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Abstract

Visual Question Answering (VQA) is a fundamental task
in computer vision and natural language process fields. Al-
though the “pre-training & finetuning” learning paradigm sig-
nificantly improves the VQA performance, the adversarial ro-
bustness of such a learning paradigm has not been explored.
In this paper, we delve into a new problem: using a pre-
trained multimodal source model to create adversarial image-
text pairs and then transferring them to attack the target VQA
models. Correspondingly, we propose a novel VQATTACK
model, which can iteratively generate both image and text
perturbations with the designed modules: the large language
model (LLM)-enhanced image attack and the cross-modal
joint attack module. At each iteration, the LLM-enhanced
image attack module first optimizes the latent representation-
based loss to generate feature-level image perturbations. Then
it incorporates an LLM to further enhance the image per-
turbations by optimizing the designed masked answer anti-
recovery loss. The cross-modal joint attack module will be
triggered at a specific iteration, which updates the image and
text perturbations sequentially. Notably, the text perturbation
updates are based on both the learned gradients in the word
embedding space and word synonym-based substitution. Ex-
perimental results on two VQA datasets with five validated
models demonstrate the effectiveness of the proposed VQAT-
TACK in the transferable attack setting, compared with state-
of-the-art baselines. This work reveals a significant blind spot
in the “pre-training & fine-tuning” paradigm on VQA tasks.
Source codes will be released.

Introduction

Visual Question Answering (VQA) is dedicated to ex-
tracting essential information from images to formulate
responses to textual queries. While this application has
proven to be highly versatile across various domains, in-
cluding recommendation systems (Yu, Shen, and Jin 2019),
medicine (Zhan et al. 2020), and robotics (Kenfack et al.
2020), the exploration of VQA system robustness remains
a challenging endeavor. Current research primarily re-
volves around investigating the robustness of end-to-end
trained VOQA models through the development of effec-
tive attack methodologies, exemplified by Fool-VQA (Xu
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Figure 1: An example of Transferable adversarial attacks on
VQA via pre-trained models.

et al. 2018) and TrojVQA (Walmer et al. 2022). How-
ever, models trained end-to-end often exhibit inferior per-
formance compared to the prevalent “pre-training & fine-
tuning” paradigm. Within this paradigm, models are ini-
tially pre-trained on extensive collections of image-text pairs
from the public domain, facilitating the acquisition of inter-
modal relationships. Subsequently, the models undergo fine-
tuning using specific VQA datasets to enhance their perfor-
mance on downstream tasks. This instructional framework
has yielded commendable predictive accuracy (Bao et al.
2022; Kim, Son, and Kim 2021; Li et al. 2021b). Neverthe-
less, the aspect of adversarial robustness within the context
of the VQA task, as governed by this paradigm, remains in-
sufficiently explored.

This attack scenario presents notable complexities, which
arise from the following two fundamental aspects:

* C1 - Transferability across models. The challenge here
involves the transferability of adversarial attacks across
distinct models. An example is shown in Figure 1. Pre-
trained source models and victim target VQA models
are usually trained for dissimilar tasks and trained on
separate datasets. Furthermore, their structural disparities
may result from variations introduced during fine-tuning.
While the concept of transferability has been widely val-
idated in the context of image models (Madry et al. 2018;
Xie et al. 2019), such property within the domain of pre-
trained models has yet to be comprehensively explored.

* C2 - Joint attacks across different modalities. Our task
is centered around a multi-modal problem, necessitat-
ing the introduction of perturbations to both images and
textual questions to achieve improved performance. Al-
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Figure 2: Overview of the proposed VQATTACK.

though previous methodologies have effectively devised
attack strategies for each individual modality (Li et al.
2020; Madry et al. 2018), the intricate challenge lies in
the simultaneous optimization of perturbations on images
with continuous values and textual content characterized
by discrete tokens. This joint attack task continues to
pose a significant hurdle that requires innovative solu-
tions.

To address these challenges, we propose a novel method
named VQATTACK to explore the adversarial transferability
between pre-trained source and victim target VQA models.
As shown in Figure 2, the proposed VQATTACK generates
image and text perturbations solely based on the pre-trained
source model F with a novel multi-step attacking frame-
work. After initializing the input image-text pair (I, T),
VQATTACK will iteratively generate both image and text
perturbations at each iteration m via two key modules: large
language model (LLM)-enhanced image attack and cross-
modal joint attack.

In the LLM-enhanced image attack module, VQAT-
TACK first follows existing work (Naseer et al. 2020; Zhang,
Yi, and Sang 2022) to minimize the similarity of latent fea-
tures between the clean and perturbed input and then uses
the clipping technique to obtain the image perturbation i;n
To further enhance the transferability of attacks, VQAT-
TACK introduces a new masked answer anti-recovery loss
with the help of ChatGPT (OpenAl 2023), which differs
from the existing latent feature-level attack by involving the
correct answer label ) during the perturbation generation.
The LLM-enhanced image attack module will be executed
at each iteration, and the output from this module is denoted
as I,

Due to the discrete nature of text data and the limited
number of informative words in each text input, attacking
the text at every iteration might not be necessary or bene-
ficial for perturbation generation. Consequently, the cross-
modal joint attack module will be triggered when m sat-
isfies a specific condition. During this stage, VQATTACK
first updates the perturbation of the image (i.e., ijﬁn) via the
cross-modal feature perturbation and the clipping technique.

It then updates the text perturbation T, using the learned
gradients and word synonym-based substitution in the word
embedding space.

VQATTACK will return the output after iterating for M
steps as the final adversarial image-text pair, i.e., (i M, T M)s
which will be used to attack the victim VQA model S. Our
contributions can be summarized as follows:

* To the best of our knowledge, this is the first study on the
adversarial robustness of the VQA task under the “pre-
training & fine-tuning” paradigm. It does not only dis-
cuss the robustness of this paradigm but, more impor-
tantly, probes the potential security concern under a real-
istic scenario.

* We propose VQATTACK, which is a novel method to
generate adversarial image-text pairs on the pre-trained
vision language models. It consists of two novel mod-
ules, utilizes an LLM to generate masked text, and en-
ables the iterative joint attack between image and text
modalities.

Five pre-trained models and two VQA datasets are in-
volved in our experiment. Experimental results verify
the effectiveness of the proposed VQATTACK under the
transferable attack setting.

The Proposed VQATTACK

Problem Formulation

We use F to denote the publicly available pre-trained VL
source model and S to represent the victim VQA target
model. The goal of the transferable VQA attack is to gen-
erate an adversarial image-text pair (i, ’i‘) on the pre-trained
source model F using the clean input (I, T), which will
make the target victim model S have a wrong prediction,
ie., S(i, T) ¢ Y, where Y is the set of correct answers.
However, the victim model S in our setting is a black-box,
arbitrary, and unknown model, and the only model that we
can access is the pre-trained source model F. Let G denote
the proposed transferable attack strategy VQATTACK. We
use the following function to generate an adversarial image-



Algorithm 1: The proposed VQATTACK

Input: A pre-trained source model F, a clean image-text
pair (I, T) and the ground-truth label ), step-size e,
prompt P, LLM;

Input: Perturbation budget o; on image, o5 on text, and the
number of total iterations M.

1: Initialization I, = I+ 4,6 € Uuo,1),; Ty = T, and
use BERT model to generate candidate token set C.

2: form =1to M do

3: /I LLM-enhanced Image Attack

4: /1 Perturbation Generation with Latent features

5: Falculate V%}” via Eq. (3) using (L,,—1, Trn—1);

6 I, = clip,, (In—1 + esign(ViL7));

7 // LLM-based Perturbation Enhancement

8: Masked text generation with LLM using Ty_1, la-
bel V, and prompt P;

9: Calculate gradlants VL7 via Eq. (4);

10: I:‘n = clip,,, (I;n + esign(V,LM));

11: /I Cross-modal Joint Attack

122 ifm mod |yt = 0 then

13: // Tmage Perturbation Update

14: Calculate V; £ via Eq. (5) using (I*, T,,_1);

15: I, = clip,, (I, + esign(V,;£7));

16: // Text Perturbation Update

17: Latent word embedding estimation via Eq. (6);

18: Obtain the synonym ranks R(C) according to
Eq. (7);

19: Conduct synonym substitution to obtain Tm,

20: else I I = Tm 13

21: end if

22: end for

23: return (I v, T M)

text pair (I, T):
(:i:?T):g(‘Fa (I7T)7M7aiaas)7 (1)

where G is an iterative attacking function, and M is the num-
ber of iterations. o; and o are two hyperparameters to con-
trol the quality of adversarial images and text, which are de-
fined as follows:

Image: [T —1||o < oy,

Text: Cos(U(T),U(T)) > o,. @

For an adversarial image I, we add pixel-level perturba-
tions under the L..-norm distance. The distance threshold
is set to ;. For an adversarial sentence T, we replace words
with their synonyms and enforce a semantic similarity con-
straint s, which is implemented through the cosine sim-
ilarity Coos(-,-) between the sentence embeddings U(T)
and U(T). Here, U (-) represents the universal sentence en-
coder (Cer et al. 2018), which has been widely adopted in
text attack methods (Jin et al. 2020; Li et al. 2021a, 2019).

Overview
As shown in Figure 2, the proposed VQATTACK g first ini-
tializes the input pair (I, T) as (Ip, To), and then updates

(im, ’i‘m) at each iteration m through the proposed large
language model (LLM)-enhanced image attack and cross-
modal joint attack until the maximum iteration M . The final
output (i M, T a) is then used to attack the victim model
S. Algorithm 1 shows the algorithm flow of the proposed
VQATTACK. Next, we provide the details of our model de-
sign step by step.

Initialization

As shown in Algorithm 1 line 1, for the input image I, we
follow the Projected Gradient Decent (PGD) (Madry et al.
2018) method to initialize I by adding noise § sampled from
the Gaussian distribution U, i.e., io = I+ 6, where § €
U(0,1). For the text modality, we directly use the original
input as the initialization, i.e., ’i‘o =T.

Intuitively, the initialized pair (io7 TO) can serve as the
initial input for the cross-modal joint attack module, where
iterative updates are performed on (I,,, T,,) at each itera-
tion. However, it is worth noting that this seemingly straight-
forward approach may not yield adversarial examples of
high quality for effectively attacking the targeted model S.

One aspect to consider is the intrinsic disparity between
the numerical pixel representation of the input image I and
the sequence-based nature of the input text T. Frequent per-
turbations to the discrete T can often result in significant
gradient fluctuations, which could subsequently adversely
impact the perturbation of the numerical I. As such, strictly
coupling the updates of these two modalities throughout the
entire attack process may not be the most optimal strategy.
Besides, the input text T is typically characterized by a rela-
tively short average length!, containing only a limited num-
ber of informative words. This leads us to recognize that at-
tacking the text at every iteration might not be necessary or
beneficial.

It is due to these considerations that we put forth a novel
module, namely the LLM-enhanced image attack. This mod-
ule is designed to first learn an effective image perturbation
independently, subsequently followed by a collaborative up-
date of both image and text perturbations iteratively.

LLM-enhanced Image Attack

Perturbation Generation with Latent Features Sev-
eral approaches have been proposed to generate the im-
age perturbations using pre-trained models, such as Co-
Attack (Zhang, Yi, and Sang 2022) and BadEncoder (Jia,
Liu, and Gong 2022). The goal of these approaches is to
minimize the similarity between the latent features learned
by the pre-trained model F using the clean I and the per-
turbed I,,,_; at each iteration m, respectively.

Most multimodal VL pre-trained models such as
ViLT (Kim, Son, and Kim 2021) and VLMO (Bao et al.
2022) usually consist of three encoders to learn latent fea-
tures, including an image encoder, a text encoder, and a mul-

timodal encoder. To generate the perturbation of I,,, we first

! According to our investigation on the VQAv2 validation set,
each sentence is only composed of an average of 6.21 words.



follow existing work to update the image perturbation by
minimizing the following loss function:

L, D,
ﬁ}"zzzcos(fﬁw i,j +ZZCOS 1,57 m

i=1 j=1 i=1j=1

image encoder multimodal encoder

3
where L, and L, denote the number of layers in the image
encoder and multimodal encoder, respectively. D), and D,
represent the number of input tokens of the image encoder
and multimodal encoder. For the image encoder, the input
tokens are image patches; and the multimodal encoder takes
the representations from both image patches and text words
as the input tokens. f/’; and f, are the output feature rep-
resentation vectors of the j-th token in the i-th layer with
the clean input pair (I, T). fp - and fq denote the output
feature representation vectors "of the J- th neuron in the i-th
layer with the perturbed input pair (Im R 1)

Let i;n denote the output by optimizing Eq. (3) with the
clipping technique, which is further used to generate an en-
hanced image perturbation in the following section. This
step is shown in Algorithm 1 lines 4-6.

LLM-based Perturbation Enhancement In the context
of transferable attacks, it is common for the pre-trained
source model F to exhibit notable dissimilarities when com-
pared to the victim target model S. Consequently, relying
solely on perturbing the latent representations using Eq. (3)
may prove insufficient in ensuring the creation of high-
quality adversarial samples capable of effectively attacking
S. To tackle this challenge, we present a solution that lever-
ages the capabilities of Large Language Models (LLMs),
such as ChatGPT (OpenAlI 2023), and the corresponding an-
swers ) to bolster the process of perturbation generation.

o Masked Text Generation with LLLM. In a given visual-
question pairing, multiple correct answers can exist, repre-
sented as YV = [y1,---,yn], where N corresponds to the
count of correct answers. The primary objective of the trans-
ferable attack is to create adversarial instances in such a
manner that the output of S(I, T) does not belong to the
set ). To maximize the effectiveness of this transferable at-
tack, a straightforward approach could involve compelling
the pre-trained model F to produce incorrect predictions at
each iteration. More specifically, this would entail ensuring
that F(I,,, Tpp_1) ¢ V.

However, it is important to note that this approach is im-
practical for the current state of pre-trained models F, as
they are not explicitly designed for predicting VQA answers
during their pre-training phase. Fortunately, a viable alter-
native stems from the fact that many of these models incor-
porate the masked language modeling (MLM) task as part
of their pre-training. In this context, we can transform the
answer prediction task into a masked answer recovery task
using the MLM framework.

Towards this end, we need to combine the perturbed
question ’i‘m,l and each correct answer y; € )

with a predefined prompt P using LLMs. Let Zm,i =

LLM(Tm,l, ¥i, P) denote the combined sentence for the
i-th correct answer. The next step is to mask the answer y;
from the generated sentence Zml Note that each answer
y; may contain multiple words. Let M; denote the set of
masked indices, and we can use Zmi\ M, to represent the
masked sentence.

e Masked Answer Anti-Recovery. To achieve the trans-
ferable attack, we will prevent the model from recovering
the correct answer tokens for each masked text Zm,i\ M;» by
minimizing the following anti-recovery loss:

N
=Y > 108(pe(zmij| Zm i ), (@)

i=1jeM;

where z,, ; ; is the j-th token in Zm,i, and p,. is the condi-
tional probability score generated from the MLM head the
pre-trained model F that is composed of a fully-connected
layer and a softmax layer. After optimizing Eq. (4), we clip
the learned image perturbation again, and the output is de-
noted as i,*n. This step is shown in Algorithm 1 lines 7-10.

Cross-modal Joint Attack

Due to the differences of input image i:‘n and text T,,,_ 1, we
cannot use a unified approach to update their perturbations.
For the numerical image, we can still use gradients and the
clipping technique to update the perturbation, but for the dis-
crete text, we propose to use the word substitution technique
to replace words in the text with the help of continuous word
embeddings.

Joint Attack Trigger As discussed before, updating the
text perturbation at each iteration is unnecessary. We design
a heuristic function to determine when to trigger the joint
attack by taking the number of informative words in the text
(denoted as [W)|) and the maximum iterations M into con-
sideration. When m mod L|W|+1J = 0, then VQATTACK
triggers the joint attack. Here, the “4-1” operation is to pre-

vent attacking T, 1 only in the last iteration step. The trig-
ger is shown in Algorithm 1 line 12. Otherwise, VQATTACK

will output (I*,, T, _1) as (I,,,, T,y ) for the m-the iteration
(Algorithm 1 line 20).

Next, we introduce how to identify informative words and
extract their synonyms. Given a clean text T, we first tok-
enize it and filter out all stop words using the Natural Lan-
guage Toolkit (NLTK)?, which results in a set {t;|i € W},
where W represents the indices of the unfiltered tokens. For
each token t;, we follow BERT-Attack (Li et al. 2020) and
employ the BERT model (Devlin et al. 2019) to predict the
top- K candidate words that share similar contexts, which re-
sults in a set of candidate words {c¢; 1, - ,¢; k }. We then
obtain the candidate set for all tokens 7 € WV, and obtain
asetC = {c¢; ;|1 < j < K}iew. The motivation for us-
ing BERT is that it can better capture the context of a word,
compared to other methods like Glove (Pennington, Socher,
and Manning 2014) and Word2Vec (Mikolov et al. 2013).

*https://www.nltk.org/



These candidates can retain more accurate syntactic and se-
mantic information, making them more likely to satisfy se-
mantic constraints. Note that this step can be done during
“Initialization”, which is fixed during word substitutions.

Cross-modal Perturbation Generation After triggering
the cross-modal attack, VQATTACK will update the gradi-
ents with regard to both perturbed image and text via mini-
mizing the following latent feature-level loss function:

E"“FiiCos ”,ffj (5)

=1 j=1

text encoder

where L' is the loss function from image and multimodal

encoders with Eq. (3) using (I*,, T,,_1) and their corre-
sponding token representations as the inputs, respectively.
The second loss term is used to measure the feature similar-
ity from the text encoder. L; denotes the mumbler of layers
in the text encoder, and D; represents the number of input
word tokens. f{ ; and ! ; denote the output feature repre-
sentation vectors of from the clean input (I, T) and the per-
turbed input pair (I*,, T,,_1), respectively.

e Image Perturbation Update. Since the image pertur-
bations are numerical values, we can directly calculate the
gradients using Eq. (5) and then apply the clipping technique
to generate the output I,,, for the m-th iteration, as shown in
Algorithm 1 lines 13-15.

e Text Perturbation Update. Due to the discrete nature
of text words, we need to unitize the learned gradients with
Eq. (5) in the latent word embedding space to generate text
perturbations motivated by (Ye et al. 2022b). Toward this
end, we propose to use word substitution attacks to generate
text perturbations.

Latent Word Embedding Estimation. The word substitu-
tion attack aims to replace the original, informative words in
text Tm,l with their synonyms, i.e., the words in set C. To
this end, we need to estimate the word representations after
the attack first using the original informative word embed-
dings E(t;) (i € W) and its gradient VL' (¢;) learned by
Eq. (5) as follows:

E(t;) = E(t;) + VL™ (t,). (6)

Synonym Ranking. The goal of synonym substitution is
to find a synonym of ¢; from {c¢; 1, - ,¢; k } to replace the
original informative word ¢; and make the embedding of the
synonym close to E(#;). Since there may be several infor-
mative words in W, we need to decide the order of replace-
ment. Intuitively, the larger similarity between E(;) and the
embedding of a synonym c¢;_;, the higher chance of ¢; ; be-
ing a perturbation. To this end, we replace the original word
with each synonym c¢; ; to generate each synonym’s context-
aware word embedding E(c; ;). We then calculate the pair-
wise cosine similarity between the estimated latent repre-
sentation and the synonym context-aware word embedding
as follows:

i, = Cos(B(t;), E(ci ;). (7

According to the similarity score values, we rank all the
synonyms in C in descending order, denoted as R(C).
Synonym Substitution. We replace the original word in

T,,_1 with its synonym that has the largest similarity in
R(C).Let T}, _; denote the new text sample. Then we check

whether the new sample T 1 satisfies the constraint listed
in Eq. (2). If Cos(U(T},_1),U(T)) > o4, then we keep

the replacement in T,,_1, remove all the other synonyms of
this word in R(C ), and move to the next informative word.

If Cos(U(T!, ,),U(T)) < o, we do not conduct the
replacement and use the synonym with the second largest
value in R(C).

We will repeat this procedure until all informative words
are replaced or all synonyms in R(C) are checked. The out-

put from this step is the perturbed text T, as shown in Al-
gorithm 1 lines 16-19.
After executing all the above steps for M iterations,

we generate the final perturbed image-text pair (i w, T M)s
which will be fed into different unknown victim models to
conduct the transferable adversarial attack.

Experiments
Experimental Setup

Datasets & Models We evaluate the proposed VQATTACK
on the VQAV2 (Antol et al. 2015) and TextVQA (Singh et al.
2019) datasets. We randomly select 6,000 and 1,000 cor-
rectly predicted samples from the VQAv2 and TextVQA
validation datasets, respectively. Because an image-question
pair may have multiple candidate answers provided by
crowd workers, we define a correct prediction only if the
predicted result is the same as the label with the high-
est VQA score’. Each selected sample is correctly clas-
sified by all target models. We also development experi-
ments on five models, including ViLT (Kim, Son, and Kim
2021), TCL (Yang et al. 2022), ALBEF (Li et al. 2021b),
VLMO-Base (VLMO-B) (Bao et al. 2022), and VLMO-
Large (VLMO-L) (Bao et al. 2022). Note that VLMO-B and
VLMO-L share the same structure but have different model
sizes. These models are first pre-trained on public image-text
pairs and then fine-tuned on VQA datasets.

Baselines We comprehensively compare VQATTACK with
text, image, and multi-modal adversarial attack methods.
Specifically, we first adopt BERT-Attack (B&A) (Li et al.
2020) and Rewrite-Rollback (R&R) (Xu et al. 2022) as
text-attack baselines. For image attack methods, we adopt
DR (Lu et al. 2020), SSP (Naseer et al. 2020), and
FDA (Ganeshan, S., and Radhakrishnan 2019) as baselines.
These methods generate adversarial images by only perturb-
ing intermediate features and can thus be directly utilized in
our problem. VQATTACK is also compared with the multi-
modal attack approach Co-Attack (CoA) (Zhang, Yi, and
Sang 2022). To the best of our knowledge, it is the only
scheme that attempts to simultaneously add image and text

3VQA score calculates the percentage of the predicted answer
that appears in 10 reference ground truth answers. More details can
be found via https://visualqa.org/evaluation.html



Source Target VQAV2 - - TextvQA . -
Model Model Text Only Image Only Multi-modality Text Only Image Only Multi-modality
B&A R&R| DR FDA SSP | CoA VQATTACK || B&A R&R| DR FDA SSP | CoA VQATTACK
ALBEF [10.28 5.20 | 8.78 9.84 24.90|16.70 30.36 13.00 5.80 [8.20 9.40 17.00|15.40 22.20
TCL |11.86 6.08 | 8.74 9.62 22.54|17.84 27.96 1220 4.80 |7.10 8.20 13.60|14.90 19.80
VILT |VLMO-B| 6.34 1.82| 5.08 5.70 21.48|13.64 25.72 7.30 3.20 {740 5.770 13.90|12.90 19.50
VLMO-L| 5.02 2.18 | 5.58 5.72 13.08|10.64 25.98 6.60 0.30 |2.80 2.40 7.20 | 7.60 8.40
VILT 6.68 2521574 578 11.04|11.22 21.80 930 2.60 [4.60 520 7.10 |10.80 16.30
ALBEF | 558 292 |11.10 12.52 38.26 |33.24 58.42 10.80 8.70 |9.10 10.50 31.80|26.10 46.80
TCL |VLMO-B| 7.52 3.84 |15.82 9.00 23.88]18.32 47.48 7.82 2541650 7.60 16.70|15.50 34.00
VLMO-L | 5.64 222|804 6.14 15.26|12.64 30.46 240 5.96 |3.80 4.70 9.50 |10.00 18.60
ViLT 6.72 242|690 7.02 11.42|11.36 21.60 8.70 2.60 (460 5.80 8.20 |11.70 15.60
TCL 6.96 1.80 |12.64 11.78 35.46|27.24 61.32 990 2.90(9.60 8.80 13.10|20.50 43.70
ALBEF |VLMO-B| 568 2.04 | 8.14 9.04 21.48|16.16 42.32 8.50 3.30|7.70 8.10 15.20|14.50 28.30
VLMO-L | 5.02 2.18 | 558 5.72 21.56|10.64 25.98 570 2.20 [4.10 450 8.20 | 7.40 16.20
VILT 772 2.04 | 436 5.34 10.20|10.90 18.70 10.90 0.80 [3.20 3.40 7.80 |11.70 15.20
VLMO-B TCL |12.20 6.26 |10.98 13.64 20.24|21.52 43.62 13.50 4.50 |8.20 9.30 14.30]18.00 28.30
ALBEF |10.74 6.30 [11.22 14.52 22.66|22.46 48.06 13.50 6.10 [9.50 12.70 16.80|19.60 32.60
VLMO-L| 598 396 | 458 548 10.66|12.52 30.82 6.70 0.60 |2.70 420 6.80 | 9.60 17.40
VILT 750 1.62 | 7.48 352 7.94 |8.78 13.08 10.30 1.30 |{3.00 2.90 5.80 | 9.20 13.10
VLMO-L TCL |12.20 6.14 |12.10 10.92 21.18|15.48 32.96 1290 4.40 |6.90 6.80 15.60|13.70 21.70
ALBEF |10.84 5.98 [24.84 10.90 24.50|15.14 37.48 13.00 6.40 |9.30 9.40 17.00|12.30 26.80
VLMO-B| 822 1.86 |20.96 7.58 19.60|12.70 33.78 870 1.90 |6.00 4.50 14.20|11.60 25.20
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Figure 3: Ablation study results on the source model TCL
and the victim model VLMO-B.

perturbations. We adopt the Attack Success Rate (ASR) as
the evaluation metric, which measures the ratio of samples
whose predicted labels are not in the correct answers.

Result Analysis

We alternatively select a pre-trained model as the source
model to generate adversarial samples, which are then used
to attack the remaining models treated as victims. Experi-
mental results are listed in Table 1. We can observe that the
proposed VQATTACK significantly outperforms all base-
lines on each dataset for the five transferable attack exper-
iments. Specifically, VQATTACK achieves an average ASR
of 22.49% using ViLT as the source model, 34.23% for TCL,
31.88% for ALBEF, 29.33% for VLMO-B and 25.51% for
VLMO-L. The ASR value is comparatively lower when us-
ing VILT as the source model because its model structure
and pre-training strategies are greatly different from oth-
ers. Also, the ASR value obtained by using VLMO-L as the
source model is slightly lower than that of using VLMO-B
as the source model. This observation demonstrates that the

model owns larger parameters can present better adversarial
robustness. Finally, all of these results have demonstrated
the effectiveness of our proposed approach and also com-
prehensively reveal the huge threat of adversarial attacks in
the “pre-training & fine-tuning” learning paradigm.

Ablation Study

This ablation study aims to validate the effectiveness of the
two designed modules. Figure 3 shows the ablation study
results using the adversarial samples generated by TCL to
attack VLMO-B. “IE” means only using the latent presen-
tations learned by the image encoder to generate adversar-
ial samples in Eq. (3). “LRP” means the latent representa-
tion perturbation used in the LLM-enhanced image attack
module, where we only use Eq. (3) to generate the adversar-
ial samples. We can observe that using the multimodal en-
coder can make significant ASR improvements. “LLM-E”
means using both Egs. (3) and (4) to generate perturbations.
Compared with “LRP”, the performance can increase, which
indicates the efficacy of introducing LLM to help generate
masked text and the effectiveness of the designed masked
answer anti-recovery loss in Eq. (4). The proposed VQAT-
TACK achieves the best performance. The performance gap
between LLM-E and VQATTACK demonstrates the effec-
tiveness of the proposed cross-modal joint attack module.

Case Study

We conduct a case study on the VQAv2 dataset using the
source model TCL, as shown in Figure 4. We can observe
that the generated adversarial samples largely change the
original correct prediction to a wrong answer. For instance,
recognizing a kitchen as a bedroom (column 3). Further-
more, the generated adversarial samples still keep the nat-
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Modality |~ Method |\ zrr—3 T BEF—TCT, VIMO-B VIMO-L | VilT ALBEF TCL VLMO-B VLMO-L.
Text B&A 1516 824 896  10.16 1172 [2020 1150 1490 13.00 10.10
Only R&R 730 468 564 686 462 | 740 830 590 270 3.80
Image DR 1690 2042 1582 17.12 11.02 | 1440 1450 11.60 14.50 7.90
Only FDA 2008 17.72 1674 22.16 992 [13.90 1280 11.70  19.50 7.50
SSP 6136 49.68 5146 4632 4194 4980 3670 40.70  34.60 28.40

Multi- | Co-Attack |50.12 4650 52.74  43.56 1848 4230 3580 4580 35.80 16.80
modality | VQATTACK | 79.00 7516 76.46  75.04 61.60 |65.00 6190 6570 66.20 48.70

Table 2: Results of transferable attacks between F and S with the same pre-trained structures.

Clean

i/

What room of the house
is this? kitchen
T TEE

is the person

. o o
Is this a television? yes holding? skateboard

Adversarial

=T |
‘What room of the home
is this? bedroom

What is the someone
holding? snowboard

Is thisa #v? no

Figure 4: Qualitative results of VQATTACK on the VQAv2
dataset generated by the TCL model. The original answer
and perturbed words are displayed in blue and red, respec-
tively. The wrong prediction is shown with an underline.

ural appearance as the benign samples, which demonstrates
a serious security threat in the present VQA systems.

Transferable Attacks with Shared Information

In this experiment, we use the pre-trained model F as the
source model and its downstream VQA task as the target
S. F and S share most of the structures, and only the fi-
nal prediction layers are different. Table 2 shows the exper-
imental results. We can observe that the proposed VQAT-
TACK still outperforms all the baselines on the two VQA
datasets. Compared with the results listed in Table 1, we can
observe that the performance of all approaches improves sig-
nificantly under this setting. This experiment concludes that
the shared information is sensitive, which may make the tar-
get models vulnerable.

Related Work

Robustness of VQA The robustness of VQA is moderately
explored. Recently, Fool-VQA (Xu et al. 2018) explores the
adversarial vulnerability of a VQA system by adding image
noise constrained by [, distance. TrojVQA (Walmer et al.
2022) performs a backdoor attack by injecting deliberate im-
age patches and word tokens. These studies concentrate on
the robustness of end-to-end trained VQA models and de-
sign algorithms based on the final predictions. Because the
outputs of pre-trained and fine-tuned VQA models are dif-
ferent, they cannot be extended to our problem.

Adversarial Attacks Adversarial image attacks are initially
explored in Fast Gradient Sign Method (Goodfellow, Shlens,
and Szegedy 2015) and Projected Gradient Decent (Madry
et al. 2018). An intriguing property of these adversarial im-
ages is their “transferability”, which can be utilized to at-
tack different image models with unknown parameters and
structures. To enhance the transferability, the recently pro-
posed methods exploit features from intermediate layers for
adversarial attacks. They either combine the feature distor-
tion loss with the classification cross-entropy term (Huang
et al. 2019; Inkawhich et al. 2020a,b) or fully rely on the
intermediate feature disruption (Ganeshan, S., and Radhakr-
ishnan 2019; Naseer et al. 2020). Text attack methods are
primarily divided into searching-based and gradient-based
algorithms. Searching-based attacks include a set of heuris-
tic ranking algorithms (Li et al. 2021a, 2020; Xu et al. 2022)
with sub-optimal performance. Recently, gradient-based at-
tacking approaches (Guo et al. 2021; Wang et al. 2022; Ye
et al. 2022a,b) are proposed. Unlike image attacks, the gra-
dient cannot be directly projected onto discrete text inputs.
Accordingly, gradient change is instantiated either through
distance matching on candidate word embeddings (Wang
et al. 2022; Ye et al. 2022a,b), or by using Gumbel-softmax
sampling (Jang, Gu, and Poole 2017) on a learnable dis-
tribution of all candidate words. For multi-modal attacks,
the recently proposed Co-attack (Zhang, Yi, and Sang 2022)
method firstly combines both image and text attacks, which
utilizes word substitution to guide image adversarial attacks.
It has demonstrated to some extent that perturbations across
both modalities can be more effective than a single source.
However, it does not take into account the dynamic connec-
tions between perturbations on different modalities, indicat-
ing potential space for significant improvements under more
challenging scenarios.

Conclusion

In this paper, we investigate a novel transferable adversarial
attack scenario, aiming to generate adversarial samples only
using pre-trained models, which are used to attack differ-
ent black-box victim models. Correspondingly, we propose
a new model named VQATTACK, which can jointly update
both image and text perturbations. Besides, we propose to
incorporate the large language model to enhance the trans-
ferability of the source model. Experimental results on two
VQA datasets with five models show the effectiveness of the
proposed VQATTACK for the transferable attacks.
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Appendix
A. Details of LLM Utilization

In this section, we introduce how to use the LLM to com-
bine the perturbed question T',,,_; and a correct answer y;
into a sentence. We use ChatGPTv4 (Liu et al. 2023) to ac-
complish this target because it has demonstrated stronger
language reasoning capabilities compared to other LLMs.
When utilizing ChatGPT-v4, we first design a prompt P as
illustrated in Figure 5.

question: What color is the fork?

answer: Black

declarative sentence using the “{answer}”.

The output need fullfill following requirments:

1: The term {answer} must appear in the output.
2: Please only output the declarative sentence.

\
1
1
1
1

Prompt: Please paraphrase the “{question}” into a ]
1
1
1
1
1
1

o

Figure 5: An example of Transferable adversarial attacks on
VQA via pre-trained models.

As illustrated in Figure 1, the prompt consists of three
parts. The first is the task description, in which we need
to combine “{question}” and “{answer}” into a declarative
sentence. To ensure the quality of the combined sentences,
we add the following two constraints:

o The term {answer} must appear in the output. This con-
straint emphasizes that the output sentence must contain
the answer, which is a prerequisite for masked text gen-
eration.

* Please only output the declarative sentence. This con-
straint aims to avoid redundant prompts and prefixes,
such as “Sure, here is the output sentence...”. Such a pre-
fix is unnecessary and may even introduce interference in
the masked answer anti-recovery step, thus affecting the
attack performance.

B. Details of VL. Models

In this section, we illustrate the details of all five VL. models
evaluated in our paper, including ViLT (Kim, Son, and Kim
2021), ALBEF (Li et al. 2021b), TCL (Yang et al. 2022),
VLMO-B and VLMO-L (Bao et al. 2022). These models
consist of an image encoder, a text encoder, and a multi-
modal encoder.

* ViLT. We select the model ViLT because it employs a suc-
cinct model structure and significantly outperforms pre-
vious end-to-end trained VQA models on the VQAv2
dataset. The image encoder of ViLT is a linear projec-
tion layer. Given an input image I, it first divides the im-
age into patches with equal spatial resolution. Then each
image patch is flattened into a vector and encoded by a
linear transformation, which results in D,, image tokens.
For the text T, it is first tokenized and embedded by the
commonly used byte-pair encoder. The word embeddings

are then encoded through a text encoder, which is a word-
vector linear projection layer. The latent token representa-
tions from image and text encoders are then concatenated
with a learnable special token (cls) and fed into the multi-
modal encoder, which is a twelve-layer transformer en-
coder. The encoder attends tokens of different modalities
through the self-attention mechanism. At the pre-training
stage, the output features of text tokens are fed into the
MLM head to predict the masked word tokens. When fine-
tuning on VQA task, the output feature from the (cls) to-
ken is fed into a VQA prediction head to select the correct
answer. The VQA prediction head is composed of a fully-
connect layer and a softmax layer.

ALBEF. The ALBEF model has a different structure from
ViLT. Specifically, the image encoder is a twelve-layer vi-
sual transformer ViT-B/16 (Dosovitskiy et al. 2021). The
text encoder is a six-layer transformer encoder. The struc-
ture of the multi-modal encoder is the same as a six-layer
transformer decoder, where each layer contains a self-
attention module, a cross-attention module and a feed-
forward module. After obtaining the image and text token
features through the image/text encoders, the multi-modal
encoder first accepts the text token features as input and
attends to them through the self-attention module. Then,
the output will fuse with image token features through
the cross-attention module. At the pre-training stage, the
output features from the multi-modal encoder will be pro-
cessed by the MLM head. For prediction on the VQA task,
the multi-modal features are fed into a six-layer trans-
former decoder. The decoder also accepts a sequence ini-
tialized by the (cls) token as input and interacts with the
multi-modal representations through cross-attention lay-
ers. As a result, the VQA answer is auto-regressively gen-
erated in an open-ended manner.

TCL. TCL follows the same structures as ALBEF but
has more different pre-training tasks. In addition to the
traditional pre-training tasks like MLM, it introduces ad-
ditional tasks through contrastive learning. These con-
trastive learning tasks are developed from the uni-modal
and cross-modal levels based on additional image-text
pairs. The experimental results indicate that TCL im-
proves the quality of multimodal representations by pre-
training with these extra tasks. After fine-tuning TCL on
the VQA task, its performance also notably outperforms
that of ALBEF.

VLMO-B. VLMO-B adopts a transformer structure for
each encoder. Both the image and text encoders are one-
layer transformer encoders, and the multimodal encoder is
a twelve-layer transformer encoder. VLMO-B also adopts
a modular design for each encoder, replacing the origi-
nal feed-forward (FFN) layer with a modality-aware FFN
head. At the pre-training stage, each encoder has differ-
ent parameters in the modality-aware FFN head, while
the multi-head self-attention module is shared between the
image and text encoders. For the VQA prediction, the out-
put feature from the (cls) token is fed into a VQA predic-
tion head to select the correct answer, which is the same
as the ViLT model.



w]E mLRP LLM-E ®VQATTACK 16 w]E mLRP LLM-E m VQATTACK

w]E®LRP LLM-E 8 VQATTACK 4 wIE m LRP  LLM-E ® VQATTACK

20

14 11

8 6 I

VQAvV2 Text-VQA

(a) ViLT

35
25

15
5 5 L e
VQAv2 Text-VQA

(b) TCL

Figure 6: More examples of ablation study. We generate adversarial samples form the pre-trained VLMO-B model, and use the

output to attack ViLT and TCL.

* VLMO-L. We also adopt a larger version of VLMO-B
to evaluate the transferable attack performance under dif-
ferent model sizes. VLMO-L has the same structure as
VLMO-B but with more layers and parameters. Specif-
ically, the multi-modal encoder is a transformer encoder
with 24 layers, and each latent representation owns a size
of 1,024 dimensions, which is 768 in VLMO-B. As a re-
sult, the parameters of VLMO-L are three times larger
than those of VLMO-B (562M vs 175M).

C. Implementation Details

In this section, we show the implementation details of our
experiments. For the perturbation parameters on images,
we follow the previous transferable image attack meth-
ods (Huang et al. 2019; Zhou et al. 2018) and set the L .-
norm distance threshold o; to 16/255. Following the PGD,
the maximum iteration steps M is set to 20 on VQATTACK
and 40 on all image attack baselines, including SSP, FDA,
DR, and the multi-modal attack Co-Attack (CoA). This is
because, in most steps, VQATTACK needs to update gradi-
ents twice in one iteration step, while other baselines do it
only once. Thus, we set a smaller M to our approach. Fi-
nally, all methods compared in experiments are optimized
with the DIM (Xie et al. 2019), which is an image augmen-
tation strategy and has been widely adopted in current trans-
ferable image attacks (Lu et al. 2020; Wu et al. 2020).

For the text modality, we set the semantic similarity con-
straint o4 to 0.95, which follows the previous text-attack
work (Li et al. 2020; Xu et al. 2022). Because the text-attack
baselines B&A and R&R need to do queries to the target
model, which is different from our transferable attack set-
ting. Thus, when running B&A and R&R, we first gener-
ate adversarial texts by querying the VQA model fine-tuned
on the source pre-trained one and then perform a transfer-
able attack by sending the querying results to the victim
model. Finally, all experiments are conducted on a single
GTX A100 GPU.

D. More Ablation Study Analysis

As shown in Fig. 6, we also display more results of the abla-
tion study. The adversarial examples are generated from the
pre-trained ViLT source model, and they are transferred to
attack the victim ViLT and TCL models. From the figure, we
can observe that the performance is consistent with the anal-
ysis of the ablation study, except the ASR value of LLM-E

is slightly lower than LRP on the ViLT model through the
Text-VQA dataset. We attribute this to the huge differences
in pre-training strategies on MLM tasks between VLMO-
B and VIiLT. Specifically, the ViLT model directly uses the
MLM task to pre-trained the whole model from initializa-
tion. However, VLMO-B adopts a stage-wise pre-training
strategy, which first pre-trains the image and text encoder on
uni-modal tasks and then trains the multi-modal encoder on
the MLM task with a good initialization of uni-modal repre-
sentations. Finally, by combining the LLM-E image attack
module with the cross-modal joint attack module, the per-
formance of VQATTACK significantly surpasses that of in-
dividual components across all figures. This further demon-
strates the effectiveness of our proposed method.



