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Abstract—The article studies the design of an Intelligent
Reflecting Surface (IRS) in order to support a Multiple-Input-
Single-Output (MISO) communication system operating in a
mobile, spatiotemporally correlated channel environment. The
design objective is to maximize the expected sum of Signal-to-
Noise Ratio (SNR) at the receiver over an infinite time horizon.
The problem formulation gives rise to a Markov Decision Process
(MDP). We propose an actor-critic algorithm for continuous con-
trol that accounts for both channel correlations and destination
motion by constructing the state of the Reinforcement Learning
algorithm to include history of destination positions and IRS
phases. To account for the variability of the underlying value
function, arising due to the channel variability, we propose to
pre-process the input of the critic with a Fourier kernel, which
enables stability in the process of neural value approximation.
We also examine the use of the destination SNR as a component
of the designed MDP state, which constitutes common practice
in previous works. We empirically show that, when the channels
are spatiotemporally varying, including the SNR in the state
representation causes divergence. We provide insight on the
aforementioned divergence by demonstrating the effect of the
SNR inclusion on the Neural Tangent Kernel of the critic
network. Based on our study, we propose a framework for
designing actor-critic methods for IRS design and also for more
general problems, that is predicated upon sufficient conditions of
the critic’s Neural Tangent Kernel for convergence under neural
value learning.

Index Terms—Intelligent Reflecting Surfaces, deep learn-
ing, reinforcement learning, IRS parameter design, Neural
Tangent Kernels.

I. INTRODUCTION

THE field of Intelligent Reflecting Surfaces (IRSs) [1], [2],
[3] is a recent development at the intersection of devices,

signal processing and wireless communications. An IRS is a
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panel of reflective elements. Each element can be indepen-
dently controlled to change the phase of the impinging wave.
By deploying the IRS in a way to interact with a transmit-
ted communication signal, and by dynamically controlling the
IRS elements one can create a smart propagation environment
towards the destination, counteracting the effects of attenuation,
improving Quality-of-Service (QoS) [4], security [5], efficiency
[6], [7] and energy preservation [8], [9], [10].

For the promise of IRSs to be realized, however, a number of
research questions need to be answered, mainly related to the
complexity of the IRS design problem. Designing the IRS ele-
ments to optimize some performance objective typically gives
rise to highdimensional nonconvex optimization objectives that
pose significant challenges, especially in the case of dynamic
environments. While semidefinite relaxations to these problems
can achieve good performance [8], [11], [12], they entail sig-
nificant computational complexity.

Recent developments in deep learning [13] have provided
data-driven, reliable and scalable solutions to highly nonconvex
problems. Thus, it comes as no surprise that research efforts
have been focused on adopting deep learning paradigms for
problems that revolve around the designing of the IRS param-
eters. Training graph neural networks to learn the mappings
from channel pilots to IRS elements in a supervised fashion was
considered in [14]. In [15], [16], the problem of IRS design is
viewed under the prism of supervised learning. A feedforward
neural network is employed in [15] to parametrize the mapping
from coordinate positions of the mobile receivers to IRS ele-
ment configurations in order to maximize the received signal
strength. In [16], a sparse sensing approach based on deep gen-
erative modeling is used to estimate the channels for all IRS el-
ements. The estimated channels are then used to design the IRS
parameter values.

Supervised learning methods pose certain distinct drawbacks
when it comes to IRS design; most prominently, they re-
quire data instances that have been manually labeled or an-
notated by human experts. These labels serve as references
or correct answers. These are typically hard or expensive
to obtain. Further, with the exception of supervised learn-
ing for time series forecasting [17], deep supervised learning
assume that training data (channel measurements) are indepen-
dent and identically distributed (i.i.d.) samples from a chan-
nel distribution. However, this assumption does not hold for

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:47:45 UTC from IEEE Xplore.  Restrictions apply. 



4030 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

urban channel communication environments, where the shad-
owing effect gives rise to spatiotemporal correlations [18], [19].
Such urban environments constitute an attractive option for
IRS deployment.

The limitations of supervised learning can be overcome via
the paradigm of deep Reinforcement Learning (RL) [20]. RL
methods do not require ground truth labels. The only stipulation
is for a scalar reward signal, the role of which can be played
by the QoS metric that is being optimized, for example, the
destination SNR in a communication scenario. RL methods do
not require i.i.d channel measurements.

Therefore, RL methods are more suitable for control-
ling the IRS elements over time in settings in which the
channels are spatiotemporally correlated. Such a setting
is adopted in this study. Deep RL methods for design-
ing IRS-assisted communication systems have been consid-
ered in [21], [22], [23]. The work in [24] investigates a
typical communication scenario between a Multiple-Input-
Multiple-Output (MIMO) source and a mobile destination,
assisted by a single IRS (very similar to the one we in-
vestigate in the current work). The authors benchmark the
performance of a simple deep RL algorithm against multi-
ple naturally applicable methods, such as a Vector Approxi-
mate Message Passing (VAMP) [25] and Alternating Direction
Method of Multipliers (ADMM) [26]. They demonstrate that,
under highly noisy channels, the deep RL method is signifi-
cantly more robust with respect to the noise level. This consti-
tutes a strong motivation for the current work since it validates
the need for improved deep RL algorithms for IRS design. The
work of [27] presents a deep RL algorithm intertwined with
a convex approximation lower bound formulation, where the
IRS parameters and the source precoding weights are selected
with the goal of minimizing the source transmit power subject
to meeting constraints on the receiver’s SNR and the IRS power
budget. Deep RL for IRS design in a MISO communication sys-
tem is considered in [24], [28]. A similar approach is also used
in [22] viewing the IRS design as a discrete control problem.
However, the discretization induces the curse of dimensionality
[29], making the method difficult to scale to scenarios with
very large IRSs. The works in [30], [31] extend the use of
deep RL for IRS design in scenarios with multiple users. The
aforementioned approaches at the intersection of deep RL and
IRS phase shift design did not address the case of spatiotempo-
rally correlated channel realizations. The existence of channel
correlations requires careful attention when applying deep RL
to optimize IRS parameters for wireless communications. The
goal of the current work is to address this gap and explore the
arising implications of such scenarios.

In this paper, we examine a scenario that is similar to the ones
of [8], [11], [22], [24], [27], [28]. In particular, we examine the
real-time design of an IRS that assists a MISO communication
system with a mobile destination. The key differentiation in
comparison to prior works is that we explicitly address the
case of spatiotemporally correlated channels. Since the chan-
nels are spatiotemporally correlated, the IRS elements will also
exhibit correlations in time and space. Therefore, by solely
including the IRS parameters of the previous time step in the

state representation, as proposed in previous works [8], [11],
[21], [22], [24], [27], [28], the state becomes partially observed
and the performance plummets. Here, we propose an actor-
critic RL algorithm for continuous control to decide upon the
IRS parameter values at every time step of system operation.
The state of the actor-critic method is constructed to include a
history of previous IRS parameter values. We show that if the
history’s length is at least equal to the temporal correlation of
the channels, the algorithm provides about 2dB improvement
in SNR at the destination as compared to the version of the
algorithm where the state includes only the IRS parameter
values of the previous time step.

Recent results in deep learning theory indicate that feedfor-
ward neural networks with Rectified Linear activations (ReLU
MLPs) cannot represent the high frequency components of
the target functions in regression tasks, a phenomenon also
coined as spectral bias [32]. The critic of the proposed deep
RL algorithm is an ReLU MLP that is trained to regress, via
bootstrapping, the state-action pairs of the induced MDP to
the corresponding values. Previous works have demonstrated
that value functions that implicitly depend on spatiotemporally
correlated communication channels possess high frequency
components in the corresponding spectra [33], [34]. In this
direction, we propose preprocessing of the state-action vec-
tor of the IRS phase shift design actor-critic algorithm
with a Fourier kernel to ameliorate the spectral bias. This
preprocessing provides an additional 2dB improvement in
destination SNR.

Finally, it has been common practice in previous works that
propose deep RL solutions for IRS optimization problems, to
include the QoS metric of interest (in our case the destination
SNR), as a component of the state representation. In his article,
we illustrate that for the case of spatiotemporally correlated
channels, the inclusion of the SNR in the state is a cause of
divergence. We provide an explanation for this phenomenon
that relates the SNR inclusion to the resulting critic Neural
Tangent Kernel (NTK). In particular, we argue that the inclu-
sion of the SNR increases the off-diagonal elements of the
critic’s NTK and violates sufficient conditions of convergence
under neural value approximation. The aforementioned analysis
prompts us to suggest a general framework for designing value-
based deep RL methods for IRS phase shift design and beyond
that predicates upon the structure of the critic’s NTK.

The contributions of the current article can be summarized
as follows:

• We propose a novel design for an IRS assisting a MISO
communication system in the presence of destination mo-
bility and spatiotemporally correlated channels. The de-
sign is achieved via a deep RL approach for continu-
ous control, targeting to maximize the expected sum of
SNRs over an infinite time horizon at the destination. The
proposed RL approach addresses destination mobility by
including the position of the receiver as a component of
the state, and the spatiotemporally varying nature of the
channel by augmenting the state with histories of the IRS
parameter values and destination positions. It is illustrated
that the augmented state enables almost 2dB increase in
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average destination SNR for a simulated scenario with 20
IRS elements and typical values pertaining to spatial and
temporal correlations of urban communication channels.

• We propose preprocessing of the state-action vector with a
Fourier kernel before passing it through the critic network
in order to better capture high frequency variations of the
optimal value function, arising due to the channel vari-
ability. This modification enables about 2dB additional
improvement in average SNR at the receiver for simulated
scenarios with 30IRS elements and about 5dB improve-
ment for simulated scenarios with 150IRS elements as
compared to implementations that directly employ ReLU
MLPs for the critic. Moreover, the application of the
Fourier preprocessing kernel enables stable training of our
proposed approach without the need for a target network
in critic updates, which constitutes a common heuristic of
value-based deep RL methods.

• RL algorithms are designed assuming a state representa-
tion that captures the most relevant information regard-
ing the agent’s interaction with the environment. Previous
works in deep RL for IRS phase shift design have included
the metric of interest, such as the receiver’s SNR, as part
of the RL state vector. In contrast, our proposed work,
based on empirical analysis, demonstrates that this design
choice leads to instability and divergence specifically in
the context of spatiotemporally correlated channels. We
also provide an analysis that derives the mechanism that
causes the divergence. The analysis is grounded on suffi-
cient conditions on the critic’s NTK [35] for convergence
of value learning in deep RL. The connection between
the NTK and the stability in value learning allows us to
propose a principled framework for designing actor-critic
methods for IRS phase shift optimization and problems
that arise in wireless systems.

Initial results of the current work are presented in [36]. In
particular, in the current work we extend the results of [36]
by providing additional experimentation and by deriving the
mechanism of the instability caused by the inclusion of the SNR
as a state component. This analysis connects the design of deep
RL algorithms for IRS phase shift design with the properties of
the NTK of the critic.

Notation: We denote matrices and vectors by bold upper-
case and bold lowercase letters, respectively. The operators
(·)T and (·)H denote transposition and conjugate transposition
respectively. Caligraphic letters will be used to denote sets.

The p-norm of x ∈ Rn is x p
n
i=1 x (i)

p 1/p
, for

all N  p ≥ 1. The expectation of a random vector x is
denoted as E (x).

II. SIGNAL MODEL

We consider a communication system, like the one depicted
in Fig. 1. It is a MISO system in which the source/base station
is a Uniform Linear Array (ULA) with N antennas. The IRS is
a 2D panel that consists of M = Mx × My passive (reflective)
elements, with Mx denoting the per-row number of elements
and My the per-column number of elements. The effect of the

Fig. 1. IRS-aided MISO scenario that involves destination mobility.

i-th IRS element on the impinging signal is the introduction
of a phase shift, represented here by multiplication with ejθ i ,
with θi ∈ [−π, π]. It is assumed that each IRS element can be
controlled independently of the other elements.

The channels from the source to the IRS are denoted by G ∈
CM×N , and from the IRS to the destination by h ∈ CM×1 . All
channels are assumed to be flat fading.

We consider a time-slotted scenario. In slot t, the source
transmits a unit power symbol μ(t) ∈ Cafter precoding it by
vector b ∈ CN×1 . The transmit power budget is b 2

2 ≤ Pmax .
Let us assume that the direct link from the source to the destina-
tion is blocked, and so the source signal arrives at the destination
through reflection by the IRS. The signal that is received at the
destination can be expressed as:

y = hH ΦGbμ + n (1)

where Φ is a diagonal matrix with entries Φ =
diag(ejθ 1 , ejθ 2 , . . . ejθ M ), n ∼ CN 0, σ2 is the reception
noise at the destination.

For fixed channels, phase shift matrix and precoding weights,
the instantaneous SNR at the destination is

SNR(t) =
|hH ΦGb|2

σ2
(2)

and the optimal precoding vector is [8]

b∗= Pmax
(hH ΦG)H

h H ΦG 2
2

(3)

In this article we adopt the following assumptions: (i) The
source-IRS and IRS-destination channels are random, exhibit-
ing correlations with respect to time. The IRS-destination chan-
nel also exhibits correlations with respect to space that depend
on the relative position of the destination to the IRS. (ii) The
destination can move slowly within a confined small area of the
3D space. (iii) The receiver’s position is assumed to be known
at the IRS controller by the possible coexistence with a radar
perception system [37].

Based on the above assumptions we will denote the channels
as h(t, xt) and G(t) , where xt ∈ R3 is the position of the
destination in the 3D space at time step t. Under the assumption
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that the channels h(t, xt) and G(t) at time step t are known,
the optimal base station precoding vector can be written as

b∗(t) = P max
(h(t, xt)H Φ(t)G(t))H

h(t, x t)H Φ(t)G(t) 2
2

(4)

and the SNR at time step t as

SNR(t) =
|h(t, xt)H Φ(t)G(t)b∗(t)|2

σ2 (5)

The design of matrix Φ(t), aiming to further maximize
the maximum (with respect to b) receiver SNR can be
formulated as

max
Φ(t)

SNR(t)

s.t. Φ(t)(i,i) = 1, ∀i = 1, 2, . . . , M. (6)

Solving problem (6) with Semidefinite Programming [12]
requires complexity in the order of O(M 6) [11].

In this work, we take a different approach that overcomes
the computational overhead. Instead of solving the problem of
(6) at every time step t, we design an actor-critic algorithm
with deep value approximation. The actor is a parameterized
function which learns the mapping from the state to the phase
shift values at every time step. The state is comprised by the
position of the destination at time step t, and histories of phase
shift values and destination positions of previous time steps.
The goal is that the learned actor/policy maximizes the expected
sum of receiver SNRs over an infinite time horizon. The policy
can be trained offline and subsequently deployed. In that case,
computing the optimal phase shift coefficients at each time
step involves a forward pass through the actor/policy network.
This deployment option requires utilizing data collected from
the deployment environment. This approach assumes that the
channel statistics remain unchanged during system operation.
However, in order to accommodate real-time changes in the
channel statistics, updates must be performed during the system
operation.

III. OFF-POLICY DEEP ACTOR-CRITIC FOR

CONTINUOUS CONTROL

RL is concerned with scenarios in which an agent interacts
with an environment producing a sequence of states, actions
and rewards. This gives rise to a MDP which is defined as a
tuple S, A, R, P, p, γ ; S denotes the state space, A the action
space, R : S × A → R is the reward function, P : S × A → S
is the transition function that implicitly defines the dynamics of
the environment, p(s)is the distribution of the initial state, and
γ ∈ (0, 1)is the discount factor that quantifies the “interest” of
the agent in long-term delayed rewards. The goal of RL is to
learn a mapping from states to actions, namely a policy, π(a|s),
that maximizes the expected discounted sum of rewards J =
Eπ

∞
t=0 γtR(st, at) .

The state-action value function Qπ is defined as the expected
discounted sum of rewards starting from a state-action pair and
following the policy π thereafter.

Qπ (s, a) = Eπ
∞

t=0

γtR(st, at)|(s0, a0) = (s, a) (7)

The optimal value function Q∗(s, a)is the fixed point of the
Bellman backup operator [38], i.e.,:

Q∗(s, a) = E(s ∼P ) R(s, a) + γ max
a

Q(s, a) (8)

In off-policy deep actor-critic methods, we assume the existence
of an Experience Replay, denoted as D = s i , ai , si , ri

N exp

i=1
which comprises Nexp transitions resulting from the agent’s
interaction with the environment. Each transition includes the
state si , action ai , subsequent state si , and reward ri . Expe-
rience Replay is a technique utilized in off-policy deep RL,
as introduced by [39]. It involves storing past experiences
in a buffer and randomly sampling from it during training.
This process enables the agent to learn from infrequent or
distant events, enhancing sample efficiency, preventing feed-
back loops. The optimal state-action value function is param-
eterized as a neural network with parameters w, denoted as
Qw(s, a)). The aforementioned network is coined as “critic”
or “value network” and we will use both terms interchangeably
for the rest of the article. The process of approximating the
value function entails the sampling of a batch of transitions
from the Experience Replay and the following gradient descent
update rule:

w → w + ηE(s,a,s ,r)

∼ D Q∗
w(s, a) − Qw(s, a)∇ wQw(s, a) (9)

The scalar parameter η denotes the learning rate. The process
of learning the value function is usually unstable due to the

fact that the bootstrapping target Q∗
w(s, a) depends on the

estimator Qw(s, a). One popular heuristic includes the use of a
target network with parameters wtarget for computing the boot-
strapping target. The parameter vector wtarget slowly tracks the
parameter vector w with the following update rule [40]:

wtarget → τw + (1 − τ)wtarget , (10)

where τ   1 . The policy is explicitly parametrized by a neural
network with parameters φ, denoted as πφ(s). The aforemen-
tioned neural network is typically called the ”actor” or the
“policy network”. We will use both terms interchangeably for
the rest of the article. The actor is a neural network that either
maps the state to a distribution over the action space (stochastic
policies) or maps the state to the corresponding action (deter-
ministic policies). We will focus on deterministic actors for
the problem at hand. The policy is updated by the following
update rule that stems from the deterministic policy gradient
theorem [41]:

φ → φ + ηEs∼D ∇ aQw(s, a)|a=πφ (s)∇ φπφ(s) (11)

IV. ACTOR-CRITIC APPROACH FOR IRS PHASE

SHIFT OPTIMIZATION

The first step in the process of designing deep actor-critic
methods for the IRS phase shift design problem is to explicitly
define the elements of the underlying MDP.

State: As stated before, the IRS is aware of the position of
the destination during the time step of interest t. Therefore, the
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first component of the state vector is the current position of the
destination in the 3D space, denoted as xt. Previously proposed
methods [21], [24], [28] typically include the phase shift coef-
ficients of the IRS at the previous time step only, i.e., assume
the state to be Markovian. However, this assumption ignores
significant part of the temporal evolution of the channels. In
the case of temporally correlated channels, the MDP becomes
Partially Observable (POMDP [42]). To avoid partial observ-
ability, we include the phase shift values of the IRS elements for
W previous time steps along with the corresponding destination
positions. This is similar to the state representation design in the
seminal work of [39], where the deep Q learning algorithm is
introduced and tested on the environments of the Atari Domain.
In [39], the state is constructed by concatenating multiple con-
secutive frames of the video to avoid partial observability. The
presence of temporal correlations in our problem setting poses
challenges for adopting even unsupervised approaches like the
one proposed in [43]. These approaches typically involve offline
data generation and subsequent training of one or an ensemble
of neural networks to optimize an unsupervised objective. How-
ever, this methodology implicitly assumes that the training data
are i.i.d. samples, which is not applicable when dealing with
spatiotemporally correlated channels. Therefore the state of the
corresponding MDP can be expressed as:

st = x t, xt−1 . . . xt−W , Θ(t − 1) . . . Θ(t − W ), (12)

where Θ(j) = [θj
1, θ

j
2, . . . θjM ] and θj

i denotes the phase shift
coefficient of the i-th element of the IRS during the j -th time
step of system operation.

Action: The action representation is defined as the
component-wise difference between the phase shift coefficients
of the IRS during the current step and the previous step.

at = δθt
1, δθt2, . . . δθtM , (13)

where δθt
i = θti − θt−1

i .
Reward: Since we aspire to maximize the expected sum of

SNRs at the destination, it is natural to choose the reward at
t to be the achieved receiver SNR during the aforementioned
time step.

rt = SNR(t) (14)

A. Deep Deterministic Policy Gradient

After explicitly defining the MDP, we adapt the algorithmic
structure of the Deep Deterministic Policy Gradient (DDPG)
algorithm [40] in order to learn the control policy that maps
the state of the MDP at time step t to the action that maxi-
mizes the sum of SNRs in expectation. The DDPG is an actor-
critic RL algorithm that employs deep neural networks for
function approximation. The general framework for the DDPG
algorithm for IRS phase shift design is depicted in Fig. 3. In
terms of the critic, we employ 2 value networks Qw1 (s, a)
and Qw2 (s, a). During every update step, we sample a batch
of experiences/transitions from the Experience Replay and we
update each critic network independently with the update rule
of Eq. (9). The actor is parametrized as a neural network πφ(s).

Fig. 2. The architecture of the actor network which ensures, by design, the
satisfiability of the unit modulus constraints.

At every update step, we use the sampled batch of experiences
to update the actor with the update rule of Eq. (11).

We employ3target networks, one for each of the correspond-
ing main ones. Each of the critic target networks is employed
to compute the bootstrapping target Q∗

wi
(s, a)for the corre-

sponding critic update (Eq. (9)). Furthermore, the computing of
the bootstrapping target involves the maximization of the critic
estimation with respect to the action

Es ∼P R(s, a) + γ max
a

Q(s, a) .

Since the actor provides the action that maximizes the value
function at each state, we compute the maximum as follows:

max
a

Qwi (s, a) = Qwi (s, πφ (s )), i = 1, 2 (15)

where πφ is the target network of the actor. At the end of every
neural network update step, the target networks’ parameters are
updated using Eq. (10). The update of the actor involves the
differentiation of the critic with respect to the action (Eq. (11)).
The critic that is being used for the actor update is the one
that corresponds to the minimum value estimation for every
state-action pair of the corresponding batch. This is the practice
introduced in [44] to mitigate overestimation in the process of
neural value approximation.

We employ ReLU MLPs for all the parametrized functions.
A critical question in the design of the RL algorithm is how
to ensure that the unit modulus constraints of problem (6) are
satisfied throughout training. We address the aforementioned
issue by properly designing the policy network. The policy
estimates the component-wise difference between the phase
shift coefficients of the current time step and the phase shift
coefficients of the previous time step. Each component of the re-
sulting phase shift vector at every time step should be restricted
in the range [−π, π]. Therefore, even though the in-between-
layers activations of the actor are ReLUs, we choose the output
of the last layer to pass through a hyperbolic tangent (Tanh)
activation that squashes each component to the range [−1, 1].
Subsequently, each component is multiplied with π. That being
the case, each component of the action is ensured to be in the
range [−π, π]. Since the action denotes the difference between
the phase shift coefficient values for two consecutive time steps,
we clip each resulting phase shifter to the range [−π, π]. The
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Algorithm 1 RL-IRS-Base
Initialize Experience Replay D with experiences from a
random policy, the critic networks Qw1 (s, a), Qw2 (s, a),
the actor network πφ(s), the corresponding target networks
Qw1

(s, a), Qw2
(s, a), πφ (s), the learning rate η, the coef-

ficient τ (Eq. (10) for target updates), the batch size NB , the
discount factor γ.
w1 → w1

w2 → w2

φ → φ
Main Body
for all episodes do

for all time steps t do
estimate the position of the destination xt

compute st = [xt . . . xt−W , Θ(t − 1) . . . Θ(t − W )]
compute action at = πφ(st) = δθt

1, δθt2 . . . , δθtM
compute the phase shifters θt

i = θt−1
i + δθti

θt
i = clip(−π, π)

compute Φ =diag(ejθ t
1 , . . . ejθ

t
M )

compute rt = SNR(t)
compute destination position at next step xt+1

compute st+1

Store {st, at, st+1 , rt} in D
Updates
Sample batch {s, a, s, r}of size NB from D
Target1 = r + γQw1

(s, πφ (s)) − Qw1(s, a)
w1 → w1 + ηTarget1∇ w1Qw1 (s, a)
Target2 = r + γQw2

(s, πφ (s)) − Qw2(s, a)
w2 → w2 + ηTarget2∇ w2Qw2 (s, a)
Qw = mini=1,2 Qwi (s, a)

φ → φ + η∇ aQw(s, a)|a=πφ (s)∇ φπφ(s)
w1 → τw1 + (1 − τ)w1
w2 → τw2 + (1 − τ)w2
φ → τφ + (1 − τ)φ

end for
end for

architecture of the actor network is illustrated in Fig. 2. We
denote this base algorithm as RL-IRS-Base and its algorithmic
structure is illustrated in Algorithm 1.

B. Fourier Features

As demonstrated in [33], [34], [45], MDP value functions
that implicitly depend on spatiotemporally correlated commu-
nication channels typically exhibit high local variability that
corresponds to high frequency spectrum components. The crit-
ics of the proposed RL-IRS-Base are ReLU MLPs that are
trained to learn the underlying value function of the formulated
MDP under a bootstrap regression framework. Due to spectral
bias the critics might not be able to accurately capture the
high frequency components of the true underlying value func-
tion. This can result in erroneous value approximation and in
suboptimal learned policies since the actor is updated based
on critic estimates.

Inspired by recent results in graphics, scene rendering and
low-dimensional regression with neural networks [46], [47],

Fig. 3. The general framework of DDPG [40] for IRS phase shift design.

[48], we propose the preprocessing of the state-action vector
with a random Fourier feature kernel before passing it through
the critic. We denote as ˜s ∈ R(W +1)(M+3) the vector that
corresponds to the concatenation of the state vector s and the
action vector a:

˜s = [s, a]T ∈ R(W +1)(M+3) →

v = [cos(2πB˜s), sin(2πB˜s)]T , (16)

where the matrix B ∈ RN f ×(W +1)(M+3) is the transformation
of the Fourier kernel. The value Nf corresponds to the number
of resulting Fourier features and, in this case, is equal to the
number of neurons of the first layer of the critic architecture.
Each element of B is drawn from N (0, σ2B ). The operations
cos(·)and sin(·) in Eq. (16) are applied element-wise. The
variation that employs the Fourier preprocessing on the critic
is denoted as RL-IRS-FF and the corresponding algorithmic
structure is illustrated in Algorithm 2. The key distinctions
between RL-IRS-FF and RL-IRS-Base reside in the compu-
tations of v and v . These vectors correspond to the outputs of
the Fourier preprocessing kernel and serve as the input vectors
for the critic networks.

C. SNR as a Component of the State

A critical part of the process of designing RL algorithms for
control problems is how to construct the representation of the
state. The incentive behind the state construction is to include
as much information that relates to the agent’s interaction with
the environment as possible. This is especially prevalent in
research works that are at the intersection of RL and robotics
[49]. Under the aforementioned intuition, previous works that
proposed deep RL algorithms for IRS phase shift optimization
[24], [27], [28], [30], [31] include the metric of interest (in
our case the SNR at the destination) as a component of the
state vector. On a first thought this seems like a good design
decision since it provides additional information of the agent’s
behavior regarding the task of interest. On the other hand, deep
actor-critic methods employ neural networks for parametrizing
the value function, so the state construction should account for
the aforementioned element as well. We wish to investigate the
effect of the inclusion of the SNR as a state component, both
empirically and theoretically, therefore we provide a variation
of the RL-IRS-Base that includes the receiver’s SNR as a
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Algorithm 2 RL-IRS-FF
Initialize Experience Replay D with experiences from a
random policy, the critic networks Qw1(v), Qw2 (v), the
actor network πφ(s), the corresponding target networks
Qw1

(s, a), Qw2
(s, a), πφ (s), the learning rate η, the coeffi-

cient τ, the batch size NB , the discount factor γ, the variance
σB of the Normal distribution to sample the elements of the
Fourier kernel B from.
Initialize B where B ij ∼ N (0, σ2B )
w1 → w1

w2 → w2

φ → φ
Main Body
for all episodes do

for all time steps t do
estimate the position of the destination xt

compute st=[xt, . . . xt−W , Θ(t − 1). . .Θ(t − W )]
compute action at = πφ(st) = δθt

1, δθt2 . . . , δθt
M

compute the phase shifters θt
i = θt−1

i + δθti
θt

i = clip(−π, π)
compute Φ =diag(ejθ t

1 , . . . ejθ
t
M )

compute rt = SNR(t)
compute destination position at next step xt+1

compute next state st+1

Store {st, at, st+1, rt} in D
Updates
sample batch {s, a, s, r}of size NB from D
compute ˜s= [s, πφ (s )]T

compute ˜s = [s, a]T

compute v = [cos(2πB˜s), sin(2πB˜s)]
compute v = [cos(2πB˜s), sin(2πB˜s)]
Target1 = r + γQw1

(v ) − Qw1 (v)
w1 → w1 + ηTarget1∇ w1 Qw1(v)
Target2 = r + γQw2

(v ) − Qw2 (v)
w2 → w2 + ηTarget2∇ w2 Qw2(v)
Qw = mini=1,2 Qwi (v)
φ = φ + η∇aQw(v(s, a))|a=πφ (s)∇ φπφ(s)
w1 → τw1 + (1 − τ)w1
w2 → τw2 + (1 − τ)w2
φ → τφ + (1 − τ)φ

end for
end for

component of the state and we denote this as RL-IRS-SNR-
state. The structure of RL-IRS-SNR-state follows the same
framework as RL-IRS-Base (Algorithm 1). The distinction lies
in the construction of the state representation. In RL-IRS-
Base, the state comprises the IRS parameter values and the
destination locations for a specified number of previous time
steps. On the other hand, the RL-IRS-SNR-state approach
introduces additional components, namely the receiver’s SNRs
corresponding to all time steps of the window. During system
operation, the destination positions, IRS parameter values, and
destination SNRs (in the case of RL-IRS-SNR-state) for all
previous time steps within the current window are stored in
memory. The destination position for the current time step is

estimated, and all the aforementioned parameters collectively
form the current state. This state is then input to the policy
network, which produces the corresponding action. Based on
the action, the IRS’s current parameter values can be computed.
Subsequently, the channels are estimated, and the destination
SNR for the current step is calculated using Eq. (5).

V. EXPERIMENTS

Our goal is to simulate a set up as the one depicted in Fig. 1.
In addition, we want to integrate in this the notion of channels
that exhibit correlations with respect to both time and space.

A. Channel Model

The statistical description of the channel between a source
element and position p ∈ R3 during time slot t, can be modeled
as a product of four terms [50], i.e.

g(p, t)  gP L (p) gSH (p, t) gMF (p, t) ej2πφ(t) , (17)

where gP L (p)  p − p S
−/2
2 is the path-loss component,

with being the path-loss exponent and pS the position of the
source; gSH (p, t) the shadow fading component; gMF (p, t)
the multi-path fading component. Finally, ej2πφ(t) denotes the
phase. The parameter φ is uniformly distributed in [0, 1]. A sim-
ilar representation accounts for the channel from the position to
the destination.

If we apply the logarithm of the squared channel magnitude
of (17), we obtain:

G(p, t)  10log10(|g(p, t)|2)

 α g(p) + βg(p, t) + ξg(p, t), (18)

where

αg(p)  − 10 log10 p − pS 2 , (19)

βg(p, t)  10log10 |g(p, t)|2 ∼ N (0, ζ2), and (20)

ξg(p, t)  10log10 |g(p, t)|2 ∼ N (ρ, σ2ξ). (21)

In the above, ζ2 is the shadowing power, and ρ,σ2
ξ are respec-

tively the mean and variance of the multipath fading component.
Although the multipath fading component, ξg(p, t), is i.i.d.

between different positions and times, the shadowing compo-
nent, βg(p, t), is correlated. Specifically, the shadowing com-
ponent between any two positions pi and pj , at two time slots
ta and tb, exhibits correlations according to [51]

E[βg(pi , ta)βg(pj , tb)] =Σ̃ g(pi , pj )e
− |t a −t b|

c2 , (22)

where

Σ̃ g(pi , pj )  ζ 2e−p i −p j 2/c 1 . (23)

with c1 denoting the correlation distance, and c2 the
correlation time.

B. Channel Data

We assume that the set up takes place in a 3D cube (20 ×
20 × 20). The operation space is discretized in cube cells of
volume (1 × 1 × 1). The 3D positions of the MIMO source and
the IRS are fixed beforehand and remain the same throughout
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every experiment. The destination can freely move in an area
comprised by 4distinct cube cells. All cube cells that constitute
the destination area of motion are on the same vertical level
(simulating a person walking in a small space and being ser-
viced by the nearby receiver or an autonomous vehicle that
navigates itself in a parking lot and is required to exchange
information with the nearby base station). The destination oc-
cupies one cell per time slot and can also, potentially, move to a
neighboring cell at the subsequent slot. We simulate the channel
data in the same way that were simulated for the 3D scenario
of [34] and so that they have statistics as described in [52].
In particular, the log-magnitude of the channel has 3 additive
components, the pathloss with exponent l = 2.3, the multipath,
which is i.i.d zero-mean Gaussian with variance σξ = 0.6, and
the shadowing which is a zero-mean Gaussian correlated in time
and space. The correlation distance is c1 = 1.2, the correlation
time c2 = 5and the shadowing power is ζ2 = 6. The MIMO
source transmission power is Pmax = 65dbm. The variance
of the reception noise at the destination is σ2 = 0.5. These
parameters are consistent with real time measurements [18] for
urban channel communication environments.

C. Actor-Critic Specifications

Each neural network that is being employed ( 2 critics and
1 actor) is feedforward with 3 layers. The activations between
layers are ReLU, with the exception of the last layer of the actor
where we employ Tanh. Each layer consists of 400neurons.
We employ the Adam optimizer [53] for the updates, with a
learning rate of 2e-4 and batch size of 64. The parameter τ for
the updates of the target networks is chosen to be 0.005. When
it comes to the RL-IRS-FF, the Fourier kernel B is populated
with elements drawn from a zero-mean Normal distribution
with variance 0.01. The size of the Experience Replay is set
to 1e+6 and the discount factor γ is set to 0.99. The MIMO
source is comprised by 5 antenna elements.

D. Discussion

The training performances of the 3 proposed deep RL algo-
rithms, namely RL-IRS-Base, RL-IRS-FF and RL-IRS-SNR-
state are demonstrated in Figs. 4 and 5. In particular, Fig. 4
corresponds to the training performances of the algorithms for
an IRS with20phase shifters and Fig. 5 corresponds to the train-
ing performances for an IRS with 30phase shifters. The trajec-
tory of the destination is exactly the same for all experiments
to validate the direct comparison. The algorithm that introduces
the Fourier feature preprocessing for the critic provides signifi-
cant improvements in terms of convergence speed, stability and
SNR accumulation in comparison to the other 2approaches. In
particular, for an IRS with 20reflective elements, the RL-IRS-
FF provides an increase of approximately 2dB in terms of the
achieved destination SNR. When it comes to the case of an IRS
with 30elements, the SNR increase is almost 3dB. We attribute
this effect on the mitigation of the spectral bias in the process
of the neural value approximation. The variation that includes
the SNR at the representation of the state (RL-IRS-SNR-state)
performs poorly and is prone to divergence. We investigate how

Fig. 4. Curves for the training performances of the 3 discussed algorithms,
namely RL-IRS-FF, RL-IRS-Base and RL-IRS-SNR-state for IRS with 20
phase shift elements. Each plot corresponds to the training for 50 episodes
and each episode is comprised by 300steps. Each curve is the average over
10 different seeds and we omit the variance to avoid clutter.

Fig. 5. Curves for the training performance of the 3 discussed algorithms,
namely RL-IRS-FF, RL-IRS-Base and RL-IRS-SNR-state for IRS with 30
phase shift elements. Each plot corresponds to the training for 50 episodes
and each episode is comprised by 300steps. Each curve is the average over
10 different seeds and we omit the variance to avoid clutter.

the inclusion of the SNR as a state component affects func-
tion approximation in the process of neural value learning in
Section VI.

Fig. 6 illustrates the average SNR, per time step, achieved
by RL-IRS-FF and RL-IRS-Base, after convergence, for dif-
ferent numbers of IRS phase shift elements. The performance of
RL-IRS-SNR-state is omitted because the approach frequently
diverges. As can be extrapolated, the performance of RL-IRS-
FF is consistently better than the performance of RL-IRS-Base
for all sizes of the IRS. Both methods seem to plateau at about
25 elements. This is an indication that we have reached the
representational capacity of the critic.

In order to achieve consistent increase in the destination
SNR by applying the 2 algorithms to scenarios with IRSs with
larger numbers of reflective elements than 30, we would need
to increase the number of parameters for the actor and the
critic architectures.
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Fig. 6. The average SNR at the destination achieved by RL-IRS-FF and
RL-IRS-Base, after convergence, with respect to the number of IRS elements.

Fig. 7. The training performance of RL-IRS-FF for 3 different values of
the window size W . Each episode is comprised by 300time steps and each
curve is an average over 10 seeds.

E. How to Choose the Size of the Window W

A critical hyperparameter, when it comes to the performance
of all proposed approaches, is the length of the window of
previous time steps that pertain to the state construction. It
is prevalent that we would like to make the window length
arbitrarily large to ensure that the state is fully observable. An
increase in the window size requires an increase in the memory
requirements for training since the proposed approaches are off-
policy RL methods and they involve storing transitions in an
Experience Replay Memory. Fig. 7 demonstrates the perfor-
mance of RL-IRS-FF for 3different values of W , namely 1, 3
and 5. The performance improves with an increase in window
size. The length of the window needs to be at least equal to
the temporal coefficient of the shadowing correlation of the
channels (in our case 5). Any increase in the window length
beyond the value of the temporal correlation coefficient does not
seem to correspond to significant improvement in performance.

F. Remarks on Stability

Performance stability in actor-critic algorithms can be as-
sessed from two perspectives: reward stability and value learn-
ing stability. Reward stability is determined by the variance
of accumulated (or average) per-episode rewards. On the other
hand, value learning stability focuses on how well the algorithm

approximates the optimal value of the MDP. In highly stochastic
environments, the optimal reward can vary across episodes.
Therefore, a policy that corresponds to the optimal or near-
optimal value function may exhibit higher reward variability
compared to a policy that corresponds to a suboptimal value
function estimation.

To illustrate this concept, consider a hypothetical experiment
with a 3-state MDP and three discrete actions. The agent always
starts at state s0 and has the option to stay at s0 (reward of 1),
move left tos1 (reward of -1000), or move right, accumulating a
stochastic reward that is consistently higher than 1 but changes
every episode. Choosing to move left is always unfavorable as it
results in a reward of -1000 in every episode. Now, let’s examine
the remaining two policies. The policy of staying at the same
state will yield a stable constant reward of 1 in every episode,
resulting in a reward performance variability of 0. On the other
hand, the optimal policy of always moving right will exhibit
higher variability in reward performance due to the stochastic
nature of the associated reward, yet the estimation of the optimal
value function corresponding to this policy is accurate. This is
because the agent has learned the optimal value function, which
indicates that the action with the highest value is to move right.

The difference between these policies in the hypothetical
environment (staying in the same position vs. moving right)
mirrors the distinction between RL-IRS-Base and RL-IRS-FF.
While RL-IRS-FF displays a more noisy reward performance
compared to RL-IRS-Base (Figs. 4 and 5), its overall perfor-
mance is significantly better. This is because RL-IRS-FF is ca-
pable of estimating the optimal value function more accurately,
allowing it to learn a policy that is closer to optimal. Conse-
quently, although the stochastic dynamics introduce variability
in the optimal reward per episode, the superior policy achieved
by RL-IRS-FF can approach higher rewards in practice.

G. Why Not Use Sinusoidal Representation Networks for the
Critic Parametrization?

The Fourier features preprocessing is not the only way to
mitigate the spectral bias. The authors in [48] propose a novel
neural network architecture to overcome the spectral bias in
low-dimensional regression tasks. They name this new architec-
tural scheme as Sinusoidal Representation Networks (SIRENs).
The architecture is feedforward with sinusoids as activation
functions between layers.

In particular, assuming an intermediate layer of the neural
network with input x ∈ Rn , then the output is an affine transfor-
mation sin(wT x + b). Since the layer is not the network’s first,
the input x is arcsine distributed. Under these assumptions, it
was shown in [48] that, if the elements ofw, namely wi , are ini-

tialized from a uniform distribution wi ∼ U(− 6
n , 6

n ), then

wTx ∼ N (0, 1)as n grows. Therefore one should initialize the

weights of all intermediate layers with wi ∼ U(− 6
n , 6

n ).
The neurons of the first layer are initialized with the use of a
scalar hyperparameter ω0, so that the output of the first layer,
sin(ω0W x + b)spans multiple periods over [−1, 1]. W is
a matrix whose elements correspond to the weights of the
first layer.
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It would, at first, seem reasonable to parametrize the critics of
our proposed approaches as SIRENs. The SIREN architecture
was specifically designed to process input vectors whose com-
ponents take values roughly in the same range. In the case of our
proposed deep RL approaches for IRS phase shift design, the
state-action vector is comprised by components that take values
in very different ranges (the destination position is a coordinate
vector in R3 that takes values in the range [0, 20]3 and the each
phase shifter takes values in the range [−π, π]). Therefore it is
impractical to tune the SIREN for the task at hand, especially
the parameter w0.

H. Robustness With Respect to Radar Noise

The position of the destination at time step t is estimated
with the use of a coexisting radar perception system [37]. The
receiver position is subject to the radar’s range and angle reso-
lution, therefore cannot be assumed to be precisely known.

In order to test the robustness of the proposed methods with
respect to the noise induced by the finite range and angle res-
olution of the radar perception system, we conduct another set
of experiments depicted in Fig. 8. The typical range resolution
for contemporary mmWave radar systems for automotive and
urban applications is about 0.2m[54]. We simulate the noisy
radar estimates by conducting the same set of experiments as
in Fig. 5, but we add a vector that we sample from a uniform
distribution U(000, [0.2, 0.2, 0.2]T ) to the destination position at
every time step ( xt).

As can be extracted by Fig. 8, both methods RL-IRS-FF
and Rl-IRS-Base are generally robust with respect to the noise
induced by the radar resolution. Still, the superior performance
of the RL-IRS-FF remains in this setting.

I. Simulations With Large IRS

Subsequently we present a larger example, where the num-
ber of IRS elements is 150 and the destination motion is
confined in a larger area of space ( 25 grid cells). For this
particular example we make use of a larger critic and a
larger policy network. In particular, the number of neurons
at each layer is 2048and the number of layers remains the
same as for the previous experiments. The variance of the
Fourier kernel is chosen to be 0.001. The corresponding SNR
results throughout training for all examined methods are il-
lustrated in Fig. 9. The RL-IRS-FF algorithm demonstrates a
significant improvement in SNR compared to RL-IRS-Base,
achieving an approximate SNR gain of 5dmby the end of
training. However, in this particular setting, the divergence
of RL-IRS-SNR-state is less pronounced. Despite this, RL-
IRS-SNR-state still exhibits inferior performance compared
to RL-IRS-Base.

It is important to consider the practical deployment of IRS
systems. In practice, IRS elements can often be grouped to-
gether and controlled by the same circuit, resulting in the same
phase shift parameter value being applied to the entire group
at each time step. Under this realistic assumption, the proposed
approach (RL-IRS-FF) can be adapted to estimate the shared

Fig. 8. The blue line and the orange line correspond to the performances
of RL-IRS-FF and RL-IRS-Base, respectively, under perfect knowledge of
the destination position. The light blue and light orange lines correspond
to the performances of RL-IRS-FF and RL-IRS-Base, respectively, under
imprecise knowledge of the destination position (induced by the finite range
and angle resolution of the radar perception system). Each curve corresponds
to the training for 50 episodes and each episode is comprised by 300steps.
Each curve is the average over 10 different seeds and we omit the variance
to avoid clutter.

Fig. 9. Curves for the training performance of the 3 discussed algorithms,
namely RL-IRS-FF, RL-IRS-Base and RL-IRS-SNR-state for IRS with
150 phase shift elements. Each plot corresponds to the training for 200
episodes and each episode is comprised by 1000steps. The range of the
destination motion is 25grid cells. Each curve is the average over 10different
seeds and we omit the variance to avoid clutter.

phase shift value for each group of phase shifters controlled by
the same underlying circuit.

J. Training Without Target Networks

The target network, as introduced by [39], has been widely
recognized as a crucial component for the success of deep
Q learning. However, it requires careful tuning of the hyper-
parameter τ to ensure effective target network updates. To
shed light on the impact of the target network, we present
Fig. 10, which showcases the performance of the discussed
approaches in the same scenario as Fig. 9, but without uti-
lizing the target network to estimate the targets for the
critic updates.
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Fig. 10. Curves for the training performance of the 3 discussed algorithms,
namely RL-IRS-FF, RL-IRS-Base and RL-IRS-SNR-state for IRS with
150 phase shift elements, but without the utilization of the target network
for the critic updates. Each plot corresponds to the training for 200episodes
and each episode is comprised by 1000steps. The range of the destination
motion is 25grid cells. Each curve is the average over 10different seeds and
we omit the variance to avoid clutter.

Fig. 11. Curves for the training performance of RL-IRS-FF for 2 different
ranges of destination motion (namely 25 grid cells and 4 grid cells). The
IRS is comprised by 150phase shift elements. Each plot corresponds to the
training for 200episodes and each episode is comprised by 1000steps. Each
curve is the average over 10 different seeds and we omit the variance to
avoid clutter.

From the results, it is evident that both RL-IRS-Base
and RL-IRS-SNR-state exhibit significant divergence in the
absence of the target network. In contrast, the RL-IRS-FF
approach manages to converge to a satisfactory performance,
albeit at a slower rate compared to the experiment involving
the target network (Fig. 9).

K. Comparing for Different Ranges of Destination Motion

A crucial aspect to consider is how the RL-IRS-FF ap-
proach performs under different ranges of destination motion.
In Fig. 11, we present the performance of RL-IRS-FF in the
same experimental setup as in Fig. 9, but for two distinct ranges
of destination motion: 25 grid cells and 4 grid cells.

There are a couple of noteworthy observations. First, the
plot line corresponding to 4 grid cells appears smoother. This
is expected because, under similar channel conditions, less
mobility of the destination leads to reduced variability in the
optimum SNR per time step. Overall, the performance in the
case of 4 grid cells is superior to that of 25 grid cells, and
the convergence speed is also better for the former. This can be
attributed to the fact that less mobility of the destination reduces
the need for exploration by the RL algorithm, and it is well-
known that exploration plays a significant role in determining
performance [55].

VI. WHY DOES THE INCLUSION OF THE SNR IN THE STATE

CAUSES DIVERGENCE?

In order to study the divergence caused by the inclusion of the
SNR in the state representation we first have to discuss about
divergence in deep value learning.

A. Divergence in Neural Value Learning

We retreat to the general case of off-policy deep Q learning.
The critic is parametrized by parameter vector w and is denoted
as Qw(s, a). Let us assume that we sample a transition that
involves the state-action pair (s, a)from the Experience Replay
and update w:

w = w + η Q ∗
w(s, a) − Qw(s, a)∇ wQw(s, a) (24)

We examine how the aforementioned update affects the value
estimate of a different state-action pair (¯s, ¯a) = (s, a)by apply-
ing the Taylor expansion of Q around w and keeping only the
first order term.

Qw (¯s, ¯a) ≈ Qw(¯s, ¯a) + ∇wQw(¯s, ¯a)T (w − w) (25)

We plug Eqs. (24) into (25) and we obtain:

Qw (¯s, ¯a) ≈ Qw(¯s, ¯a) + ηKw (¯s, ¯a; s, a)

× Q ∗
w(s, a) − Qw(s, a), (26)

where K w(¯s, ¯a; s, a) = ∇wQw(¯s, ¯a)T∇ wQw(s, a)is the el-
ement of the Neural Tangent Kernel (NTK) of the critic
network [56].

Let us also assume an MDP that corresponds to a discrete
state-action space with NMDP state-action pairs. All NMDP

state-action pairs are included in the contents of the Experience
Replay. If we update w by applying the update rule defined in
Eq. (11) with all NMDP state-action pairs, then the updated
vector of state-action values, Qw can be expressed as:

Qw ≈ Qw + 2ηKwDρ (Q∗
w − Qw), (27)

where Dρ is a diagonal matrix with entries given by ρ(s, a), the
distribution induced by the content of the Experience Replay.
The Kw is the NTK of the critic and corresponds to a symmetric
matrix where:

• Kw(i, j) = Kij = ∇wQw(si , ai )T∇ wQw(sj , aj ) i = j
• Kw(i, i) = Kii = ∇ wQw(si , ai ) 2

2
At this point, we refer to the work by [35]. The authors make

the following assumption. The first order approximation of the
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Fig. 12. The visualization of the NTK, for the same batch of experiences for the 3 proposed deep RL algorithms, namely RL-IRS-FF, RL-IRS-Base,
RL-IRS-SNR-state. The states of the batch that are used for the NTK calculation of RL-IRS-SNR-state are augmented with the SNR at the destination.

critic update being a contraction in the sup norm is sufficient
condition for convergence in deep value learning. Based on the
said presupposition, they prove the following theorem:

Theorem 1: [35] Let indices i, j refer to state-action pairs.
Suppose that K w, ρ, γ < 1, η satisfy the following conditions:

∀i, 2ηKii ρi ≤ 1, (28)

∀i, (1 + γ)
j=i

K ij ρ j ≤ (1 − γ)Kii ρi . (29)

Then the critic update is a contraction in the sup norm and the
fixed point of the update operator is the optimal value function
of the MDP.

B. How the SNR at the State Affects the Critic NTK

Let us examine Theorem 1 in the context of design-
ing the IRS phase shifters for the scenario described in
Section II. The reward signal is not sparse, therefore, without
the need for extensive exploration, we can safely assume that
ρi > 0 everywhere. Moreover, the discount factor γ is cho-
sen to be 0.99(very close to 1). Consequently, the aforemen-
tioned theorem implies that, in order to achieve convergence
in the process of learning the value function of the IRS phase
shift optimization MDP, we require that the resulting critic
NTK should have a strong diagonal and small non-diagonal
elements:

∀j = i, ∇ wQw(si , ai )T ∇ wQw(sj , aj ) ∇ wQw(si , ai ) 2
2

(30)

The non-diagonal elements of the critic NTK constitute a
measure of the generalization of the critic. As it is prevalent
by Eq. (26), the larger the absolute value of K w(¯s, ¯a; s, a), the
more the update using (s, a)affects the estimation of the value
function for the (¯s, ¯a)pair.

The NTK depends on both the architecture of the critic
and the choice of the state and action vector representations.
Therefore, the association between the divergent behavior of
deep value learning and the NTK of the critic, outlined by
expression (30), provides us with a tool to examine the effects
of including the SNR as a component of the state.

Fig. 12 provides the visualization of the empirical NTK for
the same batch of state-action pairs, at the beginning of training,
for the three deep RL schemes that have been proposed in the
previous subsection, namely RL-IRS-FF, RL-IRS-Base and
RL-IRS-SNR-state. What needs to be stressed regarding the
aforementioned Figure is that the batch is exactly the same
for the NTKs that correspond to RL-IRS-FF and RL-IRS-
Base. The states of the batch for the calculation of the NTK
that corresponds to RL-IRS-SNR-state are augmented with the
SNRs at the destination. The exact same critic neural network
was used at initialization with the exception that the critic of the
RL-IRS-FF included the Fourier features preprocessing. All
empirical NTKs were computed using tools from the PyTorch
[57] repository introduced in [58].

As can be inferred by Fig. 12, the condition underlined
in Eq. (30) is best satisfied by the NTK that corresponds to
the RL-IRS-FF. It constitutes a stationary kernel with a very
strong diagonal and relatively small non-diagonal elements. In
that case, the critic gradient vectors for different state-action
pairs are almost orthogonal to each other. This explains, to a
large degree, the superior performance of RL-IRS-FF on the
tested scenarios. Furthermore, the noteworthy ability of RL-
IRS-FF to achieve satisfactory performance without relying on
the conventional practice of using a frozen target network (as
observed in Fig. 10) can be attributed to the inherent properties
of its corresponding NTK. In particular, the NTK associated
with RL-IRS-FF demonstrates minimal generalization by hav-
ing significantly smaller off-diagonal elements compared to
the elements on the main diagonal. This constitutes an indi-
cation that the success of the target network, as proposed in
[39] is predicated on its contribution in mitigating aggressive
generalization during Q updates. The performance discrepancy
between RL-IRS-FF and RL-IRS-Base can also be explained
by the NTK visualization. The NTK of RL-IRS-Base ex-
hibits relatively larger non-diagonal elements in comparison
to the NTK of RL-IRS-FF and, therefore, cannot estimate
the value function as accurately. The NTK that corresponds
to RL-IRS-SNR-state has elements of the main diagonal that
are of small magnitude relative to the non-diagonal elements.
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The sufficient condition for convergence underlined in Eq. (30)
is significantly violated. This explains the divergent behavior of
RL-IRS-SNR-state.

The inclusion of the SNR in the state representation induces
a “state-aliasing” effect when combined with function approxi-
mation. Since the channels exhibit spatiotemporal correlations,
two different states that correspond to different previous se-
quences of IRS phase shift values and different positions of
the receiver might result in similar (or even the same) SNR at
the destination. Therefore, the inclusion of the SNR as a state
component makes the critic gradient vectors for different state-
action pairs relatively coherent to each other. In such cases, the
critic generalizes relatively aggressively and the value learning
process is prone to diverge. Besides since the critic is trained
to estimate the optimal value function, assuming good conver-
gence of the value approximation, the effects of the channels
on control performance can be implicitly inferred.

It is important to note the absence of channels (base station-
IRS and IRS-destination) in the state representation, despite
their assumed knowledge during training for reward/SNR com-
putation. Similar to the SNR, the channels exhibit temporal
and spatial correlation. Consequently, different time steps and
destination positions can correspond to the same channel real-
izations, leading to gradient aliasing on the critic and violating
the sufficient conditions for convergence.

C. Fixed Destination Position

The analysis above raises the question of whether fixing
the position of the destination throughout training leads to
divergence. Fig. 13 depicts the performance of the discussed
algorithms in a setup identical to Fig. 9, except that the position
of the destination remains fixed for all steps.

As expected, the variability of the reward between episodes
is smaller compared to the case where the destination is moving
(Fig. 9). Notably, the RL-IRS-FF method outperforms its per-
formance when the destination is moving. Regarding the RL-
IRS-Base and RL-IRS-SNR-state methods, both exhibit slight
improvements compared to their performance with a mobile
destination. However, the difference between the two methods
is minimal, which can be attributed to the fixed destination caus-
ing an increase in gradient interference for both approaches.
Although the performance of both methods is relatively poor
compared to RL-IRS-FF, there is no significant increase
in divergence.

The rationale behind this lies in the following explanation.
Increasing gradient interference affects the performance of deep
Q learning, but in the case of a fixed destination, this in-
crease in gradient alignment (and thus generalization) is evenly
distributed among all state-action pairs. On the other hand,
when the SNR is included, aliasing occurs in a more stochastic
manner. Consequently, a single update step may have a dispro-
portionate effect on certain state-action pairs, leading to overes-
timation/underestimation in the value learning process, which is
further amplified by bootstrapping. Not all increases in general-
ization have an equal negative impact. The inclusion of the SNR
causes different state-action pairs to appear more similar than

Fig. 13. Curves for the training performance of the 3 discussed algorithms,
namely RL-IRS-FF, RL-IRS-Base and RL-IRS-SNR-state for IRS with
150 phase shift elements. Each plot corresponds to the training for 200
episodes and each episode is comprised by 1000steps. The position of the
destination is fixed throughout training. Each curve is the average over 10
different seeds and we omit the variance to avoid clutter.

they actually are, resulting in overestimations and underestima-
tions during training. Conversely, a fixed destination position
increases generalization uniformly, reducing the likelihood of
overestimations and underestimations. Alternatively, one can
interpret this as follows. If we consider two different time steps
that correspond to the same destination position, these two
states contain similar information about the reward. As a result,
updating the value estimation with one of them is expected to
impact the estimation of the other. Conversely, two different
time steps that correspond to the same SNR may not correspond
to “similar” states due to the dynamic nature of the channels.
Consequently, updating the value estimation with one of these
states should not significantly influence the value estimation
of the other.

VII. THE CRITIC NTK AS A TOOL FOR THE DESIGN OF DEEP

RL APPROACHES

The availability of annotated data for wireless communica-
tions is very limited [59]. Consequently, deep RL algorithms
have become very attractive for innovative solutions in the area
of wireless systems [60], [61], [62], [63] since they are generally
deprived of the need for ground truth labels. Besides the fact that
the primary objective of the current article is to study the prob-
lem of IRS phase shift design in spatiotemporally correlated
channel environments, there is also the motivation to incentivize
the research community to utilize the properties of the NTK
of the value network as a guide in the process of designing
value-based deep RL algorithms for wireless communications.
We consider that the connection between the generalization
properties of the value network (that can be quantified via
the value network’s NTK) and the stability of neural value
approximation is powerful and should be added in the quiver of
paradigms for the development of deep RL algorithms in pursuit
of wireless autonomy [64]. The design of deep RL methods
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for wireless communications (and for other domains) revolves
around the choice for different state-action representations and
different exotic neural network architectures a lot. This process
can, sometimes, become chaotic and the best combination can
be elusive. Eq. (30) along with the NTK visualization can
become a single and reliable point of reference in order to both
construct deep RL approaches and reason about their behavior
in practice.

VIII. CONCLUSION

This article has considered the problem of dynamically
controlling the values of IRS phase shifters over time in spa-
tiotemporally correlated channel environments. In particular,
the examined scenario involves a multi-antenna source and a
single-antenna receiver that wish to communicate. The line-
of-sight communication is blocked, and therefore an IRS is
employed to reflect the signal of interest from the source to the
receiver which can move within a confined area. The goal is
to determine the phase shift values of the IRS at every time
slot in order to maximize the sum of SNRs at the destination
over an infinite time horizon. We have proposed a deep actor-
critic algorithm that takes into account both the destination
motion and the spatiotemporal evolution of the channels. The
high variability of the channels with respect to both time and
space induce high frequency components in the spectrum of the
underlying value function of the defined MDP. Recent results
in deep learning regression have demonstrated an impotence of
feedforward neural networks in capturing high frequencies of
the target function. We have thus proposed preprocessing the
input of the critic with a Fourier features kernel to assist in
the process of accurately estimating the value function. Our
proposed approach has been seen to provide significant im-
provements in stability and reward accumulation. Finally, most
previous works that have proposed deep RL for IRS phase shift
optimization in similar settings have included the optimization
metric (in our case the destination SNR) as a component of the
MDP state. We have provided an analysis that hints at the fact
that, for spatiotemporally varying channels, inclusion of SNR
in the state representation can cause instability in the process
of deep value learning. Our analysis has been predicated upon
the coupling between convergence of deep Q learning and the
properties of the NTK of the critic network. More concretely,
including the SNR in the state increases the destructive gen-
eralization of the critic and, therefore, can cause instability
and divergence.
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