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ABSTRACT | Motivated by the advancing computational capac-

ity of distributed end-user equipment (UE), as well as the
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increasing concerns about sharing private data, there has

been considerable recent interest in machine learning (ML) and

artificial intelligence (AI) that can be processed on distributed

UEs. Specifically, in this paradigm, parts of an ML process are

outsourced to multiple distributed UEs. Then, the processed

information is aggregated on a certain level at a central server,

which turns a centralized ML process into a distributed one and

brings about significant benefits. However, this new distributed

ML paradigm raises new risks in terms of privacy and security

issues. In this article, we provide a survey of the emerging

security and privacy risks of distributed ML from a unique

perspective of information exchange levels, which are defined

according to the key steps of an ML process, i.e., we consider

the following levels: 1) the level of preprocessed data; 2) the

level of learning models; 3) the level of extracted knowledge;

and 4) the level of intermediate results. We explore and ana-

lyze the potential of threats for each information exchange

level based on an overview of current state-of-the-art attack

mechanisms and then discuss the possible defense methods

against such threats. Finally, we complete the survey by pro-

viding an outlook on the challenges and possible directions for

future research in this critical area.

KEYWORDS | Distributed machine learning (ML); federated

learning (FL); multiagent systems; privacy; security; trusted

artificial intelligence (AI).

N O M E N C L AT U R E
Abbr. Definition
ML Machine learning.
DL Deep learning.
RL Reinforcement learning.
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DQN Deep Q network.
AC Actor critic.
A3C Asynchronous advantage actor critic.
TRPO Trust region policy optimization.
PG Policy gradient.
PPO Proximal policy optimization.
DP Differential privacy.
HE Homomorphic encryption.
SMPC Secure multiparty computation.
SGD Stochastic gradient descent.
FL Federated learning.
NN Neural network.

I. I N T R O D U C T I O N
An explosive growth in data availability arising from prolif-
erating Internet of Things (IoT) and 5G/6G technologies,
combined with the availability of increasing computa-
tional resources through cloud and data servers, promotes
the applications of ML in many domains (e.g., finance,
health care, industry, and smart city). ML technologies,
e.g., DL, have revolutionized the ways that information
is extracted with ground-breaking successes in various
areas [1]. Meanwhile, owing to the advent of IoT, the
number of intelligent applications with edge computing,
such as smart manufacturing, intelligent transportation,
and intelligent logistics, is growing dramatically.

As such, conventional centralized DL can no longer
efficiently process the dramatically increasing amount of
data from the massive numbers of IoT or edge devices. For
example, as shown in Fig. 1, it is expected that the volume
of data will be 181 ZB in 2025.1 In addition, the long run-
time of training models steers solution designers toward
using distributed systems for an increase of parallelization
and the total amount of wireless bandwidth, as the training
data required for sophisticated applications can easily be
on the order of terabytes [2]. Examples include transaction
processing for larger enterprises on data that is stored in
different locations [3] or astronomical data that is too large
to move and collect [4].

To address this challenge, distributed learning frame-
works have emerged. A typical distributed learning setting
involves the cooperation of multiple clients and servers,
which, thus, involves a decentralization and aggregation
process along with the ML process [5]. With the increasing
capability of edge devices, distributed clients are able to
execute simple ML tasks. For example, FL [6], [7], [8]
enables the decoupling of data provisioning by distributed
clients and aggregating ML models at a centralized server.
In certain ML tasks, the model sometimes can be so large
that it cannot be trained in a reasonable amount of time
and cannot run completely on a single machine. There-
fore, large-scale distributed ML is proposed in [9] where
datasets in each client will be reanalyzed and pretrained
locally, and the knowledge is aggregated by a central

1https://www.statista.com/statistics/871513/worldwide-data-created/

Fig. 1. Volume of data/information created, captured, copied, and

consumed worldwide from 2010 to 2025.

server. In addition, aggregating learning results [10] by the
server is another part of distributed ML technology.

To complete an ML task successfully, we need to preserve
the integrity and security of the system, along with the
privacy of participating clients. As the manufacturers can
potentially fail to implement a robust security system
in distributed devices, experts on security have warned
of potential risks of large numbers of unsecured devices
connecting to the Internet [11]. Security and privacy are
very significant issues for distributed ML, which introduce
a new level of emergent concerns for participants. This
is because these devices collect not only personal and
sensitive information, e.g., names and telephone numbers,
but also monitor daily activities. Due to the regular stream
of news stories about privacy leakage through major data
breaches, users are wary of using personal data in public
or private ML tasks for good reason [12].

There are some related surveys on security and pri-
vacy issues in distributed ML. For example, the challenges
and opportunities of distributed learning over conven-
tional (centralized) ML were discussed in [13] and [14],
which elaborated on limited privacy and security issues.
De Cristofaro [15] and Liu et al. [16] focused on the
adversarial models related to private information leakage
and corresponding defensive mechanisms in ML, and the
work [17] investigated privacy issues in distributed ML.
Moreover, DP-based protection methods were introduced
in [18]. In addition, to protect the privacy of the IoT data,
the work [19] surveyed ML-based methods to address
privacy issues, including scalability, interoperability, and
limitations on resources, such as computation and energy.
The works [20], [21], [22] addressed security and privacy
issues in FL, together with related solutions. The summary
of related surveys on security and privacy issues in ML is
listed in Table 1.

Different from the abovementioned surveys, in this
work, we consider the following.
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Table 1 Existing Surveys on Private and Secure ML

1) We first give a clear and fresh definition of distributed
learning and develop the distributed learning frame-
work in four levels in terms of sharing different
information, namely, sharing data, sharing models,
sharing knowledge, and sharing results.

2) We then provide an extensive overview of the current
state of the art related to the attacks and defensive
mechanisms related to privacy and security for each
level. Real examples are also listed for each level.

3) In addition, learned lessons from each aspect are
described, which it is hoped can help readers to avoid
potential mistakes.

4) Several research challenges and future directions are
further discussed, which can provide insights into the
design of advanced learning paradigms.

II. B A C K G R O U N D O F D I S T R I B U T E D
M L A N D T H I S A R T I C L E S T R U C T U R E
In Section II, we first describe the detailed process of
how an ML task is executed and then transit the cen-
tralized learning to distributed paradigms and develop a
decentralized learning framework. In addition, we provide
descriptions of several widely studied distributed learning
frameworks.

A. Background of ML

Generally speaking, the core idea of ML algorithms can
be summarized as training a machine to learn rules or pat-
terns underlying some phenomenon using data, and then
making decisions or inferences based on new data using
the learned rules or patterns. Many ML algorithms fall into
the category of pattern recognition (PR), including face
recognition, voice recognition, character recognition, and
so on [25]. Since humans cannot easily program machines

to follow all detailed rules and judgments, ML can be used
to help machines learn hidden and even implied rules by
themselves. This process is described simply as follows.

Suppose we are going to train a machine to classify
whether a fruit is an apple or a banana (a classification
task). We first collect some samples that can be labeled
and learned by the machine (dataset). So, some apples and
bananas from this dataset along with their features, includ-
ing shape, color, weight, size, and so on, are recorded.
Now, a labeled fruit (apple or banana) with a set of
ground-truth features together builds up a sample, and
these labeled samples constitute the training dataset. The
goal of this ML task is to make the machine learn features
from the training dataset and output good predictions
given new samples without labels (test dataset). This
learning process can be expressed as fitting a function that
takes the features as inputs and outputs a value that is
as close as possible to the true label. Fig. 2 illustrates the
procedure of ML with four main steps listed as follows.

1) Data Collection: The quantity and quality of the col-
lected data dictate how accurate the model is, and
the dataset can be divided into training, validation,
and test datasets [26].

2) Model Training: For different ML tasks, an appropriate
model should be chosen wisely first. Then, the train-
ing dataset with the right labels is fed as inputs to the
model to start training.

3) Knowledge Extraction: During training, features of the
input samples are extracted using some metrics or
combinations of metrics (e.g., linear or nonlinear
combinations), and this knowledge helps the model
update its weights in structures.

4) Result Prediction: The test dataset, which has been
withheld from the model building process, is used and
outputs the prediction results, such as labels, values,
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Fig. 2. Process of ML in four key steps: data collection, model training, knowledge extraction, and result prediction.

vectors (e.g., generative time series), and matrices
(e.g., generative images).

B. Background of Distributed ML

Distributed ML systems and algorithms have been exten-
sively studied in recent years to scale up ML in the presence
of big data. The existing work focuses either on the the-
oretical convergence speed of proposed algorithms or on
the practical system aspects to reduce the overall model
training time [27]. Bulk synchronous parallel (BSP) algo-
rithms [28] are among the first distributed ML algorithms.
Due to hash constraints on the computation and commu-
nication procedures, these schemes share a convergence
speed that is similar to traditional synchronous and cen-
tralized gradient-like algorithms. The stale synchronous
parallel (SSP) algorithm [29] is a more practical alter-
native that abandons strict iteration barriers and allows
distributed workers to be off synchrony up to a certain
bounded delay. The convergence results have been devel-
oped for both gradient descent and SGD [29], [30], [31]
as well as proximal gradient methods [32] under different
assumptions of loss functions. In fact, SSP has become
central to various types of current distributed parameter
server architectures [33], [34], [35], [36]. Depending
on how the workload is partitioned [27], distributed ML
systems can be categorized into four levels.

1) Level 0 (Sharing Data): After collecting and pre-
processing data locally, each user equipment (UE)
will upload its private/anonymized data to a central
server, and then, the server will use this aggregated
data to complete the learning task.

2) Level 1 (Sharing Models): Different from uploading
data directly, each UE can train a local ML model
using its own data and share the trained model with
the server. Then, the server will aggregate the col-
lected model and retransmit the global model to UEs
for the next round of learning.

3) Level 2 (Sharing Knowledge): Different from sharing
ML models, the extracted knowledge from training
local data, such as the relationship between different
attributes, is further shared.

4) Level 3 (Sharing Results): The task training is com-
pletely processed locally, and each UE only shares ML
results/outputs to the central server.

The detailed framework of the four-level distributed ML
is illustrated in Fig. 3, which is composed of a local and
global plane. In the local plane, different information,
i.e., data or models, is processed and generated in local
devices and then transmitted to a centralized server for
aggregation. Four levels of the proposed distributed learn-
ing framework are described in detail, i.e., sharing data,
sharing models, sharing knowledge, and sharing results,
which are exemplified by representative ML techniques.

C. Existing Distributed Learning Frameworks

In this section, we will introduce some widely used dis-
tributed learning models, which include federated learn-
ing, split learning, SGD-based collaborative learning, and
multiagent RL (MARL).

1) Federated Learning: FL is a collaborative ML tech-
nique [37], [38], [39] developed by Google, which allows
decoupling of data provision at UEs, and ML model aggre-
gation, such as network parameters of DL, at a centralized
server. A structure of FL is illustrated in Fig. 4. The
purpose of FL is to cooperatively learn a global model
without directly sharing data. In particular, FL has distinct
privacy advantages compared with data center training
on a dataset. At a server, holding even an anonymized
dataset can put client privacy at risk via linkage to other
datasets. In contrast, the information transmitted for FL
consists of minimal updates to improve a particular ML
model. The updates can be ephemeral and will not contain
more information than the raw training data (by the
data processing inequality). Furthermore, the source of
the updates is not needed by the aggregation algorithm,
and so, updates can be transmitted without identifying
metadata over a mixed network, such as Tor [40] or via
a trusted third party. General categories are distributed
horizontal FL, where clients have different sample spaces
with the same feature space and share models during
aggregation, distributed vertical FL with the same sample
space and different feature spaces, sharing models or
knowledge to the central server, and distributed transfer
learning with various sample and feature spaces when
uploading model or knowledge in aggregation [41].

However, although the data are not explicitly shared
in the original format, it is still possible for adver-
saries to reconstruct the raw data approximately,
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Fig. 3. Framework of distributed learning, which is composed of a local and global plane. In the local plane, different information, i.e., data or

models, is processed and generated in local devices and then transmitted to a centralized server for aggregation. Four levels of the proposed

distributed learning framework are described in detail, i.e., sharing data, sharing models, sharing knowledge, and sharing results, which are

exemplified by representative ML techniques.

especially when the architecture and parameters are not
completely protected. In addition, FL can expose interme-
diate results, such as parameter updates, from an optimiza-
tion algorithm, such as SGD, and the transmission of these
gradients may actually leak private information when
exposed together with a data structure, such as image
pixels. Furthermore, the well-designed attacks, such as
inference attacks (stealing membership information) [42],
[43], [44] and poisoning attacks (polluting the quality of
datasets or parameter models) [45], may induce further
security issues.

2) Split Learning: Split learning, as a type of distributed
DL [17], [47], [48], [49], is also called split NN (SplitNN).
Similar to FL, split learning is effective when data upload-
ing is not available because of privacy or legal restrictions.
In SplitNN, each participant first trains an NN until a
predefined layer, called the cut layer, and then transmits
the output of the cut layer to the server. Upon receiving the
outputs, a central server will continue training the remain-
ing layers. Then, the loss function value is calculated and
backpropagated to the participants. When receiving the
feedback, the participants continue the backpropagation
until the network finishes training. In Fig. 5, we show a
combination of FL and split learning, where the logits are
shared and aggregated at a centralized server.

The computational and communication costs on the
client side are reduced in split learning, because only part

of the network is processed locally. In addition, instead of
transmitting the raw data, the activation function of the
cut layer is uploaded to the server, which has a relatively
smaller size. Some experimental results show that split
learning has higher performances and fewer costs than
FL over figure classification tasks, i.e., Canadian Insti-
tute For Advanced Research-100 (CIFAR-100) datasets,
using Resnet-50 architectures for hundreds of clients-based
setups [47]. However, it needs further explanations on

Fig. 4. Structure of FL, where users train an ML model using their

local data and share the models to a centralized server.
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Fig. 5. Reformulation of FL assisted by the split learning and

knowledge distillation [46].

how split learning works and makes decisions, which is
linked to the trust of distributed networks, especially in
the healthcare area [47].

3) Large Batch Synchronous SGD: The difference
between large batch synchronous SGD (LBS-SGD)-based
collaborative learning and FL lies in that the updates
in LBS-SGD are processed on each batch of training
data, and multiple epochs of local training are required
before uploading in FL. In LBS-SGD, model parallelism
and data parallelism are two common ways to support
updating, such as distributed large mini-batch SGD [50],
distributed synchronous SGD with backups [17], [51],
and selective SGD [52]. In [52], each participant is asked
to choose a part of the model to update at each epoch
and share it asynchronously with others. The work [50]
considered synchronous SGDs by dividing local epochs
into mini-batches over multiple clients and model aggre-
gations. While the aggregated updates were performed
synchronously in [50] that the aggregator will wait for
all clients, stragglers may slow down the learning, and a
synchronous optimization with backup participants have
been considered in [51].

4) Multiagent RL: RL is trial-and-error learning by inter-
acting directly with the environment, training according
to feedback, and finally achieving the design goal. Specif-
ically, RL defines a decision maker as an agent and the
interaction with the environment, where three essential
elements: the state, action, and reward, are used to
describe the interaction. For each interaction, the client
arrives at a certain state and processes a corresponding
action and then obtains feedback that is used to alter
the current state to the next state. However, a single
RL framework cannot address complex real-world prob-
lems, and thus, MARL has attracted increasing attention.
Within MARL, agents will cooperate and observe the
complex environment more comprehensively. For exam-
ple, as shown in Fig. 6, a three-agent RL system, where
actions and rewards are shared between different users,
is provided. By absorbing the learning experiences from
the user-self and other participants, a faster convergence

rate with better performance is always achieved. However,
compared with the single-agent setting, controlling multi-
ple agents poses several additional challenges, such as the
heterogeneity of participants, the design of achieved goals,
and a more serious malicious client problem. Although
several methods have been proposed to address these
challenges, e.g., approximate AC [53] and lenient DQN,
limitations, such as nonseasonal communication among
agents and privacy leakage, prevent the rapid development
of MARL, and the existing methods cannot be extended to
large-scale multiagent scenarios.

Following the discussed background of distributed
ML, we present the structure of this survey work in
Fig. 7. The rest of this article is structured as follows.
In Section III, privacy and security issues are discussed,
and several robust protection methods are provided in
Section IV. Then, in Section V, we survey attacks and
defenses in various paradigms in distributed ML. Several
research challenges and future directions are shown in
Section VI. Finally, conclusions are drawn in Section VII.
In addition, a list of important abbreviations is provided
in Nomenclature.

III. P R I V A C Y A N D S E C U R I T Y R I S K S I N
D I S T R I B U T E D M L
In Section III, we will introduce the potential risks of pri-
vacy and security, which comprise several factors, includ-
ing threat models, adversarial models, and attack methods.

A. Threat Models

1) Malicious/Curious Participant: Participants in dis-
tributed ML can be malicious or curious. For example, a car
insurance company with limited user attributes might want
to improve its risk evaluation model by incorporating more
attributes from other businesses, e.g., a bank, a taxation
office, and so on. The role of the other participants is
simply to provide additional feature information without
directly disclosing their data to other participants and,
in return, obtain financial and/or reputation rewards.

Fig. 6. Framework of MARL, where multiple users communicate and

interact to change information and also process actions to obtain

feedback from the environment.
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However, competitors may be disguised as collaborators
and then damage the training process or steal the ML
model.

2) External Attackers: In terms of exchanged informa-
tion, eavesdropping, modification, or deletion can occur
during communication in distributed ML as well. The
exchanged information usually contains the updated direc-
tion and extracted features from private data, and thus,
it is crucial to ensure its correctness, especially for the
client–server framework. An external attacker may control
the final output by modifying or deleting the exchanged
information in the communication. In addition, via eaves-
dropping on the extracted features from private data,
an external attacker can further infer sensitive informa-
tion [54].

B. Adversarial Models

In this section, we will discuss adversarial goals related
to leaking information from the training data or destroying
models during learning.

1) Access:
a) White Box: The adversary is assumed to acknowledge

certain information about the training data or the
learning model, e.g., model parameters, network
structures, or part of/the whole training dataset.

b) Black Box: The adversary does not have any knowl-
edge about the ML model, but the adversary can
further explore the model by injecting some designed
inputs and observing related outputs [55].

2) Training Versus Inference: The second factor is the
place where the attack happens.

a) Training Stage: The adversary attempts to learn the
model by accessing a part or all of the training
data and creating a substitute model, i.e., a shadow
model.

b) Inference Stage: The adversary observes the outputs
from the learning and sums up the model character-
istics [54].

3) Passive Versus Active: A third factor is to distinguish
between passive and active attacks.

a) Passive Attack: The adversary can passively observe
and obtain the updates but change nothing during
the training process.

b) Active Attack: The adversary actively performs and
adjusts the learning operation. For example, the
adversary can upload unreasonable parameters to
degrade the aggregated model in FL [56].

C. Attack Methods

In this section, several attack methods are investigated
as follows.

1) Poisoning Attack: The goal of a poisoning attack is
to degrade the model quality, which misleads the learning
into taking an incorrect direction by carefully crafting
poisoning samples during training, also called adversarial

examples [57]. In the black-box attack, the attacker can
only inject a relatively small amount of crafted/poisoned
data into the training model, where the amount and
the undiscovered capability of these poisoning data are
two basic metrics to estimate the attacking performance.
For example, Jagielski et al. [58] have first investigated
poisoning attacks against linear regression models and pro-
posed a fast optimization algorithm with limited crafting
samples to perturb outputs. Furthermore, Suciu et al. [59]
have investigated the minimum information required by
the attacker to achieve various attacking goals. In the
white-box attack, the adversaries have full knowledge
of the training model and can take advantage of it to
reconstruct a powerful poisoning attack. For example,
Yuan et al. [60] have proposed a white-box attack with
perfect knowledge under different goals. Although the
mentioned method might be unrealistic in practical set-
tings, it can achieve almost five more than the black-box
attack in success rate.

2) Evasion Attack: An evasion attack often happens in
the prediction process, which aims to mislead the outputs.
In detail, the evasion attack is to change real data from one
category to a determined or random one and destroy the
integrity of the original dataset. From a black-box attack
angle, the adversary only knows the type of the training
dataset and observes the outputs. Based on this assump-
tion, Kwon et al. [61] have realized this kind of attack in
a speech recognition system. The generated adversarial
samples achieve a 91.67% success rate on moving one data
from one category to another. Alternatively in a white-box
attack, the adversary is able to acknowledge more useful
information, such as the network structure and the type of
training samples, rather than the predictive interface. For
example, Eykholt et al. [62] have shown the weakness of
DNNs when random noises are added to the inputs, and
an advanced robust physical perturbations-based method
has been proposed.

3) Model Inversion Attack: The model inversion attack
proposed in [63] works in a black-box fashion, in which
the adversary can choose inputs and observe the corre-
sponding outputs. This information is then used to detect
correlations between unknown inputs and respective out-
puts. A follow-up work has presented a combination with
a black-and-white box attack [43]. The proposed attack
aims to predict the highest probability of one input for
a given label, by way of which the adversary is able to
reconstruct the input for a known label, i.e., a figure from
a specific class. However, the proposed model inversion
attack only works in linear models for most cases, and a
major weakness is that the complexity grows exponentially
with the input size, since it relies on searching all linear
combinations by brute force.

4) Membership Inference Attack: The membership infer-
ence attack (MIA) is mainly focused on privacy attacks.
A previous attack targeting distributed recommender sys-
tems [64] intended to infer which input will lead to a
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Fig. 7. Structure of the survey with key elements.

change in the output by observing temporal patterns:
from the learning model. Shokri et al. [54] have investi-
gated the differences between the models to infer whether
an input exists in the training dataset for the super-
vised model. In particular, a shadow model constructs
a similar structure to the targeted model in a black-
box fashion. Following [54], Song et al. [65] attempted
to record the training data with black-box access. Subse-
quently, Ateniese et al. [66] have exploited the knowledge
of learning models to hide the an underlying Markov
model and attack support vector machine (SVM) in clas-
sification tasks. Also, related works [44], [67], [68]
presented inference attacks against distributed DL [37],
[52]. In particular, Phong et al. [67] aimed to attack the
privacy-preserving learning framework proposed in [52]
and revealed that partial data samples can be revealed
by an honest-but-curious server. However, operation with
a single-point batch size limits its effectiveness. Also,
a white-box attack against [52] has been proposed in [44],
which used generative adversarial networks (GANs) to
produce similar samples with a targeted training dataset;
however, the proposed algorithm loses effectiveness in
black-box access. Finally, Truex et al. [69] have shown that
MIAs are usually data-driven, and Melis et al. [68] have
demonstrated the way that a malicious participant can
infer sensitive properties in distributed learning. Other
MIAs focused on genomic research studies [70], [71],
in which the attack is designed to infer the presence of
specific information of individuals within an aggregated
genomic dataset [71], locations [72], and noisy statistics
in general [73].

5) Model and Functionality Stealing:

a) Model Extraction: The aim of model extraction is first
proposed in [74], in which the authors proposed
to infer the parameters from a trained classifier in
a black-box fashion; however, it only works when
the adversary has access to the predictions, i.e.,
the probabilities for each class in a classification
task. In follow-up works, other researchers went a

step further to steal hyperparameters [75], which
are external configurations. These values cannot be
estimated from data samples, architecture extrac-
tion [76] that infers the deep model structure as
well as the updating tools [e.g., SGD or alternating
direction method of multipliers (ADMM)], and so on.

b) Functionality Extraction: The concept of functionality
extraction is, rather than stealing the model, to cre-
ate knock-off models. Orekondy et al. [77] have cre-
ated such an attack based only on design inputs and
relative outputs to observe correlation from ML as a
service (MLaaS) queries. In particular, the adversary
uses the input–output pairs, e.g., image–prediction
pairs in a figure classification task, to train a knock-
off model, and compares it with one of the victims for
the same task. In addition, Papernot et al. [55] have
trained a shadow model to replace a DNN, which
directly uses inputs generated by the attacker and
labeled by the attacking DNN.

D. Section Summary

In summary, the attack target can be regarded as a
clue to distinguish the privacy and security risks from the
adversary aspect. A common aim for the privacy attack is
to infer membership of participants without degrading the
learning performance, i.e., MIA, and model and functional-
ity stealing, while malicious clients usually aim to destroy
the integrity of the learning system, i.e., model poisoning,
evasion, and inversion attack.

IV. R O B U S T D E F E N S I V E M E C H A N I S M S
In Section IV, we will present an overview of several robust
defensive mechanisms that include cryptography, robust
aggregation, network compression, and DP to reduce infor-
mation leakage and address security issues.

A. Cryptography

Cryptography is a vital part of distributed ML, as it
has the ability to support confidential secure comput-
ing scenarios. Many algorithms and protoypes have been
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proposed in the literature, which allow participants to
obtain learning outputs without uploading their raw data
to the server. For instance, in the supervised ML task,
SMPC and HE-based privacy-enhancing tools have been
proposed to enable secure computing. Typical examples
are NNs [78], [79], [80], matrix factorization [81],
linear regressions [82], decision trees [83], and linear
classifiers [84], [85].

Specifically, SMPC allows two or more participants to
jointly complete an ML task over the shared data without
revealing it to others. Popular SMPC prototypes are usually
developed for two parties, such as [80], [82], [86], and
[87], designed for distributed ML tasks. For more than two
parties, algorithms based on three-party communication
have been provided in [88], [89], [90], and [91], which all
rely on the majority of semi-honest or honest participants.
For example, Bonawitz et al. [78] have proposed a mixture
of several communicating schemes to enable secure com-
puting of participants in FL by blurring the aggregation
from the server.

With regard to HE, it mainly uses the encryption and
decryption protocol to transform the original message by
certain mathematical operations, and there are three com-
mon forms for HE: 1) partially HE (PHE) supports one type
of mathematical operation; 2) somewhat HE (SWHE) that
uses a number of mathematical operations for limited use
cases; and 3) fully HE (FHE) supports unlimited numbers
of mathematical operations with no other limits [92].
For example, Phong et al. [67] have developed a novel
homomorphic scheme based on additive operations for FL
with no performance degradation [67]. Other distributed
learning strategies, such as [93] and [94], used HE to
encrypt data, and the central server can train a learn-
ing model based on the encrypted one. However, the
drawbacks of HE are obvious. First, it is usually hard or
even impractical to implement HE, since this will generate
a huge computation overhead [87], [92], [95]. Second,
with the increasing number of homomorphic operations,
the size of the encrypted models grows exponentially,
especially in the SWHE [92], which usually largely sur-
passes the original model. Third, extra communications
between the client and server are required to facilitate
key-sharing protocols, which will increase communication
costs.

B. Robust Aggregation

The robust aggregation protection methods are designed
for distributed ML in which a server needs to aggre-
gate something from clients. To prevent malicious clients,
or a group of collusive malicious clients, such as the
Byzantine attack in FL [96], Blanchard et al. [97] have
proposed Krum, a robust aggregation scheme. By min-
imizing the sum of squared Euclidean distances over
the aggregated models, Krum can effectively recognize
and remove these outliers. Several follow-ups [98], [99],
[100] aimed to recognize malicious clients. In addition,

Chang et al. [101] have developed a knowledge-sharing-
based algorithm to preserve privacy. The proposed Cronus
algorithm relies on a public dataset that is available to
all clients. Instead of transmitting parameters, clients will
upload the predicted results from this public dataset, and
a mean estimation algorithm [102] was used to aggregate
these high-dimensional label samples. Although Cronus
has been proven to defend against basic model poisoning
attacks with an acceptable performance loss, sharing labels
will lead to privacy leakage to a certain extent.

C. Network Compression

The main purpose of compressing the network is
to reduce information transmission, which saves com-
munication resources and accelerates learning. As well,
it can also reduce the information exposed to the adver-
sary. Typical methods include quantization [103], [104],
[105], network sparsification [106], [107], knowledge
distillation [108], [109], network pruning [110], [111],
and sketch [112], [113], [114]. Specifically, an initial
work [52] proposed the idea of transmitting a subset
of all gradients in distributed SGD, and based on it,
Yoon et al. [115] have proposed a novel gradient sub-
set scheme that uploads sparse gradients, and the cho-
sen gradients can improve the prediction accuracy in
non-independent and identically distributed (non-IID) set-
tings. However, as the gradients keep their own form,
recent works [42], [116] have shown that such methods
cannot prevent a specific adversary from inferring avail-
able information from these frameworks [42], [116].

Another approach is using lossy compression techniques
to decrease the transmitted bits, and it may facilitate cer-
tain forms of information security. Reisizadeh et al. [117]
quantized the updates using the low-precision quan-
tizer proposed in [103] and provided a smooth trade-off
between compression rate and the convergence perfor-
mance in convex and non-convex settings. In [118],
a count sketch method with momentum and error accu-
mulation was provided for FL while achieving a high
compression rate with good convergence. On the basis of
it, Li et al. [114] have proved such a quantization method
can provide a certain DP guarantee. Moreover, a sketch-
based method was proposed in [113], which sorts gradient
values into buckets and encodes them with bucket indexes.
In addition, a stochastic-sign-based gradient compressor
was used and analyzed to enable communication effi-
ciency [119], and an autoencoder compressor was pro-
posed in [120] in which the autoencoder is trained based
on dummy gradients, and the server will release the coded
part to clients while keeping the decoder part secretive.

Different from the above methods, a technique called
dropout can also be used to defend [121], although it
is usually used to prevent overfitting problems in train-
ing [122]. By applying dropout, there will be no deter-
ministic outputs (e.g., the updating gradients) on the same
training dataset, which can reduce the exploitable attack
surface [42].
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Table 2 Taxonomy of Attacks in Level-0 Distributed ML With Sharing Data

D. Differential Privacy

DP is a standard definition for privacy estimation [123].
A query mechanism is first defined as a property to
a dataset, and DP-based analytical methods are then
extended for ML models on private training data, such as
SVM [124], linear regression [125], and DL [52], [126].
On NNs, differentially private SGD [126] is the most
widely applied method that adds random noises on the
updating gradients to achieve DP guarantee.

DP sets up a game where the adversary is trying to
determine whether a training model has an input D or
D′, which are adjacent datasets and only differ in one
sample. If the adversary can distinguish which dataset
(D or D′) is used to train by observing the outputs, we can
say this training model leaks private information. A formal
definition of (ϵ, δ)-DP is expressed as follows.

Definition 1: ((ϵ, δ)-DP). A randomized mechanism f :

D 7→ R offers (ϵ, δ)-DP if for any adjacent inputs d, d′ ∈ D
and S ⊂ R

Pr [f (d) ∈ S] ≤ eϵ Pr
[
f
(
d′) ∈ S

]
+ δ (1)

where f(d) denotes a random function of d.
To estimate the accumulated privacy budget in multiple

learning iterations, the composition theory in [123] shows
the effectiveness, and other variants on DP [127], [128]
use slightly different formulations with (1) and can achieve
a tighter privacy delimitation. Recently, Nasr et al. [129]
have derived a lower bound on DP from the adversary
perspective, and the Monte Carlo-based method is the first
trial of obtaining the privacy level empirically. In addition,
the concept of local DP (LDP) was proposed first in [130]
and [131] and has gradually become accepted.

E. Section Summary

In summary, general defensive schemes, such as cryp-
tography, robust aggregation, and network compression,
can provide thorough protection on security and preserve
privacy, where the application of DP is particularly useful
for privacy issues.

V. AT TA C K S A N D D E F E N S E S AT
V A R I O U S L E V E L S O F D I S T R I B U T E D
L E A R N I N G
In Section V, we will provide a detailed discussion of the
state of the art of attacks and defenses at each level of
distributed ML.

A. Level 0: Sharing Data

Data collection plays an important role in various
data-governed distributed ML algorithms. However, orig-
inal data usually contain sensitive information, such
as medical records, salaries, and locations, and thus,
a straightforward release of data is not appropriate. Cor-
respondingly, research on protecting the privacy of indi-
viduals and the confidentiality of data with an acceptable
performance loss has received increasing attention from
many fields, such as computer science, statistics, eco-
nomics, and social science.

1) Threat Models: Although the existing works have
proposed a number of mechanisms to hide identifiers of
the raw data, it is also possible for attackers to steal
privacy by analyzing hidden features [132]. Moreover,
deep NNs have been proven vulnerable to adversarial
examples, which poses security concerns due to the poten-
tially severe consequences [133]. This means that if some
adversaries successfully make adversarial examples partic-
ipate in system training, the training performance will be
unacceptable.

2) Taxonomy of Attacks: Attacks on data publishing
models can be mainly categorized as adversarial examples
and feature identification based on their goals. As shown
in Table 2, we summarize possible attacks as follows.

a) Adversarial Examples (Data Poisoning): The work
in [133] integrated the momentum term into
the iterative process for attacks and generated
more transferable adversarial examples by stabi-
lizing update directions and escaping from poor
local maxima during the generating iterations. The
research on this area is faced with an “arms race”
between attacks and defenses, i.e., a defense method
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Table 3 Taxonomy of Defenses in Level-0 Distributed ML With Data Sharing

proposed to prevent the existing attacks will be soon
evaded by new attacks.

b) Feature Identification: Although many works have
proposed efficient methods to process original
data in order to preserve sensitive information,
many feature identification attacks are emerging
to expose hidden information. As one of the
feature identification attacks, structure-based de-
anonymization attacks on graph data have been pro-
posed, which aim to de-anonymize the private users
in terms of their uniquely distinguishable structural
characteristics [134].

3) Taxonomy of Defenses: Many defensive mechanisms
have been designed against the aforementioned attacks,
as shown in Table 3, and we will discuss various defenses
as follows.

a) Adversarial Training: Adversarial training is among
the most effective techniques to improve model
robustness by augmenting training data with adver-
sarial examples. The work in [139] has proposed an
adversarial distributional training (ADT) framework,

which is formulated as a min–max optimization
problem and improves the model robustness. In this
framework, the inner maximization aims to learn an
adversarial distribution to characterize the potential
adversarial examples around a natural one under
an entropic regularizer, and the outer minimiza-
tion aims to train robust models by minimizing
the expected loss over the worst-case adversarial
distributions.

b) Anonymization: An anonymization operation comes
in several flavors: generalization, suppression, anat-
omization, permutation, and perturbation [140],
[141]. These techniques aim to remove or hide
identifying characteristics from raw data while guar-
anteeing the data utility. An information-theoretic
approach has been formulated and proposed a new
multiobjective loss function for training deep autoen-
coders [142], which helps to minimize user-identity
information as well as data distortion to preserve
the application-specific utility. The work in [143]
has proposed the conditional identity anonymiza-
tion GANs (CIA-GANs) model, which can remove
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the identifying characteristics of faces and bodies
while producing high-quality images and videos
that can be used for various computer vision tasks,
such as detection or tracking. Unlike previous
methods, CIA-GAN has full control over the de-
identification (anonymization) procedure, ensuring
both anonymizations as well as diversity. In sum-
mary, the choice of anonymization operations has an
implication for the search space of anonymous tables
and data distortion. The full-domain generalization
has the smallest search space with the largest distor-
tion, and the local recording scheme has the largest
search space but the least distortion.

c) Dummy Data: The existing methods to protect data
privacy mainly focus on the protection of the users’
identities through anonymity. User attributes can be
classified into identity information, quasi-identifier,
and sensitive information. Given an anonymity table,
if the attributes in the table have not been properly
treated, an adversary may deduce the relationship
between the user’s identity and sensitive informa-
tion according to the user’s quasi-identifier, such
as age and gender. A popular approach for data
anonymity is k anonymity, and any record in a
k-anonymized dataset has a maximum probability
1/k of being reidentified [144], [145], [146]. The
privacy models l diversity and t closeness in [147]
further refine the concept of diversity and require
that the distribution of the sensitive values of each
equivalent class should be as close as to the overall
distribution of the dataset. The common rules for
these algorithms are basically to produce dummy
records to hide the real ones. In addition, the
dummy-based methods also work for location pri-
vacy protection. Dummy data along with the true
one will be sent to the server from users, which may
hide the client’s contribution during training [148].
Because the collection is processed on the server,
the system performance can still be guaranteed.
As an efficient method to generate realistic datasets,
GANs provide an alternative to balance user pri-
vacy and training performance. The work in [149]
has proposed a novel data augmentation technique
based on the combination of real and synthetic
heartbeats using GAN to improve the classification
of electrocardiogram (ECG) heartbeats of 15 dif-
ferent classes from the Massachusetts Institute of
Technology-Boston’s Beth Israel Hospital (MIT-BIH)
arrhythmia dataset.2

d) DP: As a promising solution, a mechanism is said
to be differentially private [123] if the computation
result of a dataset is robust to any change of an indi-
vidual sample. Several differentially private ML algo-
rithms [150] have been developed in the community,
where a trusted data curator is introduced to gather
data from individual owners and honestly runs the

2https://www.physionet.org/content/mitdb/1.0.0/

private algorithms. Compared with DP, LDP [130],
[131] eliminates the need for a trusted data curator
and is more suitable for distributed ML. Randomized
aggregatable privacy-preserving ordinal response
(RAPPOR) [151], which applies LDP by Google,
is designed to collect the perturbed data samples
from multiple data owners. Besides simple count-
ing, a follow-up paper [152] shows that RAPPOR
can also compute other types of statistics, such as
joint-distribution estimation and association testing.
Besides RAPPOR, an alternative way that achieves
DP is to add random noise to the sample value before
publishing it [130], [153]. To process this method,
a numerical sample is always normalized, and a
categorical one is transformed to the same range
by one-hot coding. In addition, Balcan et al. [154]
adopted the DP algorithm to handle the privacy
concern in a communication problem in which each
distributed client needs to transmit data to an aggre-
gation center to learn a model. The work [155]
has proposed distributed edge computing for image
classification, where each edge will upload its raw
data after coding to latent data to protect privacy.

e) Encryption: The work in [156] has instantiated
scalable privacy-preserving distributed learning
(SPINDLE), an operational distributed system
that supports the privacy-preserving training,
and evaluation of generalized linear models
on distributed datasets. Moreover, it relies on
a multiparty HE scheme to execute high-depth
computations on encrypted data without significant
overhead. The work in [157] has proposed a
distributed algorithm for distributed data, where
privacy is achieved by the data locality property of
the Apache Hadoop architecture, and only a limited
number of cryptographic operations are required.

f) Others: The work in [158] has aimed to develop
secure, resilient, and distributed ML algorithms
under adversarial environments. This work has
established a game-theoretic framework to capture
the conflicting interests between the adversary
and a set of distributed data processing units. The
Nash equilibrium of the game allows for predicting
the outcome of learning algorithms in adversarial
environments and enhancing the resilience of the ML
through dynamic distributed learning algorithms.

4) Real Examples for Level-0 Distributed ML:
a) RAPPOR: This provides a privacy-preserving way to

learn software statistics to better safeguard users
security, find bugs, and improve the overall user
experience. Building on the concept of random-
ized response, RAPPOR enables learning statistics
about the behavior of users software while guar-
anteeing client privacy [151]. The guarantees of
DP, which are widely accepted as the strongest
form of privacy, have almost never been used in
practice despite intense academic research. RAPPOR
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Fig. 8. Breakout figure from Fig. 3: an illustration of privacy and security issues in Level-0 distributed learning with data sharing.

introduces a practical method to achieve those
guarantees. In detail, the core of RAPPOR is a ran-
domized response mechanism [160] for a user to
answer a yes/no query to the record aggregator.
A classic example is to collect statistics about a sen-
sitive group, in which the aggregator asks each indi-
vidual: “Are you a doctor?” To answer this question,
each individual tosses a coin, gives the true answer if
it is a head, and a random yes/or answer otherwise.
This randomized approach provides plausible deni-
ability to the individuals. Meanwhile, it is shown to
satisfy ϵ-LDP, and the strength of privacy protection
(i.e., ϵ) can be controlled by using a biased coin.
Based on the collected randomized answers, the
aggregator estimates the percentage of users whose
true answer is “yes” (resp. “no”). RAPPOR allows the
software to send reports that are effectively indis-
tinguishable and are free of any unique identifiers.
RAPPOR is currently an available implementation in
Chrome, which learns statistics about how unwanted
software is hijacking users settings.

b) DP in the IOS System: Apple has adopted and further
developed LDP to enable Apple to learn about the
user community while avoiding learning about
individuals [161]. DP perturbs the information
shared with random noise before it ever leaves the
user’s device, such that Apple can never reproduce
the raw data. The power of additive noise that
has been added can be reduced without exposing
raw data from users by averaging out over large
numbers of data points, and meaningful information
emerges. DP is utilized as the first step of a system
for data analysis that consists of robust privacy
protections at every stage. The system is optional
and developed to provide transparency to users.
Device identifiers are removed from the data,
and it is transmitted to Apple over an encrypted

channel. The Apple analysis system ingests the
differentially private contributions, dropping IP
addresses and other metadata. The final stage is
aggregation, where the private records are processed
to compute the relevant statistics, and the aggregate
statistics are then shared with relevant Apple teams.
Since both the ingestion and aggregation stages are
performed in a restricted access environment, the
raw data are not broadly accessible to the public.

5) Brief Summary: The guarantee of privacy and secu-
rity in terms of data sharing models relies on the prepro-
cessing of the raw data, such as perturbation, dummy data,
anonymization, and encryption. As shown in Fig. 8, data
preprocessing happens at the first stage of an ML task, and
thus, these preprocessing techniques are usually harmful
to the utility of systems or involve extra computations.
Therefore, it is more practical to select a proper mecha-
nism to hide sensitive information from shared data while
alleviating the negative influences on the system’s utility.

B. Level 1: Sharing Model

In model sharing systems, all distributed nodes must
share their training models with the central server or other
participants. Via the interaction between independent data
training and local model aggregation, model sharing sys-
tems can capture a required learning model over data that
resides at the associated nodes.

1) Threat Models: Although data are not required to
be uploaded in model sharing systems, private informa-
tion can still be divulged by analyzing uploaded model
parameters, e.g., weights trained in deep NNs. Moreover,
adversarial participants may degrade or even destroy the
training systems by uploading unreliable models. Attacks
can be carried out by the following three aspects.

a) Insiders Versus Outsiders: Insider attacks include
those launched by the server and the participants in
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the model sharing systems. Outsider attacks include
those launched by eavesdroppers in the wireless
transmission environment between participants and
the server and by users of the final model when it is
deployed as a service. Insider attacks are generally
stronger than outsider attacks, as it strictly enhances
the capability of the adversary.

b) Semi-Honest Versus Malicious: Under the semi-honest
setting, adversaries are considered passive or honest
but curious. They try to learn the private states of
other participants without deviating from the model
sharing protocol. Passive adversaries are assumed to
only observe the aggregated or averaged gradient,
but not the training data or gradient from other
honest participants. Under the malicious setting,
an active or malicious adversary tries to learn the
private states of honest participants and deviates
arbitrarily from the model sharing protocol by mod-
ifying, replaying, or removing messages. This strong
adversary model allows the adversary to conduct
particularly devastating attacks.

c) Poisoning Versus Inference: Attacks at the poisoning
phase attempt to learn, influence, or corrupt the
model sharing itself. During the poisoning phase,
the attacker can run data poisoning attacks to com-
promise the integrity of training dataset collection
or launch model poisoning attacks to compromise
the integrity of the learning process. The attacker
can also launch a range of inference attacks on an
individual participant’s update or on the aggregation
of updates from all participants.

2) Taxonomy of Attacks: Attacks to model sharing mod-
els can be categorized as poisoning attacks, inference
attacks, and model inversion based on their various goals,
as shown in Table 4. We also summarize them as follows.

a) Poisoning Attack: Client compromised by attack-
ers always have opportunities to poison the global
model in model sharing systems, in which local mod-
els are continuously updated by clients throughout
their deployments. Moreover, the existence of com-
promised clients may induce further security issues,
such as bugs in preprocessing pipelines, noisy train-
ing labels, and explicit attacks that target training
and deployment pipelines [186]. In order to destroy
ML models, poisoning attackers may control a subset
of clients and manipulate their outputs sent to the
server. For example, the compromised clients can
upload noisy and reversed models to the server at
each communication round [176], [187], which has
the advantage of low complexity to mount attacks.
Other attackers may manipulate the outputs of the
compromised clients carefully to achieve the eva-
sion of defenses and downgrade the performance
of ML models. Furthermore, Fang et al. [163] and
Baruch et al. [188] have formulated the local model
poisoning attack as an optimization problem and
then apply this attack against Byzantine-robust FL

methods. In this way, attackers can improve the suc-
cess rate of attacks, dominate the cluster and change
the judgment boundary of the global model, or make
the global model deviate from the right direction.
Besides, attackers may hope to craft the ML model
to minimize this specific objective function instead
of destroying it. Via using multiple local triggers and
model-dependent triggers (i.e., generated based on
local models of attackers), the collusive attackers
can conduct backdoor attacks successfully [189].
Bagdasaryan et al. [45] have developed and eval-
uated a generic constrain-and-scale technique that
incorporates the evasion of defenses into the
attacker’s loss function during training. The work
in [162] has explored the threat of model poisoning
attacks on FL initiated by a single, non-colluding
malicious client where the adversarial objective is to
cause the model to misclassify a set of chosen inputs
with high confidence.

b) Inference Attack: The work in [188] has presented
a new attack paradigm, in which a malicious oppo-
nent may interfere with or backdoor the process
of distributed learning by applying limited changes
to the uploaded parameters. The work in [45] has
proposed a new model-replacement method that
demonstrated its efficacy on poisoning models of
standard FL tasks. Inferring privacy information
about clients for attackers is also possibly achiev-
able in ML models. A generic attacking framework
mGAN-artificial intelligence (AI) that incorporates a
multitask GAN has been proposed in [190], which
conducted novel discrimination on client identity,
achieving attack to clients’ privacy, i.e., discriminat-
ing a participating party’s feature values, such as
category, reality, and client identity.

c) Model Inversion: By casting the model inversion task
as an optimization problem, which finds the input
that maximizes the returned confidence, the work
in [43] has recovered recognizable images of peo-
ple’s faces given only their names and accesses to
the ML model. In order to identify the presence of
an individual’s data, an attack model trained by the
shadow training technique has been designed and
can successfully distinguish the target model’s out-
puts on members versus nonmembers of its training
dataset [52].

Specifically, in distributed RL (DRL) systems, there is
literature available on security vulnerabilities. We provide
many characteristics of an adversary’s capabilities and
goals that can be studied as follows. First, we divide attacks
based on what components in a Markov decision process
(MDP) the attacker chooses to attack: the agent’s obser-
vations, actions, and environment (transition) dynamics.
Then, we discuss the practical scenarios where attacks
happen on these components.

1) Observations: The existing work on attacking DRL
systems with adversarial perturbations focuses on
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Table 4 Taxonomy of Attacks in Level-1 Distributed ML With Model Sharing

perturbing an agent’s observations, i.e., states and
rewards, that are communicated between the agent
and the environment. This is the most appealing
place to start, with seminal results already suggesting
that recognition systems are vulnerable to adversarial
examples [135], [191], [192], [193], [194], [195],
[196], [197], [198], [199]. Huang et al. [135] have
shown that adversarial attacks are also effective when
targeting NN policies in RL adversarial examples.
Based on this technique, some of the works enhance
adversarial examples to attack DRL. To improve the
attack efficiency, the strategically timed attack [191],
consuming a small subset of time steps in an episode,
has been explored. Via stamping a small percentage
of inputs of the policy network with a Trojan trigger
and manipulating the associated rewards, the work
in [195] has proposed the TrojDRL attack, which
can deteriorate drastically the policy network in both
targeted and untargeted settings. Another idea for
a reward-poisoning attack is to design an adaptive
disturbing strategy [196], where the infinity norm
constraint is adjusted on the DRL agent’s learning
process at different time steps. For the theoretical
analysis, two standard victims with adversarial obser-
vations, i.e., tabular certainty equivalence learner in
RL and linear quadratic regulator in control, have
been analyzed in a convex optimization problem in
which global optimality and the attack feasibility and
attack cost have been provided [194]. In addition, the
effectiveness of a universal adversarial attack against
DRL interpretations (i.e., UADRLI) has been verified
by the theoretical analysis [197], from which the
attacker can add the crafted universal perturbation
uniformly to the environment states in a maximum
number of steps to incur minimal damage. In order to
stealthily attack the DRL agents, the work in [198]
has injected adversarial samples in a minimal set
of critical moments while causing the most severe

damage to the agent. Another work in [199] has
formulated an optimization framework in a stealthy
manner to find an optimal attack for different mea-
sures of attack cost and solved it with an offline and
online setting.

2) Actions: Attacks applied on the action space usually
aim to minimize the expected return or lure the
agent to a designated state, e.g., the action outputs
can be modified by installing a virus in the actuator
executing process. This can be realistic in certain
robotic control tasks where the control center sends
some control signals to the actuator. A vulnerability
in the implementation, i.e., the vulnerability in the
blue-tooth signal transmission, may allow an attacker
to modify that signal [200]. A training policy network
to learn the attack has been developed, which treats
the environment and the original policy together as a
new environment and views attacks as actions [136].
However, the existing works only concentrate on the
white-box scenario, i.e., knowing the victim’s learning
process and observations, which is not practical and is
inaccessible to attackers.

3) Environment Dynamics: The environment (transition)
dynamics can be defined as a probability mapping
from state–action pairs to states, which is governed
by the environmental conditions. For attacks applied
on the environment dynamics, an attacker may infer
environment dynamics [164] or perturb a DRL sys-
tem’s environment dynamics to make an agent fail
in a specific way [136], [137], [199], [201]. In the
autonomous driving case, the attacker can change
the material surface characteristics of the road, such
that the policy trained in one environment will fail in
the perturbed environment. In a robot control task,
the attacker can change the robot’s mass distribution,
so that the robot may lose balance when executing its
original policy, because it has not been trained in that
case.
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Then, we categorize these attacks based on what knowl-
edge the attacker needs. Broadly, this breaks attacks down
into the already recognized white-box attacks, where the
attacker has full knowledge of the DRL system, and black-
box attacks, where the attacker has less or no knowledge.

1) White Box: If the adversary attacks the DRL sys-
tem with the capability of accessing the architecture,
weight parameters of the policy and Q networks,
and querying the network, we can call it a white-
box attack. Clearly, the attacker can formulate an
optimization framework for the white-box setting and
derive the optimal adversarial perturbation [135],
[197]. Moreover, via the theoretical analysis of the
attack feasibility and cost, the adversary can further
decrease the efficiency and stealth of the learn-
ing [136], [194]. However, this setting is inaccessible
for the adversary in most practical scenarios.

2) Black Box: In general, the trained RL models are kept
private to avoid easy attacks by certain secure access
control mechanisms. Therefore, the attacker cannot
fully acknowledge the weight parameters of the policy
network and Q networks and may or may not have
access to query the policy network. In this case, the
attacker can train a surrogate policy to imitate the
victim policy and then use a white-box method on
the surrogate policy to generate a perturbation and
apply that perturbation to the victim policy [136].
The finite-difference (FD) method [202] in attacking
classification models can be utilized to estimate the
gradient on the input observations and then perform
gradient descent to generate perturbations on the
input observations [136]. In this black-box setting, it
becomes difficult for the adversary to perturb a DRL
system and needs to estimate the victim’s information
with large computation costs.

Based on the adversary’s objective, adversarial attacks
are divided into two types: poisoning attacks and snooping
attacks.

1) Poisoning Attack: In particular, for poisoning attacks,
there are at least two dimensions to potential
attacks against learning systems, namely untargeted
attacks [135] and targeted (induction) attacks [192].
In untargeted attacks, attackers focus on the integrity
and availability of the DRL system, i.e., minimizing
the expected return (cumulative rewards). Specifi-
cally, the work [135] has shown that the existing
adversarial example crafting techniques can be used
to significantly degrade the test-time performance of
trained policies. However, in terms of defensive mech-
anisms, the attacker may control time steps [198]
or solve an optimization framework in a stealthy
manner [197]. Another attack of this category aims
at maliciously luring an agent to a designated state
more than decreasing the cumulative rewards [192].
Via combining a generative model and a planning
algorithm, the generative model predicts the future

states, and the planning algorithm generates a pre-
ferred sequence of actions for luring the agent [191].
Similar to untargeted attacks, by solving an opti-
mization framework in a stealthy manner [199], the
attacker can easily succeed in teaching any target
policy.

2) Snooping Attack: Different from poisoning attacks,
the attacker only aims to eavesdrop on environ-
ment dynamics, the action, and reward signals being
exchanged between the agent and the environment.
If the adversary can train a surrogate DRL model that
closely resembles the target agent [164], [165], the
desired information can be estimated by this model.
Furthermore, the adversary only needs to train a
proxy model to maximize reward, and adversarial
examples crafted to fool the proxy will also fool the
agent [203]. We can note that the snooping attacks
can still launch devastating attacks against the target
agent by training proxy models on related tasks and
leveraging the transferability of adversarial examples.

3) Taxonomy of Defenses: Defensive mechanisms found
in multiple works are grouped by their underlying defen-
sive strategies, as shown in Table 5. We will discuss various
defenses in model sharing frameworks as follows.

a) DP: DP tackles the privacy leakage from a single data
change in a dataset when some information from the
dataset is publicly available and is widely used due
to its strong theoretical guarantees [204]. Common
DP mechanisms will add an independent random
noise component to access data, i.e., the shared
models in this level, to provide privacy. DP preserv-
ing distributed learning systems have been studied
from various paradigms, such as distributed prin-
cipal component analysis (PCA) [167], distributed
ADMM [168], distributed SGD [126], FL [169],
[170], and MARL [171], [172]. In order to provide
fine-tuned control over the trade-off between the
estimation accuracy and the privacy preservation,
a distributed privacy-preserving sparse PCA (DPS-
PCA) algorithm that generates a min–max optimal
sparse PCA estimator under DP constraints has been
proposed in [167]. Similarly, for distributed ADMM,
distributed SGD, FL, and MARL systems, all related
works focus on improving the utility-privacy trade-
off via two aspects as follows: 1) analyzing the
learning performance with a DP constraint and then
optimizing system parameters and 2) enhancing the
DP mechanism by obtaining tighter estimates of the
overall privacy loss.

b) Model Compression: Model compression techniques
for distributed SGD and FL systems, e.g., sketches,
can achieve provable privacy benefits [114], [173].
Therefore, a novel sketch-based framework (DiffS-
ketch) for distributed learning has been proposed,
improving absolute test accuracy while offering
a certain privacy guarantee and communication
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Table 5 Taxonomy of Defenses in Level-1 Distributed ML With Sharing Models

compression. Moreover, the work in [173] has pre-
sented a family of vector quantization schemes,
termed vector-quantized SGD (VQSGD), and pro-
vides an asymptotic reduction in the communication
cost and automatic privacy guarantees.

c) Encryption: Encryption, e.g., HE [116] and mul-
tiparty computation (MPC) [78], is also adopted
to protect user data privacy through parameter
exchange under the well-designed mechanism dur-
ing ML. A novel DL system [116], bridging asyn-
chronous SGD and cryptography, has been proposed
to protect gradients over a honest-but-curious cloud
server, using additively HE, where all gradients
are encrypted and stored on the cloud server.
To verify whether the cloud server is operating
correctly, VerifyNet [174] has been proposed to
guarantee the confidentiality of users’ local gradi-
ents via a double-masking protocol in FL, where
the cloud server is required to provide proof
of the correctness of its aggregated results to
each user.

d) MPC: The work in [78] has outlined an approach to
advancing privacy-preserving ML by leveraging MPC
to compute sums of model parameter updates from
individual users’ devices in a secure manner. The
problem of computing a multiparty sum where no
party reveals its updates to the aggregator is referred

to as secure aggregation. Via encoding local models
into multiple secret shares in the first round and
then splitting each share into a public share and a
private share, the work in [205] can provide stronger
protections for the security and privacy of the train-
ing data. MPC integrates encryption technology and
interactive protocols, aiming to make the receiver
avoid sensitive information and obtain the necessary
messages [206], [207], [208], [209].

e) Statistical Analysis: The work in [175] has proposed
a robust aggregation rule, called adaptive feder-
ated averaging, that detects and discards bad or
malicious local model updates based on a hidden
Markov model. To tackle adversarial attacks in the FL
aggregation process, the work in [176] presented a
novel aggregation algorithm with the residual-based
reweighting method, in which the weights for the
average of all local models are estimated robustly.
Via controlling the global model smoothness based
on clipping and smoothing on model parameters,
a samplewise robustness certification FL framework
has been proposed, which can train certifiably robust
FL models against backdoors [210]. Most of the
defenses for FL aim to explore the latent model
exception, such as similarities between malicious
and benign clients, and then lessen the influence of
this exceptional model [211], [212], [213], [214].
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f) Pretest on Auxiliary Datasets: For detecting poi-
soned updates in collaborative learning [177], the
results of client-side cross validation were applied
for adjusting the weights of the updates when per-
forming aggregation, where each update is evaluated
over other clients’ local data. The work in [177]
considered the existence of unreliable participants
and used the auxiliary validation data to compute
a utility score for each participant to reduce the
impact of these participants. The work in [178]
has proposed a novel poisoning defense method in
FL, in which a participant whose accuracy is lower
than a predefined threshold will be identified as an
attacker, and the corresponding model parameters
will be removed from the training procedure in this
iteration.

g) Authentication and Access Control: The key ques-
tion in considering security in a MARL consists of
increasing the confidence that all parties involved
in the system (agents, platforms, and users) will
behave correctly, and this can be achieved through
the authentication of these parties. The identifi-
cation of the parties can make up a system and
possibly establish an agent-trust relationship. Thus,
how to design efficient identity certification mech-
anisms to uniquely authenticate known and trusted
users and agents in the system has drawn consider-
able attention. A domain-independent and reusable
MARL infrastructure has been developed in [215],
in which the system uses a certification author-
ity (CA) and ensures full cooperation of secured
agents and already existing (unsecured) agents. The
work in [179] has introduced a method called trust
composition, which combines several trust values
from different agents. We can note that the trust
composition can play a critical role in determining
the trust and reputation values of unknown agents,
since it is impractical for an agent to get com-
plete knowledge about other agents. A work called
personalized trust framework (PTF) has been pro-
posed to establish a trust/reputation model for each
application with personalized requirements [216].
Naturally, the idea of using blockchain technology
to solve security problems in multirobot systems
was discussed in [180]. The work in [180] stated
that combining peer-to-peer networks with crypto-
graphic algorithms allows reaching an agreement by
a group of agents (with the following recording this
agreement in a verifiable manner) without the need
for a controlling authority. Thus, blockchain-based
innovations can provide a breakthrough in MARL
applications. The work in [181] has developed an
approach to using decentralized programs based on
smart contracts to create secure swarm coordination
mechanisms, as well as for identifying and elimi-
nating Byzantine swarm members through collective
decision-making. The work in [182] has proposed
an approach combining blockchain technology and

explainability supporting the decision-making pro-
cess of MARL, in which blockchain technology offers
a decentralized authentication mechanism capable
of ensuring trust and reputation management.

h) Authorization and Trust Model: Combined with
authentication, authorization is used to restrict the
actions that an agent can perform in a system and
control the access to resources by these agents.
Sensitive information about principals is transferred
online even across the Internet and is stored in
local and remote machines. Without appropriate pro-
tection mechanisms, a potential attacker can easily
obtain information about principals without their
consent. In the context of authorization mechanisms,
the algorithm proposed in [183] is designed to solve
the problem of systems that are constantly changing.
The main goal is to build a flexible and adaptive
security policy management capable of configuring
itself and reflect the actual needs of the system.
According to the authors, a system is not safe if
a security model is developed but never managed
afterward. Security of the proposed system in [184]
has been further explored in the form of autho-
rization and encryption of the data by introducing
an authorization layer between the user and the
system that will be responsible for providing access
to the legitimate users of the system only. The
work in [185] has ensured agent authorization and
platform security with capability-based access and
different agent privilege levels, in which the agent
behavior is modeled with an activity transition graph
(ATG) and implemented entirely in JavaScript with
a restricted and encapsulated access to the platform
API (AgentJS).

4) Real Examples for Level-1 Distributed ML:
a) Electronic Medical Records (EMRs) [217]: The use

of information and network technologies in the
healthcare field inevitably produces EMR, which is
a necessary trend for the modernization of med-
ical records in hospitals. The initial adoption of
EMR in clinical practice has vastly improved the
efficiency and quality of health care provided by
hospitals. Empowered by algorithm technologies and
data reconstruction, BaseBit [217] has constructed
a robust and comprehensive knowledge base system
and has a series of intelligent models with excellent
abilities of expression. In various applications cen-
tered around EMRs, the proposed models effectively
improve the abilities, such as automatic medical
record writing, overall quality control, cost mon-
itoring systems for single diseases, early warning
for infectious diseases, prompt for critical illnesses,
clinical decision-making assistance for rare diseases,
and enabling hierarchical diagnosis and treatments.

5) Brief Summary: As shown in Fig. 9, although, due
to the local training process, the raw data of each par-
ticipant will not be exposed to the curious server or
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Fig. 9. Breakout figure from Fig. 3: an illustration of privacy and security issues in Level-1 distributed learning with model sharing.

external attackers, defensive mechanisms are also neces-
sary because of the existing possibility of feature inference
and data reconstruction from model sharing, in addition
to the model poisoning paradigm. Traditional HE and
DP have been proven beneficial to privacy preservation
but lead to low efficiency or reduced utility. Therefore,
the quantitative analysis of the relationship between the
sensitive feature and the published model is imperative.

C. Level 2: Sharing Knowledge

Recent configurations that rely on knowledge sharing
techniques can be summarized as split learning [47], ver-
tical FL [9], and distillation-based FL [221]. Split learning
allows multiple clients to hold different modalities of ver-
tically partitioned data and learn partial models up to a
certain layer (the so-called cut layer). Then, the outputs
at the cut layer from all clients are then concatenated
and sent to the server that trains the rest of the model.
In vertical FL, participants hold the same set of samples
but with disjoint features, and only one participant owns
the labels, which need to combine split NNs and privacy-
preserving techniques [222]. Distillation-based FL [46],
[221], [223] exchanges model outputs instead of model
parameters, where the communication overhead cannot
scale up according to the model size and has been proven
to satisfy the DP guarantee.

1) Threat Models: In knowledge sharing paradigms,
adversarial participants or eavesdroppers still possibly
exist. The adversarial participants can be categorized into
two kinds: 1) honest-but-curious (semi-honest) partici-
pants, who do not deviate from the defined learning
protocol, but attempt to infer private training data from

the legitimately received information and 2) malicious
participants, who may deviate from the defined learning
protocol and destroy this training task or inject Trojans to
the training model.

2) Taxonomy of Attacks: The existing attacks on knowl-
edge sharing paradigms can be mainly categorized as
label leakage, feature inference, and data reconstruction,
as shown in Table 6. We discuss the existing attacks as
follows.

a) Label Leakage: The labels in distributed learning
frameworks might be highly sensitive, e.g., whether
a person has a certain kind of disease. However,
the bottom model structure and the gradient update
mechanism of vertical federated learning (VFL) or
split learning can be exploited by a malicious par-
ticipant to gain the power to infer the privately
owned labels [224]. Worse still, by abusing the
bottom model, he/she can even infer labels beyond
the training dataset [225]. The work in [218] first
made an attempt at a norm attack that uses the norm
of the communicated gradients between the parties,
and it can largely reveal the ground-truth labels
from participants. The adversary (either clients or
servers) can accurately retrieve the private labels
by collecting the exchanged gradients and smashed
data [226]. Thus, it is necessary to make gradients
from samples with different labels similar.

b) Feature Inference: Through analysis, the work
in [227] and [228] demonstrated that, unless the
feature dimension is exceedingly large, it remains
feasible, both theoretically and practically,
to launch a reconstruction attack with an efficient
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Table 6 Taxonomy of Attacks in Level-2 Distributed ML With Knowledge Sharing

search-based algorithm that prevails over current
feature protection techniques. In this article, the
authors have performed the first systematic study
of relation inference attacks to reveal VFL’s risk of
leaking samples’ relations. Specifically, the adversary
is assumed to be a semi-honest participant. Then,
according to the adversary’s knowledge level, the
work [228] formulated three kinds of attacks
based on different intermediate representations and
revealed VFL’s risk of leaking samples’ relations.
Luo et al. [190] considered the most stringent
setting that the active party (i.e., the adversary)
only controls the trained vertical FL model and the
model predictions and then observed that those
model predictions will leak a lot of information
about features by learning the correlations between
the adversary’s and the attacking target’s features.

c) Data Reconstruction: The work in [219] has provided
the leakage analysis framework via three empiri-
cal and numerical metrics (distance correlation and
dynamic time warping), indicating that the activated
outputs after two or more convolutional layers can

be used to reconstruct the raw data, i.e., sharing
the intermediate activation from these layers may
result in severe privacy leakage. In vertical FL, two
simple yet effective attacks, the reverse multipli-
cation attack and reverse sum attack, have been
proposed to steal the raw training data of the target
participant [220]. Though not completely equivalent
to the raw data, these stolen partial orders can be
further used to train an alternative model, which is
as effective as the one trained on the raw data [229].

3) Taxonomy of Defenses: Defensive mechanisms found
in multiple works of the literature are grouped by their
underlying defensive strategy, as shown in Table 7. Hence,
we will discuss various defenses in model sharing frame-
works as follows.

a) DP: The work in [230] has proposed a privacy-
preserving protocol for composing a differentially
private aggregate classifier using local classifiers
from different parties. In order to overcome
the effects of the proposed information inference
attacks [219], DP has been proven helpful in

Table 7 Taxonomy of Defenses in Level-2 Distributed ML With Knowledge Sharing
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reducing privacy leakage but leading to a significant
drop in model accuracy.

b) MPC: The work in [231] has proposed a novel
solution for privacy-preserving vertical decision tree
training and prediction, termed Pivot, ensuring that
no intermediate information is disclosed other than
necessary releases (i.e., the final tree model and the
prediction output).

c) Encryption: A novel privacy-preserving architecture
has been proposed in [232], which can collabora-
tively train a DL model efficiently while preserving
the privacy of each party’s data via the HE tech-
nique. The work in [232] has explored a lossless
privacy-preserving tree-boosting system known as
SecureBoost by using the additive HE scheme.

d) Secure Aggregation: The work in [233] has proposed
the vertical FederBoost, which runs the gradient
boosting decision tree (GBDT) training algorithm in
exactly the same way as centralized learning. Via
further utilizing packetization and DP, this algorithm
can protect the order of samples: participants par-
tition the sorted samples of a feature into buckets,
which only reveals the order of the buckets and add
differentially private noise to each bucket.

e) Others: The work in [234] has presented task-
independent privacy-respecting data crowdsourcing
(TIPRDC) to learn a feature extractor that can hide
the private information from the intermediate rep-
resentations using an adversarial training process
while maximally retaining the original information
embedded in the raw data to accomplish unknown
learning tasks. In [219], adding more hidden layers
to the client side was proven helpful in reducing
privacy leakage, but increasing the number of layers
seems ineffective with the most highly correlated
channels. In order to relieve the negative impact of
random perturbation preserving techniques on the
learned model’s predictive performance, the work
in [218] has introduced an improved way to add
Gaussian noise by making the expected norm of the
positive and negative gradients in a mini-batch equal
(undistinguishable).

4) Real Examples for Level-2 Distributed ML:

a) Federated AI Technology Enabler (FATE): An open-
source project, named FATE, provides a secure
computing framework to support the federated
AI ecosystem [235], led by WeBank’s AI Depart-
ment. It can enable big data collaboration without
privacy leakage by implementing multiple secure
computation protocols, such as DP, HE, and so
on. FATE accesses out-of-box usability and excel-
lent operational performance with a modular mod-
eling pipeline, explicit visual interface, and flex-
ible scheduling system [236]. eHi Car Services,
a national chain car rental brand, and WeBank jointly
announced a deep strategic partnership, announcing

that the two sides will carry out multiscene and
multidimensional innovation cooperation in car
travel, member services, finance and insurance,
blockchain technology, and other fields. eHi Car Ser-
vices uses federal transfer learning, AI face authen-
tication technology, payment technology, and other
fintech to deeply integrate into the car rental service
process for the purpose of optimizing and improving
user experience and combines the car rental scene
with the bank’s big data risk control system, so as to
provide new travel services.

5) Brief Summary: As shown in Fig. 10, split learning,
vertical FL, and distillation-based FL are classical knowl-
edge sharing systems, in which the knowledge can be
viewed as the partial processing result to meet the require-
ment of the system learning. It is also challenging for
knowledge sharing systems to hide sensitive information
when there is shared knowledge.

D. Level 3: Sharing Results

We define the sharing results category as follows: there
is no interaction or communication during the process
of training. The distributed clients only share the train-
ing results after the process ends. The history of sharing
results can be traced back to ensemble ML over partitioned
datasets [237], [238], where a number of base classifiers
collectively determine the output for an instance based
on a predefined aggregation strategy. Ensemble techniques
were originally introduced to increase the overall perfor-
mance of the final classification, but it is also straight-
forward to utilize them for distributed ML systems [13].
The shared results [239] in distributed learning can be
either the final training models, e.g., private aggregation
of teacher ensembles (PATE) and multiagent multiarm ban-
dits (MAMABs), or the prediction (output) of the models,
e.g., crowdsourcing.

1) Threat Models: For the result sharing models, mali-
cious participants may exist and provide false advice or
results to hinder the learning performance of other partici-
pants or the global model. In addition, curious participants
can infer some confidential information from the shared
results.

2) Taxonomy of Attacks: As stated by Silva et al. [240],
the existence of malicious participants is a key concern
in agent advice. The work in [241] has proposed the
attack model that some of these agents might become
self-interested and try to maximize car owners’ util-
ity by sending out false information. Based on [241],
Hayes et al. [242] have investigated attacks in the set-
ting where the adversary is only permitted to access the
shared results (such as the generated samples set in GAN),
by retraining a local copy of the victim model. In addition,
Hilprecht et al. [243] have proposed to count the number
of generated samples that are inside an ϵ-ball of the
query, based on an elaborate design of distance metric.
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Fig. 10. Breakout figure from Fig. 3: an illustration of privacy and security issues in Level-2 distributed learning with knowledge sharing.

The work in [244] has presented the first taxonomy of
MIAs and focused on MIA against deep generative mod-
els that reveals information about the training data used
for victim models. In the spirit of Hilprecht et al. [243],
this work scored each query by the reconstruction error
directly, which does not introduce additional hyperparam-
eters while achieving superior performance. We further
summarize these attacks in Table 8.

3) Taxonomy of Defenses: In results sharing paradigms,
Table 9 summarizes the use cases, key ideas, and effec-
tiveness for the existing attacks. Moreover, we will discuss
various defenses in model sharing frameworks as follows.

a) DP: The work in [172] has proposed a novel dif-
ferentially private agent advising approach, which
employs the Laplace mechanism to add noise to
the rewards used by student agents to select
teacher agents. By using the advising approach
and the DP technique, this approach can reduce
the impact of malicious agents without identifying
them and naturally control communication over-
head. The work in [245] adopted DP and studied
regret upper and lower bounds for MAB algorithms
with a given LDP guarantee. The differentially pri-
vate PATE framework has been proposed to achieve
individual privacy guarantees with provable privacy
bounds [247], [248].

b) MPC: Zhao [246] has proposed to use the
teacher–student framework in a more general dis-
tributed learning setting. The goal of this work
is to address distributed DL under DP using the
teacher–student paradigm. In the setting, there are
a number of distributed entities and one aggrega-
tor. Each distributed entity leverages DL to train a

teacher network on sensitive and labeled training
data. The knowledge of the teacher networks is
transferred to the student network at the aggregator
in a privacy-preserving manner that protects the
sensitive data. This transfer results from training
nonsensitive and unlabeled data, which also applies
secure MPC to securely combine the outputs of local
ML for updating.

c) Others: If an ensemble contains enough models, and
each model is trained with disjoint subsets of the
training data in a distributed manner, then “any
predictions made by most of the models should
not be based on any particular part of the training
data” [249]. The PATE is based on this idea [10].
In more detail, the ensemble is seen as a set of
“teachers” for a new “student” model. The student
is linked to the teachers only by their prediction
capabilities and is trained by “querying the teachers
about unlabeled examples.” The prediction result
is disjointed from the training data through this
process. Therefore, data privacy can be protected.
The privacy budget for PATE is much lower than
traditional DP-based ML approaches. But, it may not
work in many practical scenarios, as it relies on an
unlabeled public dataset.

4) Real Examples for Level-3 Distributed ML:

a) Large-scale online taxicab platforms, such as Uber
and DiDi, have revolutionized the way people travel
and socialize in cities worldwide and are increasingly
becoming essential components of the modern tran-
sit infrastructure [250], [251]. An RL-based dynamic
bipartite graph matching approach has been adopted
to assign each worker with one or more tasks to
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Table 8 Taxonomy of Attacks in Level-3 Distributed ML With Results Sharing

maximize the overall revenue of the platform, where
the workers are dynamic, while the tasks arrive
sequentially. Specifically, for each worker–task pair,
the platform can obtain a reward based on value-
based RL. Then, via some solutions to bipartite
graph matching, such as greedy search, the platform
can make near-optimal decisions. However, if the
platform can obtain all workers’ information and
its purpose is only aiming to maximize the overall
revenue, workers may be out of control. Thus, using
DP to achieve fairness may be a solution [252].

5) Brief Summary: As shown in Fig. 11, although the
results from ML systems are different from the raw data,
there are also the existing risks of privacy leakage, such as
the generated samples from the generator in GAN. Hence,
several defensive mechanisms are utilized for preventing
privacy leakage and against malicious participants.

E. Relationship Among the Privacy and Security
Issues in the Four Levels of Distributed ML

From Level 0 to Level 3, there is no specific rule for the
privacy and security level, but we may conclude that the
forms of data expose different degrees of information in
the considered four levels. For example, compared with
the prediction results in Level 3, much more information
can be extracted from the raw or original data in Level
0. Regarding the protection methods, designing a general
mechanism for the four levels is a nontrivial task. For

example, the DP-based mechanisms can be well adopted
in Level 0 (i.e., LDP [130], [151]), Level 1 (i.e., DP in
DL [126]), and Level 3 (i.e., PATE-GAN [10]), but they may
lose the effectiveness in Level 2 (sharing knowledge).

VI. L E S S O N S L E A R N E D
In this section, we summarize the key lessons learned from
this survey, which provides an overall view of the cur-
rent research on security and privacy issues in distributed
learning.

A. Lessons Learned From Definitions of Security
and Privacy

The public often conflates the terminologies of “privacy”
and “security,” which are, in fact, distinctively different.
From the expression of privacy and security in distributed
learning, we can learn lessons as follows.

1) Difference Between Security and Privacy: The con-
cerns of security and privacy issues are different [253],
[254], [255]. On the one hand, security issues refer to
unauthorized/malicious access, change, or denial of data
or learning models. Such attacks are usually launched
by adversaries with expert/full knowledge of the target
system. Hence, the fundamental three goals of security
are confidentiality, integrity, and availability [163]. On the
other hand, privacy issues generally refer to the uninten-
tional disclosure of personal information. For example,
from a side-by-side comparison of a vote registration

Table 9 Taxonomy of Defenses in Level-3 Distributed ML With Results Sharing
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Fig. 11. Breakout figure from Fig. 3: an illustration of privacy and security issues in Level-3 distributed learning with results sharing.

dataset and an anonymous set of health-care sensor
records (e.g., no individual name and ID), an adversary
may have the ability to identify particular individuals
and the health conditions of these individuals leaks [68],
[190], [256]. This is because attributes, such as gender,
birth date, and zip code, are the same in both datasets.

2) Connection Between Security and Privacy: Security and
privacy go hand in hand. Privacy issues can further induce
security issues in some scenarios. If an adversary steals
the private information of individuals, substantial profit
from the information can be easily obtained. For example,
when the adversary extracts the health conditions of an
important person, he/she can blackmail the victim person
by threatening to reveal the information. We know that
one can envision an environment that is secure but does
not guarantee privacy. Similarly, one can imagine an envi-
ronment that is private, but it does not guarantee security
from outsiders. Security can be achieved without privacy,
but privacy cannot be achieved without security. This is
because whether the security is weak or vulnerable, it will
automatically affect privacy.

B. Lessons Learned From Evaluations of Security
and Privacy

The evaluations of security and privacy guide the
research directions in this area. In the following, we will
provide some lessons by reviewing the state of the art.

1) Bayes-Based Methods: Privacy leakage can be formal-
ized as a Bayes optimization problem from the aspect
of an adversary with different assumptions on the prob-
ability distributions of the input data and interactive
messages (such as gradients and extracted features). For
example, the work in [257] constructed a theoretical
framework that can measure the expected risk that an
adversary has in the process of reconstructing an input,

given the joint probability distribution of inputs and their
gradients. This framework can reveal the gradient leakage
level by analyzing the Bayes optimal adversary, which
minimizes this risk with a specific optimization problem
involving the joint distribution. DP constitutes a strong
standard for privacy guarantees for algorithms on aggre-
gate databases [123], [126], [170]. It is defined in terms of
the application-specific concept of adjacent databases and
aims to hide whether one sample exists in the database.
Thus, DP is defined as the detecting probability of outputs
of any two adjacent databases.

2) Experiment-Based Methods: Attack algorithms can
evaluate the security and privacy levels directly. In order
to evaluate the adversarial robustness of image classifica-
tion tasks, large-scale experiments have been conducted,
and the performance of different defense methods can be
evaluated [258]. In addition, we can apply adversaries
to DP-SGD, which allows for evaluating the gap between
the private information that an attacker leaks (a lower
bound) and what the privacy analysis establishes as being
the maximum leak (an upper bound) [129]. We can
notice that attack methods constantly emerge to face
advanced defense methods. Thus, the experiment-based
methods need to consume a lot of computation resources,
such as 3000 GPU hours with parallelized over 24 GPUs,
as shown in [129].

C. Lessons Learned From Attacks and Defenses

The research on attacks and defenses in distributed
learning is faced with an “arms race,” i.e., a defense
method proposed to prevent the existing attacks will be
soon evaded by new attacks and vice versa.

1) Attacks in Distributed Learning: Attack algorithms
in the white-box scenario have attracted considerable of
attention in the last few decades, but they seem to be
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impractical and can only be used as an upper bound. For
example, model poisoning attacks in FL can be divided
into three scenarios based on various levels of background
knowledge, i.e., full knowledge, partial knowledge, and no
knowledge. The attack performance decreases drastically,
as the background knowledge decreases [163], [259],
[260]. In this context, practical attack algorithms with
no knowledge should be studied to explore potential pri-
vacy and security risks. In addition, the organizer usually
obtains more background knowledge than the rest of the
participants. In order to mitigate the risk of the organizer
being an adversary/eavesdropper, the decentralized frame-
work can be adopted as a solution.

For the same attack purpose, different levels of dis-
tributed learning require different background knowledge,
since the level of distributed learning determines inter-
active messages, which usually contain the private infor-
mation of participants, such as extracted features and
NN gradients of private data. Thus, various attack meth-
ods have emerged to infer private information or poison
training processes instead of unified attack schemes. For
example, MIA in Level 1 (sharing model) needs shadow
datasets to train shadow models and then estimates the
confidence of the training models [54]. We know that
the shadow datasets and their distribution affect the
attack performance obviously. However, how to obtain the
shadow datasets becomes controversial, such as generative
networks, stealing, and so on.

2) Defenses in Distributed Learning: Although distributed
learning can achieve privacy-enhanced and scalable data
sharing, it also presents some security and privacy risks.
Four-level distributed learning frameworks show various
risk levels of privacy leakage, due to the different interac-
tive messages [261], [262]. The interactive messages usu-
ally contain the private information of participant users,
such as extracted features and NN gradients of private
data. This data processing can protect private data to some
degree. Thus, it is of interest to study the potential privacy
protection levels owing to these data processing functions
and then design effective protection schemes to achieve a
better trade-off between training performance and privacy.

Privacy/confidential computing for distributed learning
is a high requirement compared with conventional privacy
protection. However, the existing privacy computing tech-
niques usually cannot provide systematic privacy preser-
vation, which will degrade the learning performance or
training efficiency [154], [263]. In addition, the protection
effectiveness of different privacy computing techniques
varies. For example, DP is seen as an effective method
to prevent MIAs by perturbing the impact on whether
one instance exists in the training process. Thus, the
sensitivity of interactive messages in distributed learning
for DP should be carefully investigated when estimating
the privacy budget. MPC is another widely used privacy
computing technique. However, the transfer ability of MPC
is limited, and the MPC protocols for different paradigms

of distributed learning need to be well designed. Overall,
it is crucial to combine these privacy computing techniques
and design a general privacy-preserving framework for
different paradigms of distributed learning [264], [265].

D. Lessons Learned From FL

Reviewing the state of the art in the field, we find that FL
plays an increasingly important role in facilitating training
ML models for distributed data, as highlighted as follows.

1) Advantages of FL: Three classic paradigms in FL, i.e.,
horizontal FL, vertical FL, and federated transfer learning,
can be categorized as Levels 1–3 of distributed learning
and have the capability to address most of the challenges
of training ML models in distributed scenarios. FL is an
efficient approach for federated data sharing among mul-
tiple clients, in which raw data are kept on the client side,
which, in turn, protects data privacy from tensor mining.
The primary purpose of FL is to train a satisfied ML model
without exposing participants’ data privacy. Thus, when we
select or design a training framework, both participants’
data characteristics and privacy requirements should be
considered. In addition, an increasing number of advanced
paradigms have emerged to handle various challenges in
FL training, such as multimodal FL [266], [267], [268],
federated knowledge distillation [269], [270], [271],
quantized FL [117], and so on, which help to construct
a secure and efficient federated AI ecosystem.

2) Disadvantages of FL: FL can benefit data privacy,
security, and privacy risks induced by the interactive mes-
sages. In particular, FL can be combined with other privacy
techniques, such as DP, MPC, HE, and so on, to improve the
privacy of local updates, by integrating them into gradient
descent training to enable privacy-enhancing FL. Moreover,
the security of FL-based data sharing can be improved
by combining it with blockchain technology [272], [273],
[274], [275]. In this context, the information of trained
parameters can be appended into immutable blocks on
a blockchain during client–server communications. Fur-
thermore, the substantial communication cost in vertical
FL should be noticed [276], [277], [278]. Specifically,
in vertical FL, the total computation and communication
cost is proportional to the training dataset size. In other
words, the widely adopted batch computation method in
horizontal FL cannot be applied to vertical FL. When facing
a massive amount of data, e.g., billions of advertising data,
communication and local computation may be in many
orders of magnitude, and the system may lose vitality
due to limited resources, such as hardware capacity, band-
width, and power.

VII. R E S E A R C H C H A L L E N G E S A N D
F U T U R E D I R E C T I O N S
As discussed in Sections V and VI, distributed learning
systems can alleviate security and privacy concerns by
advancing defense mechanisms. In Section VII, we pro-
vide and reveal several critical research challenges for
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Table 10 Summary of Challenges Along With Their Descriptions and Possible Solutions

further improvement in system implementation. In addi-
tion, related possible solutions are also discussed, and a
summary is provided in Table 10.

A. Balance Between ML Performance and
Security/Privacy Level

1) Convergence Analysis: As mentioned above, DP has
been widely adopted in training of distributed ML models,
by adding random noise to gradients during the train-
ing process. However, a strict privacy guarantee usually
requires a large noise variance, so the DP-based training
will lead to significant performance degradation. Although
the existing works in [279] and [170] have explored
the training performance of the differentially private dis-
tributed learning systems and provided some theoretical
results, these results can only bring out some intuitions and
cannot enhance the learning performance directly. There-
fore, an accurate estimation of convergence performance
of differentially private ML training would be beneficial to
find a proper balance between utility and privacy.

2) Dynamic Parameter Optimization: In addition to the
accurate estimation of convergence performance, dynamic
parameter optimization is also a promising direction to
balance the trade-off between utility and privacy. Because
of privacy protection, the training performance caused by
the original parameters has been changed. Correspond-
ingly, the conventional parameter optimization method for
distributed ML also becomes inapplicable. For example,
the work in [170] has developed an upper bound on
differntially private FL and revealed that there exists an
optimal number of communication rounds with a given
privacy level. This discovery brings a new perspective on
the communication round in FL and suggests a rethink-
ing of the choice of communication parameters. Dynamic
parameter optimization for differentially private ML has
also been considered, which implements a dynamic privacy
budget allocator over the course of training to improve
model accuracy [280]. Although the existing dynamic opti-
mization methods have already been proposed and proven
to improve a number of distributed learning systems, there
is still considerable room for improvement.

3) Specific/Personalized Protection Mechanisms: The var-
ious requirements for different scenarios or different par-
ticipants in distributed ML systems are also challenging,

especially when the data distribution is non-IID [281],
[282]. Therefore, designing a specific/personal protection
mechanism for a distributed ML system can bring out a bet-
ter balance between utility and privacy. The work in [283]
has considered a social network and achieved a proven
DP requirement by perturbing each participant’s option
with a designated probability in each round. Combining
sketch and DP techniques, the work in [114] has pro-
posed a novel sketch-based framework, which compresses
the transmitted messages via sketches to simultaneously
achieve communication efficiency and provable privacy
benefits. These designs can obtain a satisfactory trade-off
between utility and privacy because of the deep combina-
tion of original scenarios and DP techniques. Therefore,
how to balance utility and privacy in the amount of dis-
tributed learning scenarios has not been fully explored.

4) Private Set Intersection: Private set intersection (PSI)
is an important step in distributed learning because of the
individual differences among multiple users. For exam-
ple, in horizontal FL/SGD systems, we need to ensure
that each record has the same features. Existing PSI
protocols are third party-based PSI [284], [285], public-
key-based PSI [286], [287], circuit-based PSI [288], and
oblivious transfer (OT)-based PSI [289]. However, there is
still a research gap in terms of using PSI in distributed
learning to investigate the trade-off between the privacy
level and the learning performance.

B. Decentralized Paradigm

1) Authentication and Access Control: The key question
in adding security to a decentralized paradigm is to
increase the confidence that all parties involved in the
system (agents, platforms, and users) will behave correctly,
and this can be achieved by authentication. The identi-
fication of the parties establish a trusting environment
between clients. Cryptology has been proven useful in a
large number of authentication and access control scenar-
ios, but it cannot address the problem of fully new partici-
pants. In addition, a trust/reputation model has been pro-
posed to determine the participating values for unknown
clients, since it is hard for an agent to obtain complete
knowledge about other participants [179], [215], [216].
Consequently, how to design efficient identity certification
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mechanisms to uniquely authenticate known, and trusted
users and agents in the system has drawn much attention.

2) Consensus Design: Coordination and cooperative con-
trol of multiple clients in distributed ML has attracted
considerable attention from various research communities,
where a fundamental approach to achieving cooperative
control is the consensus-based algorithm [290]. Tradi-
tional consensus designs are mostly based on a single
and finite-time domain [291], [292], where, in reality, the
dynamics of the system are usually complicated and non-
linear. Therefore, a useful and effective consensus design
with dynamic or unknown parameters is an important
topic for future research. For example, the time-varying
resources and requirements for participating clients are
key and untrivial factors in design. In addition, the security
of consensus has also raised several issues recently [293].
How to protect the integrity of the consensus from inside or
outside attackers and how to prevent private information
leakage from the published consensus are other interesting
research directions.

3) Blockchain-Assisted Distributed Learning: The reasons
for implementing blockchain in a distributed learning sys-
tem are to increase the interaction efficiency between par-
ticipants by providing more trusted information exchange,
reaching a consensus in trust conditions, assessing par-
ticipant productivity or detecting performance problems,
identifying intruders, allocating plans and tasks, and
deploying distributed solutions and joint missions [294],
[295]. However, the challenges consist of assessing feasi-
bility and finding an architectural approach for combining
blockchain-based consensus algorithms with real-time dis-
tributed learning systems, while assuring incentive infor-
mation exchange and compatibility with the already exis-
tent local processing protocols [255]. In addition, the
incentive mechanism is also key to consensus design [296],
[297].

4) Fairness: Fairness has attracted increasing attention
in recent years, especially in the scenario where multi-
ple participants are evolved in one learning task [298].
A max–min fairness distributed learning system has been
developed in [299], where multiple clients are matched
with bandits having minimum regret. Furthermore, col-
laborative fairness in FL has been investigated in [300].
Although several works throw out the idea of fairness,
there is a lack of a common definition of fairness in dis-
tributed learning. Whether attending the same rounds of
training or allocating training trials according to the users’
capability represents fairness is still an unclear question.
In addition, the relationship between fairness with security
and privacy also requires further consideration.

C. Complexity Reduction

1) Lightweight Encryption: One of the oldest and most
popular techniques used in information security is cryp-
tography, and its use to protect valuable information is

usually relies on symmetric encryption and decryption
algorithms, such as elliptic curve cryptography (ECC),
homomorphic hash functions, or secret sharing technology.
A secure lightweight ECC-based protocol, i.e., broadcast-
based secure mobile agent protocol (BROSMAP) [301],
has been improved to fulfill the needs of multiagent-based
IoT systems in general and obtained better performance
than its predecessor with the same security requirements.
An HE-assisted MPC framework [174], enabling a partic-
ipant to compute functions on values while keeping the
values hidden, can allow certain mathematical operations
(such as aggregation) to be performed directly on cipher-
texts, without prior decryption. However, cryptographic
algorithms usually require complicated computation pro-
tocols and may not be achieved efficiently.

2) High-Efficiency Secure Protocols: Secure protocols are
designed to enable computation over data distributed
between different parties, so that only the result of the
computation is revealed to the participants, but no other
private information. Secure protocols usually combine sev-
eral efficient security and privacy techniques, e.g., MPC,
DP, and HE, and need several interactions to exchange
intermediate results. However, too many interactions may
increase the information leakage risk, communication, and
computing overhead. Moreover, it is also challenging to
explore generic secure protocols over remote parties, espe-
cially for complicated scenarios and various applications.
To realize an efficient communication protocol in a trusted
and secure environment, an alternative way is to increase
the transmission rate using an intelligent reflecting surface
(IRS) by smartly reconfiguring the wireless propagation
environment, with the help of massive numbers of low-cost
passive reflecting elements integrated on a planar sur-
face [302].

3) Model Compression: High accuracy of large NNs is
often achieved by paying the cost of considerable mem-
ory consumption and complex computational capability,
which greatly impedes the deployment and development
in distributed systems [303]. To efficiently accelerate
the learning process, privacy preservation-based methods,
such as compact models [304], [305], tensor decom-
position [306], data quantization [307], and network
sparsification [308], are recent key advances.

D. Distributed ML and Futuristic Technologies

1) Robotics: Distributed ML can enhance the ability
to identify and control robotics with remote and dis-
tributed control or wireless connections to clouds. This
scenario requires high precision control, which raises
increasing security issues and vulnerability to transmission
errors [309], [310]. How to preserve the integrity of such
control systems and how to prevent information leak-
age during data transmission need further investigation.
In addition, ethical issues related to bionic robots are hotly
debated concerns [311], [312].
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2) Virtual Reality and Augmented Reality: ML and its
distributed versions can improve the quality of generated
images and videos, such as GAN and diffusion mod-
els. With the rapid development in virtual reality (VR)-
and augmented reality (AR)-based applications, private
information from generated videos may lead to personal
information leakage [313], [314]. Adversaries can take
advantage of fake videos to analyze the unique behaviors,
personal interests, and background environments of par-
ticipants [315].

3) Distributed Quantum Computing: Quantum ML oper-
ates based on quantum mechanics, taking advantage of
superposition to store and process information [316],
[317]. However, if information sources are from dis-
tributed clients, information leakage and inside or outside
attacks may occur during data transmission. Thus, con-
ducting the protection on distributed ML raises several
challenging problems, such as identifying attackers, ensur-
ing the integrity and availability of transmission data, and
preserving privacy.

4) Metaverse: Metaverse seamlessly integrates the real
world with the virtual one. It allows avatars to carry out
rich activities, including creation, display, entertainment,
social networking, and trading. Thus, it is a promising
technology for building a exciting digital world and bet-
ter physical scenario by exploring the metaverse [318],
[319]. Intuitively, the breakthroughs of AI in the real world
motivate people to realize the metaverse. For example,
distributed ML via integrating distributed data from meta-
verse users can provide technical support for metaverse
systems to reach or exceed the level of human learning.
This can significantly affect the operational efficiency and
the intelligence of the metaverse. Intelligent voice ser-
vices provide technical support, such as voice recognition
and communication. However, several new security and
privacy challenges that can compromise the systems or
divulge users’ privacy raise attention in the interaction
process, such as the communication between metaverse
users and service providers.

5) Digital Twin: The digital twin can fill the gap between
physical systems and digital spaces. Leveraging FL to con-
struct digital twin models of IoT devices based on their
running data has been proposed in [320] and [321]. The
physical security of IoT devices is critical, as they can be
damaged, destroyed, or even stolen by attackers. Digital
twin systems also have other priorities than the traditional
network/system security requirements because of their
interactions with the physical components. For instance,
defects in a critical product may lead to death, injuries,
or environmental damage. For this reason, safety could
be ranked as the top security requirement. Safety can
broadly be defined as the avoidance of harm or hazard
to the physical environment and infrastructure that could
occur from system faults [322]. Meanwhile, the possible

privacy leakage from the interactions with the physical
components must also be considered.

6) Web 3.0: Web 3.0 has attracted considerable atten-
tion due to its unique decentralized characteristics [323].
In Web 3.0, data present a distributed storage structure,
so there will be no central node for data management,
significantly reducing the service cost of managing data.
Web 3.0 emphasizes the protection of users’ personal data,
and therefore, as a key technology to solve the data privacy
problem, privacy computing is becoming the immediate
need of Web 3.0. Privacy computing technology can ana-
lyze and calculate data under the premise of protecting
data privacy and security, which provides a strong guar-
antee for the efficient and safe circulation of data across
industries and organizations.

7) Generative Design AI: Generative design uses AI to
come up with multiple design variations for products or
parts. This leads to a faster generation of design options
than would be developed through manual design, which
leads to faster product development times and more cre-
ative choices to select from. For example, the meteoric
rise of diffusion models has been one of the most signif-
icant developments in ML in the past several years [324].
Although generative design AI can improve the quality
of several tasks, it also relies on massive data and may
induce several security and privacy issues, especially for
fake digital assets, such as photographs or videos, that are
indistinguishable from real things.

E. Development of IEEE Standards, Policies, and
Regulations

Privacy and security are paramount considerations in
the field of distributed learning, where data are shared and
processed across various decentralized nodes. To ensure
a robust and trustworthy environment for distributed
learning systems, several IEEE standards, policies, and
regulations come into play. These guidelines help establish
a solid foundation for protecting user data and maintaining
the integrity of the learning process.

1) IEEE Standards:
a) IEEE 1363 (Standard Specifications for Public-Key

Cryptography): Encryption is vital for securing data
in distributed learning. IEEE 1363 provides spec-
ifications for public-key cryptography algorithms,
ensuring confidentiality and integrity of communi-
cation in distributed systems.

b) IEEE P2089 (Standard for Privacy Impact Assessment
for IoT): This standard provides a framework for
assessing the privacy impact of IoT systems, which
often play a crucial role in distributed learning
scenarios. It guides the identification of potential
privacy risks and suggests mitigation strategies.

c) IEEE 3652.1-2020 (Guide for Architectural Frame-
work and Application of Federated ML)3: It provides

3https://standards.ieee.org/standard/3652_1-2020.html
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a blueprint for data usage and model building across
organizations and devices while meeting applica-
ble privacy, security, and regulatory requirements in
FL. In particular, the description and definition; the
categories and the application scenarios to which
each category applies; the performance evaluation;
and the associated regulatory requirements of FL are
defined.

d) IEEE P7000 series (Model Process for Addressing Eth-
ical Concerns During System Design): Distributed
learning involves ethical considerations, and this
series offers a comprehensive model process to
address ethical concerns throughout system design
and development. It emphasizes transparency,
accountability, and user consent.

2) Policies and Regulations:
a) General Data Protection Regulation (GDPR)4:

Although not an IEEE standard, GDPR is a signif-
icant regulation that affects distributed learning.
It emphasizes the protection of personal data and
requires explicit user consent for data processing.
Organizations handling data in distributed learning
must adhere to GDPR’s principles to ensure user
privacy.

b) Health Insurance Portability and Accountability Act
(HIPAA)5: In healthcare-related distributed learning
applications, HIPAA plays a crucial role. It sets reg-
ulations for protecting the privacy and security of

patients’ health information, including data used in
distributed learning scenarios.

c) National Institute of Standards and Technology (NIST)
Guidelines6: While not IEEE-specific, NIST provides
guidelines on security and privacy, including those
applicable to distributed systems. NIST’s cybersecu-
rity framework and privacy framework offer valuable
insights for building secure and privacy-preserving
distributed learning systems.

d) IEEE Code of Ethics7: While not a policy or regulation
in the legal sense, the IEEE Code of Ethics guides
professionals working in technical fields, including
distributed learning. It encourages ethical behavior,
respect for privacy, and responsible decision-making.

VIII. C O N C L U S I O N
As an important and emerging technology, distributed ML
has the capability to leverage the incremental amount
of data in UEs to the maximum extent. However, this
emergence raises increased concerns about privacy and
security. In this survey, we have proposed a new frame-
work, which divides distributed ML into four levels for
the purpose of understanding privacy and security issues.
Moreover, we have discussed and summarized the state-of-
the-art related to these issues and revealed the particular
characteristics of adversaries at each level. In addition,
several research challenges and future directions have also
been discussed.
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