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AbstractÐ The rapid growth of electric vehicle (EV) penetra-
tion has led to more flexible and reliable vehicle-to-grid-enabled
cyber-physical systems (V2G-CPSs). However, the increasing
system complexity also makes them more vulnerable to cyber-
physical threats. Coordinated cyber attacks (CCAs) have emerged
as a major concern, requiring effective detection and mitigation
strategies within V2G-CPSs. Digital twin (DT) technologies have
shown promise in mitigating system complexity and providing
diverse functionalities for complex tasks such as system monitor-
ing, analysis, and optimal control. This paper presents a resilient
and secure framework for CCA detection and mitigation in V2G-
CPSs, leveraging a smart DT-enabled approach. The framework
introduces a smarter DT orchestrator that utilizes long short-
term memory (LSTM) based actor-critic deep reinforcement
learning (LSTM-DRL) in the DT virtual replica. The LSTM
algorithm estimates the system states, which are then used
by the DRL network to detect CCAs and take appropriate
actions to minimize their impact. To validate the effectiveness
and practicality of the proposed smart DT framework, case
studies are conducted on an IEEE 30 bus system-based V2G-
CPS, considering different CCA types such as malicious V2G
node or control command attacks. The results demonstrate that
the framework is capable of accurately estimating system states,
detecting various CCAs, and mitigating the impact of attacks
within 5 seconds.

Index TermsÐ Coordinated cyber attacks, digital twin, cyber-
physical systems, long short term memory, deep reinforcement
learning.
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I. INTRODUCTION

T
HE integration of intelligent electronic devices, commu-
nication infrastructure, and renewable energy resources

(RERs) has led to the emergence of the smart grid, revolu-
tionizing the global energy infrastructure [1]. The smart grid
transforms traditional power systems from passive networks
into active networks, enabling energy consumers to become
energy prosumers. However, this transition also introduces
complexity and computational demands to the energy system.
The smart grid encompasses a wide range of components,
including RERs, energy storage devices, electronic converters,
and flexible transmission system devices, which enhance sys-
tem reliability. However, the adoption of intelligent electronic
devices, advanced communication systems, adaptive control
systems, and phasor measurement units (PMUs) to support
active grid operations increases the cyber complexity of the
system [2]. If these advanced technologies are integrated into
the grid without proper security mechanisms, the reliability of
the energy infrastructure may be compromised. Adversaries
can exploit multiple points of vulnerability, leading to potential
attacks and disruptions in the system’s operation. It is essential
to develop robust security measures to protect the smart
grid and mitigate the risks associated with cyber threats.
By addressing these security challenges, the smart grid can
maintain its reliability and ensure the uninterrupted delivery
of energy services.

One emerging application enabled by the smart grid is
the vehicle-to-grid (V2G) operation. A bidirectional flow
of energy and communication exists in V2G-enabled cyber-
physical systems (V2G-CPSs). The increasing penetration of
electric vehicles (EVs) enhances the flexibility and reliability
of V2G-CPSs. However, this comes at the cost of increased
complexity in V2G-CPSs. Various industries have recently
embraced digital twin (DT) technologies to support crucial
tasks like system monitoring, analysis, and optimal control.
However, by adding more V2G points into the network, the
potential vulnerabilities to cyber attacks also increase [3]. One
such example of a cyber attack is recorded in [4], where an
attack on the Ukrainian power grid resulted in a large-scale
blackout for almost 6 hours, affecting 230,000 people in 2015.
Here, the adversary deployed false control signals in the con-
trol channel to operate the network circuit breakers, namely,
switching attacks (SAs).Traditional supervisory control and
data acquisition (SCADA) systems use bad data detection
models to filter malicious measurements from PMUs and other
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sensing devices. However, it has been observed from recent
studies that intelligently created false data injection attacks
(FDIAs) could bypass the current bad data detection models.
In FDIA, the adversary tampers the data so that detection
algorithms cannot recognize the corrupted data [5], [6] and
would mislead the control operator to take wrong actions,
leading to system instability.

Due to the development of various cyber attack strategies,
research works have also been carried out to improve the
defense of V2G-CPSs against potential attacks such as FDIA
and SA [7], [8]. For instance, the authors in [9] investigated
how the FDIA would manipulate the electricity market by
tampering with the price parameters. In there the authors pro-
vide countermeasures by securing some critical state variables.
Moreover, the research works that are dedicated to securing
the smart meters and PMUs measurements against FDIA can
be found in [10] and [11]. However, studies dealing with cyber
attacks on DT from physical processes, data transmission,
and to decision control are limited. For instance, the effects
of unbalanced voltage distribution on the system network
under inadequate control action by the operator were presented
in [12]. Here, the adversary deployed false control signals
in the control channel to operate the circuit breakers in the
network. Moreover, the impact of coordinated cyber attacks
(CCAs) on V2G-CPSs has not been fully studied yet. CCAs
can easily disturb the information flow, power flow, or even
both of them. Furthermore, shuffling the attacks, such as
removing or isolating the attacked equipment, among the
sensor network, controller, and communication channel will
harm the security of the network [13]. This scenario becomes
more severe when the information of physical processes and
the availability of V2G devices, transferred to the DT replica
of the V2G-CPSs, are tampered with by CCAs. In addition,
CCAs have the potential of causing N − K contingencies in
communication and power networks, whereas N − K contin-
gencies mean the successive tripping of circuit breakers in
power networks or interruptions in communication networks.
The physical impact of N − K contingencies is in the form
of blackouts. Similarly, if the DT, which is responsible for
providing secure and safe operation of the V2G-CPSs, is
tempered, then there is a need for some intelligent algorithms
deployed in the DT replica of V2G-CPSs. Those algorithms
will be dedicated to not only detecting CCAs on the physical
processes as identification of malicious V2G nodes and SAs,
and data transmission as false information transferred to DT,
but also mitigating the impact of CCAs that will be in the
form of N − K contingencies by adaptive control strategies.

This paper addresses the gap in the existing literature
by developing a robust detection and mitigation mechanism
against the CCAs on V2G-CPSs. In particular, the main aim
of this paper is to identify malicious users, which can launch
FDIAs and manipulate the actual information of physical
processes transmitted to the SCADA system, or SAs that
inject the false control signals through the communication
channel for the false operation of the circuit breakers. In this
regard, a smart DT replica of V2G-CPSs is proposed to detect
and mitigate CCAs in the system. In the proposed smart DT
framework, the long short-term memory (LSTM) based deep

reinforcement learning (DRL) algorithm, namely LSTM-DRL,
is incorporated in a virtual replica of V2G-CPSs. The LSTM
algorithm is responsible for estimation the actual states of
V2G-CPS. Based on the estimated states, the DRL algorithm
trains its agent and detects the abnormal behavior in V2G-
CPSs followed by taking actions to mitigate the corresponding
impact. Furthermore, the actor-critic technique is adopted to
further improve the system performance and the convergence
time of the proposed LSTM-DRL algorithm.

In summary, the key contributions of this paper are:

• proposing a smart DT framework for a secure and safe
operation of V2G-CPSs under CCAs, such as FDIAs and
SAs,

• formulating a mathematical model of the smart DT for
V2G-CPSs incorporating V2G connections and RESs as
wind turbines (WT), and

• developing and incorporating an LSTM-DRL algorithm
in the smart DT for fast detection and mitigation of CCAs.

The rest of the paper is organized as follows. In Section II,
the comparative literature review is presented. Section III
includes the information about V2G and threats model.
Section IV describes the mathematical model of the LSTM-
DRL framework. Section V includes results, discussion, and
testing of the LSTM-DRL algorithm under different cyber
threats. Section VI concludes the paper.

II. RELATED WORK

Among various types of cyber attacks, one of the most
threatening attacks is FDIA, which mostly happens in smart
grids and is discussed in the literature. FDIAs, were identified
in [14], in which a methodology was introduced to detect this
type of attack even though it by-pass the bad data detection
process in weighted least square state estimation. The authors
adopted in [14] adopted the Kullback-Leibler distance (KLD)
algorithm, which is used to measure the distance between two
probability values of measurements. In the event if attacks
happens, the algorithm will produce larger KLD values, which
shows that measurements are being compromised. In addition,
an attack on embedded electronics systems was discussed
in [15], in which a torjan attacks were used to compromise
the intelligent electronics devices. Similarly, FDIAs were also
identified by authors in [16], who revealed that traditional bad
data detection could not detect the corrupted measurements
during state estimation. A more severe case of FDIA is
discussed in [17] and [18] where the attack causes cascaded
outages in power grids.

Inspired by [16], new cyber threats where the attacker
tampered with the transformer taps have been extensively
investigated, which also increased the researchers’ interest in
devising robust detection and mitigation techniques. Early,
state estimation algorithms are developed that are based on
the DC power flow model to detect data attacks on smart
grids in [19]. Several techniques are then available that cover
the area of state estimation for complex systems like V2G-
CPSs. For instance, the authors of [20] adopted the Kalman
filter to detect FDIAs. In addition, an optimization technique
to cluster vulnerable nodes is proposed in [21]. However,
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the algorithm mentioned in [21] involves a computationally
detection process. Moreover, the major drawback associated
with the Kalman filter is the creation of the Jacobian and
error covariance matrices, which increases complexity as the
number of buses increases. Furthermore, if there is high
nonlinearity observed in a network, then Kalman filter do
not yield better results and these techniques need an accurate
knowledge model to perform precise state estimations [22].
A simpler non-iterative method is proposed in [23] for FDIA
detection based on measurements obtained from SCADA and
PMUs. The advanced form of cyber attacks on V2G-CPSs,
that is, CCAs, has been discussed in [24]. In this work, the
attack vectors are created coordinately to avoid the bad data
detection algorithm. In addition, the countermeasure approach
is also proposed for attack detection by monitoring secure
PMU measurements and line impedance. However, SAs on
generation nodes and on DT was not considered.

Aside from FDIA, another noteworthy type of cyber attack,
namely SA, can cause an abnormal topology configuration
leading to cascading contingencies in power grids. To counter
the abnormalities due to SA, the authors in [25] proposed a
multi-agent system (MAS) technique for mitigating cascading
failures. The algorithm chose an optimal combination from the
number of combinations presented to dispatch the power from
a generator. The optimal generator combination is selected by
computing sensitivities gain, which is based on giving rewards
and penalties for different load flow patterns. Moreover, the
algorithm in [25] provides effective solutions if contingencies
occur due to natural phenomena. If initial contingencies are
not tackled in time, they may expand to N − K contingencies
that can cause the network unstable resulting in blackouts.

Considering the complexity of V2G-CPSs, the control
strategies of system operation should be coordinated and
distributed to ensure economic communication bandwidth
utilization and flexible operation of the network components.
However, coordinated distributed control structures are also
vulnerable to cyber attacks [26], [27], [28]. To prevent and
mitigate CCAs, there have been many effects on secured and
distributed control strategies in V2G-CPSs. In this regard, the
authors in [29] proposed a resilient coordinated control system
for the packet loss problem, while in [30], a hierarchical dis-
tributed control scheme was proposed. The primary function
of the proposed algorithm in [30] was to detect the attacked
controller agent and isolate it from the network. In addition,
the dynamic behavior of the various agents is studied using
morphology strategies in order to identify the agent, which is
attacked and then devise a methodology based on graph theory
to mitigate the attack [31]. For the synchronized operation of
the sensors in the network under attack, compensator-based
control strategies were adopted in [32], [33]. The authors
in [31], [32], [33], and [34] have observed the fluctuation
in the voltage in order to identify the attack and enable
synchronization among different devices by detecting the mali-
cious power system control and operating devices. However,
such algorithms are computationally expensive and the effect
of CCAs on DTs was not discussed. Besides, if cyberspace
is compromised where the whole detection and mitigation

process takes place, the authors in [31], [32], and [33] did
not provide any action to countermeasure such attacks.

Based on the above comprehensive review and analysis,
it has been observed that most CCAs detection methods are
specifically for state estimators, and the mitigation methods
are developed to isolate or remove the attacked nodes in
systems. However, there are almost no studies on the use
of DT for CCAs detection and mitigation. In other words,
the potential of DTs for CCAs detection and mitigation has
not been fully explored. To this purpose, we proposed a DT-
enabled intelligent framework to detect and mitigate CCAs
in V2G-CPSs. One of the important features of this work
is to show how the smart DT model can provide fast attack
detection and timely control strategies to prevent the N − K

contingencies in V2G-CPSs.

III. SYSTEM MODEL

A. Vehicle-to-Grid Cyber-Physical System (V2G-CPS)

A schematic of the V2G-CPS studied in this paper is
shown in Fig. 1 with its corresponding DT. The V2G-CPS
operates as a closed-loop control system and comprised of
EVs, WTs, and generation plants along with the dynamic
varying load. The diversified energy sources make the V2G-
CPS more flexible and reliable to satisfy the various demand
requirements. However, hsving multiple energy sources also
makes system operations, such as power flow control and
energy dispatch, more complex. Moreover, with the increase
of energy sources, especially EV nodes, V2G-CPS becomes
more vulnerable to various adversaries and attacks. The DT
of V2G-CPS has the capability to reduce the heavy burden of
system operation, but it is inevitable to security threats such as
CCAs. This is due to the fact that the reliability of DT relies
on the accuracy of information updated from the physical
process of V2G-CPS. For instance, adversaries can launch
FDIAs on the amount of information on connected EVs, or can
release SAs on the status of critical circuit breakers. The
malicious information will be communicated with the DT of
V2G-CPS, and may affect the decision-making process of the
DT to take inappropriate actions leading to system instability.
Stability of power system refers to the ability to regain its
normal operational equilibrium after being subjected to cyber
or physical attacks [35], [36]. In a V2G-CPS, the power and
current of system is monitored and the system is declared as
stable system if these parameters are within thresholds and are
discussed in detail in next section.

To detect and mitigate CCAs on the V2G-CPS and the
corresponding DT, in this paper, we develop a security check
framework in the DT virtual replica based on the LSTM-
DRL method. Before giving more details on the proposed
framework and LSTM-DRL method, the DT model of V2G-
CPS and the threat model of CCA are first described in the
following sections.

B. Digital Twin of V2G-CPS

To make the DT model more realistic, a strict mathematical
model to represent the physical characteristics of V2G-CPS
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Fig. 1. Generalized architecture of V2G-CPS and digital twin.

is necessary. In this paper, the physical twin model of V2G-
CPS is considered for the development of DT, and the power
system’s actual parameters are also considered for better
designing and monitoring V2G-CPS.

1) Physical Twin Model of V2G-CPS: In the V2G-CPS,
when any unexpected variations in the power flow occur,
the system will re-disturb the whole power flow to balance
supply and demand. Those variations may be due to generation
interruption, line outages, and even CCAs. Under normal
operation, the following security constraints will be held;

I L
k ≤ I L

k,max, (1)

P L
k ≤ P L

k,max, (2)

PG
i,min, P D

i,min ≤ PG
i , P D

i ≤ PG
i,max, P D

i,max. (3)

where, I L
k and P L

k are the actual current and power of
the kth transmission line while I L

k,max and P L
k,max are the

corresponding maximum current and power limits respectively.
PG

i,min and PG
i,max are the minimum and maximum output

power of the generator on the i th bus, and P D
i,min and P D

i,max are
the minimum and maximum load capabilities of the i th bus,
respectively. Furthermore, the real power flow will be balanced
at each bus i , that is,

PG
i − P D

i −

N
∑

j=1

|Vi ||V j ||Y ij|cos(φij − δi − δj) = 0, (4)

where |V | and δ are respectively the magnitude and phase
angles of voltage, and N is the total number of buses in the
V2G-CPS. |Y ij| and φij are the magnitude and angle of the
Y-bus matrix of the system, respectively [37].

However, some current and power flow may violate the
safety constraints in the case of CCAs, such as

I L
k , P L

k > I L
k,max, P L

k,max. (5)

Considering such overloading flow may cause N − K contin-
gencies leading to cascading failures, the proposed security
framework is first activated by observing any unexpected
variations in the power flow, and then, continuously monitors
the constraints of (1), (2), and (3) to detect CCAs and mitigate
N−K contingencies due to CCAs. Furthermore, the proposed
algorithm also tackles the actual power demand of each bus

at each time slot t by the forecasted power demand as

P D
i,actual (t) = P D

i,forecast (t)+ RD
i (t)+ P D

i,gap (t) , (6)

Pneed(t) =

N
∑

i=1

P D
i,gap (t) , (7)

where P D
i,actual, P D

i,forecast, RD
i , and P D

i,gap represent the
actual demand, forecasted demand, randomness in forecasted
demand, and the gap between actual demand and forecasted
demand due to unexpected variations, respectively. When the
V2G-CPS is under normal operation, there is no unexpected
variation, and the control loop will make the actual and
forecasted demand similar by reducing the RD

i . In that case,

P D
i,actual (t) = P D

i,forecast (t) , ∀i ∈ N . (8)

Moreover, the total amount of forecasted generations will be
close to the total amount of forecasted demand, that is,

N
∑

i=1

(PG
i, f orecast (t)+ RG

i (t)),

=

N
∑

i=1

(P D
i, f orecast (t)+ RD

i (t)), (9)

where PG
i, f orecast and RG

i stand for the forecasted generations
on each bus and randomness in a forecasted generation,
respectively. However, once the V2G-CPS is under CCAs, the
unexpected variations between the data collected and the actual
power demand at the current time will appear as P D

i,gap (t) and
Pneed(t).

The following constraints on the generation buses, load
buses, and transmission line will be considered so that no
individual bus observes any stress in the N-K contingencies
mitigation, as power is being rerouted from RERs along with
its generations, so the need of monitoring the thresholds limits
of power lines must be considered.

P i,k
capacity, G = min(PG

i , PG
k,max − Pk

G), (10)

P i,k
capacity, L = min(P i

G , Pk
L), (11)

P i,k
capacity, power line = min(|PL

i,max| − |P i
L |), (12)

P i,k
total allowed = min(P i

capacity, G, P i
capacity, L), (13)

where PG
i and PG

k are the powers to be dispatched at the buses
i and k, respectively. PG

k,max is the total power available at
bus k and P L

k is the net demand at bus k. Moreover, P L
i,max

and P L
i are the total capacity and the actual power flow in line

i . To fill up the unexpected gap of generation and demand,
that is Pneed(t), we consider the contribution of RESs as the
reserve power generation. Here,

[Pneed(t) < P R
max (t)], (14)

where P R
max (t) is the maximum output capacity of RERs

at time slot t . If Pneed(t) satisfies the above constraint, the
proposed method will only reroute the power from RESs to
meet Pneed(t). Otherwise, V2G mode, described in the next
section, will also be active to reduce the amount of Pneed(t).

In this paper, we focus on WTs RERs. The aerodynamics of
the blades are characterized using different coefficients such
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as C p(β, λ) and Cq(β, λ), which represents power aerody-
namics coefficients. Here, β stands for the pitch angle of the
blade while λ stands for the speed ratio and is computed
as λ = Rwr/Vr . While R and wr are blade length and its
corresponding angular speed while Vr is the effective wind
speed at the rotor plane. Based on the coefficients discussed
overall power Pa and torque Ta of the wind turbine will be;

Ta =
1

2
ρ ARV 2

r Cq(β, λ), (15)

Pa =
1

2
ρ ARV 3

r C p(β, λ), (16)

where, ρ is the air density and A corresponds to the blade
area which is equal to π R2. Considering the thrust factor, the
relative velocity of wind can be represented as, Vr = Vw−Vn ,
where Vw and Vn are the free wind speed and nacelle velocity
in direction of wind turbines, respectively.

2) Physical Twin Model for V2G: There is an obvious
impact on the V2G-CPS by integrating V2G module into the
system network through household devices or other electronic
interfaces. This is due to the fact that the output of V2G is
not regular and uninterrupted which will introduce unexpected
harmonics into the power profile of V2G-CPS. Therefore, there
is a need for a reliable V2G model for control and operation
that can improve the stability and reliability of the V2G-CPS.
To ease of understanding the V2G model, we assume that each
bus has installed a V2G aggregator, namely V2G node, and the
number of EVs at each bus i is mi , that is M = {mi |i ∈ N }.
According to [38], the model of V2G node in each bus can
be expressed as:

Po
i (t)+

mi
∑

j=1

ηev
j Pev

j (t) = P D
i (t) , t = 1, · · · , T, (17)

where Po
i and Pev

j are the base load excluded EV demand and
the power demand of the j th EV in the i th bus, respectively.
ηev

j represents the charger efficiency of the j th EV depended
on charging or discharging modes and T is the total number
of time slots. It can be observed from (17) that the V2G
mechanism plays an important role in helping stabilize the
V2G-CPS. In particular, the EVs are able to supply and absorb
the shortage and excess of power through V2G mode in the
emergency situation as CCAs and the corresponding mitigation
processes.

Furthermore, there are some essential constraints for the
operation of V2G, followed in [38].

∣

∣

∣Pev
j (t)

∣

∣

∣ ≤ Pev
j,max, t = T c

j · · · T
d
j ,∀ j. (18)

SOC j, min ≤ SOC j (t)≤ SOC j, max , t = T c
j · · · T

d
j ,

× ∀ j. (19)

ηev
j =

{

ηc
j , Pev

j (t) ≥ 0

ηd
j , Pev

j (t) < 0.
(20)

SOC j(t) =















wc
i +ηev

j Pev
j (t)1T

c j
, t = T c

j

SOC j (t)+
ηev

j Pev
j (t)1T

c j
, t = T c

j

+1 · · · T d
j

(21)

T d
j

∑

t=T c
j

[ηev
j Pev

j (t) 1T ] = wd
j − wc

j , ∀ j. (22)

Here, 1T is the interval of a time slot, T c
j and T d

j are the
time slots of V2G connected and disconnected to V2G-CPSs,
respectively. ηc

j and ηd
j show the efficiency of charging and

discharging for j th EV, respectively. wc
j is the initial power

capacity when j th EV is connected to the system network, and
wd

j is the end power capacity when j th EV is disconnected.
Finally, SOC j (t) indicates the state of charge of j th EV at
the time slot t .

C. Threat Model

There are two representative CCAs studied in this paper,
which are false data injection attacks (FDIA) and switching
attacks (SA). In particular, we study the impact of FDIAs on
the malicious V2G nodes and the impact of SAs on the circuit
breakers of generators. In most of the CCA studies, there is
a common implicit assumption that the adversary would try
to tamper with full network parameters via CCAs. However,
in realistic scenarios, the adversary has limited resources
and information about the entire network, thus limiting the
attack range. Consequently, before describing the CCA models
studied in this paper, certain assumptions are made from the
attacker’s perspective:

• The adversary does not have the ability to fully access
all points connected in the V2G-CPSs.

• The adversary has limited resources to launch CCAs.
In the other words, the attackers will target critical points
closely related to the generator circuit breakers.

• The adversary will tamper with the information of the
sensor connected to the generator circuit breakers and
initiate FDIA in the communication channel connecting
the sensors that transmit information to the DT to update
itself.

• The adversary can inject malicious V2G nodes by altering
the amount of EV connected with the network to corrupt
the system states.

• The adversary will only tamper with the voltage V and
phase angle θ state parameters of the attacked breakers
only.

In the V2G-CPS, the magnitude and phase angles of voltage at
each bus are considered primary state parameters. These state
variables x are expressed as follows;

x = [|V1|, . . . , |VN |, θ2, · · · , θN ]
T . (23)

The measurement vector mv in state estimation usually
includes different parameters, such as; voltage and current
measurement values from PMUs, power flows related infor-
mation, and power injection data from V2G and smart
meters [39]. For most cases, the most significant normalized
residuals-based state estimation is adopted for bad data detec-
tion in network parameters, which occurs due to cyberattacks
and measurements devices errors [40]. The residual vector
Res calculated through the largest normalized residuals-based
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method can be expressed as;

Resn =
|Res|

√

diag(S R)
. (24)

where, Res = mv − h(x), in which h(x) stands for measure-
ment function, while S represents the matrix for sensitivity
measurements, that is S = I − H(H T W H)-1 H T W . The H

and W denote the Jacobian measurement matrix and weighted
matrix for measurements respectively. These were all exten-
sively addressed in our previous work [41].

The main objective of FDIAs is to dodge the system
operator so that the operator considers the attack vector xa

as the actually estimated state vector x , such as xa = x + c,
where c stands for deviation in state parameters x under
CCAs [7], [42]. Moreover, the attacker can tamper with the
measurement vectors by injecting false measurements vector
a, i.e., the adversary can convey false information about V2G
nodes ( either by adding or removing V2G nodes), which
enabled them to initiate FDIAs and is done by tampering with
a. This makes the new mv as mva = mv+a and by including
the residuals, the new mva becomes;

Resa = mva − h(x + c) = mv + a − h(x + c). (25)

The attack vector in FDIAs will be demonstrated as;

a = h(x + c)− h(x). (26)

It has been observed that this type of FDIAs attack vec-
tor can easily bypass the traditional residual-based bad data
detection mechanism used for attack detection [40], [42].

Another type of CCA considered in this paper is the SA.
The SAs alter the status of circuit breakers on the generators
to make V2G-CPS unstable [43]. For instance, to balance the
supply and demand, the power flow will re-dispatch which
may cause the overloading flow on some transmission lines
leading to N − K contingencies. Moreover, a load curtail-
ment mechanism may be performed to further stabilize the
system resulting in an increase of marginal cost and user
inconvenience. We assume that the adversary can control the
connection of the generator on the i − th bus by manipulating
the status of circuit breaker σi . The generator on i − th bus
is connected with the network if σi = 1, and is disconnected
with the network if σi = 0 and for the σi = −1 the power
will be absorbed from the generator bus.

The different σi affecting the generator performance is
expressed as [44];

Miwi =











−Diwi + Pa,i, σi = 0

−Diwi + Pa,i +Ui , σi = 1

−Diwi + Pa,i −Ui , σi = −1

(27)

where, σi and Pa,i stand for circuit breakers’ states and
generator accelerating power, respectively, while Di represents
the coefficient of the generator damping and Mi shows the
generator inertia. The generator rotor frequency is represented
by wi .

During CCAs, the adversary will first transmit false infor-
mation about the V2G nodes available at the current time by
tampering with the measurement vectors, which will affect

Fig. 2. Framework of LSTM-DRL algorithm. The left of figure represents
LSTM block responsible to estimate actual state parameters from the inputted
DT data. The right of figure represents DRL block to decide necessary control
and mitigation actions from the output of LSTM block.

the power availability at the current time. At the same time,
the attacker will disconnect one of the generators from the
network by changing the circuit breaker state. The control
operator will observe the power deficiency in the network and
will try to meet the demand by extracting the power from
the available V2G nodes and WTs. However, as the power
availability of V2G nodes is also tampered with by FDIA,
the demand requirements will not be fulfilled by the reserve
generation. As a consequence, the excessive power demands
will increase the stress on the survival generators, and the
circuit breakers which may trip successively will result in a
network blackout. Besides SAs and FDIAs, there are other
types of threats that will effect the operation of smart grids.
Some of the potential threats to smart grids are summarized
in Table.I [45], [46].

IV. PROPOSED ALGORITHM

In this section, the smart DT-enabled security framework
for the detection and mitigation of CCAs is presented. In par-
ticular, the mathematical model of the proposed LSTM-DRL
algorithm is discussed. The operation of the LSTM-DRL
algorithm is shown in Fig. 2. The LSTM block is to estimate
actual state parameters by using the DT data of V2G-CPS,
in which, the DT data may be corrupted by CCAs including
FDIA and SA. The state parameters estimated by LSTM will
be further fed to the DRL block as the input. If there is any
attack being detected, the DRL will decide on necessary con-
trol actions as the output to mitigate the attack impact ensuring
the V2G-CPS stability. The procedure of the proposed security
framework is summarized as follows.

1) The smart DT framework continuously monitors the
security constraints of (1), (2), and (3), and is activated
when observing the violation of security constraints,
or any unexpected power variations.

2) The LSTM block is activated to estimate state parame-
ters by using the doubted DT data.

3) Based on the state parameters estimated by The LSTM
block, the DRL block is activated to detect attacks,
identify attack types, and provide optimal control action
to mitigate the attack impact.

A. LSTM for State Estimation

This study employs an LSTM algorithm to estimate the
actual state parameters for the smart DT of V2G-CPS in
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TABLE I

COMPARISON OF COMMON THREAT METHOD IN SMART GRID

the presence of CCAs. LSTM is a modified recurrent neural
network (RNN). It is able to learn from time series data
and the vanishing gradient issue in RNN is resolved using
LSTM, which is why LSTM is used in this paper to predict
state variables [47]. The LSTM utilizes the DT data, such as
current, voltage, frequency, and statistical data, to predict the
state variables. The DT data, which varies dynamically with
time, is collected by the internet of things (IoT) sensor devices
installed in the V2G-CPS. LSTM gives a good approximation
of state variables because of its ability to handle time series
and an immense amount of data. In this paper, we consider the
voltage magnitude |V | and phase angles θ of each bus as the
state variables, and refer to the estimated state as the output
of the LSTM algorithm. The data of current, voltage, real and
reactive power generated with different load patterns are to
be referred as the input of the LSTM algorithm. Once LSTM
is trained offline, the refine estimated states are then utilized
for online training of the DRL in the smart DT replica of
V2G-CPSs. This reduces the convergence time of the DRL
algorithm and increases its accuracy. The proposed LSTM
consists of the following steps for the state estimation [22].

Estimation Step-1: In this step, the LSTM decides what nec-
essary information is needed and what needs to be discarded
from memory cells, which is why this step is called forget
step. The function vt computed at the forget step is:

vt = σ(W eiv.[hst t-1, xt ] + biav). (28)

where vt is the forget function, which looks at the previously
hidden state hst t-1 and current input xt to decide whether to
keep or discard the stored data.

Estimation Step-2: In this step, the cell updates itself with
new data that it receives at each time step. The sigmoid layer
σ in a single LSTM cell will decide what new values to be
added, then the new state C̃t that will be added to the old state
of the cell C t-1 is created by tanh activation function, which
only depends upon current input xt and hidden state hst t-1.
i.e.,

int = σ(W ei in.[hst t-1, xt ] + biain), (29)

C̃t = tanh(W eic.[hst t-1, xt ] + biac), (30)

Ct = vt ∗ C t-1 + int ∗ C̃t . (31)

Algorithm 1 V2G-CPS State Variable Estimation by
LSTM for DRL
Input 1: Random initialization hst , weights and Ct

Input 2: Voltage, current, real and reactive power
Input 3: Specified convergence tolerance ϵ, Er , RL ,

T D and E S

Output : Estimated voltage V and phase angle θ states
while (E S > ϵ) do

Prediction of V and θ ;
for (T D presented to network) do

The three prediction steps are performed using
(28), (29), (30), (31), (32), (33);

Compute Er ;
if (Er > ϵ) then

Update weights by back propagation
through gradient descent algorithm;

else
Ouput the, V and θ ;

end

If error between actual and estimates is greater,
then send variations V , and θ as an input to
Algorithm 1 for further tuning;

end

end

Estimation Step-3: The filtered output is displayed. At first,
hst t-1 and xt are passed through the sigmoid layer and current
cell state Ct is passed through tanh to finally compute the final
output hstt of a single LSTM cell at the current time instant
as follows,

out = σ(W eiou.[hst t-1, xt ] + biaou), (32)

hstt = out ∗ tanh(Ct ), (33)

Er =
1

2

n
∑

1

(real − hstt )
2. (34)

where, W eiv , W ei in, W eic, W eiou, biav biain, biac, biaou are
the weights and biases of the neural network layer. While the
index v, in, c, and ou present the forget function, inputs, cell
state, and outputs, respectively. The mean square error Er is
computed using (34). At the start of the algorithm, the vectors
hstt and Ct are initialized to zero. Afterward, the weights
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of the LSTM network are updated using a gradient descent
algorithm that error is propagated backward through back-
propagation through the time algorithm [22]. The proposed
framework is presented in Algorithm 1, where T D, RL , and
E S stand for the training data, learning rate, and estimated
states, respectively.

B. Deep Reinforcement Learning

This paper adopts a deep deterministic policy gradient
(DDPG) to detect and mitigate CCAs using the smart DT
for V2G-CPSs. The DDPG can detect the variation in state
variables in a short time, which decreases the time to provide
countermeasures [48]. This reduces the chances of N − K

contingencies in the proposed smart DT for V2G-CPSs due to
its inability to adopt the model-free approach and to model the
dynamic state variables from the power system environment.
As mentioned earlier, we consider the WTs and V2G mode
as the reserve energy sources for the V2G-CPS. However, the
adversary can tamper with the information about the available
V2G devices connected at the current time. This will cause
deviations in power availability. For this purpose, the agent in
DRL observes the system state of V2G-CPS and decides either
to reroute the power from the RERs devices or do nothing in
case of false attacks.

The energy accommodation in V2G-CPSs can be formulated
using the Markov decision process (MDP), where different
constraints due to RERs and CCAs are considered. The MDP
model is defined as a set of 5-tuple having different model
parameters such as (St, Ac, Pr, Re, γ ). Here, St denotes the
state space available for an agent, Ac is the set of possible
actions, Pr is the transition probability between states, Re is
the reward for a state action pair, and γ is the discount factor.
At a certain time t , the state for the agent in the environment
are Stt = (Pt , Ik, V ′, θ ′). Based on the filtered estimated states
V and θ obtain through LSTM and power Pt and current Ik

that are taken in real-time, the agent takes an action to identify
and mitigate CCAs in smart DT for V2G-CPSs. The action
vector Ac = (P t,bus, I bus, Vc, θc, PRERs), where Vc and θc

stand for estimated correct states that are tampered with by the
adversary under FDIA or SA. If the tampered states show the
behavior of SA, that is by monitoring abnormal fluctuations in
power and current level on attack buses, then, it is mitigated by
rerouting power from PRERs. The proposed algorithm detects
the nature of the attack from states available in action space
and mitigates it by rerouting the power from RERs. The state
transition from Stt to St t+1 can be represented as,

St t+1 = f (Stt , Act ). (35)

The reward for a state action pair is,

Re = V + θ − V ′ − θ ′. (36)

The MDP problem is solved using reinforcement learning,
and the Ac under St is evaluated using Q function Q(St, Ac).
The expected reward associated with the state action pair under
policy U can be represented as,

QU (St, Ac) = E(

n
∑

i=0

γ i Ret+i|Stt = St, Act = Ac). (37)

The main aim of reinforcement learning is to find an optimal
policy that maximizes the overall rewards accumulated over
time, which is,

QU* = max
U

QU (St, Ac). (38)

By finding the optimal policy, the optimal action for the
given state can be founded as,

Ac∗ = arg max
U

Q∗(St, Ac). (39)

The amount of state information collected through sensors
in the V2G-CPS, including those estimated by the LSTM,
is massive, and therefore, the set of state space is enormous.
Moreover, the dimension of the V2G-CPSs increases as the
system under consideration grows. As a result, the actions that
are needed for identifying the CCAs and mitigating them faster
cannot be achieved, despite the filtered states obtained through
LSTM provided to the reinforcement learning algorithm.
Reaching an optimal policy through reinforcement learning
is not feasible, and algorithm convergence takes more time.

In this regard, we adopted an actor-critic-based DRL
approach for finding optimal policies for state-action pairs.
The proposed LSTM-DRL techniques for CCAs detection and
mitigation work even for dynamic and extensive networks,
and the agent can provide suitable action with a small delay.
The actor-critic comprises fully connected neural networks
in the LSTM-DRL algorithm, where the actor-network is
used to learn the optimal action following the optimal policy
Act = U (St ′t |WiU ), while the critic network is used to find
optimal Q values for state and action pair Q(St ′t , Act |Wi Q).
Here, WiU and Wi Q stand for the weights associated with
actor and critic networks, respectively, while St ′t stands for the
next expected state from the environment. The agent in LSTM-
DRL learns through exploration and exploitation. After an
agent takes action, some award Ret is given to the respective
action, and the agent’s experience is stored in the memory
replay buffer, which is,

Rm = {St ′t , Act , Ret , St ′t+1}. (40)

For learning purposes, a mini-batch from the replay buffer is
randomly selected to train the network. Moreover, the random
selection of batch from the data available in the replay memory
enhances the generalization capability of the algorithm. The
overall objective function of the algorithm is,

REt =

n
∑

t=0

γ t Ret , (41)

J (WiU ) = EWiU(REt ), (42)

∂ J (WiU )

∂(WiU )
= E

∂ Q(St, Ac|Wi Q)

∂(Wi Q)
, (43)

= E[▽Ac Q(St, Ac|Wi Q)|St = St j ,

Ac = U (St j )▽WiUU (St |WiU )]. (44)

The loss function for the critic network, through which the
weights for the respective network are updated in the training
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phase is computed in (45),

Ls =

n
∑

j=1

[Re′j − Q(St j , Ac j |Wi Q)]2, (45)

Re′j = Re j + γ Q′(St j+1, U ′(St j+1|WiU ’)|Wi Q ’). (46)

Once the critic network’s weights are updated, the actor-
network updates itself using the following equation,

▽WiU J =

n
∑

j=1

[▽Ac Q(St, Ac|Wi Q)|St = St j ,

Ac = U (St j )▽WiUU (St |WiU )|St j ]. (47)

The above equation has two parts; the first half is used to
select the action yielding the highest reward, and the second
half is used to find the optimal policy having the highest
reward by applying the gradient ascent techniques following
the objective function J , as,

WiU ←− WiU + ∂▽WiU J. (48)

After training the actor and critic networks with a mini-
batch, unless the desired accuracy is achieved, the network
updates itself using (49) and (50) iteratively as,

WiU ’ ←− τWiU + (1− τ)WiU ’, (49)

Wi Q ’ ←− τWi Q + (1− τ)Wi Q ’. (50)

The LSTM-DRL algorithm for detecting and mitigating
CCAs in V2G-CPSs is summarized in Algorithm 2.

V. RESULTS AND DISCUSSION

To demonstrate the effectiveness and practicality of the
proposed smart DT framework, we consider a V2G-CPS,
based on a modified IEEE 30-bus system with WTs and V2G
nodes, for case studies. The network configuration of the V2G-
CPS is shown in Fig. 3, in which, the WTs and V2G nodes
are connected at buses 7, 8, 9, 10, 11, 12, 20, 21, 22, and
23. The DT of V2G-CPS is built in MATLAB with Python
based on the physical twin model described in the Section. III.
The DT model is used to generate the data set by emulating
multiple operation conditions of V2G-CPS with and without
CCAs. The data set is then subdivided to train and test the
LSTM-DRL algorithm for CCA detection and mitigation. The
experiments were performed on a PC with specification of
8-core i5 CPU and 16 GB memory. An actor-critic network
comprised of four-layer neural networks having 32 neurons in
each hidden layer and Tanh as an activation function is used
in DRL. We chose to use an Adam optimizer, a learning rate
of 0.001, a batch size of 32, and total of 5,000 episodes for
training and testing and summarised in Table. II.

A. FDIA Detection in V2G-CPSs Using Smart DT Based on

LSTM-DRL Algorithm

In this case study, we assume that an intruder launches
FDIAs to disrupt the state information of V2G-CPS through
malicious V2G nodes. In other words, the adversary attempts
to inject false information on the power availability of V2G

Algorithm 2 CCAs Detection and Mitigation in
V2GCPSs Through Smart DT Replica Having LSTM-
DRL

Input 1: Random initialization actor and critic
networks with WiU and Wi Q

Input 2: Initialize the buffer memory for the specific
set of 5-tuples

Input 3: Expected estimated states V and θ obtained
through LSTM are stored in St ′ vector

Output : New states after CCA is detected and
mitigated

while (Ls > ϵ) do
The agent explores the environment based on

different states such as Pt , Ik, V, θ ;
for (t=0 to t=n) do

Agent perform action Act = U (Stt ′|WiU ) and
gets Ret to the action performed and gives
new St ′t+1 ;

Store Rm = {Stt ′, Act , Ret , St ′′t+1} in replay
memory buffer;

if (Rm > mini − batch) then

Get randoms tuples sample from Rm;
Compute Re′j =

Re j + γ Q′(St j+1, U ′(St j+1|WiU ’)|Wi Q ’);
Compute Ls from (45);
Actor and Critic networks are updated

using (47), (49), and (50);
end

After n episodic tasks in the actor-critic
network

WiU ’ ←− τWiU + (1− τ)WiU ’

Wi Q ’ ←− τWi Q + (1− τ)Wi Q ’

if (V, θ > actual||Pt , It > P limit, I limit) then
CCA is detected. The agent performs an

action Ac = (P t,bus, I bus, Vc, θc, PRERs)
end

end

The updated Ls, states, and network parameters
are sent as input to Algorithm 2 if the wrong
action is performed and an attack is not detected
for further training.

end

TABLE II

CRITICAL PARAMETERS OF DRL ALGORITHM

nodes at targeted buses to deviate the estimated state param-
eters from the actual states. Specifically, the exact power
availabilities of V2G nodes at buses 7, 8, 9, 10, 11, 12, 20,
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Fig. 3. Structure of smart DT framework for V2G-CPS based on modified
IEEE 30 bus system. The proposed LSTM-DRL algorithm is built in smart
DT framework. The WTs and V2G nodes are connected at buses 7, 8, 9, 10,
11, 12, 20, 21, 22, and 23.

21, 22, and 23 are tampered with by FDIAs. However, the
proposed LSTM-DRL algorithm is able to estimate the actual
state parameters, |V |, and θ in the presence of malicious
V2G nodes, as shown in Fig.4(a) and Fig.4(b), respectively.
The deviation of actual, estimated, and compromised states
can be observed in Fig. 4. It can be seen that the states
estimated by the proposed algorithm are close to the real
states in the presence of FDIAs. As a result, we demonstrate
that the proposed LSTM-DRL algorithm has the ability to
eliminate the FDIA impact on the state estimation to improve
the system situation awareness for the reliable and secure
operation of V2G-CPS. Furthermore, to show the robustness
of the proposed LSTM-DRL algorithm, it is tested against
two types of CCAs, which are sequential SAs, and SAs with
FDIAs. Moreover, the corresponding impact of CCAs on the
V2G-CPS, which will be in form of N − K contingency is
analysed.

B. Impact Analysis of CCAs on V2G-CPSs Under Normal

Operation

In this subsection, the V2G-CPS is firstly operated under
normal states, and then we show that the operation of V2G-
CPS in the presence of SAs will experience N − K contin-
gencies if those SAs are not tackled in time. In particular,
we show that the adversary only launches a SA on the circuit

Fig. 4. FDIA detection using LSTM-DRL based smart DT replica for
V2G-CPSs under malicious V2G nodes injection.

Fig. 5. Normal and full load operation of the power system network.

breakers of the certain generator that ultimately un-stabilizes
the whole system. The system under normal state and full load
operation can be observed from Fig 5, where G1 and G4 are
generation buses and L3 and L6 correspond to load buses.
Please note that only these buses are being presented because
we consider these generation and load buses as the biggest
producers and consumers in the V2G-CPS. The normal and
full-load operation of the system is shown in Fig.5, where
actual generation AcG(t) is 1000MW and actual demand
Ac D(t) is 100MW. The bus system has a total generation
of 3000MW and a total load of 300MW distributed among
different load points. During a full load operation, the load of
3000MW falls on the network and can be visualized in Fig.5
from 5 sec to 9 sec.

The system under SAs can be observed in Fig. 6 when the
network is operated under full load conditions. That is, the
additional demand of 1000MW falls on the network at 5 sec;
however, the system is still stable. But when additional demand
of 1700MW falls on the network at 8 sec, which makes a total
demand of 3000MW and the system is now operated under
full load condition. However, at the same time, the adversary
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Fig. 6. The N − K contingencies due to SA that leads to blackout.

launches an SA at a circuit breaker installed on the bus that
connects G1 to the V2G-CPSs at 9 sec and disconnects the
major source of power from the network as shown in Fig.6(a).
As G1 gets tripped, all the demand is distributed among other
buses. Now, the generation capacity falls by 1000MW, and
AcG(t) will now be 2000MW. In addition, the adversary does
not stop at that, and trips G4 using SA at 9.5 sec, as shown in
Fig.6(b), however, as the demand is much more than the actual
generation and to save the generator from getting damaged,
the protective system gets activated and trips G7 at 10 sec,
and all other generation sources afterward. This ultimately
causes N − K contingencies that lead to blackout between
9 sec and 12 sec, as shown in Fig.6. It is depicted in Fig. 6
that the adversary maintained the SA for almost 3 sec, but
when the SA is removed, the system stabilizes within 3 sec,
but the blackout is still present from 9 sec to 12 sec. The
variation in power profile after 12 sec is all due to unbalanced
demand distribution.

The current profile at respective buses during FDIAs and
under SAs can be observed in Fig. 7. The maximum current
limits for the transmission lines are 13 A. However, the
adversary communicates false information about the network’s
current thresholds overshoot, that is normal current values
are communicated to the operator that prevents the operator
from taking appropriate action, and at the same time SAs are
initiated due to which G1 gets tripped at 6 sec, as shown in
Fig.7(a). In addition to the current thresholds, the adversary
also tampered with the power availability due to V2G device’s
connectivity to the system. As a result, the operator is not
able to balance the demand requirements and current profile
overshoots due to which G4 trips at 9 sec and G7 at 10 sec,
as shown in Fig.7(a) and Fig.7(b), respectively.

Fig. 7. Current profile at different buses under FDIAs and SAs.

C. Mitigating N − K Contingencies Under CCAs Using

LSTM-DRL Based Smart DT for V2G-CPSs

This study adopts a sophisticated LSTM-DRL to mitigate
CCAs leading to N − K contingencies. The system operates
under the proposed LSTM-DRL-based smart DT for V2G-
CPSs during N − K contingencies, which are due to CCAs
and high load, as shown in Fig. 8. As mentioned earlier, a SAs
happens at 8 sec, due to which G1 trips. This makes the actual
demand more than the actual generation and variation in power
profile is observed in Fig.6. However, the adversary further
launches another SA to trip G2 and the period of attack will
continue till a blackout occurs. These actual demand variations
ultimately induce Pneed(t) in the power system. The agent in
LSTM-DRL algorithm monitors these variations in the state
parameters. As a result, the agent takes the corresponding
actions to mitigate SAs by routing the reserve from WTs
and V2G devices to make up the extra power needed by the
V2G-CPSs, and these mitigating actions satisfy the network
constraints in check within 3 sec, as shown in Fig. 8. The
power from RERs will provide the backup unless the CCA is
not fully taken care of. Furthermore, it is observed from Fig. 8
that V2G-CPS restores to its original state when the SAs are
countered at 14 sec.

To demonstrate how effectively the proposed LSTM-DRL
algorithm mitigates the N −K contingencies, we compare the
proposed algorithm with the algorithm in [25], which uses
a MAS to mitigate the N − K contingencies. The algorithm
proposed in [25] provided several combinations for individual
lines to prevent N −K contingencies, but it took time to miti-
gate them, as shown in Fig. 9(a). When two transmission lines
get tripped due to faults, the current profile on the other lines
exceeds their current-carrying limit. The algorithm in [25]
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Fig. 8. N−K contingency mitigation under proposed LSTM-DRL algorithm.

Fig. 9. Comparison between the proposed LSTM-DRL algorithm and
MAS [25].

makes the current profile on an overloaded line return to its
original state, but it takes 30 seconds to do so. Furthermore,
the algorithm did not provide any countermeasures for when
CCAs fall on the network. In contrast, the proposed LSTM-
DRL algorithm keeps the current profiles within their threshold
limits. At 5 seconds, CCA happens in the network, due to
which G1 gets tripped and the load distribution is disturbed.
As a result, N − K contingency occurs in the V2G-CPS as

shown in Fig. 9(a). However, with the proposed LSTM-DRL
algorithm, when G1 gets tripped due to CCA, at the same
time, RERs are integrated due to action taken by the agent to
provide extra power, and the rise in G1 power is also observed.
At 8 seconds, the current profile of G1 and L3 are almost
identical. From 8 seconds to 14 seconds, the current profile
on G1 further increases, and excess power is transferred to L3
to keep the current profile on L3 within the threshold limit as
shown in Fig. 9(b). Thus the proposed algorithm stabilizes a
system subject to CCAs within 4 seconds, as shown in Fig. 9.
It was observed from Fig. 8 and 9 that the proposed algorithm
provides a timely solution, even in the event of a CCA.

VI. CONCLUSION

In this paper, a comprehensive smart DT-enabled security
framework for V2G-CPSs has been presented. The LSTM-
DRL techniques have been incorporated into the proposed
framework to detect and mitigate CCAs in V2G-CPSs. In pres-
ence of CCAs, the actual system states have been estimated
through the LSTM algorithm, which is further fed into the
DRL network to identify the nature of CCAs. Moreover,
the proposed LSTM-DRL method has the ability to identify
malicious V2G nodes and recover the actual power availability
of V2G devices connected. In the case studies, various CCA
cases, including SA, FDIA, and combined were considered to
demonstrate the effectiveness and practicality of the proposed
framework. The results show that even a simple CCA is able
to cause N − K contingencies if it is not tackled in time, and
consequently, may lead to a potential blackout in the network.
The proposed smart DT-based framework can detect the CCAs
in time, and mitigate them by rerouting the power from WTs
and V2G nodes connected to the V2G-CPSs while keeping the
network constraints in check. In future, we will be extending
this work to more extensive network i.e, IEEE 118 or 300 bus
system and will also implement it on real network to show the
generalization capability of proposed algorithm.

REFERENCES

[1] Y. Liu, H. Xin, Z. Qu, and D. Gan, ªAn attack-resilient cooperative con-
trol strategy of multiple distributed generators in distribution networks,º
IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2923±2932, Nov. 2016.

[2] W.-T. Li, C.-K. Wen, J.-C. Chen, K.-K. Wong, J.-H. Teng, and C. Yuen,
ªLocation identification of power line outages using PMU measurements
with bad data,º IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3624±3635,
Sep. 2016.

[3] C. Zhao, J. He, P. Cheng, and J. Chen, ªConsensus-based energy
management in smart grid with transmission losses and directed com-
munication,º IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2049±2061,
Sep. 2017.

[4] A. A. Babalola, R. Belkacemi, S. Zarrabian, and R. Craven, ªAdap-
tive immune system reinforcement learning-based algorithm for real-
time cascading failures prevention,º Eng. Appl. Artif. Intell., vol. 57,
pp. 118±133, Jan. 2017.

[5] A. Monticelli, ªElectric power system state estimation,º Proc. IEEE,
vol. 88, no. 2, pp. 262±282, Feb. 2000.

[6] R. Deng, P. Zhuang, and H. Liang, ªFalse data injection attacks against
state estimation in power distribution systems,º IEEE Trans. Smart Grid,
vol. 10, no. 3, pp. 2871±2881, May 2019.

[7] Y. Liu, P. Ning, and M. K. Reiter, ªFalse data injection attacks against
state estimation in electric power grids,º ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 1±33, May 2011.

[8] G. Hug and J. A. Giampapa, ªVulnerability assessment of AC state
estimation with respect to false data injection cyber-attacks,º IEEE

Trans. Smart Grid, vol. 3, no. 3, pp. 1362±1370, Sep. 2012.

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:44:06 UTC from IEEE Xplore.  Restrictions apply. 



5270 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[9] R. Deng, G. Xiao, R. Lu, H. Liang, and A. V. Vasilakos, ªFalse
data injection on state estimation in power systemsÐAttacks, impacts,
and defense: A survey,º IEEE Trans. Ind. Informat., vol. 13, no. 2,
pp. 411±423, Apr. 2017.

[10] R. Deng and H. Liang, ªFalse data injection attacks with limited
susceptance information and new countermeasures in smart grid,º IEEE

Trans. Ind. Informat., vol. 15, no. 3, pp. 1619±1628, Mar. 2019.
[11] J. Zhang, Z. Chu, L. Sankar, and O. Kosut, ªFalse data injection attacks

on power system state estimation with limited information,º in Proc.

IEEE Power Energy Soc. Gen. Meeting (PESGM), Jul. 2016, pp. 1±5.
[12] Y. Isozaki et al., ªDetection of cyber attacks against voltage control in

distribution power grids with PVs,º IEEE Trans. Smart Grid, vol. 7,
no. 4, pp. 1824±1835, Jul. 2016.

[13] A. Saad, S. Faddel, T. Youssef, and O. A. Mohammed, ªOn the
implementation of IoT-based digital twin for networked microgrids
resiliency against cyber attacks,º IEEE Trans. Smart Grid, vol. 11, no. 6,
pp. 5138±5150, Nov. 2020.

[14] G. Chaojun, P. Jirutitijaroen, and M. Motani, ªDetecting false data
injection attacks in AC state estimation,º IEEE Trans. Smart Grid, vol. 6,
no. 5, pp. 2476±2483, Sep. 2015.

[15] A. Chattopadhyay, A. Ukil, D. Jap, and S. Bhasin, ªToward threat
of implementation attacks on substation security: Case study on fault
detection and isolation,º IEEE Trans. Ind. Informat., vol. 14, no. 6,
pp. 2442±2451, Jun. 2018.

[16] S. Chakrabarty and B. Sikdar, ªDetection of hidden transformer tap
change command attacks in transmission networks,º IEEE Trans. Smart

Grid, vol. 11, no. 6, pp. 5161±5173, Nov. 2020.
[17] L. Che, X. Liu, Z. Li, and Y. Wen, ªFalse data injection attacks induced

sequential outages in power systems,º IEEE Trans. Power Syst., vol. 34,
no. 2, pp. 1513±1523, Mar. 2019.

[18] T. Aziz, N.-A. Masood, S. R. Deeba, W. Tushar, and C. Yuen,
ªA methodology to prevent cascading contingencies using BESS in
a renewable integrated microgrid,º Int. J. Electr. Power Energy Syst.,
vol. 110, pp. 737±746, Sep. 2019.

[19] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, ªMalicious data attacks
on the smart grid,º IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 645±658,
Dec. 2011.

[20] D. B. Rawat and C. Bajracharya, ªDetection of false data injection
attacks in smart grid communication systems,º IEEE Signal Process.

Lett., vol. 22, no. 10, pp. 1652±1656, Oct. 2015.
[21] R. Xu, R. Wang, Z. Guan, L. Wu, J. Wu, and X. Du, ªAchieving efficient

detection against false data injection attacks in smart grid,º IEEE Access,
vol. 5, pp. 13787±13798, 2017.

[22] M. Tariq, M. Ali, F. Naeem, and H. V. Poor, ªVulnerability assessment
of 6G-enabled smart grid cyber-physical systems,º IEEE Internet Things

J., vol. 8, no. 7, pp. 5468±5475, Apr. 2021.
[23] R. J. R. Kumar and B. Sikdar, ªEfficient detection of false data injection

attacks on AC state estimation in smart grids,º in Proc. IEEE Conf.

Commun. Netw. Secur. (CNS), Oct. 2017, pp. 411±415.
[24] R. Deng, P. Zhuang, and H. Liang, ªCCPA: Coordinated cyber-physical

attacks and countermeasures in smart grid,º IEEE Trans. Smart Grid,
vol. 8, no. 5, pp. 2420±2430, Sep. 2017.

[25] A. A. Babalola, R. Belkacemi, and S. Zarrabian, ªReal-time cascading
failures prevention for multiple contingencies in smart grids through a
multi-agent system,º IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 373±385,
Jan. 2018.

[26] S. Sahoo and S. Mishra, ªAn adaptive event-triggered communication-
based distributed secondary control for DC microgrids,º IEEE Trans.

Smart Grid, vol. 9, no. 6, pp. 6674±6683, Nov. 2018.
[27] M. Rahnamay-Naeini, Z. Wang, N. Ghani, A. Mammoli, and

M. M. Hayat, ªStochastic analysis of cascading-failure dynamics in
power grids,º IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1767±1779,
Jul. 2014.

[28] M. B. Mollah et al., ªBlockchain for the Internet of Vehicles towards
intelligent transportation systems: A survey,º IEEE Internet Things J.,
vol. 8, no. 6, pp. 4157±4185, Mar. 2021.

[29] D. Zhang, L. Liu, and G. Feng, ªConsensus of heterogeneous linear
multiagent systems subject to aperiodic sampled-data and DoS attack,º
IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501±1511, Apr. 2019.

[30] L. Meng, T. Dragicevic, J. Roldán-Pérez, J. C. Vasquez, and
J. M. Guerrero, ªModeling and sensitivity study of consensus algorithm-
based distributed hierarchical control for DC microgrids,º IEEE Trans.

Smart Grid, vol. 7, no. 3, pp. 1504±1515, May 2016.

[31] A. A. Saad, S. Faddel, and O. Mohammed, ªA secured distributed control
system for future interconnected smart grids,º Appl. Energy, vol. 243,
pp. 57±70, Jun. 2019.

[32] N. M. Dehkordi and S. Z. Moussavi, ªDistributed resilient adaptive
control of islanded microgrids under sensor/actuator faults,º IEEE Trans.

Smart Grid, vol. 11, no. 3, pp. 2699±2708, May 2020.
[33] S. Abhinav, H. Modares, F. L. Lewis, F. Ferrese, and A. Davoudi,

ªSynchrony in networked microgrids under attacks,º IEEE Trans. Smart

Grid, vol. 9, no. 6, pp. 6731±6741, Nov. 2018.
[34] A. H. Khan et al., ªBlockchain and 6G: The future of secure and

ubiquitous communication,º IEEE Wireless Commun., vol. 29, no. 1,
pp. 194±201, Feb. 2022.

[35] B. Chen, S. Mashayekh, K. L. Butler-Purry, and D. Kundur, ªImpact of
cyber attacks on transient stability of smart grids with voltage support
devices,º in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2013,
pp. 1±5.

[36] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder,
Diagnosis and Fault-Tolerant Control, vol. 2. Berlin, Germany: Springer,
2006.

[37] X. Yu and C. Singh, ªA practical approach for integrated power system
vulnerability analysis with protection failures,º IEEE Trans. Power Syst.,
vol. 19, no. 4, pp. 1811±1820, Nov. 2004.

[38] C. Liu, K. T. Chau, D. Wu, and S. Gao, ªOpportunities and challenges of
vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,º
Proc. IEEE, vol. 101, no. 11, pp. 2409±2427, Nov. 2013.

[39] Y. Zhang, J. Wang, and Z. Li, ªInterval state estimation with uncertainty
of distributed generation and line parameters in unbalanced distribu-
tion systems,º IEEE Trans. Power Syst., vol. 35, no. 1, pp. 762±772,
Jan. 2020.

[40] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, ªA review of
false data injection attacks against modern power systems,º IEEE Trans.

Smart Grid, vol. 8, no. 4, pp. 1630±1638, Jul. 2017.
[41] M. Ali, M. Adnan, M. Tariq, and H. V. Poor, ªLoad forecasting through

estimated parametrized based fuzzy inference system in smart grids,º
IEEE Trans. Fuzzy Syst., vol. 29, no. 1, pp. 156±165, Jan. 2021.

[42] Y. Zhang, J. Wang, and B. Chen, ªDetecting false data injection attacks
in smart grids: A semi-supervised deep learning approach,º IEEE Trans.

Smart Grid, vol. 12, no. 1, pp. 623±634, Jan. 2021.
[43] H.-M. Chung, W.-T. Li, C. Yuen, W.-H. Chung, Y. Zhang, and

C.-K. Wen, ªLocal cyber-physical attack for masking line outage and
topology attack in smart grid,º IEEE Trans. Smart Grid, vol. 10, no. 4,
pp. 4577±4588, Jul. 2019.

[44] A. K. Farraj and D. Kundur, ªOn using energy storage systems in
switching attacks that destabilize smart grid systems,º in Proc. IEEE

Power Energy Soc. Innov. Smart Grid Technol. Conf. (ISGT), Feb. 2015,
pp. 1±5.

[45] J. Qi, A. Hahn, X. Lu, J. Wang, and C. Liu, ªCybersecurity for
distributed energy resources and smart inverters,º IET Cyber-Phys. Syst.,

Theory Appl., vol. 1, no. 1, pp. 28±39, Dec. 2016.
[46] H. Suleiman, I. Alqassem, A. Diabat, E. Arnautovic, and D. Svetinovic,

ªIntegrated smart grid systems security threat model,º Inf. Syst., vol. 53,
pp. 147±160, Oct. 2015.

[47] N. Sahani, R. Zhu, J.-H. Cho, and C.-C. Liu, ªMachine learning-based
intrusion detection for smart grid computing: A survey,º ACM Trans.

Cyber-Phys. Syst., vol. 7, no. 2, pp. 1±31, Apr. 2023.
[48] L. Lin, X. Guan, B. Hu, J. Li, N. Wang, and D. Sun, ªDeep reinforcement

learning and LSTM for optimal renewable energy accommodation in 5G
Internet of Energy with bad data tolerant,º Comput. Commun., vol. 156,
pp. 46±53, Apr. 2020.

Mansoor Ali (Member, IEEE) received the B.S.
degree in electrical engineering from the National
University of Computer and Emerging Sciences
(NUCES), Pakistan, in 2013, the M.S. degree
in electrical engineering from CECOS University,
Peshawar, Pakistan, in 2016, and the Ph.D. degree
in electrical engineering from NUCES in 2020. Cur-
rently, he is a Post-Doctoral Research Fellow with
the Electrical Engineering Department, École de
Technologie Supérieure (ÉTS), University of Que-
bec, Montreal, Canada. His current research interests

include load forecasting in power system networks, fuzzy control, smart grids,
security and privacy for cyber-physical systems, and digital twins.

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:44:06 UTC from IEEE Xplore.  Restrictions apply. 



ALI et al.: SMART DT ENABLED SECURITY FRAMEWORK FOR V2G CYBER-PHYSICAL SYSTEMS 5271

Georges Kaddoum (Senior Member, IEEE)
received the bachelor’s degree in electrical
engineering from École Nationale Supérieure de
Techniques Avancées (ENSTA Bretagne), Brest,
France, the M.S. degree in telecommunications
and signal processing (circuits, systems, and
signal processing) from Université de Bretagne
Occidentale and Telecom Bretagne (ENSTB),
Brest, in 2005, and the Ph.D. degree (Hons.) in
signal processing and telecommunications from
the National Institute of Applied Sciences (INSA),

University of Toulouse, Toulouse, France, in 2009. He is currently a Professor
and the Tier 2 Canada Research Chair with École de Technologie Supérieure
(ÉTS), Université du Québec, Montreal, Canada, and a Faculty Fellow with
the Cyber Security Systems and Applied AI Research Center, Lebanese
American University. Since 2010, he has been a scientific consultant in the
field of space and wireless telecommunications for several U.S. and Canadian
companies. He has published more than 300 journals, conference papers,
two chapters in books, and has eight pending patents. His current research
interests include wireless communication networks, tactical communications,
resource allocations, and security. In 2014, he was awarded the TS Research
Chair of Physical-Layer Security for Wireless Networks. He received
the best papers awards at the 2014 IEEE International Conference on
Wireless and Mobile Computing, Networking, and Communications, with
three coauthors, and the 2017 IEEE International Symposium on Personal
Indoor and Mobile Radio Communications, with four coauthors. Moreover,
he received the IEEE TRANSACTIONS ON COMMUNICATIONS Exemplary
Reviewer Award in 2015, 2017, and 2019. In addition, he received the
Research Excellence Award of the Université du Québec in 2018. In 2019,
he received the Research Excellence Award from ÉTS in recognition of his
outstanding research outcomes. Finally, he received the IEEE TCSC Award
for Excellence in Scalable Computing in 2022. He is currently serving as
an Area Editor for the IEEE TRANSACTIONS ON MACHINE LEARNING IN

COMMUNICATIONS AND NETWORKING and an Associate Editor for IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, IEEE
TRANSACTIONS ON COMMUNICATIONS, and IEEE COMMUNICATIONS

LETTERS.

Wen-Tai Li (Member, IEEE) received the Ph.D.
degree from the Institute of Communications Engi-
neering, National Sun Yat-sen University, Taiwan,
in 2018. From 2015 to 2018, he was a Research
Assistant with the Singapore University of Technol-
ogy and Design. Since August 2018, he has been
with the Engineering Product Development Pillar,
Singapore University of Technology and Design, as a
Post-Doctoral Research Fellow. His current research
interests include smart grids, cyber-physical system
security, optimization, estimation, and detection in
power systems.

Chau Yuen (Fellow, IEEE) received the B.Eng. and
Ph.D. degrees from Nanyang Technological Uni-
versity, Singapore, in 2000 and 2004, respectively.
He was a Post-Doctoral Fellow with Lucent Tech-
nologies Bell Labs, Murray Hill, in 2005, and a
Visiting Assistant Professor with The Hong Kong
Polytechnic University in 2008. From 2006 to 2010,
he was with the Institute for Infocomm Research,
Singapore. From 2010 to 2023, he was with the
Engineering Product Development Pillar, Singapore
University of Technology and Design. Since 2023,

he has been with the School of Electrical and Electronic Engineering, Nanyang
Technological University. He has three U.S. patents and published more than
500 research papers in international journals or conferences. He received the
IEEE ICC Best Paper Award in 2023, the IEEE Communications Society Fred
W. Ellersick Prize in 2023, the IEEE Marconi Prize Paper Award in Wireless
Communications in 2021, and EURASIP Best Paper Award for Journal on

Wireless Communications and Networking in 2021. He was a recipient of
the Lee Kuan Yew Gold Medal, the Institution of Electrical Engineers Book
Prize, the Institute of Engineering of Singapore Gold Medal, the Merck Sharp
and Dohme Gold Medal, and twice a recipient of the Hewlett Packard Prize.
He received the IEEE Asia±Pacific Outstanding Young Researcher Award
in 2012 and the IEEE VTS Singapore Chapter Outstanding Service Award
in 2019. He is a Distinguished Lecturer of the IEEE Vehicular Technology
Society, the Top 2% Scientists by Stanford University, and a Highly Cited
Researcher by Clarivate Web of Science.

Muhammad Tariq (Senior Member, IEEE) received
the M.Sc. degree from Hanyang University, Seoul,
South Korea, and the Ph.D. degree from Waseda
University, Japan, in 2012. He was the Campus
Director of the National University of Computer
and Emerging Sciences, Islamabad, Pakistan. His
academic journey includes a Fulbright Scholarship
sponsored by a Post-Doctoral Fellowship at Prince-
ton University in 2016, under the mentorship of Prof.
H. Vincent Poor. He received the HEC Scholarship
for the M.Sc. degree and the Japanese Government

(MEXT) Scholarship for the Ph.D. degree. He is currently a Professor and
the Head of the Department of Electrical Engineering, National University of
Computer and Emerging Sciences. His distinguished academic and research
contributions are exemplified by his authorship or coauthorship of more than
80 research articles, boasting a cumulative impact factor exceeding 320.
His outstanding accomplishments have been acknowledged through numerous
awards. As a testament to his global impact, he collaborated with esteemed
researchers from Europe, China, Japan, and the USA to co-author a seminal
book on smart grids. The reach of his work extends across international
borders, as evidenced by his role as a guest, an invited, and a keynote speaker.
He has delivered research talks at prestigious forums and universities situated
in Pakistan, China, Saudi Arabia, and the USA.

H. Vincent Poor (Life Fellow, IEEE) received
the Ph.D. degree in EECS from Princeton Uni-
versity in 1977. From 1977 to 1990, he was a
Faculty Member with the University of Illinois at
Urbana±Champaign. Since 1990, he has been a
Faculty Member with Princeton University, where
he is currently the Michael Henry Strater University
Professor. From 2006 to 2016, he was the Dean
of the School of Engineering and Applied Sci-
ence, Princeton University. He has also held visiting
appointments at several other universities, including

most recently at Berkeley and Cambridge. Among his publications in these
areas is the recent book Machine Learning and Wireless Communications

(Cambridge University Press, 2022). His current research interests include
information theory, machine learning and network science, and their appli-
cations in wireless networks, energy systems, and related fields. He is a
member of the National Academy of Engineering and the National Academy
of Sciences and a Foreign Member of the Chinese Academy of Sciences, the
Royal Society, and other national and international academies. He received
the IEEE Alexander Graham Bell Medal in 2017.

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:44:06 UTC from IEEE Xplore.  Restrictions apply. 


