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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

AI-aided geometric design of anti-infection catheters
Tingtao Zhou1,2†, Xuan Wan3†, Daniel Zhengyu Huang1,4, Zongyi Li1, Zhiwei Peng2, 
Anima Anandkumar1, John F. Brady1,2, Paul W. Sternberg3*, Chiara Daraio1,5*

Bacteria can swim upstream in a narrow tube and pose a clinical threat of urinary tract infection to patients 
implanted with catheters. Coatings and structured surfaces have been proposed to repel bacteria, but no such 
approach thoroughly addresses the contamination problem in catheters. Here, on the basis of the physical mech-
anism of upstream swimming, we propose a novel geometric design, optimized by an artificial intelligence model. 
Using Escherichia coli, we demonstrate the anti-infection mechanism in microfluidic experiments and evaluate the 
effectiveness of the design in three-dimensionally printed prototype catheters under clinical flow rates. Our catheter 
design shows that one to two orders of magnitude improved suppression of bacterial contamination at the up-
stream end, potentially prolonging the in-dwelling time for catheter use and reducing the overall risk of catheter-
associated urinary tract infection.

INTRODUCTION
Catheter-associated urinary tract infections (CAUTIs) (1–5) are 
among the most common infections in hospitalized patients, costing 
about 30 million U.S. dollars annually (6). From a materials/device 
perspective, previous methods to prevent such infections included 
catheter impregnation with antimicrobial silver nanoparticles (7) or 
the use of antibiotic lock solutions, anti-adhesion, or antimicrobial 
materials (8, 9). However, none of these methods surpasses the ef-
fect of stricter nursing procedures, and current clinical practice to 
prevent CAUTI focuses on reducing catheter in-dwelling time to 
prevent CAUTI. The design of catheters that reduce bacteria motility 
in the presence of fluids would offer a substantial improvement to 
the state-of-the-art management of CAUTI.

Such design requires us to understand the locomotion patterns 
of microbes in the presence of fluid flow under confinement. A 
typical microbial trajectory alternates between periods of running 
(propelling themselves in a straight line) and tumbling (randomly 
changing direction) to explore the environment (10–13). Hydro-
dynamic interactions and quorum sensing lead to more complicated 
dynamics, such as enhanced attraction to the surface (14, 15), and 
collective swarming motion (16–19). In shear flows, microscopic 
run-and-tumble (RTP) motion can lead to macroscopic upstream 
swimming (20–27). Normally, passive particles are convected down-
stream in addition to diffusive spreading (28). However, the self-
propulsion of microbes results in qualitatively different macroscopic 
transport: The body of a bacterium crossing the tract is rotated by 
fluid vorticity, which leads them to swim against the flow direction. 
Both biological micro-swimmers and synthetic active particles 
exhibit upstream motility. For biological micro-swimmers such as 
Escherichia coli and mammalian sperm, the fore-aft body asymmetry 
and the resulting hydrodynamic interactions with the wall are often 
used to explain their upstream swimming behavior (20, 21, 25, 29–31). 

On the other hand, for point-like active particles with negligible 
size, upstream swimming is still present (24, 27). Consider a point-
like active particle when it is approaching a wall: Its forefront must 
point to the wall. Near the wall, the vorticity of the Poiseuille flow (at 
its maximum) acts to always reorient the particle toward the up-
stream direction (also see Materials and Methods) (27), and then 
they swim upstream along the wall (Fig. 1, A and B). Many other 
factors such as body shape asymmetry, flagellar chirality, and hydro-
dynamic interactions between the bacteria and the boundary also 
influence the upstream swimming behaviors. Recent experiments 
(32) have demonstrated super-contamination of E. coli in a micro-
fluidic channel, highlighting the importance of their power-law
runtime distribution, which dramatically enhances the tendency of
bacteria to swim upstream, and the bacteria can swim persistently
against the flow.

Mainstream strategies to prevent bacterial contamination include 
the following: (i) physical barriers, such as filters or membranes 
(33–38); (ii) antimicrobial agents, such as antibiotics (36, 37); (iii) 
surface modifications of medical equipment to reduce bacterial 
adhesion and biofilm formation (38–44); (iv) control of physical/
chemical environment, such as high/low temperatures, low oxygen 
levels, or disinfectants to suppress bacterial growth and survival 
(45–48); (v) strict sterilization procedures, such as gloving and 
gowning (49–51); and (vi) regularly monitoring patient conditions to 
detect and treat bacterial contamination early on (52–54). Although 
various surface modifications or coatings have been proposed to re-
duce bacterial adhesion, none has been shown to prevent upstream 
swimming or catheter contamination effectively (38–40). Other 
passive antibacterial methods, such as membranes or filtration, may 
be difficult to apply directly to patients with indwelling catheters.

Geometric control of microbial distribution is safer than anti-
biotics or other chemical methods regarding antibiotic resistance 
(55–58). Specific shapes have been used in other contexts to confine 
and trap undesirable bacteria (59). Asymmetric shapes can also bias 
the partitioning of motile bacteria (60, 61) due to the “dry” geometric 
rectification effect, and extruded boundary shapes can locally en-
hance the vorticity of Poiseuille flow proportional to the extru-
sion curvature.

We sought to engineer catheters that prevent bacteria from 
swimming upstream and minimize contamination. To optimize 
the geometry of the catheters, we constrained the design space to 
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placing triangular obstacles on the interior catheter’s wall. Captur-
ing the simplest physical mechanism of upstream swimming that 
emerges for self-propelling spheres (27), we performed fluid and 
particle dynamics simulations to find geometric design principles 
(Fig. 1C). We modeled the bacteria distribution by coupling the 
hydrodynamics and geometric rectification effects as a stochastic 
partial differential equation (SPDE). We then used the simulation 
data to train an artificial intelligence (AI) model based on geometry 
focused Fourier neural operators (Geo-FNO) (62, 63) to learn the 
solutions of the SPDE and use the trained model to optimize the 
catheter geometry (Fig. 1D). On the basis of the optimized design, 
we fabricated quasi–two-dimensional (2D) microfluidic devices 
(Fig. 1E) and 3D print prototype catheters (Fig. 1F) to evaluate the 
effectiveness of our concept. Our experimental results show that 
up to two orders of magnitude improved suppression of bacterial 
super-contamination compared to standard catheters, suggesting a 
pathway for the management of CAUTI.

RESULTS
Investigating the microscopic mechanism
We adopt a simple model (27) for bacteria dynamics in the pres-
ence of shear flow. Bacteria are approximated as spheres with neg-
ligible sizes, and their orientation q follows from the equation 
dq∕dt =

�
1∕2� +

√
2∕τR�(t)

�
× q , where ω is the local flow vor-

ticity. More detailed hydrodynamic effects can be incorporated (64) 
into ω. η is Gaussian noise with ⟨η(t)⟩ = 0 and ⟨η(0)η(t)⟩ = δ(t)I. τR 
is the average runtime (see Materials and Methods for more details). 
We first numerically studied the role of conventional surface modi-
fications, such as antimicrobial nanoparticle coatings (36, 42), engi-
neered roughness, or hydrophobicity (65, 66), in the suppression of 
bacteria’s upstream swimming. These modified surfaces can prevent 
bacteria from getting too close to the wall. To model their presence, 
we assumed that they cause the bacteria to detach from the surfaces 
and dwell at a distance of at least 3 μm away from the surface, which 

Fig. 1. Schematic of proposed CAUTI mechanism and anti-infection design process. (A) Proposed mechanism for CAUTI. The urine flows from within the patient’s 
bladder outward through a catheter, while bacteria swim upstream into the patient’s body. (B) The run-and-tumble motion of bacteria and upstream swimming mechanism. 
(C) Simulations to explore catheter shapes suppressing upstream swimming. (D) AI-assisted optimization using the geo-FNO framework. (E) Microfluidic experiments to 
test the design in 2D channels. (F) 3D experiment with designed real-size catheters.
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is above the typical body length of E. coli (1 to 2 μm). Surface modi-
fications may also influence hydrodynamic interactions between the 
bacteria and the wall, but they are neglected in our simple general 
model based on point-like spheres. We find that the upstream swim-
ming behavior is not much affected by surface repulsion at all flow 
rates tested in our simulations. Comparing the simulated trajecto-
ries of a persistent bacterium inside a smooth channel (Fig. 2D) and 
a surface-modified channel (Fig. 2E), the upstream swimming be-
haviors are similar. We quantify the effectiveness for the suppression 
of bacterial upstream swimming by two population statistics: (i) 
the averaged upstream swimming distance ⟨xup ⟩ = − ∫−∞

0
ρ(x)xdx , 

where ρ(x) is the bacteria distribution function; (ii) the distance that 
the top 1% upstream swimmers arrive at x1%. The simulated surface 
modification only slightly reduces ⟨xup⟩ at intermediate flow rates 
but barely changes x1% (blue and pink lines in Fig. 2F). The poor 
effectiveness of surface modifications is consistent with current ex-
perimental observations (39, 40).

We then explored the role of catheters’ surface geometry by adding 
physical obstacles. We find that symmetric and asymmetric obsta-
cles significantly suppress upstream swimming (black and green 
lines in Fig. 2F). We identify two synergistic effects: First, the slope 
of the obstacles redirects the bacteria’s swimming direction when 
they take off from the top of the obstacle, interrupting the continuous 
climbing along the wall’s surface. Asymmetric shapes bias bacteria 
motion downstream (Fig. 2A), as shown by simulated trajectories at 
0 flow rate (Supplementary Materials and fig. S1) and the difference 
in the upstream swimming statistics (black and green lines of Fig. 2F) 
at low flow rates. Second, at a finite flow rate, the flow field differs 
from the Poiseuille flow in a smooth channel (Fig. 2B). In the 
Poiseuille flow, the vorticity turns the bacteria downstream. Near 

the top of the obstacle, the flow speed and vorticity are greatly 
enhanced (Fig. 2C and fig. S2), boosting the turning mechanism. 
Combining these two effects, we expect upstream swimming to be 
significantly reduced in channels with optimized obstacle geometry.

The parameter space for design optimization is characterized by 
four parameters: obstacle base length L, height h, tip position s, 
and inter-obstacle distance d; we denote the channel width by W 
(Fig. 2G). To optimize this space, we placed two constraints. First, if 
neighboring obstacles get too close, the vortices at their tips start 
to overlap. Both the magnitude of the maximum effective vorticity 
(right at the obstacle tips; see the mathematical definition of the 
effective vorticity in the Supplementary Materials) and the effective 
sizes of the vortices are reduced because of the overlap. Besides, 
larger boundary layer and stagnation zones develop (fig. S2, A and B). 
Hence, we constrain the inter-obstacle distance d > 0.5 W (fig. S2G). 
Second, with other parameters fixed, the effective vorticity at the 
obstacle tips increases as h increases (fig. S2, C to H), which is desir-
able to promote the vortex-redirecting effect. However, the tube ob-
viously gets clogged when h = W/2. This trend of stronger clogging 
as h increases is reflected in the continuous increase of pressure drop 
that is needed to maintain the same effective flow speed (fig. S2I). To 
avoid clogging, we constrain the height h < 0.3 W.

AI-aided optimization of geometric conditions
Recently, AI-based models such as neural operators have been used 
to learn surrogates for forward simulation or observational models 
in fluid dynamics and other domains. Since these models are dif-
ferentiable, they can be directly used for inverse design, i.e., we can 
use gradients to optimize in the design space directly. This makes 
generating previously unstudied designs much more streamlined. 

Fig. 2. Physical mechanism of obstacle suppressing upstream swimming and geometric optimization. (A) Geometric rectification effect without flow. (B to E) Color 
background shows the relative magnitude of flow vorticity (darker is larger; blue, counterclockwise; yellow, clockwise). (B) Poiseuille flow in a smooth channel. The vorticity 
rotates the head of the bacteria downstream. (C) Flow in a channel with symmetric obstacles. Flow speed and vorticity are enhanced near the top of the obstacle, leading 
to stronger torque redirecting the bacteria downstream. (D) and (E) Simulated trajectories of a persistent bacterium in 2D channels of width 50 μm under different condi-
tions: (D) a smooth channel, (E) a surface-modified channel that repels bacteria. (F) Population statistics of upstream swimming. Solid lines (left y axis) show the average 
upstream distance. Dashed lines (right y axis) show the upstream distance of the top 1% swimmers in the population. Blue lines for smooth channels, orange for surface-
modified channels, black for symmetric obstacles, and green for asymmetric obstacles. (G) The AI model and the result. The Geo-FNO model is designed to learn the rela-
tionship between catheter geometry and bacteria distribution. It accomplishes this through a series of neural operator layers. The Geo-FNO first maps the irregular 
channel geometry to a unit segment [0,1], then applies Fourier-based kernels in the latent space, and, finally, transforms the predicted bacteria distribution in the latent 
space back to the physical space. The right panel shows the random initial condition (black) and the optimized design (pink). The bacteria distribution corresponding to 
the optimized design predicted by Geo-FNO (pink) is verified by the fluid and particle dynamics simulation (green dashed line).
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We used an AI model to optimize the channel shape, characterized 
by the four parameters and the two constraints described above 
(Fig. 2G). This method first maps the irregular channel geometry to 
a function in the latent space (a unit segment [0,1]), then applies the 
FNO model in the latent space, and finally transforms the bacteria 
distribution back to the physical space (Fig. 2G). We then used this 
trained surrogate model for inverse design optimization to determine 
the optimal channel shape. To evaluate the effectiveness of each design, 
we measure the averaged ⟨xup⟩ at T = 500 s for three flow speeds (5, 
10, and 15 μm/s). Our AI-aided shape design, based on geometry-
aware Fourier neural operator, outperforms given shapes in training 
data by about 20% in terms of weighted bacteria distribution. The 
whole design optimization process is fast: It took 30 min each to 
generate a training instance for a total of 1000 instances in parallel 
(on 50 GPUs for 10 hours), 20 min on 1 GPU to train the model, and 
15 s on 1 GPU for our trained AI model to generate the optimal 
design. The optimization procedure leads to the optimal structure of 
d = 62.26 μm, h = 30.0 μm, s = −19.56 μm, and L = 12.27 μm for 
channel width W = 100 μm. According to the mechanism presented 
above, this structure provides strong geometric rectification and 
vortex-redirecting effects to suppress upstream swimming.

Microfluidic experiments
To evaluate the effectiveness of the optimized structure, we fabri-
cated quasi-2D microfluidic channels of width W = 100 μm (wall-
to-wall distance) and vertical depth 20 μm to observe bacterial 
movement under a microscope (Fig. 3A). We selected the subset of 
upstream swimming bacteria and categorized them according to 

where they detach from the walls. A trajectory is denoted as “type 1” 
if it detaches from the top of the obstacle (Fig. 3D, top) and “type 2” 
if it detaches from the smooth part of the wall (Fig. 3D, bottom). 
Type 1 trajectories experience both geometric rectification and en-
hanced hydrodynamic rotational disruption effects. Type 2 trajecto-
ries do not experience geometric rectification effect, and only mild 
vortex-redirecting effect, as the vorticity enhancement is strongest 
at the obstacle tips. Between 70 and 80% of upstream swimming 
trajectories belong to type 1 for flow speed U0 < 100 μm/s (Fig. 3E). 
We also noticed that all the upstream swimming trajectories ob-
served from these experiments are redirected downstream (Fig. 3E, 
red line). Bacteria accumulation was observed near a sharp corner 
(Fig. 3B), possibly due to the stagnation zone (Fig. 2C and fig. S1, 
white color near the corner). To prevent bacteria accumulation 
at the corners, we rounded the geometry with an arc of radius 
r = h/2 (Fig. 3C).

Macro-scale catheter experiments
The mechanisms and design principles demonstrated above are 
readily scaled up to catheters. In 3D tubes, bacteria can traverse the 
tube through any cutting line of the cross section (fig. S2J). Bacteria 
moving near the boundary (trajectory 1 of fig. S2J) can still swim 
upstream due to the same mechanism shown above (Fig. 2, A, B, 
and F to I, and fig. S1), where only the dimensionless shear rate near 
the wall matters (27). The run length of super-contaminating bacteria 
can exceed 1 mm (32), comparable to the rescaled obstacle size, 
and the rectification effect is expected to persist at these scales (61). 
An order of magnitude estimate indicates that the Reynolds number 

Fig. 3. Microfluidic experiments. (A) Schematic of the microfluidic experiments. One end of the microfluidic channel is connected to a syringe filled with imaging solution, 
while the other end is connected to a reservoir of E. coli. The long arrow denotes the flow direction. (B) Bacteria accumulation at the sharp corner due to flow stagnation. 
(C) Bright-field image of the microfluidic channel. (D) Typical events of bacteria (white dots) falling off the channel walls, with their trajectories of the past 5 s shown in 
yellow lines. The top image shows a type 1 trajectory, where the bacteria fall off from the obstacle tip. The bottom image shows a typical type 2 trajectory, where the 
bacteria fall off from the smooth part of the wall. Left column, experimental; right column, simulation. (E) Statistics of fall-off events.
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inside urinary catheters is O (1) so that our results obtained from 
Stokes flow still works reasonably well after rescaled, and the rescaled 
round-off of the corners will still eliminate flow stagnation zones. 
We note that although the numerical results of 3D simulations may 
differ from those of the 2D results presented above, the qualitative 
trend stays the same. The 2D optimal structure then provides suffi-
cient guidance to 3D experiments since the optimization process 
relies on relative trends rather than absolute values. We 3D printed 
prototype catheters to test design effectiveness at medically relevant 
spatial and temporal scales. For these, we enlarged the obstacle’s size 
to scale for a catheter with a 1.6-mm inner diameter and revolve 
their geometry around the center line. The obstacles become ex-
truded rings, 0.4-μm tall with 1-mm spacing. The typical human 
urine rate is estimated to be 25 to 60 ml/hour (67–69) for adults, and 
lower for children. Since upstream contamination is stronger at 
lower flow rates, we test between 0 and 10 ml/hour. One end of the 
tube is connected to a syringe controlled by a mechanical pump, and 
the other is connected to an E. coli reservoir (Fig. 4A). After 1 hour, 
the tube is cut into 2-cm-long segments, discarding the two end seg-
ments, and the liquid inside is transferred to culturing plates. We 
quantified the distribution of bacteria in each segment by counting 
colonies after culturing the plates for 24 hours at room temperature 
(Supplementary Materials and fig. S5). We observed upstream 
contamination in smooth tubes (16 cm long) at various flow rates 
(0, 2.0, and 8.9 ml/hour Fig. 4B and fig. S4). With a bacteria velocity 
of 20 μm/s, the most persistent ones reach about 7 cm upstream in 
1 hour. As a result, most bacteria concentrate in the two segments 
near the reservoir. We then tested the difference between smooth 
and designed tubes (8 cm long). The designed tubes show one to two 
orders of magnitude fewer bacteria contamination compared to the 

smooth tubes at the same positions (Fig. 4C). At 0 ml/hour, the sup-
pression is about 10 times due to the geometric rectification effect 
(Fig. 2A). At 8.9 ml/hour, we observed more than 100-fold suppres-
sion due to the combined effects of geometric rectification and vortex 
redirecting (Fig. 2B).

DISCUSSION
In this work, we introduce an effective geometrical design of the 
interior surfaces of medical catheters for suppressing bacterial up-
stream swimming and super-contamination. Our design approach 
is based on impeding the physical mechanism for bacterial upstream 
swimming, considering the general model of spherical particle 
rheotaxis with power-law dynamics. Infectious microbes vary in 
shape, flagella features, and hydrodynamic interactions. The simple 
model adopted here neglects details of the bacterial locomotion, 
such as their flagella chirality (29) and hydrodynamic interaction 
with the boundary (20), for both simplicity and generality of 
the design. The simulation results are used to guide the design of the 
experiments, rather than providing accurate predictions of the 
experimental outcomes specifically with E. coli. More sophisticated 
models considering the details regarding certain microbial species 
can be used in future studies. We find a lower bound on the separa-
tion between obstacles to maximize the effective vorticity near the 
tip of obstacles due to the interaction of overlapping vortices (fig. S2 
and the Supplementary Materials). The constraint on obstacle heights 
is a trade-off between enhancing effective vorticity and avoiding 
clogging of the tube (fig. S2). While we chose to use this AI frame-
work for the optimization of the catheter’s geometry, other methods, 
such as genetic algorithm with numerical solvers (70) or gradient 

Fig. 4. Experiments on 3D-printed catheter prototypes. (A) Experimental setup. The downstream end of the tube was connected to a reservoir of E. coli, and the up-
stream end was connected to a syringe full of culture solution controlled by a syringe pump. After 1 hour, the tube was cut into equally long segments, and the liquid 
inside was extracted to culture for 24 hours. The number of E. coli colonies was counted under a microscope to reflect the number of bacteria in each segment. (B) Super-
contamination of E. coli in smooth tubes. (C) Comparison of designed versus smooth tubes. Insets show the same data plotted on log-scale.
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descent with adjoint methods (71), could also have been deployed. 
We note that the geometrical design cannot completely eliminate 
bacterial upstream swimming, especially at near-zero flow rates. 
However, it drastically reduces the amount of super-contamination 
and may significantly prolong the indwelling time of catheters. Using 
our designed catheters is not expected to require changes to the 
regular clinical protocols or retraining of medical personnel. More-
over, our solution does not introduce chemicals into the catheters, 
and thus is safe and does not require additional maintenance. Our 
geometrical design approach is expected to be compatible with other 
procedural measures, antibacterial surface modification, and envi-
ronmental control methods.

MATERIALS AND METHODS
Fluid and particle dynamics simulations
We simulated the Stokes flow inside a channel with no-slip boundary 
conditions using the COMSOL software (72). The resulting velocity 
and vorticity fields are then coupled into the particle dynamics sim-
ulations, while the feedback of particle motion on the fluid dynamics 
is neglected in the limit of dilute suspensions and small particle 
sizes. The particle dynamics is described by the active Brownian 
particle (ABP) model with Gaussian statistics and the RTP model 
with power-law (Levy) statistics. The simulations were performed 
with our in-house GPU Julia code with a simulation timestep of 
10−4 s. In the ABP model, individual particle dynamics is integrated 
according to the over-damped Langevin equation

where ζ is the viscous drag coefficient, U is the particle’s velocity, q is 
the particle’s orientation vector, u is the local flow velocity, ω is the 
local flow vorticity vector, and E is the local strain-rate tensor of the 
flow. B is a geometric coefficient (73, 74), which is equal to 1 for in-
finitely thin rods and 0 for spheres. We present the results here for 
B = 0 since its value does not significantly affect the upstream 
swimming statistics (27). ξ(t) is Gaussian random noise satisfying 
⟨ξ(t)⟩ = 0 and ⟨ξ(0)ξ(t)⟩ = δ(t)I. As bacteria are micrometer-sized 
particles, their Brownian motion is relatively weak, and we set the 
translational diffusivity DT = 0.1 μm2/s in the simulations. Varying 
this value does not affect the results much as long as it remains small. 
η is Gaussian noise with ⟨η(t)⟩ = 0 and ⟨η(0)η(t)⟩ = δ(t)I, and τR is 
the average runtime. In the RTP model, individual particles will be 
displaced with η(t) = 0 (the “run” phase) for 0 < t < τR. Then, q is 
changed instantaneously to a random new direction (the “tumble”) 
q′ and the process is repeated with a new runtime τ�

R
 . For Levy 

swimmers, the runtime is sampled from Pareto distribution 
ϕ(τ) = (ατα

0
)∕ (τ+τ0)

α+1 , where the parameter 1 < α < 2 controls 
the power-law index (75). Bacteria shape was simplified as spheres 
with negligible size. For the mechanism demonstration in Fig. 2J, we 
simulate 1,000,000 particles with a persistent runtime τR = 2 s for 
200 s in a 2D channel 50 μm wide. A periodic boundary condition 
for both the flow field and the particle dynamics is always imposed 
along the direction of the channel. As a result, the channel is effec-
tively infinitely long, and the obstacles are also repeated every 100 μm. 
The particles are released at x = 0 in the computational domain, 
initially uniformly distributed across the channel and randomly 
oriented. For the designed channels, sliding (for the particle dynamics) 

and no-slip (for the fluid dynamics) boundary conditions are im-
posed at the geometric boundary of the walls, except for the surface 
coating case where the no-slip boundary is at the wall, and the 
sliding boundary condition for the particles are set at 3 μm away 
from the wall.

Geo-FNO model and machine learning setup
The catheter design problem is an SPDE constrained optimization problem, 

where the objective function ⟨xup ⟩ = − ∫−∞
0

ρ(x)xdx ≈ −
1

N

∑N

i=1
xi 

depends on the SPDE solution of the fluid and particle dynamics 
problem. Here, ρ(x) is the empirical bacteria distribution function at 
T = 500 s, approximated by N bacteria. Traditional optimization ap-
proaches require repeatedly evaluating such expensive computational 
models, and an adjoint solver is required when gradient-based opti-
mization is applied. To overcome these computational challenges, 
we trained a Geo-FNO G as a surrogate model for the forward fluid 
and particle dynamics simulation that maps the channel geometry 
to the bacteria population function G : c → ρ. In contrast, prior work 
using AI approaches for various design problems only chose a few 
parameters that are input to traditional solvers of SPDE (76, 77). The 
full model consists of five Fourier neural layers with Gaussian error 
linear unit (GeLU) activation layers and has a fast quasi-linear time 
complexity. We performed fluid and particle dynamics simulations 
using both the ABP and Levy RTP models for three maximum flow 
speeds (5, 10, and 15 μm/s) to generate training and testing data for 
the Geo-FNO. For the training data, we generated 1000 simulations 
in parallel on 50 GPUs for 10 hours, with the design in each simula-
tion randomly selected from the following parameter space: Obsta-
cles with height 20 μm < h < 30 μm are periodically placed on the 
channel walls with inter-obstacle distance 60 μm < d < 250 μm, the 
base length satisfies 15 μm < L < d/4, and the tip position satisfies 
−d/4 < s < d/4. The constraints on these parameters were chosen to 
satisfy fabrication limits and physical conditions for the vortex gen-
eration mechanism (Fig. 2, B and C; see more discussions in Supple-
mentary Text and fig.S2). The dataset is stored to be reused for 
future tasks. We used the relative empirical mean square error as the 
loss function. The model training took 20 min with the Adam opti-
mizer on 1 GPU. It gets around 4% relative error on the 100 testing 
data points.

Fast inverse design with gradient-based optimization
The benefit of our AI approach is the speedup compared to tradi-
tional solvers, and differentiability allows the use of fast gradient-
based methods for geometry design optimization. Each evaluation 
takes only 0.005 s on GPUs in contrast to 10 min by using GPU-
based fluid and particle dynamics simulations, and, therefore, it is 
affordable to do thousands of evaluations in the optimization proce-
dure. Moreover, we use automatic differentiation tools of deep learn-
ing packages to efficiently compute gradients with respect to design 
variables enabling the use of gradient-based design optimization 
methods. During optimization, we start from initial design param-
eters (d = 100 μm, h = 25 μm, s = 10 μm, L = 20 μm) and update 
them using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm to minimize the objective function ⟨xup⟩ post-processed from 
the bacteria population predicted by Geo-FNO. When the optimiza-
tion gets trapped in a local minimizer, the optimization restarts from 
an initial condition obtained by perturbing the recorded global 
minimizer with a random Gaussian noise sampled from N(0, I). The 

0= −ζ(U −u)+ζU0q(t)+
√
2DT�(t)

dq∕dt=
�
1∕2�+B q× (E ⋅q)+

√
2∕τR�(t)

�
×q
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proposed randomized BFGS algorithm guarantees that the recorded 
global minimizer monotonically decreases. The optimization loss 
trajectory is depicted in fig.S1, which is reduced from L = 6.68 × 105 
to L = 2.18 × 105. The AI-based optimization took approximately 
1500 iterations to reach the optimal design. The entire process, from 
data generation (which took 30 min each on 1000 instances in parallel 
on 50 GPUs for 10 hours) to training (20 min on 1 GPU), design 
optimization (15 s on 1 GPU), and final verification (10 min on 
1 GPU), took less than 1 day. Within imposed parameter constraints, 
⟨xup⟩ is neither convex nor monotonic with respect to these design 
variables but is generally smaller with larger h, smaller d, and larger 
s (fig. S3). The final optimized design is d = 62.26 μm, h = 30.0 μm, 
s = −19.56 μm, and L = 15.27 μm.

Bacterial strains, culture conditions, materials, and chemicals
We used wild-type BW25113 E. coli with kanamycin resistance for 
the 3D catheter long-term experiment and BW25113 E. coli express-
ing mScarlet red fluorescent protein with kanamycin resistance for 
the microfluidic experiments. A single colony of the bacterium of 
interest was picked from a freshly streaked plate and suspended in 
LB medium to create a bacterial inoculum. The starting culture was 
cultured overnight at 37°C in LB medium to achieve a final concen-
tration of approximately OD600 (optical density at 600 nm) = 0.4. 
For the microfluidic experiments, 300 μl of the starting culture is 
transferred to a new flask with 100 ml of LB median and cultured at 
16°C until OD600 reaches 0.1 to 0.2. Bacteria are washed twice by 
centrifugation (2300g for 15 min), and the cells were suspended in a 
motility imaging medium composed of 10 mM potassium phos-
phate (pH 7.0), 0.1 mM K-EDTA, 34 mM K-acetate, 20 mM sodium 
lactate, and 0.005% polyvinylpyrrolidone (32).The use of this medium 
allows for the preservation of bacterial motility while inhibiting cel-
lular division. The final concentration of the bacteria in the reservoir 
has OD600 at 0.02. For the 3D catheter long-term experiments, 3 ml 
of the starter culture is transferred to a new flask with 500 ml of LB 
median and cultured at 16°C until OD600 reaches 0.4. The bacteria 
are directly used and injected into the bacteria reservoir. Kanamycin 
was added to all the culture median and LB plates. The mobility of 
the bacteria was checked under the fluorescence microscope 10 min 
before the experiment (observed under Differential Interference 
Contrast (DIC) optics for BW25113 and red channel epifluorsence 
fluorescent protein for the BW25113 mScarlet strain).

Microfluidic experiments
To demonstrate the mechanism of our design and test the effective-
ness of the optimized structure, we fabricated quasi-2D microfluidic 
channels to observe bacteria motion under a microscope. These 
microfluidic devices were fabricated using photolithography and 
polydimethylsiloxane soft lithography. As shown in the schematic of 
Fig. 3A, one end of the microfluidic channel connects to a syringe 
filled with imaging solution, and the other end connects to a reservoir 
of E. coli. The flow rate is controlled by tuning the height of the 
syringe with respect to the outlet downstream. Fluorescent beads 
were injected into the imaging solution as passive tracers to monitor 
the flow rate in real time. The high-speed video was achieved using 
an Olympus BX51WI microscope with two Photometrics Prime95B 
cameras connected using a W-View Gemini-2 Optical Splitter 
from Hamamatsu. An Olympus 20× dry objective lens was used. 
Time-lapse images were acquired at 12.4 frames/s with 488-nm laser 
intensity set at 20%. The microscope’s focal plane was fixed near the 

middle of the channel in the depth z direction to avoid recording 
bacteria crawling on the top and bottom sides of the channel. Ex-
periments were performed on three different days with independent 
batches of E. coli cultures, with five 15-min recordings each day. 
ImageJ software (Fiji) was used for video post-processing (78, 79) to 
extract the trajectories of the bacteria. The trajectories are filtered by 
their linearity of forward progression to eliminate the fast-moving 
downstream ones and visually highlight the upstream swimming 
ones. We estimate the time interval for the upstream swimming to 
be 10 s before the fall-off. The maximum flow speed is defined as the 
highest flow speed along the channel’s centerline. The instantaneous 
maximum flow rate is estimated by averaging the fastest velocities of 
bacteria and fluorescent beads along the centerline during the up-
stream fall-off interval. Several video recordings are provided in the 
Supplementary Materials.

3D catheter long-time experiments
Prototype catheter tubes (both geometric designs and smooth tubes) 
were printed using a Connex-Triplex 3D printer. The inside of the 
tubes with the designed obstacles are similar to the quasi-2D struc-
tures but enlarged and revolved about the center line of the channel 
so that the obstacles are extruded rings on the inner walls. Consider-
ing the 3D printing accuracy available and the scale of typical catheters, 
these prototypes are 1.6 cm in inner diameter. For the designed 
tubes, the spacing between the extruded rings is 1 mm. For ease of 
clearing the supporting material from 3D printing, each tube is 
printed as two halves with a tenon shape along the long side and 
assembled into a complete tube after removing the supporting mate-
rial. As shown in Fig. 4A, the top end of the tube is connected to a 
syringe controlled by a mechanical pump that keeps a constant flow 
rate. The bottom end of the tube is connected to an 80-mm-diameter 
petri dish as a reservoir for E. coli. After 1 hour, the tube is cut into 
2-cm-long segments, and the liquid contained inside each segment 
is transferred to a culturing plate, discarding the most upstream and 
downstream segments. After culturing the plates for 24 hours at 
room temperature, the number of bacteria colonies in each plate is 
counted to reflect the amount of contamination in the corresponding 
part of the tube. We selected four circular, equally distant regions of 
8-mm diameter in plate to count the number of colonies in these 
four areas (fig. S5). The total number of colonies in the plate is esti-
mated by multiplying the total number in the four circles by the area 
ratio 25, of the entire plate versus the four areas. We denote the total 
number in the plate to be 30,000 when too many colonies are on the 
plate, and they become too crowded/overlapping to count precisely.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S5
Legends for movies S1 to S3

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S3
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