it suffices to prove the following result.

LEMMA 13. Let m ∈ {2, . . . , n}. Then, for Λ⊂ [n] such that |Λ|= n−m and y ∈ XΛ

such that πΛ(y)> 0,

g(Λ,y) = 1− s(Λ,y).

In particular,

G(m) = 1− S(m).

To prove Lemma 13, fix Λ⊂ [n] such that |Λ|= n−m, where m ∈ {2, . . . , n}, and y ∈ XΛ

such that πΛ(y)> 0.
Consider Algorithm 4 associated with Λ and y. Recall that the underlying random walk

Markov chain has X̃=
⋃

i∈−Λ({i}×Xi) as its state space. The chain is reversible with respect
to the probability measure φ given by

φ({i} ×A) =
1

m
ϖi(A), i ∈−Λ, A ∈ Bi,

where ϖi is the probability measure on (Xi,Bi) given by π{i}|Λ(· | y). A measurable function
on X̃ has the form (i, x) 7→ f(i, x), where i ∈−Λ and x ∈ Xi. For such a function f , we can
identify m functions (Tif)i∈−Λ, such that Tif(x) = f(i, x) for i ∈ −Λ and x ∈ Xi. Then
f ∈ L2

0(φ) if and only if Tif ∈ L2(ϖi) for each i, and

(21)
∑
i∈−Λ

E[Tif(Xi) |XΛ = y] = 0.

For f ∈ L2
0(φ),

(22) ∥f∥2φ =
1

m

∑
i∈−Λ

E{[Tif(Xi)]
2 |XΛ = y}.

Let R(·, ·) be the Mtk of Algorithm 4 associated with Λ and y. R(·, ·) defines the following
operator on L2

0(φ): For f ∈ L2
0(φ), i ∈−Λ, and x ∈ Xi,

(23) Rf(i, x) =
1

m

∑
j∈−Λ

E[Tjf(Xj) |Xi = x, XΛ = y].
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It follows that, for f ∈ L2
0(φ),

(24)

⟨f,Rf⟩φ =
1

m2

∑
i,j∈−Λ

E[Tif(Xi)Tjf(Xj) |XΛ = y]

=
1

m2
E


[∑
i∈−Λ

Tif(Xi)

]2 ∣∣∣XΛ = y

 .

From this formula, we can see that R is positive semi-definite.
Let L′ be the space of functions f in L2

0(φ) such that

E[Tif(Xi) |XΛ = y] = 0

for i ∈−Λ. In other words, f ∈ L′ if and only if Tif ∈ L2
0(ϖi) for i ∈−Λ. By (21) and (23),

for f ∈ L2
0(φ), Rf ∈ L′. Just like in Lemma 11, one can argue that

1− g(Λ,y) = ∥R∥φ = ∥R|L′∥φ,

where R|L′ is R restricted to L′. It then follows from (22), (24), and the fact that R is positive
semi-definite that

(25) 1− g(Λ,y) = sup
f∈L′

f ̸=0

⟨f,Rf⟩φ
∥f∥2φ

≤ s(Λ,y).

It remains to show the reverse inequality. To this end, let (fi)i∈−Λ be such that fi ∈ L2
0(ϖi)

for each i, and that fi ̸= 0 for some i. One can find a function f ∈ L2
0(φ) such that

f(i, x) = Tif(x) = fi(x)

for i ∈−Λ and x ∈ Xi. Then, by (22) and (24),

E
{[∑

i∈−Λ fi(Xi)
]2 |XΛ = y

}
m
∑

i∈−ΛE[fi(Xi)2 |XΛ = y]
=

E
{[∑

i∈−Λ Tif(Xi)
]2 |XΛ = y

}
m
∑

i∈−ΛE[Tif(Xi)2 |XΛ = y]

=
⟨f,Rf⟩φ
∥f∥2φ

≤ ∥R∥φ.

This shows that

s(Λ,y)≤ 1− g(Λ,y).

In summary, Lemma 13 holds.

5.4. Spectral gap and spectral independence. In this section, we prove Corollary 5. In
light of Corollary 4, it suffices to prove the following.

LEMMA 14. Let Λ⊂ [n] be such that |Λ|= n−m, where m ∈ {2, . . . , n}, and let y ∈ XΛ

be such that πΛ(y) > 0. Suppose that there is an influence matrix Φ(Λ,y) associated with
(Λ,y) such that

r(Φ(Λ,y))≤ η,

where η <m− 1. Then

g(Λ,y)≥ m− 1

m
− η

m
.
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The proof is divided into several steps. We first define an altered version of the random
walk and relate the L2 norm of its Markov operator to g(Λ,y), the spectral gap of the origi-
nal random walk. We then incorporate a coupling argument, somewhat similar to that used in
Feng et al. (2021), to construct a convergence bound for the altered random walk in a Wasser-
stein divergence. Next, we use one-shot coupling (Roberts and Rosenthal, 2002; Madras and
Sezer, 2010) to translate the bound to one in total variation distance. Finally, we use a result
in Roberts and Rosenthal (1997) to further translate the convergence bound in total variation
distance to a bound on the L2 norm of the chain’s Markov operator.

Throughout this subsection, fix Λ ⊂ [n] such that |Λ| = n − m, where m ∈ {2, . . . , n},
and let y ∈ XΛ be such that πΛ(y)> 0. Assume that the assumptions of Lemma 14 hold. In
particular, for i, j ∈ −Λ such that i ̸= j, there is a coupling kernel Ki,j and ϕi,j <∞ such
that

(26)
∫
Xj×Xj

dΛ,y,j(x
′′, x′′′)Ki,j((x,x

′),d(x′′, x′′′))≤ ϕi,j dΛ,y,i(x,x
′)

for π{i}|Λ(· | y)-almost every x,x′ ∈ Xi. For i ∈ −Λ, let ϕi,i = 0, and let Ki,i : Xi × Xi →
Bi ×Bi be a Markov transition kernel such that

Ki,i((x,x
′),A) =

∫
A′

π{i}|Λ(x
′′ | y)dx′′,

where A′ = {(x′′, x′′) : x′′ ∈ A}. (A′ is measurable when A is since the former is the in-
tersection of A×A and the set of points (x′′, x′′′) such that dΛ,y,i(x′′, x′′′) = 0.) Then (26)
holds even when i= j. Moreover, the influence matrix Φ(Λ,y) can be written as (ϕi,j).

5.4.1. An altered random walk. It is convenient to consider a random walk chain that is
a slight alteration of Algorithm 4. Just like Algorithm 4, Algorithm 5 defines a Markov chain
that is reversible with respect to a distribution of the form

φ({i} ×A) =
1

m
ϖi(A), i ∈−Λ, A ∈ Bi,

with ϖi being the measure given by π{i}|Λ(· | y).

Algorithm 5 One step of an altered random walk associated with Λ⊂ [n] and y ∈ XΛ:
Input: Current state (j, x) ∈

⋃
i∈−Λ({i} ×Xi).

Let x ∈ X be such that xΛ = y and x{j} = x.

Randomly and uniformly choose a coordinate j′ ∈−Λ.
if j′ = j then

Draw x′ ∈ X{j} from π{j}|Λ(· | xΛ).
else

Draw x′ ∈ X{j′} from π{j′}|Λ∪{j}(· | xΛ∪{j}).
end if
Return: New State (j′, x′).

Let R(·, ·) be the transition kernel for Algorithm 4, and R̃(·, ·), that for Algorithm 5. Each
kernel defines a self-adjoint operator on L2

0(φ). Indeed, R is given by (23), i.e., for f ∈
L2
0(φ), i ∈−Λ, and x ∈ Xi,

Rf(i, x) =
1

m

∑
j∈−(Λ∪{i})

E[Tjf(Xj) |Xi = x, XΛ = y] +
f(i, x)

m
,
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where Tif(x) = f(i, x). On the other hand,

R̃f(i, x) =
1

m

∑
j∈−(Λ∪{i})

E[Tjf(Xj) |Xi = x, XΛ = y] +
1

m
E[Tif(Xi) | XΛ = y].

Let L′ be the space of functions f in L2
0(φ) such that Tif ∈ L2

0(ϖi) for i ∈−Λ. R|L′ and
R̃|L′ , the restrictions of R and R̃ to L′, are related by the following formula:

R|L′ = R̃|L′ +
Id
m
,

where Id is the identity on L′. It follows that

g(Λ,y) = 1− sup
f∈L′

f ̸=0

⟨f,Rf⟩φ
∥f∥2φ

=
m− 1

m
− sup

f∈L′

f ̸=0

⟨f, R̃f⟩φ
∥f∥2φ

≥ m− 1

m
− ∥R̃∥φ,

where the first equality is part of (25) derived in Section 5.3. Hence, to prove Lemma 14, it
suffices to show that

(27) ∥R̃∥φ ≤ η

m
.

5.4.2. Convergence in a Wasserstein divergence. According to Lemma 1, to say that (27)
holds is to say that the altered random walk chain converges geometrically in the L2 distance
at a rate of η/m. To prove this, we first show that the chain converges geometrically in some
Wasserstein divergence.

Let D : [
⋃

i∈−Λ({i} ×Xi)]× [
⋃

i∈−Λ({i} ×Xi)]→ [0,∞] be such that, for i, j ∈−Λ and
x ∈ Xi, x′ ∈ Xj ,

D((i, x), (j, x′)) =

{
dΛ,y,i(x,x

′) i= j,

∞ i ̸= j.

A measure in L2
∗(φ) has the form

(28) ω({i} ×A) = aiωi(A), i ∈−Λ, A ∈ Bi,

where,
∑

i∈−Λ ai = 1, and, for i ∈−Λ, ai ≥ 0 and ωi ∈ L2
∗(ϖi).

The following lemma implies that the altered random walk chain converges geometrically
in the Wasserstein divergence induced by D.

LEMMA 15. Let ω ∈ L2
∗(φ) be as in (28). Then there exist a pair of random walk chains

associated with Algorithm 5, denoted by (I(t),X(t))∞t=0 and (I ′(t),X ′(t))∞t=0, that satisfy
the following properties:

(P1) (I(0),X(0))∼ ω, and independently, (I ′(0),X ′(0))∼ φ.
(P2) I(t) = I ′(t) for t≥ 1.
(P3) Given I(t) = it ∈ −Λ, the distribution of X(t) is absolutely continuous with respect

to ϖit .
(P4) There exists a constant Cω <∞ such that, for each positive integer t,

E
[
D
(
(I(t),X(t)), (I ′(t),X ′(t))

)]
≤Cω∥Ψt−1∥∞,

where Ψ=Φ(Λ,y)/m, and, for any matrix A= (ai,j), ∥A∥∞ =maxi
∑

j |ai,j |.

PROOF. Construct the two chains according the following Markovian procedure.
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1. Let (I(0),X(0))∼ ω, and independently, (I ′(0),X ′(0))∼ φ.
2. Draw I(1) = I ′(1) randomly and uniformly from −Λ. Denote the observed values of

I(0), I ′(0), X(0), X ′(0), and I(1) = I ′(1) by i0, i′0, z0, z′0, and i1 respectively.
3. For i, j ∈−Λ and x ∈ Xi, let Π̄j

Λ,y,i,x =Πj
Λ,y,i,x if i ̸= j, and let Π̄j

Λ,y,i,x be the probability
measure associated with π{j}|Λ(· | y) if i= j. Independently, draw X(1) from Π̄i1

Λ,y,i0,z0
,

and X ′(1) from Π̄i1
Λ,y,i′0,z

′
0
.

4. For a positive integer t, given (I(t),X(t)) = (it, zt) and (I ′(t),X ′(t)) = (it, z
′
t), draw

(I(t+1),X(t+1), I ′(t+1),X ′(t+1)) as follows. Randomly and uniformly draw I(t+
1) = I ′(t + 1) from −Λ, and denote the observed value by it+1. Then, draw (X(t +
1),X ′(t+ 1)) using the coupling kernel Kit,it+1

((zt, z
′
t), ·).

It is easy to see that (I(t),X(t))t and (I ′(t),X ′(t))t are both Markov chains whose tran-
sition laws follow Algorithm 5, and that they satisfy (P1) and (P2). Let us establish (P3)
and (P4). Fix a positive integer t. Let is ∈ −Λ for s = 0, . . . , t, and let i′0 ∈ −Λ. Given
I(s) = I ′(s) = is for s = 0, . . . , t and I ′(0) = i′0, the distribution of (X(t),X ′(t)), denoted
by νi0,...,it;i′0 , is given by the following recursive formula:

νi0;i′0(dz0,dz
′
0) = ωi0(dz0)ϖi′0(dz

′
0),

νi0,i1;i′0(dz1,dz
′
1) =

∫
Xi0×Xi′

0

Π̄i1
Λ,y,i0,z0

(dz1) Π̄
i1
Λ,y,i′0,z

′
0
(dz′1)νi0;i′0(dz0,dz

′
0),

νi0,...,is+1;i′0(dzs+1,dz
′
s+1) =

∫
X2

is

Kis,is+1
((zs, z

′
s), (dzs+1,dz

′
s+1))νi0,...,is;i′0(dzs,dz

′
s),

where s≥ 1. One can check that, for s≥ 0, the distribution given by A 7→ νi0,...,is;i′0(A×Xis)
is absolutely continuous with respect to ϖis , while that given by A 7→ νi0,...,is;i′0(Xis × A)
is ϖis itself. This implies that (P3) holds. Moreover, for s ≥ 1 and νi0,...,is;i′0 -almost every
(zs, z

′
s) ∈ X2

is
,∫

X2
is+1

dΛ,y,is+1
(zs+1, z

′
s+1)Kis,is+1

((zs, z
′
s),d(zs+1, z

′
s+1))≤ ϕis,is+1

dΛ,y,is(zs, z
′
s).

Thus,

E
[
D
(
(I(t),X(t)), (I ′(t),X ′(t))

)
| I(s) = I ′(s) = is for s= 0, . . . , t; I ′(0) = i′0

]
=

∫
X2

it

dΛ,y,it(zt, z
′
t)νi0,...,it;i′0(dzt,dz

′
t)

=

∫
X2

it−1

∫
X2

it

dΛ,y,it(zt, z
′
t)Kit−1,it((zt−1, z

′
t−1), (dzt,dz

′
t))νi0,...,it−1;i′0(dzt−1,dz

′
t−1)

≤ϕit−1,it

∫
X2

it−1

dΛ,y,it−1
(zt−1, z

′
t−1)νi0,...,i′t−1i

′
0
(dzt−1,dz

′
t−1)

≤

(
t−1∏
s=1

ϕis,is+1

)∫
X2

i1

dΛ,y,i1(z1, z
′
1)νi0,i1;i′0(dz1,dz

′
1).
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(If t= 1, then
∏t−1

s=1 ϕis,is+1
is interpreted as 1.) Then

E
[
DΛ,y

(
(I(t),X(t)), (I ′(t),X ′(t))

)]
≤ 1

mt+1

 ∑
i2,...,it∈−Λ

t−1∏
s=1

ϕis,is+1

 ∑
i0,i′0,i1∈−Λ

ai0

∫
X2

i1

dΛ,y,i1(z1, z
′
1)νi0,i1;i′0(dz1,dz

′
1)

≤Cω∥Ψt−1∥∞,

where

Cω =
1

m2

∑
i0,i′0,i1∈−Λ

ai0

∫
X2

i1

dΛ,y,i1(z1, z
′
1)νi0,i1;i′0(dz1,dz

′
1)

=
1

m2

∑
i0,i1∈−Λ

ai0

∫
Xi0

∫
X2

i1

dΛ,y,i1(z1, z
′
1) Π̄

i1
Λ,y,i0,z0

(dz1)ϖi1(dz
′
1)ωi0(dz0).

It remains to show that Cω <∞. Fix i0, i1 ∈−Λ. Recall that (H1) and (H2) in Section 3.5
are assumed. By (H1),

z1 7→
∫
Xi1

dΛ,y,i1(z1, z
′
1)ϖi1(dz

′
1)

is in L2(ϖi1). By the Cauchy-Schwarz inequality,

z0 7→ f(z0) =

∫
Xi1

∫
Xi1

dΛ,y,i1(z1, z
′
1)ϖi1(dz

′
1) Π̄

i1
Λ,y,i0,z0

(dz1)

is in L2(ϖi0). Thus,∫
Xi0

∫
X2

i1

dΛ,y,i1(z1, z
′
1) Π̄

i1
Λ,y,i0,z0

(dz1)ϖi1(dz
′
1)ωi0(dz0)

=

∫
Xi0

f(z0)
dωi0

dϖi0

(z0)ϖi0(dz0)

<∞.

This concludes the proof.

5.4.3. Convergence in total variation. To continue, we use the one-shot coupling tech-
nique to show that the altered random walk chain converges in total variation distance. To be
specific, we show the following.

LEMMA 16. Let ω ∈ L2
∗(φ). For t≥ 0, denote by ωR̃t the distribution of the tth element

of a Markov chain associated with Algorithm 5, assuming that the chain’s starting distribu-
tion (i.e., distribution of its zeroth element) is ω. Then, there exists a constant Cω <∞ such
that, for t≥ 2,

dTV(ωR̃
t,φ)≤Cω∥Ψt−2∥∞,

where Ψ=Φ(Λ,y)/m, and ∥ · ∥∞ is defined in Lemma 15.

PROOF. Let (I(t),X(t))∞t=0 and (I ′(t),X ′(t))∞t=0 be a pair of chains associated with Al-
gorithm 5 that satisfy (P1) to (P4) in Lemma 15.
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Fix t ≥ 2. Given (I(t − 1),X(t − 1)) = (it−1, zt−1) and (I ′(t − 1),X ′(t − 1)) =
(it−1, z

′
t−1), proceed as follows. Draw J randomly and uniformly from −Λ, and call the

observed value j. If j = it−1, draw Z from π{j}|Λ(· | y), and let Z ′ = Z . If j ̸= it−1, do
the following: Let x ∈ X be such that x{i} = zt−1 and xΛ = y, and let x′ ∈ X be such that
x′
{i} = z′t−1 and xΛ = y. Let

p :=p(it−1, j, zt−1, z
′
t−1)

=

∫
Xj

min
{
π{j}|Λ∪{it−1}(x | xΛ∪{i}), π{j}|Λ∪{it−1}(x | x′

Λ∪{i})
}
dx.

Then

1− p= dTV

(
Πj

Λ,y,it−1,zt−1
,Πj

Λ,y,it−1,z′
t−1

)
.

With probability p, draw Z = Z ′ from the density

x 7→ q(x) =
1

p
min

{
π{j}|Λ∪{it−1}(x | xΛ∪{i}), π{j}|Λ∪{it−1}(x | x′

Λ∪{i})
}
.

With probability 1− p, draw Z from the density

x 7→
π{j}|Λ∪{it−1}(x | xΛ∪{i})− pq(x)

1− p
,

and independently, draw Z ′ from the density

x 7→
π{j}|Λ∪{it−1}(x | x′

Λ∪{i})− pq(x)

1− p
.

Then (J,Z)∼ ωR̃t, while (J,Z ′)∼ φ. Moreover, given (I(t− 1),X(t− 1)) = (it−1, zt−1),
(I ′(t− 1),X ′(t− 1)) = (it−1, z

′
t−1), and J = j, the probability of the event Z = Z ′ is 1 if

j = it−1 and p otherwise. When j = it−1, set p(it−1, j, zt−1, z
′
t−1) = 1, so that the conditional

probability of Z = Z ′ is always p.
By (H2), there is a constant k <∞ such that, almost surely,

p(I(t− 1), J,X(t− 1),X ′(t− 1))

=1− dTV

(
ΠJ

Λ,y,I(t−1),X(t−1),Π
J
Λ,y,I(t−1),X′(t−1)

)
1J ̸=I(t−1)

≥1− kdΛ,y,I(t−1)(X(t− 1),X ′(t− 1))

=1− kD
(
(I(t− 1),X(t− 1)), (I ′(t− 1),X ′(t− 1))

)
.

(Condition (H2) only ensures that the inequality holds for ϖI(t−1)- almost every value of
X(t− 1) given I(t− 1), but (P3) ensures that X(t− 1) attains these values with probability
one. ) It then follows from (P4) that there exists a constant C ′

ω unrelated to t such that

P((J,Z) ̸= (J,Z ′)) = 1−E
[
p(I(t− 1), J,X(t− 1),X ′(t− 1))

]
≤ kE

[
D
(
(I(t− 1),X(t− 1)), (I ′(t− 1),X ′(t− 1))

)]
≤ kC ′

ω∥Ψt−2∥∞.

By the well-known coupling inequality,

dTV(ωR̃
t,φ)≤ P((J,Z) ̸= (J,Z ′))≤ kC ′

ω∥Ψt−2∥∞.
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5.4.4. Convergence in the L2 distance. To establish (27) and thus Lemma 14, we use
Lemma 16 to derive a convergence bound in the L2 distance.

Recall that it is assumed that the spectral radius of Φ(Λ,y) is no greater than η ∈ [0,m−
1). Then the spectral radius of Ψ = Φ(Λ,y)/m is no greater than η/m ∈ [0, (m − 1)/m).
Since ∥ · ∥∞, as given in Lemma 15 is a matrix norm, by Gelfand’s formula,

lim
t→∞

∥Ψt−2∥1/t∞ ≤ η

m
,

This implies that, for ρ > η/m, one can find a constant cρ such that

∥Ψt−2∥∞ ≤ cρρ
t

for t≥ 2.
Fix ρ ∈ (η/m,1). For ω ∈ L2

∗(φ) and t≥ 0, let ωR̃t be as defined in Lemma 16. Then the
said lemma implies that there is a constant Cω <∞ such that

dTV(ωR̃
t,φ)≤Cωρ

t

for t ≥ 0. By Lemma 1 (i.e., Roberts and Rosenthal, 1997, Theorem 2.1), the L2 distance
between ωR̃t and φ also decreases at a rate of ρt or faster; moreover, ∥R̃∥φ ≤ ρ. Since
ρ ∈ (η/m,1) is arbitrary, (27) holds.

APPENDIX: A TECHNICAL RESULT REGARDING THE EXAMPLE IN SECTION 4

In the paragraph after Proposition 8, we claimed that one can bound Gap(2,1) and
Gap(3,2) using Corollary 5. Indeed, we can prove the following result for the Gibbs chain in
Section 4.

PROPOSITION 17. Suppose that m ∈ {2,3} and n ≥ m. Then, for Λ ⊂ [n] such that
|Λ|= n−m and y ∈ XΛ such that πΛ(y)> 0, there is an influence matrix Φ(Λ,y) associated
with (Λ,y) such that r(Φ(Λ,y)) = (m − 1)cm, where cm ∈ [0,1) is a constant that only
depends on m.

By Corollary 5, this proposition implies that Gap(2,1) ≥ (1 − c2)/2, and Gap(3,2) ≥
2(1 − c3)/3. One can combine these two bounds with Proposition 8 to obtain a bound on
Gap(n,1) that is of order 1/n2.

PROOF OF PROPOSITION 17. Consider first the case m= 2.
Fix Λ ∈ [n] such that |Λ|= n− 2. (Without loss of generality, assume that −Λ= {1,2}.)

Let y ∈ XΛ, and let x= (x1, . . . , xn) ∈ X be such that xΛ = y. Assume that
∑

i∈Λ xi < 1, so
that πΛ(y)> 0.

For i ∈−Λ, define the semimetric on Xi:

dΛ,y,i(x,x
′) = [Vi(x) + Vi(x

′) + 1]1/81x̸=x′ ,

where

Vi(x) =
x2

(1−
∑

j∈Λ xj)2
Vi(x

′) =
x′2

(1−
∑

j∈Λ xj)2
.

It is easy to verify that this semimetric satisfies (H1) and (H2) in Section 3.5.
To prove a contraction condition regarding dΛ,y,i, we use a technique involving Hölder’s

inequality, which appeared in Butkovsky (2014), Douc et al. (2018) and Qin and Hobert
(2022b). For i, j ∈ −Λ such that i ̸= j, define a coupling kernel associated with (Λ,y, i, j),
denoted by Ki,j , as follows. For x,x′, x′′ ∈ Xj , let

q(x′′ | x,x′) =min{π{j}|Λ∪{i}(x′′ | x,xΛ), π{j}|Λ∪{i}(x
′′ | x′,xΛ)}.
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Then

ax,x′ :=

∫
Xj

q(x′′ | x,x′)dx′′ = 1− dTV(Π
j
Λ,y,i,x,Π

j
Λ,y,i,x′).

When ax,x′ = 1, let

K((x,x′),A) =

∫
{u:(u,u)∈A}

q(x′′ | x,x′)dx′′, A ∈ Bj ×Bj .

When ax,x′ < 1, let

K((x,x′),A) =

∫
{u:(u,u)∈A}

q(x′′ | x,x′)dx′′ +
∫
A rx(x

′′) rx′(x′′)dx′′ dx′′′

1− ax,x′
, A ∈ Bj ×Bj ,

where

rx(x
′′) = π{j}|Λ∪{i}(x

′′ | x,xΛ)− q(x′′ | x,x′),

and rx′(x′′) is defined analogously. Then Ki,j((x,x
′), ·) is an optimal coupling of Πj

Λ,y,i,x

and Πj
Λ,y,i,x′ in terms of the total variation distance.

Based on the densities of Πj
Λ,y,i,x and Πj

Λ,y,i,x′ , we see that∫
Xj×Xj

1x′′ ̸=x′′′Ki,j((x,x
′),d(x′′, x′′′))

= dTV(Π
j
Λ,y,i,x,Π

j
Λ,y,i,x′)

=
|x− x′|

1−
∑

a∈Λ xa − x∧ x′

≤ x∨ x′

1−
∑

a∈Λ xa

≤

{√
5/61x̸=x′ Vj(x) + Vj(x

′)≤ 5/6,

1x̸=x′ Vj(x) + Vj(x
′)> 5/6.

Moreover, ∫
Xj×Xj

[Vj(x
′′) + Vj(x

′′′) + 1]Ki,j((x,x
′),d(x′′, x′′′))

= Πj
Λ,y,i,xVj +Πj

Λ,y,i,x′Vj + 1

=
(1−

∑
a∈Λ xa − x)2

3(1−
∑

a∈Λ xa)2
+

(1−
∑

a∈Λ xa − x′)2

3(1−
∑

a∈Λ xa)2
+ 1

≤ 5

3

≤

{
(5/3)[Vj(x) + Vj(x

′) + 1] Vj(x) + Vj(x
′)≤ 5/6,

(10/11)[Vj(x) + Vj(x
′) + 1] Vj(x) + Vj(x

′)> 5/6.
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By Höder’s inequality,∫
Xj×Xj

dΛ,y,i(x,x
′)Ki,j((x,x

′),d(x′′, x′′′))

≤
{[

(5/3)1/8(5/6)7/16
]
∧ (10/11)1/8

}
dΛ,y,i(x,x

′)

≤ 0.99dΛ,y,i(x,x
′).

This implies that there exists a 2× 2 influence matrix Φ(Λ,y) associated with (Λ,y) whose
non-diagonal elements are c2 = 0.99. Its spectral radius is c2 as desired.

When m = 3, the proof is analogous. One can still consider the same semimetric and
coupling, and the calculations are largely the same.
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