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A Survey on Model-Based, Heuristic, and Machine
Learning Optimization Approaches in
RIS-Aided Wireless Networks

Hao Zhou
Yuanwei Liu

Abstract—Reconfigurable intelligent surfaces (RISs) have
received considerable attention as a key enabler for envisioned
6G networks, for the purpose of improving the network capacity,
coverage, efficiency, and security with low energy consumption
and low hardware cost. However, integrating RISs into the
existing infrastructure greatly increases the network management
complexity, especially for controlling a significant number of
RIS elements. To realize the full potential of RISs, efficient
optimization approaches are of great importance. This work
provides a comprehensive survey of optimization techniques
for RIS-aided wireless communications, including model-based,
heuristic, and machine learning (ML) algorithms. In partic-
ular, we first summarize the problem formulations in the
literature with diverse objectives and constraints, e.g., sum-
rate maximization, power minimization, and imperfect channel
state information constraints. Then, we introduce model-based
algorithms that have been used in the literature, such as alter-
nating optimization, the majorization-minimization method, and
successive convex approximation. Next, heuristic optimization
is discussed, which applies heuristic rules for obtaining low-
complexity solutions. Moreover, we present state-of-the-art ML
algorithms and applications towards RISs, i.e., supervised
and unsupervised learning, reinforcement learning, federated
learning, graph learning, transfer learning, and hierarchical
learning-based approaches. Model-based, heuristic, and ML
approaches are compared in terms of stability, robustness,
optimality and so on, providing a systematic understanding of
these techniques. Finally, we highlight RIS-aided applications
towards 6G networks and identify future challenges.
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NOMENCLATURE

«a Learning rate

C] Diagonal matrix that includes all 6,

G The channel gain from BS antennas to RIS
elements

X A binary decision variable

n Discount factor

Vi The SINR of user k

z Optimal control variable

E Expected value

T Minibatch size

u,B Sets of players in matching theory

& Error function

VA A convex closed set

w,w Neural network weight of main and target
networks.

wA wC Neural network weight of actor and critic
networks.

o The efficiency of the transmit power amplifier.

O, Phase shift of RIS element n

0 RIS phase shift resolution

a Action in a Markov decision process

A, B, C, D Constant real matrix

€ch Channel estimation error

f(x), F(x) Objective/utility function

g(x) Surrogate function

h]? The channel gain from BS antennas to user k

h,f{ The channel gain from RIS elements to user k

1 Total number of control variables

i The index of variable number in a set

K The total number of single-antenna users

l The index of iteration number

M The total number of base station antennas

N The total number of RIS elements

No The noise power

p Base station transmit power

Ppg Total hardware static power consumption in
BS
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Prax Maximum transmission power of the base
station

Pr(k) Power consumption of one RIS reflecting
element with resolution x

Pyg Hardware static power consumed by one user

Pr() Probability

(s, a) State-action value in Q-learning

r Reward in a Markov decision process

Rr, R Data rate of legitimate user and eavesdropper

s, s Current and the next state in a Markov deci-
sion process

u, u', b, b Matching theory players

V(s) State value at s in Q-learning

Wi The weight of user k

by The control variable in an optimization

problem

I. INTRODUCTION

HILE 5G has entered the commercialization phase,
Wthe research community has started the exploration of
future 6G networks. Compared with previous generations, 6G
networks are expected to present more stringent performance
requirements, i.e., terabits per second (Tbps) data rates for
virtual reality, and more than 107 / km? connection densities
with significantly lower latencies than 5G networks [1].
One of the main obstacles to wireless network evolution
is the uncontrollable radio environment with reflections,
diffractions, and scattering. Recently, reconfigurable intelligent
surfaces (RISs) have emerged as a promising technique to
enhance wireless signal propagation [2]. In particular, the
core feature of RISs is to manipulate the signal propagation
path by intelligently configuring numerous small elements.
Each RIS element can independently tune the phase of
the incident signal, creating a smart radio environment [3].
RISs not only are technically attractive but also require
low energy consumption and hardware cost, making this
technology a promising one for enhancing spectral efficiency
for real-world deployments. Given these advantages, RISs
can be combined with other emerging techniques, includ-
ing multiple-input multiple-output (MIMO), millimeter-wave
(mmWave) communications, unmanned aerial vehicle (UAV)
networks, non-orthogonal multiple access (NOMA), vehicle-
to-everything (V2X) networks, and so on [4], [5S]. Many
existing studies and implementations have demonstrated RISs’
capability of improving network capacity, coverage, energy
efficiency, and security.

Despite their potential, integrating RISs into wireless
networks will significantly increase the complexity of
network management [6]. For example, each RIS ele-
ment requires independent phase-shift configurations, leading
to large solution spaces for optimization algorithms. The
RIS configuration is more complicated when other con-
trol variables are jointly involved, such as beamforming,
spectrum allocation, NOMA decoding order, or UAV tra-
jectory design. Therefore, advanced optimization techniques
are of paramount importance to handle such complexity and
take full advantage of RISs. Motivated by the importance

of optimization techniques, this work provides a compre-
hensive overview of optimization techniques for RIS-aided
wireless communications, including model-based, heuristic,
and machine learning (ML) approaches. There are several sur-
veys devoted to the theory, design, analyses, and applications
of RISs [7], [8], [9], [10], [11], [12]. However, this work
differs from existing surveys and tutorials by systematically
summarizing and analyzing the optimization techniques for
RIS-aided wireless networks, providing detailed comparisons,
as well as including more state-of-the-art ML techniques.
Specifically, as shown in Fig. 1, we focus on the following
aspects:

1) Problem Formulations: We first introduce the fundamen-
tal theories of RIS technology, and then provide an overview
of the problem formulations for optimizing RIS-aided wireless
networks, including maximization of sum-rate/capacity, energy
efficiency, user fairness, and secrecy rate, and minimization
of power consumption. In addition, we consider discrete
RIS phase shifts and resource management problems that
include integer control variables, and imperfect channel state
information (CSI) with different error model constraints.

2) Model-Based Methods: In this work, model-based meth-
ods refer to algorithms that rely on specific optimization
models with full knowledge of the defined problem.' Model-
based algorithms usually have demanding requirements for the
properties and forms of problem formulations, e.g., convexity,
continuity, and differentiability. We include the following
model-based algorithms for optimizing RIS-aided wireless
networks: alternating optimization (AO), the majorization-
minimization (MM) method, successive convex optimization
(SCA), block coordinate descent (BCD), semidefinite relax-
ation (SDR), second-order cone programming (SOCP),
fractional programming (FP) and branch-and-bound (BnB).

3) Heuristic Algorithms: These algorithms apply heuristic
rules for problem-solving. They provide more efficient alter-
natives to conventional model-based methods by sacrificing
optimality and accuracy for low complexity and fast solutions.
Heuristic algorithms can be used to solve NP-hard problems
or serve as baselines and supplements for other algorithms. In
this survey, we review the convex-concave procedure (CCP)
algorithm, meta-heuristic algorithms, greedy algorithms, and
matching theory for optimizing RIS-aided wireless networks.

4) ML Algorithms: ML algorithms are recognized as
promising solutions for wireless network optimization [16]. ML
techniques do not need full knowledge of the defined problem,
and they learn from data or interact with environments to find
hidden patterns. We present state-of-the-art ML techniques for
optimizing RIS-aided wireless networks, including supervised
and unsupervised learning, reinforcement learning (RL),
federated learning (FL), graph learning, transfer learning,
hierarchical learning, and meta-learning. We provide in-depth
analyses for algorithm features and applications towards RISs,
i.e., the dataset acquisition of neural networks for RIS phase-
shift optimization, and loss function definitions of unsupervised
neural networks for data rate maximization. In addition, we

INote that some machine learning algorithms are also model-based, but
here we use “model-based” to best describe the common features of a type
of optimization algorithms.
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Fig. 1.

compare model-based, heuristic, and ML approaches in terms
of optimality, robustness, stability, and so on.

5) Applications and Challenges Towards 6G Networks:
We give an overview of RIS-assisted applications towards
envisioned 6G networks, including NOMA, simultaneous
wireless information and power transfer (SWIPT), mmWave
and THz communications, nonterrestrial networks (NTNs),
V2X communications, and integrated sensing and communi-
cation (ISAC). Moreover, we identify research challenges for
the control and optimization of RISs.

In summary, the main contribution of this work is that
we systematically survey optimization techniques for RIS-
aided wireless networks, ranging from problem formulations
to the features and applications of various approaches. Our
work aims to be a roadmap for researchers to optimize RIS-
aided wireless networks. The rest of this work is organized
as follows. Section II reviews related work, while Section III
presents the problem formulations. Sections IV-VTI introduce
model-based, heuristic, and ML optimization approaches,
respectively, and we compare these three approaches in
Section VII. Section VIII includes RIS-aided applications
towards 6G networks and identifies future challenges. Finally,
Section IX concludes this survey.

II. RELATED SURVEYS

There are many research directions relating to RISs, includ-
ing channel modelling and estimation, signal processing,
performance analysis, passive beamforming, and hardware
designs. This work focuses on optimization techniques due to
their paramount importance, and Table I compares this work
with existing surveys in terms of control and optimization-
related contributions.

® Majorization-minimization (MM)
® Successive convex optimization (SCA)

e Convex-concave pl"OCCdlerS

e Meta-heuristic algorithms

e Reinforcement learning
e Federated learning

o Imperfect CSI
Block coordinate descent (BCD) o Fractional programming (FP)
Semidefinite relaxation (SDR) ® Brach-and-bound method (BnB)

Second-order cone programming (SOCP)

o Greedy algorithms

Matching theory

o Graph learning * Hierarchical learning

o Transfer learning ~ ® Meta-learning

* Comparison between optimization techniques

o Algorithm selection and relationship

e ISAC

o V2X communications ® Future directions

Table I shows that most existing works focus on model-
based approaches, including AO, MM, SCA, and SDR.
The main reason is that these techniques have been widely
applied, e.g., using AO to decouple joint active and passive
beamforming, and applying MM and SCA to approximate
non-convex objectives. Then, heuristic algorithms are usually
considered as low-complexity alternatives and supplements.
For example, greedy algorithms are used for element-by-
element RIS phase-shift control, and matching theory is
applied for resource allocation. However, despite their impor-
tance, heuristic approaches are omitted in many existing
surveys. Meanwhile, ML algorithms have been widely used
for wireless network management, but existing surveys are
limited in supervised learning and RL. In addition, some newly
emerging techniques, such as graph learning and hierarchical
learning, are not mentioned in existing surveys.

More specifically, in many existing studies [7], [8], [9], [10],
optimization techniques are very briefly discussed by introduc-
ing the algorithm titles that have been used in the literature,
but the motivations and algorithm features are not included.
Alghamdi et al. overviewed optimization and performance
analysis techniques of RISs, but it is limited in analyzing
problem formulations [12]. In [13], Faisal and Choi spe-
cialized in ML approaches for RIS-aided wireless networks,
but model-based and heuristic approaches are not included.
Besides, some state-of-the-art ML techniques, including graph
learning and hierarchical learning, are not included in [13].
By contrast, multiple model-based approaches are introduced
in [11] for signal processing of RISs, but many heuristic
and ML techniques are not covered. Liu et al. presented RIS
beamforming, resource management and ML for RIS-aided
wireless networks, but only RL is presented in detail [14].
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TABLE I
COMPARISON OF THIS WORK WITH EXISTING SURVEYS
RIS control and optimization-related contributions’
Model-based approaches Heuristic algorithms Machine learning-based methods
Ref. Meta- | Greedy| Matching || Supervised | Unsupervised| Reinforcement| Federated| Graph Transfer | Hierarchical| Meta-
AO| MM| SCA| BCD| SDR| SOCP| FP| BnB || CCP
heuristic| method theory learning learning learning learning | learning | learning learning learning
[71 V| Vv v v v
[8] V|V v v ' v v
[91 V|V ' v
o] | v | v v s v v
[ty | v | v s v v v v v v
[12] | v v
[13] v v v v
[14] | v v v v v v v v v v
[sy | v | v v v v
This
work V| v v v v v v v v v v v v v v v v ' v '

! There are many surveys and tutorials on RISs recently, but Table I focuses on studies that include control and optimization sections.

Supervised learning, unsupervised learning, and FL are briefly
discussed in [14], while newer techniques, such as graph
learning, transfer learning, and hierarchical learning, are not
covered. In [15], Zheng et al. surveyed the channel estimation
and practical RIS control under imperfect/statistical/hybrid
CSI, but some optimization techniques are not included.

This work is different from existing studies in the following

aspects:

¢ Control and optimization have been included in many sur-
veys, but this work is the first to systematically investigate
optimization techniques of RIS-aided wireless networks,
ranging from problem formulations to steps, features,
advantages, and difficulties of nearly 20 techniques.

o We present in-depth analyses to apply these optimization
techniques to RISs. For example, deep neural network
(DNN) and deep reinforcement learning (DRL) are
included in many existing surveys, but some important
questions are not discussed, i.e., dataset acquisition for
neural network training in RIS-aided environments, and
customizing the state, action, and reward function defini-
tions for RL-enabled RIS control. The answers to these
questions are critical to taking full advantage of RISs.

o Finally, we present the most state-of-the-art ML tech-
niques for optimizing RIS-aided wireless networks, e.g.,
graph learning, transfer learning, and hierarchical learn-
ing, which are not included in existing surveys, to the
best of our knowledge. These novel techniques may bring
new research directions.

To summarize, this survey answers the following: what are the
state-of-the-art techniques for optimizing RIS-aided wireless
networks, and how do they cover different aspects with respect
to each other?

III. BACKGROUND AND PROBLEM FORMULATIONS FOR
OPTIMIZING RIS-AIDED WIRELESS NETWORKS

This section first introduces the fundamentals of RIS
technology, and then it overviews the problem formula-
tions of RIS-aided wireless networking solutions, including
maximization of sum-rate/capacity, energy efficiency, user
fairness, secrecy rate, and minimization of power consumption.

Unit reflecting element

RIS Controller RISs

Control :
link .
- Signal RIS
reflected signal
=%
=
—%> ==
o A&
-
BS: Information collecti .
B ormation collection Obstacle Users

and decision-making

Fig. 2. Tllustration of RIS operation and control principles.

For each objective, we summarize related works in terms
of scenarios, phase-shift resolutions, channel settings, CSI,
control variables, constraints, and algorithms. Additionally,
we investigate problem formulations with integer control
variables, such as discrete RIS phase shifts and resource
allocation problems. Finally, imperfect CSI scenarios are
discussed within deterministic and stochastic models.

A. Fundamental Theories of RIS Technology

This subsection introduces the fundamentals of RIS tech-
nologies, including RIS operation principles, RIS control,
and RIS deployment. Note that there are a few studies
that have explicitly introduced the fundamental principles of
RISs [2], [6], [14], and so this subsection serves as a brief
background in our work. The reader is referred to those studies
for further details.

1) RIS Operation Principles: An RIS is a man-made
two-dimensional reflecting surface, and the core feature of
RISs is that the electromagnetic response can be intelligently
reconfigured. Each RIS element can tune the phase of the
incident signal, enabling a customized signal propagation
environment. There have been various designs of RISs, which
can be can be categorized in terms of power sources, energy
consumption, tuning features, etc. [14]. For example, Fig. 2
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shows an example of a varactor-based RIS, which applies
varactor diodes with tunable biasing voltages to achieve
desired phase shifts. By reflecting the incident signal from the
BS, the RIS provides an alternative transmission link.

2) RIS Control: A smart RIS controller is usually deployed
using a device such as field-programmable gate array (FPGA).
As shown in Fig. 2, the RIS phase shift pattern is designed at
the BS, and it will send control signals to the RIS controller for
phase-shift configuration. In this case, the BS will collect the
required information for decision-making. Specifically, CSI
is one of the most important pieces of information for RIS
phase-shift design, since RIS elements have to respond rapidly
to channel dynamics. Meanwhile, other information may
also be required, which varies between different RIS phase-
shift design algorithms. For example, Huang et al. consider
user positions as input for phase-shift design, which means
the user location should be collected [17]. Additionally, the
communication frequency between the BS and RIS controller
depends on the specific RIS design. For instance, the unit
elements of passive metasurfaces will remain static during
normal operation, and the controller has fewer communication
demands with the BS [6]. By contrast, for RISs with active
tunability, the controller may require frequent information
sharing to make real-time responses to dynamic channel
conditions.

3) RIS Deployment: Due to the low hardware cost and low
energy consumption, RISs can be easily deployed on building
walls and ceilings. These terrestrial RISs may be deployed
in a centralized manner as a single large surface, or as
decentralized surfaces that are closer to users. The centralized
deployment means that more users can be covered, while the
decentralized deployment has lower control complexity. In
addition, RISs can also be placed on aerial platforms. For
instance, UAVs with RISs can provide full space reflections
with mobility and higher flexibility [18], [19].

To realize the benefits of deploying RISs in wireless
networks, RISs should be carefully configured, including
locations, on/off status, amplitude, phase shifts, etc. In par-
ticular, phase-shift design is the key to RIS operation,
which will directly affect network performance. Meanwhile,
other network decisions, such as transmit beamforming,
user association and resource allocation, should be jointly
optimized. These joint optimization problems are usually non-
convex and highly non-linear, requiring various optimization
techniques for different scenarios, e.g., joint active and pas-
sive beamforming, RIS-related resource allocation, physical
layer security, etc. In the following, we will introduce
the problem formulations for optimizing RIS-aided wireless
networks.

B. Sum-Rate/Capacity Maximization

Fig. 3 shows a RIS-aided downlink transmission system, in
which one base station (BS) with M antennas serves K single-
antenna users, and the RISs have N reflecting elements. The
users can receive signals by direct transmission link BS-user
and indirect transmission link BS-RIS-user. The signal-to-
interference-plus-noise ratio (SINR) of user & is:

RIS Reflecting
element

G hm,k

Ild’k

Fig. 3. Downlink channel of RIS-aided multi-user systems.

|(nf0G +nP)m

2 b
K
Zj:l,j;ék‘ (hﬁ@G + th)Pj‘ +N§

where p;. is the transmit power at the BS for active beamform-
ing, G € CN*M jndicates the channel gain from BS antennas
to RIS elements, h,f e C*N indicates the channel gain from
RIS elements to user %, h,? € CY*M indicates the channel
gain from BS antennas to user k, and NO2 is the noise power.
The RISs reflect the signal to users via a phase-shift vector
0, = el for passive beamforming, and we define a diagonal
matrix @ = diag(fy,602,...,0n,...,0x) € CV*N_ Here
RISs may have different operation modes to change the phase
shifts, which depend on their specific designs. For instance,
RIS elements can be reconfigured electrically, mechanically,
or thermally based on their tuning design, and a thorough
survey can be found in [6]. However, note that RISs cannot
be completely passive due to their inherent property of being
configurable [14]. In addition, note that the BS in Fig. 3 can
serve multiple users simultaneously due to multi-antenna BS
beamforming, and RIS elements are used to reflect the incident
signal and change the phases [36].

Sum-rate/channel capacity improvement is one of the most
widely considered advantages of RIS. Compared with the
direct transmission BS-user, RISs provide an indirect link that
can be line-of-sight, leading to less path loss and higher SINR.
To maximize the weighted sum-rate

‘ 2

Tk = ey

K
log(1 2
max > wylog(1+ ) )
k=1
K
st > |lpel? < Prnas (2a)
k=1
0] =1, n=1,2,..., N, (2b)

where P, is the maximum transmission power of BS, wy
is the weight of user k. Equation (2) aims to maximize the
sum-rate of all K users, and equation (2a) is the transmission
power constraint. Equation (2b) is the RISs phase constraint
which can be continuous or discrete.

Table II summarizes sum-rate/channel capacity
maximization works in RIS-aided wireless communications,
including scenarios, phase-shift resolutions, channel settings,
CSI availability, control variables, constraints and algorithms.
This problem has been investigated in various scenarios,
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TABLE I

SUMMARY OF RIS-AIDED SUM-RATE/CAPACITY MAXIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

Ref. Scenario' Phuse—s.h ift Cha.n nel CSI Control variables Constraints Algorithms
resolution settings
MIMO-DL-MU . Rayleigh BS beamforming matrix, RISs Total transmit power, RISs AO, Tabu search, extraction
. Continuous . Perfect . . . .
[20] irregular RISs fading selection and phase shifts selection and phase constraints based cross-entropy methods
MIMO-DL-MU . Rayleigh and BS beamforming vectors and RIS Total transmit power and RISs BCD, MM, Complex circle
. Continuous S Perfect R . .
[21] Multicell Rician fading phase shifts phase constraints manifold
MIMO-DL Continuous Rayleigh and Perfect Transmit covariance matrix and RIS Total transmit power and RISs A0
[22] OFDM Rician fading phase shifts phase constraints
MIMO-UP/DL Cun.tmuous/ Rayl_elgh Perfect Source precoder_s and RIS phase Total transmit power and RISs A0
[23] Discrete fading shifts phase constraints
. Correlated Statistical/ BS beamforming matrix and RIS Total transmit power and RISs Penalty dual decomposition,
[24] MISO-DL-MU Discrete Rician fading | Instantaneous phase shifts phase constraints Stochastic SCA
MISO-DL-SU . L. . Perfect/ BS beamforming vectors and RIS Interference level, total transmit
[25] | Cognitive Radio Continuous | Rician fading Imperfect phase shifts power, and RISs phase constraints BCD, SDP, SOCP
MISO-DL-MU Discrete Reﬂe.ctlon- Imperfect BS beamforming ve_c}ors and RIS Total transmit power_ and RISs AO. BuB, SDR
[26] dominated phase shifts phase constraints
MISO-DL-MU Continuous Rfl)flelgh a.nd Perfect/ BS beamforming ve'ctors and RIS Total transmit power' and RISs FP, BCD, cqmplex circle
[27] Rician fading Imperfect phase shifts phase constraints manifold
SISO-UL-SU Discrete Raylglgh Estimated RIS phase shifts RISs phase constraint Successive Teﬁnement
[28] fading algorithm
MISO-DL-MU Continuous/ | Rayleigh and . BS beamforming vector, RIS phase Suc.cesswe mlerfereflce AO, SCA, sequen(nal
) e . Perfect . . cancellation, total transmit power, rank-one constraint
[29] NOMA Discrete Rician fading shifts, and user decoding order . .
and RISs phase constraints relaxation
MISO-UL-MU . . Saleh- . Transmit power, multi-user detection | Target SINR, total transmit power, ’
[30] | mmWave V2X Continuous Valenzuela Tmperfect matrix, and RIS phase shifts and RISs phase constraints AO, SCA, penalty CCP
Continuous/ . . . . Particle swarm optimization
[31] MIMO-DL-MU Discrete Rician fading Perfect RIS phase shifts RISs phase constraint (PSO)
Rayleigh
MIMO-DL-MU Discrete ay elg‘ énd Statistical RIS phase shifts RISs phase constraint Genetic algorithm
[32] Rician fading
Point IOA pO{nt Discrete Rician fading Imperfect RIS phase shifts RISs phase constraint Greedy algorithm
[33] | communication
. . User association, subchannel Target data rate, total transit Matching method, convex
Multi-cell . Rayleigh and . . . L . o
[34] NOMA Continuous Rician fadin. Perfect assignment, reflection matrix, power power, association, decoding, and upper bound substitution,
2 allocation, and decoding order. RISs phase constraints. SCA, and SDR.
Vax ) Rayleigh and Large-scale TransTnIt power, multl»}lser detection Maximum transmlF power, RISs
L Continuous e . and slowly matrix, spectrum sharing, and RIS phase, QoS requirement, and BCD, SDR, CCP
[35] | communications Rician fading . . .
varying phase shifts spectrum sharing protocol

! MISO: multiple input single output; DL/UL: downlink/uplink; SU/MU: single user/ multiple users.

ie.,, MIMO [20], [21], [22], [23], MISO [24], [25], [26],
[27], SISO [28], NOMA [29], mmWave [30] and vehicle
communications [30]. These works mainly consider BS
beamforming vectors and RIS phase shifts as control variables,
which are known as joint active and passive beamforming,
and the total transmit power and RIS phases are included
as constraints. However, the joint optimization problem is
very challenging due to network dynamics and the large
number of RIS elements. The fractional terms of SINR,
logarithm introduced by Shannon theory, and non-convex
constraint of RIS phase shifts lead to significant complexity
for the joint optimization. Consequently, most existing studies
decouple the control variables using AO [20], [21], [22],
[23], [26]. For example, a widely applied scheme is to first
optimize the BS beamforming vectors, then solve the RIS
phase shifts sub-problem iteratively. Finally, as one of the
core control variables, the RIS phase-shift control is supposed
to be continuous in many studies. The first reason is that
discrete control variables lead to integer constraints that are
NP-hard; another reason is that the achieved results can be
converted into the nearest discrete values using the rounding
method [37].

C. Power Minimization

Power minimization is another widely investigated topic
for RIS-aided wireless communications. Transmission power
reduction not only saves the power consumption of wireless

networks but also reduces the interference on adjacent cells.
Power minimization problems with QoS constraints can be
described by

K
. 2
3
i > ekl 3)
k=1
St Yk 2 Ymins k=1,2,...,K, (3a)
0] =1, n=1,2,..., N, (3b)

where Yy, 1S the minimum SINR requirement of users. The
objective function is greatly simplified by minimizing power
consumption Zle | px|/?, and the quality of service (QoS)
requirements are balanced by SINR constraints as v¢ > Yymin -
Here, the SINR or date-rate requirements introduce fractional
or logarithmic terms in the constraints, which makes equa-
tion (3a) a challenging non-convex problem.

We summarize power minimization-related works in
Table III. These studies aim to minimize the transmit power
of BSs with SINR or data rate constraints. Similar to the
sum-rate maximization problem, power minimization is also
investigated in diverse scenarios, including MISO [38], [39],
[40], [41], SISO [43], NOMA [43], [44], [45], [46] and full-
duplex antennas [47]. Meanwhile, these studies still assume
continuous RIS phase shifts and perfect CSI to reduce the
optimization complexity [38], [41], [45], [46], and the main
control variables are BS beamforming vectors and RIS phase
shifts. BnB and successive refinement algorithm are applied
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TABLE III

SUMMARY OF RIS-AIDED POWER MINIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

Ref. Scenario Phase_s.h ift Chap nel CSI Control variables Constraints Algorithms
resolution settings
. . C e AP beamforming vector and . e AO, SDR, two-stage
[38] MISO-DL-MU Continuous | Rician fading Perfect RIS phase shifts SINR and RISs phase constraints algorithm
Continuous/ Lo - AP beamforming vector and ) o T Successive refinement
[39] MISO-DL-MU Discrete Rician fading Perfect RIS phase shifts SINR and RISs phase constraints algorithm, BnB
MISO-DL-MU . Rayleigh and BS precoding vector and RIS .
[40] broadcast Continuous Rician fading Imperfect phase shifts SINR and RISs phase constraints AO, SDR
MISO-DL-MU . Rayleigh BS beamforming vectors and .
[41] broadcast Continuous fading Perfect RIS phase shifts SNR and RISs phase constraints SDR, SCA
MISO-DL-MU . Rayleigh BS precoder matrix and RIS Target transmission rate, outage
[42] broadband Continuous fading Imperfect phase shifts probability, and RISs phase constraints AO, SDR, penalty CCP
SISO-DL-MU Discrete Rayleigh Perfect BS transmit power allocation Target transmission rate and RISs AO. linear approximatio
[43] | NOMA/OMA 15¢ fading and RIS phase shifts phase constraints > pproximation,
MISO-DL-MU | Continuous/ A, - BS beamforming vectors and Target transmission rate and RISs
[44] NOMA Discrete Rician fading Perfect RIS phase shifts phase constraints SOCP, ADMM
MISO-DL-MU Continuous Rayleigh and Perfect BS beamforming vectors and Target transmission rate and RISs AO, successive convex
[45] NOMA Rician fading RIS phase shifts phase constraints relaxations
MISO-DL-MU . Rayleigh BS beamforming vectors and Target transmission rate and RISs
[46] NOMA Continuous distribution Perfect RIS phase shifts phase constraints SDR, FP, SCA
Full-duplex . Rayleigh Power allocation of signal Target transmission rate and RISs Lagrangian dual method,
. Continuous " Perfect e .
[47] transmission fading sources and RIS phase shifts phase constraints SDP
MISO-DL-MU ) Rayleigh Qfﬂoadmg bits, tran:smlsswn Co'mpulfitlon ablhty', NOMA r'file
[48] | edge computin Continuous fadin Perfect time, power allocation, and region, time constraint, offloading AO, BCD
8¢ compuling ng RIS phase shifts bits, and total transmit power
MISO-DL-SU Mode selection, transmission Rate threshold, binary selection, .
.. . L. . . . A . AO, exhaustive search,
maritime Continuous | Rician fading | Estimated power, BS beamforming maximum transmit power, and RISs .
[49] .. S . matching method, SDP
communication vector, and RIS phase shifts phase constraints
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in [39] for discrete optimization, and Zheng et al. obtain
the optimal RIS phase shifts first and then finds the nearest
discrete value [43]. In addition, imperfect CSI is investigated
in [40], [42], in which [40] applies penalty CCP to handle the
CSI uncertainty, and S-procedure and Bernstein-Type inequal-
ity are used in [42] to transform the QoS constraints under
CSI error. Perfect CSI is a common setting in many existing
studies, but such strong assumptions may be impractical in
real-world applications. On the one hand, more advanced
channel estimation methods should be developed to reduce
the CSI estimation error [15]; on the other hand, robust
optimization algorithms are expected to handle the channel
uncertainty.

D. Energy Efficiency Maximization

Energy efficiency is a critical metric for green 5G and
6G networks. Different from power minimization problems,
the objective of energy efficiency maximization includes both
transmission rate and energy consumption metrics, which can
better evaluate the power utilization efficiency. The main
benefit of RISs lies in the capability of reshaping the signal
propagation path with extremely low power consumption,
making RISs a promising technique to improve energy effi-
ciency. To maximize energy efficiency, one can formulate

. S wy, log(1 + )
p® =LK |ppl? + KPyg + Ps + NPg(0)

K

s.t. Z HpkH2 < Pmaxa
k=1
0n] =1, n=1,2,..., N,

7k27m1n7 k:1727"'7K7

“4)

(4a)
(4b)
(40)

where o is the efficiency of the transmit power amplifier,
Pyg is the hardware static power consumed by one user,

Ppg is the total hardware static power consumption in BS,
and Pg(k) is the power consumption of one RIS reflecting
element with resolution p. To maximize energy efficiency
in equation (4), the numerator is to maximize the sum-
rate, while the denominator is to reduce power consumption.
Constraint (4a) is the total transmit power limit, (4b) is the RIS
phase constraint, and (4c) is the QoS requirement indicated by
target SINR or data rate.

Problem (4) is more complicated than sum-rate
maximization or power minimization problems, since it
includes both logarithm and fractional terms in the objection
function and constraints. Energy efficiency maximization-
related works are summarized in Table IV. Similar to former
problem formulations, BS beamforming vectors and RIS
phase shifts are main control variables, and constraints
include target data rate, total transmit power, and RIS
phases [50], [51], [55]. To solve the energy efficiency
maximization problem, the key is to decouple the transmission
rate and energy consumption items in equation (4). Dinkelbach
method is applied in [52], but these conventional methods
can not be directly applied to sum-ratio problems. Note that
the power consumption definition in equation (4) may change
case by case, which depends on the scenario of deploying
RISs. For example, the total power consumption in most
studies include BS transmit power, RIS energy consumption
and user device power. By contrast, Zhou et al. investigate
the energy efficiency with BS sleep control, and the total BS
power consumption becomes the denominator in the objective
of equation (4) [57].

E. User Fairness Maximization

Former problem formulations usually consider the total
or average network performance as objectives, but the fair-
ness among multiple users is equally important. Such user
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TABLE IV

SUMMARY OF RIS-AIDED ENERGY EFFICIENCY MAXIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

Ref. Scenario Phase»sh ift (;hap nel CSI Control variables Constraints Algorithms
resolution settings
. . BS beamforming vectors and | Target data rate, total transmit power, . .
[50] MISO-DL-MU Continuous 3GPP Perfect RIS phase shifts and RISs phase constraints AO, gradient descent, MM
MISO-DL-MU . Rician Perfgct/ BS covariance matrix and Total transmit power and RISs phase
R Continuous . Esti- i . AO, FP
[51] multicast fading mated RIS phase shifts constraints
. Rician D2D transmitter power and Target data rate, total transmit power, AO, FP, Dinkelbach
[52] SISO-MU D2D Discrete fading Perfect RIS phase shifts and RISs phase constraints method
I BS beamforming vector, RIS Common message decoding, target
MISO_DF‘_.MU Continuous RdyI-e igh Perfect phase shifts, and user data rate, total transmit power, and AO, SCA
[53] rate splitting fading .
message rate RISs phase constraints
. . Target data rate, total transmit power,
MISO-DL-MU | Continuous Rz}yl; igh Perfect BS beamforAmmg vector, FIS RIS on/off status, and RISs phase A0, SCA,Agreedy
[54] fading phase shifts and on/off . searching
constraints
Cell-free . Rician BS beamforming vectors and | Total transmit power and RISs phase
(55] | MIMO-DL-MU | Diserete fading | erfect RIS phase shifts constraints AO
SISO-DL-MU . Rician Subcamer' allocation, BS Subcarrier assignment, total transmit AO, matching m cthod, DC
Continuous . Perfect beamforming vector, and . programming, and
[56] NOMA fading . power, and RISs phase constraints N
RIS phase shifts univariate search.
TABLE V
SUMMARY OF RIS-AIDED FAIRNESS MAXIMIZATION WORKS UNDER VARIOUS CONSTRAINTS
Ref. Scenario Phase-sh ift Char?nel CSI Control variables Constraints Algorithms
resolution setting
MISO-DL-MU | Continuous | 2Yi€igh BS precoding matrix and | Total transmit and RISs phas
- ontinuous | b an Perfect precoding matrix an otal transmit power an s phase SOCP, MM
[58] multicast /Discrete fading RIS phase shifts constraints
SISOMISO-DL- Continuous allj(?ylllei::g;:n Perfect BS power allocation and TafrgzierllssiljRg)\;gfn:rfcli SI;rIeSnsgﬂ;;a::al BCD, SDR
[(371] MU NOMA ; ) RIS phase shifts smit power, an S pha g
fading constraints
. Rayleigh . . . .
(59] MISO-DL-MU Continuous fading Perfect RIS phase shifts RIS phase constraint Projected gradient ascent
Rayleigh . .
MISO-DL-MU | Continuous | and Rician | Perfect | Do beamforming vectors | Total transmit power and RISs phase SOCP, SDR, SCA
[60] fading and RIS phase shifts constraints
Cell-free . . Rician e User transmit power and User transmit power and RISs phase
[61] | MIMO-UL-MU Continuous fading Estimated RIS phase shifts constraints A0
MIMO-DL-MU Discrete Rician Perfect BS beamforming vectors Total transmit power, target harvested AO, optimal BnB,
[62] SWIPT fading and RIS phase shifts energy, and RISs phase constraints reformulation-linearization
Full-Duplex Continuous R{nylfngh Perfect Transmit power ‘and RIS Total transmit power and RISs phase AO. SDR
[63] relay networks fading phase shifts constraints
MIMO-DL-MU Rayleigh i . ) S i o
coordinated Continuous | and Rician Perfect BS beamforming vgctors Total transmit power and RISs phase SOCP, SDR, MM
[64] L. X and RIS phase shifts constraints
multi-point fading
Continuous Rician - . . . .
[65] MIMO-UL /Discrete fading Statistical RIS phase shifts RIS phase constraint Genetic algorithm.
Point tQ p()-mt Continuous Raylf:lgh Estimated RIS phase shifts Target SINR anq RISs phase SDR, greedy-iterative
[66] | communications fading constraints method
fairness metrics can describe the experience of cell-edge users, Table V. summarizes existing works for fairness

guaranteeing the worst-case network performance. User fair-
ness maximization aims to maximize the minimum SINR or
data rate, indicating that users can achieve target performance
even in the worst case. For instance, the max-min SINR
problem can be defined by

i 5

ma Igré}r;{vk} o)
K

s.t. Z||pk||2 < Pz, (5a)
k=1

0n] =1, n=1,2,..., N, (5b)

’YkZ’Yminvk:laQa"'aKv (SC)

where minge g {7x} is the minimum SINR among K users.
Maximizing the worst user experience will improve the fair-
ness of the whole network.

maximization problems in RIS-aided wireless networks.
Although various scenarios have been investigated, the primary
control variables are still BS beamforming vectors and RIS
phase shifts [37], [58], [60], [64], and the constraints focus
on total transmit power and RIS phases [58], [60], [63], [64].
The formulated problem (5) is more challenging than
conventional max-min fairness beamforming problems. RISs
not only introduce additional non-convex constraints but also
makes the reflective beamforming vector coupled with the
transmit beamforming vectors in the SINR term, thus making
problem (5) highly nonlinear and non-convex [60]. Therefore,
instead of optimizing the complicated objective functions
directly, approximation-based algorithms are frequently
applied. For example, MM and SCA algorithms construct
surrogate functions as the upper bound of original objective
functions, which are easier to be optimized than problem (5).
Additionally, the genetic algorithm (GA) and greedy-iterative
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Fig. 4. The downlink channel model of RIS-aided secure transmission.

method are used in [65] and [66] for RIS phase-shift control,
respectively. Compared with model-based algorithms, these
heuristic algorithms can obtain fast solutions efficiently, but
the optimality cannot be guaranteed.

FE. Secrecy Rate Maximization

Physical layer security is increasingly of interest for wireless
communications, and various techniques have been proposed
to enhance physical layer security, e.g., artificial noise-
aided beamforming and cooperative jamming. However, these
approaches may lead to high hardware costs and power
consumption, and RISs provide a novel low-cost solution by
manipulating the signal propagation path.

Fig. 4 shows a RIS-aided downlink transmission system
with one legitimate user and one eavesdropper. The data rate
of the legitimate user is:

2
’(hL@GJrhd’L)pL‘ >’ (6)

Ry =log (1 +
2
Nio
where h, is the channel from RISs to the legitimate user, h g 1,
is the direct transmission channel from RISs to the legitimate
user, and Ny, o is the Gaussian noise at the legitimate user.
Similarly, the data rate of the eavesdropper is:

(hE(")G + hd,E)pL|2
Ni o ’

RElog<1+ ’ @)
where h g is the channel from RISs to the eavesdropper, h; g
is the direct transmission channel from RISs to the eaves-
dropper, and Ng ( is the Gaussian noise at the eavesdropper.
Finally, to maximize the secrecy rate, we have

max R; — Rg )

p,0
st. |p)1? € Pas, (8a)
0n] =1, n=1,2,...,N. (8b)

Table VI summarizes the RIS-aided secure transmissions-
related studies. It shows that most existing works apply
continuous phase shifts with perfect CSI sharing, and BS
beamforming and RIS phase shifts are still the major con-
trol variables. Most existing studies consider single-user
cases [67], [68], [69], [70], [71], [72], [73], which signifi-
cantly lower the optimization complexity without considering
interference between multiple legitimate users. Moreover, the
perfect CSI acquisition of legitimate users may be unrealistic

in practice, indicating a gap between theoretical studies and
real-world applications.

On the other hand, RIS technique is also combined
with conventional secure transmission strategies, i.e., artificial
noise, to achieve secure transmissions [69], [74], and the
simulations demonstrate that integrating RIS with artificial
noise can achieve a higher secure transmission rate. However,
these coupled control variables also increase the optimization
complexity. The main difficulties of solving problem (8)
are the non-convex objective function and RIS phase-shift
constraints (8b). Subsequently, AO-based estimation methods
are widely applied as low-complexity solutions. For instance,
the original problem is decoupled into multiple sub-problems
by optimizing one control variable and holding other variables
fixed, and then applying approximation-based algorithms, e.g.,
SCA [69], [72], [74] and MM [73], [75], to solve each sub-
problem.

G. Optimization With Integer Constraints: Discrete RIS
Phase Shifts and Resource Allocation Problems

Previous sections show that many existing studies assume
continuous RIS phase shifts for simplicity, but practical RISs
usually have limited phase-shift resolutions, indicating discrete
phase shifts for the incident signal. However, such realistic
settings will lead to discrete control variables along with mixed
integer nonlinear programming (MINLP) problems, consider-
ably increasing the difficulty of optimization. In addition, RIS
element on/off control, resource allocation, and association
problems will also involve integer control variables.

Compared with former problem formulations, the main
difference is that discrete control variables lead to integer
constraints. For instance, discrete RIS phase shifts include a
constraint 6,, € {0, %—Z, (29 — 1)%%,277}, where o is the
RIS phase-shift resolution. RIS elements on/off, subchannel
allocation, and user association problems will involve binary
constraints as y € {0,1}, where x is the binary deci-
sion variable. We summarize three approaches to formulate
optimization problems with integer control variables:

o Relaxation method: This method is to relax the discrete
RIS phase shifts 0, € {0,2%,..., (22 — 1)2%, 27} into
continuous phase shifts with 0 < 6, < 27. Similarly,
the binary control variables in resource allocation and
association problems with y € {0,1} are converted
into 0 < x < 1. Such linear programming relaxation
can transform NP-hard problems into related problems
that may be solvable in polynomial time. In addition,
the relaxation method may introduce penalties in the
objective function by allowing violating constraints such
as Lagrangian relaxation. Then, the reformulated problem
formulations are solved by using algorithms such as SCA
or MM. These methods will be included in Section IV.

e Quantization approach: The quantization method is
mainly used to simplify the RIS phase-shift control.
It considers continuous RIS phase shifts when solving
the problem, and then the achieved optimal RIS phase
shifts are quantized into the closest discrete values as
On € {0,%%,...,(22 — 1)2Z 27}, For example, the
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TABLE VI
SUMMARY OF RIS-AIDED SECURE TRANSMISSION-RELATED WORKS UNDER VARIOUS CONSTRAINTS

Ref. Scenario Phase-gh ift Cha{lne] CSI Control variables Constraints Algorithms
resolution setting
MIMO wiretap . Rayleigh Perfect/ Transmit covariance matrix Total transmit power and RISs phase A (.)’ on e—byfone.
[75] hannel Continuous fading I fect and RIS phase shifts onstraints optimization, bisection
[76] channel ading mperiec an phase shitts constraints search, MM.
. Rayleigh . Transmit beamformer and Secure transmission rate and RISs
[67] MISO-DL-SU Continuous fading Estimated RIS phase shifts phase constraints AO, SDR
. BS transmit beamforming and S S
MISO-DL-MU Continuous Rdy]? igh Perfect artificial noise covariance Harvested power, total ernsrr}n powet, AO, SDR, SCA
[74] SWIPT fading . . and RISs phase constraints
matrix, and RIS phase shifts.
. Rayleigh Transmit beamformer and Total transmit power and RISs phase
[68] MISO-DL-SU Continuous fading Perfect RIS phase shifts constraints A0
. AP transmit beamforming e e o hac
[69] MISO-DL-SU Continuous Elgll;n Perfect and artificial noise covariance Total tr::zfelg p;‘:frc’oﬁitsrziﬁl::se’ and aACr)(;aIz;ndSlg Ab d;e];lR
g matrix, and RIS phase shifts. Y PP ’ ?
. Rician Perfect/ BS transmit beamforming Secrecy capacity requirement and SDR, projected gradient
[70] MISO-DL-SU Continuous fading Imperfect vector and RIS phase shifts RISs phase constraints algorithm
Correlated . N .
MISO-DL-SU Continuous Rician Perfect AP transmit beaml‘ormu_lg Total transmit power and RISs phase AO
[71] B vector and RIS phase shifts constraints
fading
[72] SISO-DL-SU Continuous Elgll;l; Perfect RIS phase shifts RISs phase constraint AO, SDR, SCA
. Rayleigh . Transmit beamforming vector . Oblique manifold
(73] MISO-DL-SU Continuous fading Partial and RIS phase shift SNR and RISs phase constraints algorithm, MM
Continuous/ Rician BS transmit beamformer, and | Total transmit power and RISs phase A0 base.d P ath’“’l.l owng
MISO-DL-MU . . Perfect . . algorithm, heuristic
[77] Discrete fading RIS phase shifts constraints .
algorithm
MISO-DL-MU Continuous Rlc}an Perfect BS transmit beamforAmmg and | Total transmit power, RIS phage, and AO, CCP, one dimension
[78] fading RIS phase shifts energy conservation constraints search
TABLE VII
SUMMARY OF DISCRETE CONTROL VARIABLES FOR OPTIMIZING RIS-AIDED WIRELESS NETWORKS
Discrete control . . .
. Main features Solution algorithms
variables
. Discrete phase shift indicates that the phase of each RIS element can only be selected Relaxation method, quantization
Discrete RIS phase . . . . . L
shifts from multiple fixed values. It is more practical than continuous phase changing, but method [37], BnB [26], heuristic and
increases the optimization complexity as MINLP problems. ML algorithms [65], [79].
RIS on/off RIS on/off decision is to decide the on/off status of each RIS element, which can better .
. . . . Greedy algorithms [54], dual method.
decision save energy consumption and improve energy efficiency.
Association User-RIS-BS associations are key control variables for optimizing multi-cell and Matching theory is the most widely
decisions multi-RIS network performance. In addition, these association decisions can apply to used method for solving association
S RIS-UAV systems for the user-UAV association. and resource allocation problems
gsource Resource allocation is a key decision for optimizing RIS-aided wireless network (801, [81] 'Meta heuristic and
allocation N : o . ) . ML algorithms also present
- performance, which will directly decide the user experience. . .
decision promising solutions.
D2D-user pairing RIS provides a promising opportunity for the interference control of D2D . . -
. . o L . L Hungarian al h 2], heuris
in RIS-aided D2D communications, and the pairing of celluar users and D2D links is important to reuse ungarian a g.o.rlt m [82], heuristic
pairing [83].
networks the subchannels allocated to users.
Task offloading in RIS could change the channel condition for MEC services to increase channel
. _— . S .. . BCD and SCA [84], DRL [85].
RIS-aided MEC efficiency, and task offloading decision is one of the core decisions for MEC services. [84] (8]

authors in [37] maximize the received signal strength
by using BCD and SDR, and the achieved continuous
RIS phase shifts are easily converted into the nearest
discrete values. Compared with the relaxation method, the
quantization approach has much lower complexity with
few reformulations. However, the solution quality may be
considerably degraded when quantizing the continuous
values into discrete solutions. For example, the quan-
tization approach may have difficulty handling binary
decision problems since all continuous solutions between
0 and 1 can only be quantized into values O or 1. In this
case, the relaxation method is more appropriate for binary
decision-making.

e Heuristic and ML techniques: Heuristic and ML

techniques also provide attractive solutions for MINLP
problems. Discrete control variables are directly
optimized without relaxation and transformation, which
will be introduced in Sections V and VI

In summary, the quantization approach has the lowest
complexity by transforming continuous RIS phase shifts into
the nearest discrete values, but such brute-force transforma-
tion may degrade the network performance. The relaxation
method converts discrete control variables into continuous
optimization problems. It may guarantee optimality but require
case-by-case analyses and complicated design. By contrast,
heuristic and ML techniques can better handle discrete
optimization problems by using heuristic rules and ML algo-
rithms. For instance, discrete RIS phase shifts are defined
as actions in [79], and then the DRL agent interacts with
the wireless environment directly to maximize the long-term
benefit.

Table VII overviews integer control variables that are
involved in the optimization of RIS-aided wireless networks,
including discrete RIS phase shifts, RIS on/off control,
resource allocation and association, D2D-user pairing for
RIS-D2D communications, and task offloading decisions for
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TABLE VIII
SUMMARY OF DIFFERENT CSI ERROR MODELS FOR OPTIMIZING RIS-AIDED WIRELESS NETWORKS

CSI error

Main features
model

Solution algorithms

Deterministic
model

Deterministic model defines an upper bound of the CSI error. Most existing studies
convert the optimization problem into max-min formulations to guarantee the worst-case
performance, i.e., secrecy rate maximization [86], weighted sum-rate maximization [87].

AO, SDR, SCA [87], penalty CCP,
MM [75] [76].

Stochastic model

Stochastic model indicates that CSI error follows certain distributions without a
predefined upper bound. Therefore, an outage probability constraint is applied to
guarantee network performance, i.e., power minimization and secrecy rate maximization
with SINR and secrecy rate outage probability constraints [88], [89].

SCA [88], DDPG [89]

RIS-aided MEC. Table VII shows that handling these integer
control variables is critical to optimize network performance,
and heuristic and ML algorithms are regarded as appealing
approaches to solve these NP-hard problems.

H. Optimization Constraints for Imperfect CSI

CSI availability is critical for properly optimizing RIS-
aided wireless networks. Note that there are many advanced
channel estimation methods to provide accurate CSI [15], and
then most existing studies assume perfect CSI as shown from
Table IT to VI. However, obtaining perfect and instant CSI
is impractical due to limited feedback overhead, noise, and
interference. As shown in Table VIII, the CSI estimation error
can be described by deterministic or stochastic models.

o Deterministic model: The deterministic model indicates
an upper bound of the CSI error as |[ecy|| < ecn,maz>
where ecy, is the estimation error and < ecp g 1S the
upper bound. Then |lecy,|| < ech mae Will be included
in the problem formulations shown from Sections III-B
to III-F. In addition, problem formulations with the deter-
ministic error model will become a max-min problem to
guarantee the worst-case performance, which is similar
to Section III-E.

e Statistical model: On the other hand, the statistical model
considers the CSI error as a random variable with spe-
cific distributions such as complex Gaussian distribution.
Without CSI error bound, an extra constraint is required
to guarantee the network performance Pr(y > Ypin) >
Pryin, where 7,y is the minimum SINR requirement,
and Pry,;, is the minimum probability requirement that
the SINR is higher than the target value. Pr(y >
Ymin) = Prmin is a probabilistic constraint because there
is no upper limit on the CSI error, and a large error will
unavoidably lead to system outages.

Finally, note that there are many algorithms that can be used
to optimize problems with imperfect CSI constraints, including
AO, SCA, SDR, and DRL, which will be introduced in the
following sections.

L. Discussions and Analyses

Sections III-B-III-H have investigated various problem
formulations for RIS-aided networks, and then this sub-
section aims to analyze the common features of these
formulations. Especially, identifying the main challenges of
solving these problems can motivate us to find more efficient
solutions.

1) Non-Convex Objectives and Constraints: One com-
mon feature of RIS-related optimization problems is that
the objectives and constraints are usually non-convex and
highly non-linear. For instance, fractional terms are frequently
involved with SINR, and the logarithm is usually included
due to Shannon’s formula. These fractional and logarithmic
terms lead to non-convex terms in objectives and constraints.
Thus dedicated transformation and relaxation are needed to
reformulate the problem for convexity, which requires case-
by-case analyses for each problem formulated.

2) Highly Coupled Control Variables: RIS passive beam-
forming is often combined with other techniques, e.g., BS
active beamforming, NOMA, and UAVs. This results in
highly coupled control variables, e.g., RIS phase-shift design,
user decoding order in NOMA, BS transmit power control,
UAV trajectory design, and so on. For instance, in RIS-UAV
systems, when changing the UAV altitude, the RIS phase shifts
must be simultaneously optimized to maintain the network
performance. Compared with optimizing RIS phase shifts
solely, such correlation between network functions and control
variables is much more complicated. The ideal solution is
to jointly optimize all variables simultaneously, but this can
be extremely difficult due to the interactions between these
techniques.

3) Large Solution Spaces: RIS-related optimization prob-
lems usually involve a large solution space due to the
considerable number of RIS elements. Meanwhile, the inte-
gration with other techniques also contributes to the size of
the solution space. For instance, compared with RIS passive
beamforming, joint active and passive beamforming problems
are more complicated by including BS beamforming vectors,
leading to a much larger solution space. Such large solution
spaces indicate extra difficulty when exploring the optimal
solution, e.g., large datasets and action spaces for deploying
ML algorithms.

4) Integer Control Variables: As introduced in Section I1I-G,
integer control variables are frequently involved in optimizing
RIS-aided networks, e.g., resource allocation and user-RIS-
BS association. These integer control variables will result
in NP-hard problems, which cannot be efficiently solved in
polynomial time. In addition, optimization problems become
more complicated when both integer and continuous control
variables are included, such as joint RIS phase-shift design
and elements on/off control.

Finally, given the above features, it is critical to investigate
efficient optimization algorithms to handle these challenges
and realize the full potential of RIS-aided networks. In the

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:51:45 UTC from IEEE Xplore. Restrictions apply.



792 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

following sections, we will introduce model-based, heuristic,
and ML optimization approaches.

IV. MODEL-BASED OPTIMIZATION ALGORITHMS FOR
RIS-AIDED WIRELESS NETWORKS

This section introduces model-based algorithms and appli-
cations for optimizing RIS-aided wireless networks, including
AO, MM, SCA, BCD, SDR, SOCP, FP, and BnB. In addition,
we summarize the features, advantages, drawbacks, difficul-
ties, and applications of these techniques.

A. Alternating Optimization

AO has been widely applied for RIS-related control and
optimizations. The main reason is the high complexity of
joint optimization problems that include multiple control
variables such as the BS beamforming matrix and RIS phase
shifts. For instance, the joint active and passive beamforming
is usually decoupled into an active BS beamforming sub-
problem and passive RIS beamforming sub-problem, and then
each sub-problem is alternatively optimized. In particular,
for an optimization problem with / control variables © =
(z1,22,...,2;,...,27) and z; € X;, to minimize objective
function f(Z), AO method is summarized by .

o Step 1: Initializing the control variables by setting 70 =
(3:{), a:g, ey :v?, ey x?) Defining control variable num-
ber i = 1, iteration number / = 1, maximum iteration
number L, and termination threshold §.

o Step 2: In the [th iteration, for control variable :ril,
optimizing f(Z) by finding z; that satisfies

l : U1 l -1 -1
T <—argminf | o1, 23,...,T{1 ,Ti, Tiiqs---, %] ,
T, €X; ~~
done current todo

©))

while holding all the other control variables

.0 l -1 -1
(T{, T3y T 1, % 5., T ) constant.

o Step 3:i =i+ 1 and repeating from Step 2 until i < I.

o Step 4: If f(27) — f(;21) < 4, stopping all iterations and
7 is the optimal solution; if not, moving to step 5.

o Step 5: If I < L, then I = [ + 1, and setting control
variable number i = 1 and repeat from Step 2; if not,
outputting zj, as the optimal solution.

In equation (9), AO simplifies joint optimization problems
by optimizing single control variables alternatively while
holding other variables unchanged [90]. Each iteration is
time-efficient by optimizing one individual variable, which
is easily implemented. In addition, it does not require step
size parameter tuning and extra storage vectors. AO provides
an iterative optimization scheme, but it still relies on other
techniques to solve each sub-problem. Also, having each
variable monotonically decrease at each iteration does not
guarantee the algorithm will converge to a global minimum,
and moreover, the convergence may slow down near an
optimum point [90].

The RIS is often combined with other techniques for
joint optimization, such as joint active and passive beam-
forming, RIS-related resource allocation, RIS-NOMA, and

RIS-MEC, leading to coupled control variables and large
solution spaces. AQO is particularly useful in solving such joint
optimization problems. For example, the RIS-MEC system
can be decoupled into RIS phase-shift control sub-problem
and task offloading sub-problem, and these two sub-problems
will be iteratively optimized to reduce the overall complexity.
Joint active and passive beamforming is another example that
has been widely investigated, which applies AO to generate
BS active beamforming and RIS passive beamforming sub-
problems [38], [39].

B. Block Coordinate Descent

Coordinate descent is a very useful method to solve
large-scale optimization problems, and BCD is considered
a generalized version to improve computation efficiency.
Compared with AO, each block in the BCD algorithm may
include several control variables, enabling dynamic block
generation, selection and updating. Therefore, BCD method
is more suitable than AO for optimizing a large number
of control variables simultaneously, which has been widely
applied to RIS-related optimization problems.

BCD method sequentially minimizes the objective function
F (%) in each block z; while the other blocks are held fixed.
Specifically, it minimizes z < arg ming, ¢ o~ (f (2;) + fi ()
while holding other blocks z1,29,...,%;—1, Ti41,..., 2]
fixed. However, it is worth noting that each block consists of
multiple control variables, and the block selection and updat-
ing method will affect the BCD performance. An ideal block
selection method is expected to maximize the improvement
by choosing the blocks that decrease F'(Z) by the largest
amount [91]. On the other hand, there are many alternatives for
the block updating method such as block proximal updating

-1 2
7 — ol ) (10)

7
2
where Llfl > 0. Equation (10) is more stable than con-

-1

ventional BCD by including Liz | — xil*l||2. The BCD
algorithm is easily deployed with low memory requirements
and iteration costs, allowing parallel or distributed imple-
mentations. But the block selection may affect the algorithm
performance, and block updating is difficult in some cases.

Similar to AO, BCD is considered as an iteration-based
scheme to reduce problem-solving complexity. BCD has been
applied to sum-rate maximization [21], [25], [27], user fair-
ness maximization [37], and power minimization [48]. As an
example, a two-block BCD is used to maximize the sum-rate
in [27], in which the first block is for BS active beamforming
and the second is for RIS passive beamforming, then these
blocks are iteratively optimized.

z) + argmin (f(%‘) + fi(wi) +
5, eEX;

C. Majorization-Minimization Method

MM is an iterative optimization method that has been
applied for RIS control and optimizations. Consider an
optimization problem ming f(z) and x € 2", where f(x) is a
continuous objective function and 2" is a convex closed set. In
RIS-related control problems, the f(x) is usually complicated
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A . ,
\ INY]
\ g (xx),
/ !
/
g (x\x’ *1): surrogate
,’ function for f'(x) estimation

/
\ /

T /
! /

s f(x): objective function,
7 i.e., minimizing power or
maximizing sum-rate

x: control variables, e.g.,
> RIS phase shift

Fig. 5. MM method for RIS-related optimizations.

to solve directly due to fractional and logarithmic terms. As
shown in Fig. 5, the main idea of the MM algorithm is to
construct a surrogate function g(x) that can locally approxi-
mate the objective function f(x), e.g., power minimization or
sum-rate maximization. g(x) is considered an upper bound of
f(x), which is easier to be optimized. Therefore, optimizing
g(x) can either improve the objective function value or leave
it unchanged with g(x) > f(x) [92].

Constructing a surrogate function g(x) is the first step of
applying the MM algorithm, since g(x) will be optimized
directly instead of the original objective f(x). The g(x) con-
struction rules include:

AD: g(z' V2! = f(a);  A2): g(zla!Th) > f(a);

A3): ¢/ (z]z" 1 d) |y i1 = f(2 Y d) | i

A4): g(z|z'~1) is continuous in x and z!~1,
where 2!~ is the produced point at iteration [ — 1. g(z|z!~1)
is an approximation function of f(x) at the iteration /, and “|”
in g(z|z'~1) means that the point z/~1 is already on this
function. d indicates the distance from a point x to a set 2~
and d = x}nf;ﬂg |(z—2z")||. f'(z; d) is the directional derivative

of f(x) in direction d. Assumptions (A1) and (A2) indicate that
g(x|z!=1) is a tight upper bound of the original objective f(x).
It guarantees that optimizing g(z|z'~1) can meanwhile find an
improved objective value for f(x). Note that surrogate function
may be defined in various ways, e.g., Jensen’s inequality,
Convexity inequality, Cauchy—Schwarz inequality. Then, the
surrogate function g(z|z'~1) is iteratively minimized and
updated by z! « argmingc 5 g(2|z'~1) until convergence.
As an estimation-based method, MM is considered
a low-complexity solution for many RIS-related opti-
mizations, including sum-rate maximization [21], fairness
maximization [58], [64], secure transmission [73] and so
on. For example, the joint active and passive beamforming
problem is decoupled into BS transmit power control and RIS
phase-shift optimization in both [21] and [64]. Then, the RIS
phase-shift optimization problem is first converted into a non-
convex quadratically constrained quadratic program (QCQP)
problem,” and a MM algorithm is applied to obtain locally
optimal solutions by ming g(A|#") with constraint |6, = 1.
After that, the optimal phase shift 6 in current iteration / is

2A QCQP problem example is given by equation (12) in Section IV-E,
which is frequently formulated in wireless networks.

/ N
\ /g (x\xl):surrogate function
for f(x) estimation

f(x): objective function,
i.e., energy efficiency or
capacity maximization

/

/// g ™)

x: control variables, e.g.,
» RIS phase shift or active
beamforming

Fig. 6. Using SCA algorithm for RIS-related optimization.

obtained as él, and then [ = [ + 1 and #' becomes a new 6"
in miny g(0]6").

The MM applies surrogate functions to avoid the com-
plexity of optimizing the non-convex objective function
directly, transforming non-differentiable problems into smooth
optimizations. The MM method requires that the surrogate
function g(x) must be a global upper bound for f(x), which is
a fundamental assumption for using MM. However, defining
such a tight upper bound can be impractical in some cases,
which may prevent the application of the MM method.

D. Successive Convex Approximation

Similar to the MM algorithm, SCA applies a surrogate
function g(x) to approximate the original objective function
f(x), which is shown in Fig. 6. However, the g(x) in the SCA
algorithm does not have to be a tight upper bound for f(x),
reducing the complexity of the surrogate function design [93].
Therefore, SCA is more flexible and easier to be implemented
for RIS-related optimization problems.

The SCA method first constructs a surrogate function g(x),
and the assumptions are similar to the MM algorithm:

Al): g(z|z'~1) is continuous in 2;

A2): g(z! ) = f(@);

A3): g(x) is differentiable with ng(x|xl*1)\$:$l,l =
ViEf(‘T) |x:g:l*1 :

SCA relaxes the upper bound condition for the surrogate
function, but g(z|z'~!) must be strongly convex in 2.
Then, solving the constructed surrogate problem x(z!)
argmin g(z|z'~1), and smoothing the next point by

zeX

| +5l71(fi<xl> _ Izq)’ (11)
where 8!=1 is the step size for value updating. Finally,
g(x) construction and solving are repeated until meeting the
convergence criteria. In SCA, the surrogate function g(x) does
not have to be a tight upper bound for f(x). Therefore, the step
size in each iteration requires dedicated designs to guarantee
an accurate approximation. The factor B'=1 is used to control
the z! updating step size. Meanwhile, the MM algorithm
updates the whole control variable x at each iteration, but SCA
can be naturally implemented in a distributed manner when
the constraints are separable.
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Compared with MM, SCA is more frequently applied in
RIS-related optimizations due to the relaxed upper bound,
e.g., sum-rate maximization in [24], [29], [30] and power
minimization in [41], [46]. Defining a surrogate function is
the key to using the SCA method, which depends on specific
objective functions and constraints in RIS-related applications.
For instance, the non-convex BS transmit power constraint
in [41] is replaced by a first-order Taylor approximation to
apply the SCA algorithm. By contrast, Pan et al. in [11] claim
that the unit modulus constraint of the RIS phase shift |6,,| = 1
can be relaxed as a series of convex constraints, e.g., 1 <
2Re{0: 0L} — |0L|2, where Re{-} denotes the real part of a
complex argument and 6* is the conjugate of 6.

E. Semidefinite Relaxation

Many RIS-related signal processing problems can be
described by QCQP formulations, and SDR is an efficient
solution to solve QCQP problems [94]. The QCQP problem
is defined by

min z! Cz
zeX

st. 2T Djz>b;, i=1,2,3,...n (12)

where the “>” in the constraint can also be replaced by
“<“ Note that z1 Cz produces an 1 x 1 matrix, and
therefore 7 Cx = Cx Tz = Tr(Cx T ). Similarly, 27 D;z =
DjzTx = Tr(D;z T ) is achieved. By introducing X = zz 7,
then

min  Tr(CX)
zeX
st. Tr(DX;) > b, i =1,2,3,...1
X =0,
rank(X) = 1, (13)

where Tr indicates the trace operation, and X > O indicates
that X is positive semidefinite with X = zzT. Then, the non-
convex constraint rank(X) = 1 is relaxed and achieve
min  Tr(CX)
el
s.t. T’I“(DXZ) > bia i = 1,2,3,[,

X = 0. (14)

Equation (14) is an SDR of (13), which can be efficiently
solved by semidefinite programming (SDP) [95]. SDR has
been very generally applied to RIS-related optimization prob-
lems, since the rank(x) = 1 is frequently formulated for phase
control. Specifically, the RIS phase shift constraint |0, | = 1
is non-convex with 897 = 1. Then we can define V = 097
with V = 1 and rank(V) = 1, which can be then transformed
and relaxed as shown by equations (13) and (14).

However, the main obstacle to applying SDR is to transform
a globally optimal solution V into a feasible solution . An
ideal solution is that V is rank-one, and then 0 is easily
obtained by solving V = 007 Otherwise, if rank(d) > 1, a

rank-one approximation may be used to obtain a sub-optimal

solution . There are multiple methods to find a feasible 6
from V), leading to various solution qualities. For instance,

A second-order cone
example with

.2 2
X X Sy

Fig. 7. An example of a second-order cone in 3D space.

Mu et al. propose a penalty-based method to relax the rank-
one constraint, finding a sub-optimal solution by introducing
penalties if rank(z) > 1 [4]. SDR has been used for sum-rate
maximization [26], [34], [96], power minimization [40], [41],
[42], [46], fairness maximization [37], [60], [63], [64], and
secure transmission [67], [69], [70], [72], [74].

F. Second-Order Cone Programming

SOCP is another method that is used to efficiently solve
optimization problems in wireless networks, especially for
QCQP and fractional problems. Fig. 7 presents a second-order
cone example in 3D space. SOCP is a generalization of linear
and quadratic programming that allows for affine combinations
of variables to be constrained inside a second-order cone

min CTz
zeX

st | Ajz + bil| < elw+d;, i =1,2,3,...1, (15)

where A € R%*" b, ¢ R™, ¢; € R", and d; € R. The x
in equation (15) may be RIS phase shifts, BS beamforming
vectors, and so on, which depends on specific application
scenarios. Consider the inverse image of the unit second-order
cone with an affine mapping

A, b
|A;z + b]| < CiT:I:-i-di > |:C_TZ:|JJ—|- {dz] € €n;+1- (16)
7 T

Therefore, SOCP is a convex optimization problem with a con-
vex objective function and convex constraints. Equation (16)
indicates the core properties of SOCP problems, and hence
many problems are converted into SOCPs and solved effi-
ciently [97].

For instance, sum and fractional problems are frequently
defined in RIS-related problems to maximize the sum-rate or
total throughput regarding the SINR

R a2l
min
zeX Z ATx—i-B
s.t. Aix+Bl-20,z:1,2,3,...I (17)
which is converted into a SOCP by
1
min t;
zeX
=1
T
st (¢T+0.) (¢ +D;) <t;(ATw+B,),
A2+ B >0, i=1,2,3,...I. (18)
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SOCEP can be efficiently solved by the interior point method.
Meanwhile, SOCP is less general than SDP since equation (15)
may be transformed into an SDP problem. However, the
complexity of solving SOCP is O(n?Y; n;), while the
complexity for SDP is O(n? 3", n;2) [98]. Such complexity
difference is crucial for large-dimension problems.

Finally, to apply SOCP for RIS-aided optimizations, the first
step is to utilize AO or BCD scheme to decouple the control
variables into multiple sub-problems, e.g., BS precoding
matrix and RIS passive beamforming [44], [58], [64],
coordinated transmit beamforming and RIS passive beamform-
ing [60]. For example, the max-min data rate problem in [64]
is decoupled into SOCP-based BS beamforming and SDR-
based RIS phase-shift control, and the data rate maximization
problem in [25] is converted into a SOCP-based BS active
beamforming and SDR-based RIS passive beamforming.

G. Fractional Programming

FP refers to optimization problems involving ratios or
fractional terms. FP is particularly useful for wireless network
optimizations due to the fractional terms in communication
systems, especially for SINR and energy efficiency [99].

Consider a single-ratio FP problem to maximize the
SINR of single UE by max,c 9 f(z)/g(x), where f(x) is
the signal strength and g(x) is the interference and noise.
There are many classic methods to solve FP problems,
such as Charnes-Cooper transform and Dinkelbach’s trans-
form [100]. Dinkelbach’s method reformulates the problem
into maxge 9 yer f(z) — yg(z), where y is the auxiliary
variable that is updated iteratively y(+1) = f(z)!/g(z)t,
and / is the iteration number. Then, alternatively updating y
and x will lead to a converged solution with non-decreasing
y!. However, instead of the single-ratio problem, sum-
ratio FP problems are more frequently involved in wireless
networks, i.e., maximizing sum-rate or total channel capacity

1
as maxge - Yoy fi(2)/9i(z).

However, classic methods can not be directly generalized
to sum-ratio cases, since maximizing single ratios cannot
guarantee the convergence and maximization for sum-ratio
cases. An equivalent transform proposed by [101] is

2yf (2)°0 — y?g(), (19)

max

IS ARSI
which can be readily converted into sum-ratio problems. In
addition, equation (19) is further generalized to sum-ratio
problems as

I
ma F-(Q .C;(2)0% — 42D ) 20
ace%',g};(ER ; i\ 2Yi z(x) Yi z(x) (20)

where F; is a non-decreasing function. Equation (20) is
particularly useful given the frequently used term »_ log(1 +
SINR) in wireless communications.

The FP method can significantly lower the problem-solving
complexity by eliminating fractional items. This transforma-
tion is very useful for RIS-related optimization problems,
especially considering that RIS phase shifts will affect the
received signal strength and interference simultaneously. In

addition, the FP method can be particularly useful for
RIS-related max-min fairness problems, which are usually
formulated as max,cg minj<;<; fi(z)/g;(x), where x
indicates the control variables, e.g., RIS phase shifts and BS
transmit power. f;(z) can be the signal strength of user i, and
g;(z) indicates the interference and noise. Then the max-min
fairness problems can be reformulated as

max z
X y,zER

s, 2yifi(2)0° — y?gi(x) >z i=1,2,3,...1.
(21

where z is an intermediate objective function that is included
in the constraint. A detailed proof of obtaining equation (21)
can be found in [101].

The FP method significantly reduces the optimization
complexity by decoupling the fractional terms. Therefore,
it has been widely used in wireless network optimizations,
including power control, beamforming, energy efficiency, and
so on [27], [52]. However, note that FP is usually used for
transformation, and then the reformulated problems still need
to be solved by other techniques. A widely considered method
is first to apply FP to eliminate the fractional terms in
objective functions, e.g., throughput and power consumption
for energy efficiency maximization, received signal strength
and interference for SINR maximization. And then, AO is used
to separate the coupled control variables, e.g., RIS phase-shift
design and BS transmit power control, and optimize each sub-
problem iteratively.

H. Branch-and-Bound

BnB is a classic scheme for combinatorial and discrete
optimization problems [102]. To minimize f(x) with z € 2,
BnB applies a tree scheme to enumerate all possible subsets
X; C %, and each subset X; indicates a sub-problem f;(z).
Solving sub-problems f;(z) will generate and prune branches
based on the estimated lower and upper bounds.

A BnB algorithm consists of three basic operations: branch-
ing, bounding, and pruning. Considering a non-linear integer
programming problem, and the BnB scheme is summarized
as Fig. 8, including the search method, branching strategies,
and pruning rules. In particular, the search method indicates
the order of sub-problem exploration in the tree, e.g., which
RIS phase-shift combination is first explored. The branching
strategy specifies how to generate new sub-problems from the
solution space, e.g., how to generate a new set of phase-shift
designs. Finally, pruning rules can prevent exploring specific
regions of the tree, which will eliminate sub-optimal RIS
phase-shift solutions. BnB produces a series of sub-problems
fi(z) that are equivalent to the original f(x), which is much
more efficient than brute-force enumeration. It provides an
alternative solution for challenging problems that cannot be
solved directly. An important advantage is that the quality of
the solution is controlled by customized searching, branching,
and pruning rules.

BnB is mainly applied for RIS control with discrete
phase shift, including sum-rate maximization [26], power
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Power minimization, Max-min SINR with discrete
RIS phase shift

Special ordered set of type 1 (SOS1) transformation
& reformulation-linearization

!

| 0-1 integer linear programming |

B&B algorithm

Branching strategy Pruning rules
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Y v

Heuristic solution Checking optimality
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Fig. 8. Using BnB for RIS control with discrete phase shifts.

minimization [39], and max-min SINR [62]. The main reason
is that the problem formulations are usually MINLP problems,
which are NP-hard and intractable. As shown in Fig. §,
the MINLP is converted into an 0O-1 integer linear pro-
gramming using the special ordered set of type 1 (SOSI)
transformation [39] and reformulation-linearization [62]. BnB
performance is very dependent on search and pruning rules,
and defining these rules can be difficult in some cases. In
addition, the algorithm may converge slowly when constantly
searching and branching for new solutions, which may be
caused by the considerable number of RIS elements.

1. Discussions and Numerical Results

Table IX summarizes model-based algorithms for RIS-aided
wireless networks, including main features, advantages, disad-
vantages, difficulties, and application scenarios.

Firstly, considering the high complexity of RIS-related
optimization, AO is regarded as the primary scheme to
decouple the joint optimization problem into several sub-
problems. Then, each sub-problem is alternatively solved
by using different algorithms, e.g., SCA, SDR, and BnB.
Compared with AO, the BCD algorithm applies a similar
iterative optimization scheme, but one block may include
multiple control variables. When there are a large number of
control variables, the BCD algorithm can be more efficient,
e.g., coupled optimization problem with a considerable number
of control variables.

MM and SCA are two estimation-based algorithms that
avoid the complexity of direct optimizations. However, the
MM algorithm requires a tight upper bound when designing
the surrogate function. Such requirements can be impractical
in some cases, especially considering non-convex and highly
non-linear RIS phase-shift design problems. By contrast, the
SCA method relaxes the upper bound requirement for surro-
gate functions, which is more flexible and easier for design and
implementation. However, without the upper bound constraint,
the updating step size in SCA may affect the solution quality,
which should be carefully selected. MM and SCA are usually
considered low-complexity solutions for RIS-aided wireless
network optimizations.
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(a) Average throughput comparison under various peak traffic
loads. AOFP: combining AO and the FP algorithm; surrogate
method: using a surrogate function to approximate the objective
function in a black-box manner.
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(b) Convergence performance of AOFP under various numbers of
RIS elements.

Fig. 9. Simulation results by combining AO and FP to maximize the channel
throughput. We consider a MISO system with one BS and multiple UEs, and
the daily traffic load pattern is shown in 9(a). Detailed simulation parameters
and algorithms can be found in [103].

SDR and FP are usually combined with other techniques
for optimizations. In particular, SDR is mainly used to
relax the RIS phase constraints, while FP can decouple
the numerator and denominator for SINR and energy effi-
ciency terms. These two techniques reformulate the original
problems into low-complexity or even convex forms, then
other techniques can be applied. Meanwhile, SOCP takes
advantage of the property of the second-order cone, which
is efficiently solved by many existing methods. But the main
difficulty is how to transform the problem with logarithm
and fractional terms into a second-order cone. BnB is mainly
designed for combinational and discrete optimization prob-
lems, e.g., RIS control with discrete phase shifts and elements
on/off.

Finally, it is worth noting that these algorithms are not
independent, and multiple algorithms are usually combined
for transformation and optimizations. The main objective of
Table IX is to analyze the feasibility of these problems for
various RIS-related optimizations, and the most efficient solu-
tion for specific scenarios requires case-by-case analyses. For
instance, Fig. 9 shows an example of combining AO and FP
for RIS phase-shift control in an MISO system with multiple
UEs. Specifically, it applies FP to decouple the received
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TABLE IX

SUMMARY OF MODEL-BASED OPTIMIZATION ALGORITHMS FOR RIS-AIDED WIRELESS NETWORKS

Methods Main features Advantage Drawbacks Difficulties Application scenarios
AO is the most widely applied
Decoupling the joint The problem-solving Iterative optimization T L y 4pp .
o . o The complexity is high optimization scheme for RIS-aided
optimization into multiple complexity is greatly may lead to .
. when each networks. It decouples the joint
AO sub-problems, and reduced. Each sub-optimal results; L. . .
. A sub-problem is still optimization into multiple
alternatively optimizing sub-problem may be the convergence must . -
. complicated. sub-problems and then optimizes
each sub-problem. easier to solve. be proved. . .
them iteratively [50].
BCD employs alternating schemes to
The control variables are Cheap iteration costs; Block selection may reduce 'olintyo timizatiof complexit
divided into multiple low memory affect the BCD Block selection and J phumizaton pexity:
L . . . e.g., sum-rate maximization [21] and
BCD blocks. Minimizing one requirements; potential performance, and updating methods are e
. . . . L. . power minimization [48], and one
block in each iteration and for parallel block updating is complicated. . . .
. . . . . block in BCD may include multiple
keeping other blocks fixed. implementation difficult in some cases. .
control variables.
. . The surrogate function . The MM applies surrogate functions
Iteratively constructing and L . L The surrogate function . .
Lo Avoiding the complexity must be a strict tight as low-complexity solutions for many
optimizing an upper bound A must follow the shape . s .
. of optimizing upper bound for L . RIS-aided optimizations, i.e.,
MM surrogate function that can Lo L . of objective functions L .
R non-convex objective objective functions, K sum-rate maximization [21], fairness
locally approximate . . S and meanwhile be o
e . functions directly. which is hard to .. maximization [58], [64], secure
objective functions. . . . easy to optimize. L
achieve in practice. transmission [73].
Low computational SCA relaxes the tight upper bound
. L complexity; the tight . . constraint on surrogate function
Constructing and optimizing P Y . g The step size selection . g .
. upper bound is not S . design. Such an estimation-based
surrogate functions . is critical for an Surrogate function and . . .
SCA . . . required for the surrogate . . approach is easier to be implemented
iteratively to estimate the . accurate step size selection. . s
obiective function function; naturally approximation in RIS-related optimization, e.g.,
) implemented in a PP sum-rate maximization [24], [30] and
distributed manner. power minimization [41], [46].
SDR is used to solve QCQP Given the objective T The reformulated . .
. QeQ J. . Approximation is . SDR is particularly useful to solve
problems by relaxing the problem, SDR is easily e e problem is .
. . . required if the relaxed . . rank(z) = 1 constraints, such as
SDR rank constraint. Then the implemented without L. complicated if the . .
. solution is not rank . .o RIS phase-shift constraint |0,,] = 1
reformulated problem is extra parameters or one achieved solution is [26] [38]. [96]
efficiently solved by SDP. settings. not rank one. ’
SOCEP utilizes the propert . L SOCP can be very useful if the
property SOCP can be efficiently The main difficulty M .
of the second-order cone, . . L RIS-related problems can be easily
solved by many existing | Problem reformulation lies in how to
and many problems are . . . formulated as a second-order cone,
SOCP . algorithms. It has a into SOCP is reformulate the .
reformulated into SOCP, . . .. . which has been used for power
L . lower complexity complicated. original problem into e .
which is much easier to be O(nS", n,) than SDR SOCP minimization [44] and user fairness
solved. i [58], [60], [64].
FP refers to optimization The reformulated Compared with . .
. . . FP is particularly useful when
problems that involve . o problems generally single-ratio problems, . N .
. S FP is easily implemented . . . decoupling the fractional terms in
fractional terms, which is . require iterative wireless networks are
e . without extra parameters s RIS-related problems, e.g., SINR and
FP very useful for wireless . optimization to more related to - o .
- S or problem formulation . . energy efficiency. It is widely applied
communications considering . approximate the sum-ratio problems, L. .
. requirements. . - . for optimizing RIS-aided networks
the form of SINR and solution of original FP which are more
. . [27], [46], [50].
energy efficiency. problems. complicated to solve.
. . . N Lower complexity than The algorithm Different from aforementioned
BnB is mainly designed for . L . . . . . . .
- L direct optimizations. The | The algorithm is slow performance relies on technique, BnB is mainly applied for
combinational optimization . . . . R
. solution quality is when constantly the searching and discrete and combinational
BnB problems. It applies a tree . . . . . Lo .
. controlled by customized | searching or branching | pruning method, which optimization problems, i.e., RIS
to enumerate all possible . . . . . . o
search, branching, and in the worst case. is hard to select in on/off and discrete phase shift [26],
subsets and sub-problems. .
pruning rules. some cases. [39], [62].

signal strength with interference and noise, and then uses
AO to optimize multiple control variables alternatively [103].
Fig. 9(a) presents the average throughput under various peak
traffic loads, which involves a daily traffic load pattern as
shown by the blue shade in Fig. 9(a). Meanwhile, we consider

surrogate optimization as a baseline, which applies surrogate
functions to approximate the objective function in a black-

box manner. When the peak traffic load is light, one can

observe that AOFP and surrogate function have comparable

performance, which means that the channel capacity can
already satisfy the traffic demand. However, when peak traffic
load increases, AOFP attains higher throughput than baselines,
which demonstrates that RIS control and deployment strategy
should consider dynamic UE traffic demand. Additionally,
Fig. 9(b) presents the convergence performance of AOFP,

V. HEURISTIC ALGORITHMS FOR RIS-AIDED

WIRELESS NETWORKS
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in which the objective function is improved with increasing
iterations and finally converges. This reveals the basic features
of AO, which is to guarantee the objective function will be
improved iteration-by-iteration, and such a scheme has been
widely used in RIS-related optimization studies.

As presented in Section IV, model-based algorithms have
specific requirements for problem formulations, especially for
convexity and continuity. Meanwhile, the large number of RIS
elements, dynamic channel conditions, and various CSI levels
further contribute to the overall complexity. Therefore, trans-
formations and relaxations are required to convert the original
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gg(x‘:ﬂ) has the same
tangent with f;(x')

Two convex fun?tions, e.g.,
achieved by decoupling the
SINR term.

x: control variables, e.g., RIS
phase shift or active
beamforming

»

Fig. 10. Convex concave procedure for RIS-related optimization.

problem into specific forms. Moreover, these transformations
are usually problem-specific, requiring case-by-case analyses
and dedicated design.

By contrast, heuristic algorithms have fewer requirements
for objective functions and constraints, which will significantly
reduce the complexity. Compared with model-based methods,
heuristic algorithms are usually considered low-complexity
solutions. In the following, we will introduce four heuristic
algorithms, including CCP, meta-heuristic algorithms, greedy
algorithms, and matching-based algorithms.

A. Convex-Concave Procedure

The CCP algorithm uses the local heuristic to solve dif-
ference of convex (DC) problems, which is considered a
low-complexity solution for complicated wireless network
optimization.’

DC problems are frequently formulated in many fields, rep-
resenting many scenarios that cannot be solved in polynomial
time. The DC problem is defined as

max fo(z) — go(z)

st. fi(z) —gi(z) <0; i=1,2,3,...1, (22)

where f(x) and g(x) are both convex. DC problems are usually
non-convex unless g; () are affine, which is generally hard to
solve.

As shown in Fig. 10, the core idea of CCP is to find i
in the [ + 1 iteration that satisfies V,f(z't!) = V,g(z!),
indicating a point on f(x) that has the same tangent with
g(z') [105). The CCP algorithm will first form

i (xlxl) = i (azl) + ng(x)(:r . xl), i=0,1,2,3,... 1.
(23)

Then it solves the following problem to get z‘*1

max fo(z) - o (o'

e
st. fi(x) fgi(x|xl) <0 i=1,2,3,...1. (24

3The main reason that CCP is considered a heuristic algorithm is that it
applies a simple heuristic rule for optimization, which is iteratively finding
two points with the same tangent vectors [104]. Hence, CCP fits well with
our defined classifications of heuristic algorithms.

Equation (24) is equivalent to Vf(z't1) = V,g(z') by
deriving the objective function, and equations (23) and (24)
are iteratively repeated until reaching the stop criteria. CCP
algorithm does not require a dedicated step size design, and
the main reason is that the estimator fy(z)—go(z|z!) is global.
It retains all the information from the convex component f(x)
and only linearizes the concave portion g(x).

Moreover, there are multiple extensions of the CCP algo-
rithm. For instance, the penalty CCP includes a penalty term
for violations, which removes the requirements for feasible
initial points. The RIS phase shift optimization problem is
reformulated as [11]

21
£0) =1y v,
=1
s.t. g(0) = D,
2
0l —2Re{0;01} < v -1,
10;2 <14 vy, i =1,2,3,...1,

max
0,7>0

(25)

where 7! Zfil v; is the penalty term, v; are slack variables,
and 7! is a coefficient that will decline in each iteration for
convergence. After some transformations, problem (25) can be
solved by using the CVX toolbox, and the detailed procedure
is included in [11].

CCP has been applied in [30], [35], [42], [78], [106]
for controlling RIS phase shifts. In these works, the joint
optimization problem is first decoupled into multiple sub-
problems using BCD or AO, then penalty CCP is used to solve
the RIS phase shifts sub-problem. The main motivation is the
high complexity of solving non-convex RIS control problems.
For example, the sum-rate maximization problem in [35] is
converted into three sub-problems: joint optimization of the
transmit power and spectrum sharing, SDR-based multi-user
detection, and CCP-based RIS phase shifts. However, note that
CCP is a heuristic algorithm that will find a locally optimum
solution, and the initial point 20 may affect the final output. In
particular, there may exist multiple locally optimal solutions,
and CCP can easily get stuck in a sub-optimal one.

B. Meta-Heuristic Algorithms

One of the main difficulties of controlling RISs is the
large number of RIS elements, leading to huge solution
spaces. Therefore, it is hard to achieve exact solutions by
finding a closed-form expression, and hence model-based
approximation algorithms such as SCA and MM are applied.
However, these methods have stringent requirements for objec-
tives and constraints, especially for convexity, continuity, and
differentiability. By contrast, meta-heuristic algorithms can
search significantly large solution spaces with few or no
additional requirements on problem forms [107]. It usually
contains intelligent policies to guide the heuristic exploration,
producing high-quality solutions efficiently. Meta-heuristic
algorithms have been extensively developed, e.g., genetic
algorithm (GA), particle swarm algorithm (PSO), ant colony
optimization, simulated annealing, and tabu search [108].

Fig. 11 shows the steps of using population-based meta-
heuristic algorithms for RIS phase-shift design. The first step
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Initializing algorithm parameters, e.g..
population numbers.
Producing initial individuals, i.e.. different
RIS phase shift.

el
Evaluating the fitness of each individual. i.e..
achieved sum-rate, transmit power.

Selecting elite individuals. indicating
solutions (RIS phase shift combinations) that
bring better performance.

Producing new individual solutions. i.e..
crossover and mutation for GA, particle
movement for PSO.

itness value convergence or
maximum iterations?

Return the solution with best fitness value

Fig. 11.
control.

Population-based meta-heuristic algorithms for RIS phase-shift

is to initialize the algorithm parameters such as population
numbers and crossover rate in a genetic algorithm. Then,
the algorithm will produce initial individuals, which indicates
various RIS phase-shift designs. The objective function is
converted into a fitness function, e.g., the sum-rate or energy
efficiency. After that, the algorithm will constantly search
for better solutions using heuristic rules iteratively, such
as evolution strategy in a genetic algorithm, and particle
movement for PSO. Finally, the heuristic exploration will stop
if the fitness function values converge or reach maximum
iteration numbers.

Compared with model-based methods, the main advantage
is that meta-heuristic algorithms can easily adapt to both
continuous and discrete RIS phase shifts without relaxation
and transformation. PSO and GA are used for RIS phase shifts
in [31] and [65] to maximize the data rate. Statistical CSI is
investigated in [32] to obtain a closed-form expression of the
uplink ergodic data rate, then GA is deployed for phase control
to maximize the data rate. In addition, Tabu search is applied
to irregular RIS to decide the element design in [20].

The simulations in [20], [31], [32], [65] show that meta-
heuristic algorithms can significantly reduce the optimization
complexity, especially for MINLP problems. However, it may
be trapped in local optima, and the algorithm performance
relies on the parameter settings. For example, the phase
shifts of hundreds of RIS elements require a large number
of populations in GA, leading to high exploration costs. By
contrast, reducing the population numbers may lower the
probability of finding optimal solutions.

C. Greedy Algorithms

Most former algorithms are designed to find global optima
of the objective function. However, many problems are
NP-hard and non-convex, and the solutions are usually

Deciding the optimal phase shift one-by-one by
observing the improvement on sum-rate

Element | 2 3 4 5 6 v ...
Number: 4—t———t——————

RIS

UE

Fig. 12. Greedy method for RIS phase shift control.

problem-specific with a series of transformations. To this
end, greedy algorithms are proposed as low-complexity
alternatives. In particular, greedy algorithms refer to the
problem-solving heuristic that makes locally optimal decisions
at each stage regardless of global optima [109]. Consider
an minimization problem min f(Z), and the control variables
Z include ¥ = {xy,22,...,2;,...,X7}. At each stage, the
greedy algorithm will optimize only one control variable z; by
T; = argming ¢y, f(¥), while holding the rest of variables
unchanged. Then it moves to the next stage until i = I.

RIS elements’ on/off control is a non-convex problem with
discrete constraints. It may be solved by relaxing the integer
constraint y € {0,1} into 0 < x < 1, but the reformulated
problem can still be complicated. A low-complexity solution is
a greedy element-by-element control. Specifically, it evaluates
the on/off decision of one RIS element at each stage by observ-
ing the changes in objective functions. If the performance is
improved by achieving a higher sum-rate and lower power
consumption, then the on/off status will be updated [54].
Similarly, as shown in Fig. 12, this greedy scheme can also
be applied to control RIS phase shifts, indicating that one
element is optimized at a time by observing the improvement
of objective functions, e.g., achieving higher data rate or
energy efficiency. Then, the next RIS element is optimized
sequentially [33], [66], [110].

In addition, greedy algorithms are used to relax the con-
straints. For example, the RIS phase shift is allowed to violate
the stringent constraints in [111], then the achieved objective
values are compared with the theoretical optimal results to
find a feasible solution. Greedy schemes may be combined
with AO to handle problems with multiple sub-objectives. For
instance, a greedy scheme is applied in [112] to maximize
the served users by controlling RIS phase shifts, then it
schedules the users to minimize the age of information. The
main advantage of the greedy algorithm is the low complexity
by decoupling the joint optimization into multiple stages.
However, instead of global optima, it can only achieve local
optima. The simple greedy policy means that there is no
guarantee for the algorithm’s performance, which may lead to
poor output in some cases.

D. Matching Theory-Based Methods

The matching theory is useful for optimizing resource
allocation problems, i.e., subcarrier assignment, user-BS and

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:51:45 UTC from IEEE Xplore. Restrictions apply.



800 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

user-RIS association, and mode selection. These problems are
formulated as MINLPs, and a possible solution is to relax
the zero-one constraints and reformulate the problem. A linear
conic relaxation method is proposed in [113] for the user-RIS
association, but it further requires SDP to solve the relaxed
formulation, leading to high computational complexity. In
addition, the problem becomes even more complicated when
RIS on/off control and phase shifts are involved. Consequently,
the primary motivation for applying matching theory is to
achieve low-complexity solutions efficiently.

Consider the most widely applied many-to-one matching
problem with two finite and disjoint sets of players &/ and B.
U represents users, and B may be BS, RIS or subchannels.

Definition 1: The considered many-to-one matching
problem is defined by

(a) Matching relationship function f :=U x B with u € U
and b € B, e.g.,, the many-to-one association relationship
between multiple users and one BS;

(b) |f(u)] = 1 with Vu € U, indicating that one u can
only be matched with at most one b in many-to-one matching
problem, e.g., one user can be associated with at most one BS.

(©) |[f~1(b)| > K with Vb € B, which means that b has a
capacity limit for the connection with u. For example, one BS
has a maximum service capability for users.

(d) b = f(u) + u = f~(b). This means the matching is
bidirectional and mutual.

To describe the exchange operation between different
matching, the swap matching is considered

Definition 2: Given u € f~1(b) and v’ € f~1(b') with
u, v’ € U and b, b’ € B, the swap matching is defined by
Bt o = L (s B) (', )1} U { () (', D)}

Swap matching allows u and u’ to exchange their matched
b and V', while other players remain unchanged. For instance,
two users can exchange their associated BSs without changing
other association pairs.

Definition 3: u and v/ become a swap blocking pair if and
only if

(a) For all players in {u,b,u, 0"}, F(fyp.u 1) > F(f),
where F is the utility function of players. This means that the
utility functions of all involved players will not decrease.

(b) At least one player in {u, b, u’, b’} has F(f, p . ) >
F(f), indicating that at least one player’s utility is improved,
e.g., at least one user achieves higher channel capacity or data
rate by switching pairs.

Definition 3 shows that the overall utility can be improved
by finding swap matching pairs. Then the stable matching is
defined by

Definition 4: The matching relationship between two sets
U and B is two-sided exchange-stable if there is no swap
blocking pairs. This means that the overall utility such as
channel capacity or sum-rate cannot be improved by switching
user-BS associations.

Definition 4 is very useful in matching theory, since it
provides locally optimal criteria, and it is easily achieved
by searching and eliminating all the swap blocking pairs.
Fig. 13 presents the applications of matching theory in
RIS-aided wireless networks, including D2D-user pairing,
user-BS-RIS association, channel assignment, etc. It shows

Matching theory for channel
Matching theory for RIS- assignment in RIS-assisted
aided D2D communication networks (with peer effect in

RIS NOMA).
0 @/

Matching theory for UE
association in RIS-assisted
networks.

Fig. 13. Matching theory applications in RIS-aided wireless networks.

that matching theory provides an efficient solution for over-
coming these NP-hard problems. For instance, a RIS-aided
maritime communication system is investigated in [49], in
which many-to-one matching was applied for the joint mode
selection and power control of BSs. In RIS-assisted NOMA
system, many-to-one matching is used for channel assign-
ment [80], [81] and user clustering [56], while many-to-one
and many-to-many matching are jointly considered in [34]
for the UE association and channel assignment. Moreover,
matching theory is applied in [114] for edge computation
offloading in RIS-aided networks, and a deferred acceptance
matching game is formulated in [115] for user association
in mmWave networks with RISs. The simulations in [34],
[49], [56], [80], [81], [114], [115] demonstrate that matching
theory is a low-complexity solution for resource allocation and
association problems in RIS-aided communication systems.
However, matching theory relies on iterative searching to
eliminate swap blocking pairs, and the searching cost may
increase exponentially with more players. In addition, the
wireless network players will affect each other, changing the
overall interference level. Such peer effects may increase the
complexity of applying matching theory.

E. Discussions and Numerical Results

Table X compares heuristic algorithms in terms of main
features, advantages, drawbacks, difficulties, and applications.
Compared with model-based algorithms, a common advantage
of heuristic algorithms is their low complexity.

RIS-related optimization problems may involve summation,
logarithm, fractional terms, and discrete constraints in problem
formulations, which are non-convex and highly non-linear.
Applying model-based algorithms generally require a series of
transformation and relaxation to achieve a convex or a concave
reformulation, but this complexity is avoided in heuristic
algorithms. For instance, many problems are easily converted
into DC forms, and the CCP algorithm can be applied by
iteratively finding two points with the same tangent vectors.
Compared with other estimation-based methods such as MM
or SCA, the CCP method has much lower complexity, since no
extra surrogate function is required. However, the initial point
selection may affect the solution quality of the CCP algorithm.
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TABLE X
SUMMARY OF HEURISTIC ALGORITHMS FOR RIS-AIDED WIRELESS NETWORKS
Methods Main features Advantage Drawbacks Difficulties Appllcgtlon
scenarios
CCP aims to obtain re(ilcirlz Zlgd(égili]::ego:; n(s):ze The selection of initial The problem has to be Penalty CPP is used for imperfect
local optima of DC q . . P points may affect the reformulated into the DC CSI in [42], and statistical CSI in
. R design, and it retains all of the . . L .
CCp problems by iteratively . . final results, and hence | form; initial points may need [30]. Other applications include
. . . information from the convex . . .
finding points with the . . it requires an to be selected several times non-convex RIS control problems
component and only linearizes S . .
same tangent values. . initialization method. due to local optima. in [35], [78], [106].
the concave portion.
Meta-heuristic It can be trapped in Selecting the best parameters Meta-heuristic algorithms are
Meta- A algpnthlns gpply Meta-heuristic algorithms can local optlma, and Fhese is con?p}lcaled in man?ly deploye(} for RIS
.. intelligent policies to . algorithms require meta-heuristic algorithms. phase-shift control, including GA
heuristic . . search huge solution spaces . . . Lo
guide the heuristic R . many iterations. The For instance, crossover for rate maximization in [65],
algo- Lo . with few or no additional : N e L o s
rithms exploration iteratively, assumptions algorithm performance | probability in GA and inertia | PSO for phase-shift optimization
producing high-quality P ’ is sensitive to weight in PSO may decide in [31], [32], tabu search for
solutions efficiently. parameter selections. the algorithm performance. irregular RIS in [20].
Instead of global It may present poor Greedy algorithms are used for
optima, greedy . Y P P Finding the trade-off RIS phase control in [33], [66],
. Greedy algorithms can greatly global performance, . .
Greedy algorithms make . h X between low complexity and [110] and on/off control in [54]
. reduce the complexity by since the local optima . . .
algo- locally optimal . - . good algorithm performance as low-complexity solutions,
. .. decoupling the original in one stage may lead | ° .. . - .
rithms decisions at each stage : . is critical to using the greedy providing low-complexity
. . problem into multiple stages. to bad results for the L . . N
of solving the heuristic. alternative solutions for NP-hard
next stage.
problem. problems.
) Matchmg»l?ased Compared with direct ‘ Matchlng theory is ma¥nly
Matching | method is designed to L Matching-based . . . applied to resource allocation and
. optimization methods, . Defining the utility function L .
theory- solve matching or . method may require . . association problems in
- matching-based methods have . for two sides of players with .
based association problems . exhaustive searches to L RIS-aided networks, e.g., channel
. . lower complexity for . . peer effects is difficult. .
method with two sides of find matching pairs. assignment and user-BS-RIS
large-scale problems. L.
players. association [80], [81].

Greedy algorithms employ a simple greedy policy for
decision-making. They aim to maximize the current benefit,
disregarding the effect on future stages. Greedy algorithms
can efficiently solve problems in near-linear time complexity.
However, greedy algorithms can only generate locally optimal
results, and the increasing number of control variables may
lead to poor performance.

By contrast, meta-heuristic algorithms apply more advanced
heuristic rules for iterative exploration, e.g., genetic algo-
rithm, tabu search, and PSO. Similar to greedy algorithms,
meta-heuristic algorithms have no requirements for problem
formulations and constraints, and objective functions can be
easily converted into fitness functions. However, compared
with greedy algorithms, meta-heuristic algorithms can better
guarantee the solution quality by using heuristic rules for
iterative optimization.

Different from previous approaches, matching theory
specializes in solving resource allocation and association prob-
lems. In matching-based methods, the control variables are
considered as matching operations, and the objective function
is improved by searching swap matching pairs. Therefore,
when handling these allocation problems, matching theory
is more efficient than other heuristic algorithms due to its
dedicated design.

Note that heuristic algorithms may be combined with
model-based algorithms. For instance, the energy-efficiency
maximization problem in [54] is decoupled into the beamform-
ing optimization, phase control, and RIS on/off optimization,
in which beamforming and phase control are solved by SCA,
and RIS on/off is optimized by the greedy algorithm. Other
combinations can be found in [66] by combining SDR with
greedy heuristic, and in [34] by combining SCA and SDR with
matching methods.

Finally, Fig. 14 shows an example with greedy and genetic
algorithms. In particular, the greedy algorithm applies element-
by-element RIS phase-shift control. It decides the phase-shift
of one element at each time by observing the improvement
in sum-rate, and then moves to the next element. Meanwhile,
genetic algorithm considers different phase shift combinations
as individuals, and uses evolutionary strategies to find near-
optimal solutions. Fig. 14(a) provides the sum-rate under
various numbers of RIS elements. It shows that heuristic
algorithms can achieve satisfactory performance with a limited
number of RIS elements. However, when the number of
RIS elements increases, both greedy and genetic algorithms
present sub-optimal results. In addition, Fig. 14(b) illustrates
the convergence performance of the genetic algorithm. It
shows that the average values of individuals increase with
iterations, and finally the optimal objective value converges.
The main reason is that the genetic algorithm applies evolu-
tionary policies, which will select elite individuals to produce
new solutions, and therefore the solution quality is constantly
improved.

VI. ML-ENABLED OPTIMIZATION FOR RIS-AIDED
WIRELESS NETWORKS

ML has achieved great success in various fields, and
this section investigates ML applications for the control and
optimization of RIS-aided wireless networks, including super-
vised learning, unsupervised learning, RL, FL, graph learning,
transfer learning, hierarchical learning, and meta-learning.

A variety of algorithms have been developed to optimize
RIS-aided wireless networks. Early studies mainly consid-
ered model-based methods, and some heuristic algorithms
are deployed as low-complexity solutions. However, there

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:51:45 UTC from IEEE Xplore. Restrictions apply.



802 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

~e-Exhaustive search
@~ Random phase-shift design
+— Genetic algorithm

-

Greedy phase-shift design .~ & -
= i

P

Sum-rate [Mbps|
w

[

5 10 15 20 25
Number of RIS elements

(a) Sum-rate comparison under various numbers of RIS elements.
The greedy algorithm applies element-by-element RIS phase-shift
control. It decides the phase-shift of one element at each time
by observing the improvement in sum-rate, and then moves to
the next element. The genetic algorithm considers different phase
shift designs as individuals, and uses evolutionary strategies to find
near-optimal solutions.
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Fig. 14. Simulation results of greedy and genetic algorithms. We consider
a MISO system with one BS and multiple UEs, and detailed simulation
parameters and algorithms can be found in [116].

are several challenges for these conventional optimization
techniques:

1) Highly Dynamic Wireless Environment: Wireless
networks are highly dynamic due to frequently changing chan-
nel conditions, traffic demands, and user conditions. These
dynamics lead to great difficulty for conventional optimization
schemes. As an example, model-based methods need full
knowledge of the formulated problem, but some sensitive
information, e.g., real-time user locations, may be unknown
in practice.

2) Evolving Network Architecture: The wireless network
architecture is constantly evolving from RAN to cloud RAN,
virtual RAN, and Open RAN. Consequently, these new archi-
tectures increase the complexity of network management, and
conventional algorithms may have difficulty modelling and
optimizing such complicated systems.

3) Diverse User Requirements: Wireless network user
types are not limited to enhanced Mobile Broad Band, Ultra
Reliable Low Latency Communications, and massive Machine
Type Communications. Some newly emerged applications,
such as virtual and augmented reality, have more stringent

requirements on network metrics, leading to a great burden
for conventional optimization methods.

Given these challenges, ML-enabled control and
optimization techniques have become appealing approaches
for wireless communications in general, as well as for RIS-
aided wireless networks. In the following, we will introduce
the fundamentals and applications of various ML techniques.
It is worth noting that ML algorithms can be applied to
optimize RIS-aided networks in various ways, e.g., controlling
RIS elements directly or jointly optimizing the whole RIS-
aided network scenario. Here we focus on the application of
using ML algorithms to optimize RIS elements directly, e.g.,
supervised learning-based sum-rate prediction, unsupervised
learning-enabled RIS phase-shift optimization, RL-enabled
RIS phase-shift control, and so on.

A. Supervised Learning-Enabled Optimization

Supervised learning is designed to find the hidden rela-
tionships between inputs and labeled outputs. Supervised
learning algorithms adjust their parameters to map the input
to the expected output, and this relationship is used for the
prediction and classification of unseen data. Table XI sum-
marizes supervised learning-based control and optimization
studies for RIS-aided wireless networks. It shows that most
studies consider partial CSI or pilot signals as input to
predict full CSI or RIS phase shifts, and then utilize the
prediction results to maximize the data rate. Meanwhile, there
are various approaches for neural network model selection,
dataset acquisition, input and output data definitions, etc.
This subsection will discuss how to apply supervised learning
for optimizing RIS-aided wireless networks, including data
acquisition, neural network architecture, loss functions and
algorithm training.

1) Dataset Acquisition in RIS-Aided Environments: A fine-
grained dataset is the prerequisite for deploying supervised
learning, since it relies on the labeled output for val-
idation. Table XI indicates that the dataset is generated
in various ways: simulators, exhaustive searches, code-
book, model-based optimization algorithms or live networks.
For example, the exhaustive searches mean trying differ-
ent solutions and then collecting the corresponding output
to form labeled datasets [119] [120]. By contrast, a
more efficient method is to reuse the data produced by
AO [124] and BCD [125] as model-based optimization
algorithms.

In addition, the algorithm performance also depends on the
dataset size, ranging from 5000 [121] and 30000 [119], [120]
to 200000 [125] in several studies. The simulation results
in [119], [120] demonstrate that the achievable data rate is
significantly improved when the number of training samples
increases from 5000 to 30000. Note that the complex entry
of the input data, especially the channel coefficient, is usually
split into real and imaginary parts, increasing the dimension
of the neural network input. Although there are several ways
to generate the data for supervised learning, most existing
datasets are simulation-based. Realistic datasets that are pro-
duced in real-world RIS-aided environments are still very rare.
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TABLE XI
SUMMARY OF SUPERVISED LEARNING FOR RIS-AIDED WIRELESS NETWORKS

Phase-shift Channel

Ref. Scenario . . CSI Objectives Model Layer Data acquisition Input data Output data
resolution settings
Point-to-point ) DeepMIMO ) Maximizing CNN 9 Conv2D Col]ect.ed from Estimated partial Full Uhaﬂnel
[117] SISO Discrete dataset Predicted data rate layers fully active model channels information
FNN 5 Layers Codebook CSI RIS phase shifts
Rlc.h-scatterTng Binary Gerlerated by Predicted Maximizing DNN 4 layers Obt.alned from RIS phases Second-order
[118] | Point-to-point simulator data rate simulators moments of CSI.
Point-to-point Continuous Wldebaqd Partially Maximizing DNN 6 layers Exhaust'lve CSI Estimated data rate
[119] SISO geometric data rate generation
Point-to-point . . Wideband . Maximizing S Exhaustive search e e
[120] SISO Continuous geometric Perfect data rate DNN 5 layers beamforming Pilot signals RIS phase shifts
Point-to-point . . . Maximizing Simulation Transmit power, .
[121] SISO Discrete Rician fading Perfect data rate DNN 5 layers gencrated and positions RIS phase shifts
Quasi-static Maximize 5 layers; 6 Separatel RIS phase shifts and
MISO-DL-SU | Continuous . Estimated energy DNN yers: P Y Pilot signal BS beamforming
[122] flat-fading . layers generated
efficiency vector
MISO-DL-SU | Continuous Rayl_e igh Perfect Maximizing DNN 5 layers Genérate.d by User positions RIS phase shifts
[17] fading data rate estimation
. . . Maximizing S Collected using by Incident RF . o
[123] SISO-UL-MU Continuous Quasi-static Perfect SINR CNN 5 layers USRP?2 testbed signal Interfering user set
MISO-DL-MU | Continuous | Rician fading | Perfect | MMM | paN | g jayers | enerated by AO Channel RIS phase shifts
[124] secrecy rate algorithm coefficients
DNN 7 layers s UE positions s

2) Loss Functions and Algorithm Training: Given the huge
number of training samples, supervised learning models are
trained to produce the expected output. Suppose that the
prediction output is the RIS phase shifts [117], [120], [121],
and the loss function is defined to minimize the mean square
error (MSE) of algorithm training

1 NS

Loss(w) = i Z(Gi - Hi(w)) , (26)
=1

where N is the total number of outputs, i.e., the number of RIS
elements, 6; is the desired phase shift given by the dataset,
w is the neural network weight, and éi(w) indicates the RIS
phase shifts predicted by neural networks. The desired phase
shift §; can be obtained in various ways, such as exhaustive
search or model-based approaches [119], [124], which have
been introduced in Section VI-Al. For example, Song et al.
apply AO to produce a dataset with desired targets for DNN
training [124], and Hu et al. apply BCD algorithm to generate
target phase shift to train DNN models [125]. Meanwhile,
note that the dataset must be divided into training and
validation samples, since the objective of algorithm training
is to predict unseen data. For example, the authors in [124]
include 10000 samples to predict the RIS phase shifts, of
which 90% is used for training and the remaining 10% for
testing purposes.

3) Neural Network Architecture and Overfitting: Table XI
shows that DNN is used in most studies to predict CSI or
RIS phase shifts, and the network architecture ranges from 4
to 9 layers. It is known that more hidden layers may provide
a better performance, but the computational complexity and
training time will increase. Hence, the network architecture
selection should consider the trade-off between performance
and training costs.

Overfitting is another important issue for neural network
training. It means that the algorithm fits exactly to the current
training data, but cannot achieve satisfactory prediction for

unseen data, which should be carefully prevented. One solution
is to add a random dropout layer with probabilities, ignoring
the contribution of some neurons [125]. Multiple methods are
provided by [124] to suppress overfitting in predicting RIS
phase shifts, including larger datasets (CSI and RIS phase shift
pairs), decreasing hidden layers, and early stopping.

Fig. 15 summarizes how to apply supervised learning for
RIS-aided wireless networks. Firstly, the datasets can be
produced by various methods, including simulators, exhaustive
searches, testbed, and model-based methods. The collected
dataset may include UE positions, data rates, and pilot sig-
nals received at the transmitter and receiver, which mainly
depends on the designed prediction algorithms. Then, one
specific model will be selected, i.e., FNN, convolutional neural
networks (CNNs), and recurrent neural networks (RNNs).
Note that each neural network model has unique features and
advantages, e.g., RNNs are suitable for handling sequential
data, and CNNs can better handle spatial data. The selection of
neural network models requires case-by-case analyses of the
dataset size, quality, and data-processing demands. The num-
ber of nodes and hidden layers of neural networks should be
carefully designed, which will affect the network training time
and accuracy. Finally, selected models are trained and imple-
mented, and the algorithm output includes RIS phase shifts,
achieved data rate, BS beamforming vectors and so on, which
are further used to optimize network performance. Supervised
learning has been widely used for wireless networks. However,
note that it relies on high-quality labeled datasets for model
training, which may be inaccessible in practice. In addition,
the algorithm performance is sensitive to hyperparameters, and
the fine-tuning of parameters requires considerable experience.

B. Unsupervised Learning-Based Optimization

Supervised learning is data-demanding, but fine-grained
labeled datasets may be inaccessible in practice, preventing
the application of supervised learning algorithms. On the
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RIS-aided wireless network environment
Dataset generation Neural network training and implementation
Fig. 15. Supervised learning for RIS-aided wireless networks.

TABLE XII
SUMMARY OF UNSUPERVISED LEARNING FOR RIS-AIDED WIRELESS NETWORKS

Ref. Scenario Phase-sh ift ChaAn nel CSI Objectives Model Layer Data generation Input data Output data
resolution settings
Rician Maximizin CNN 6 layers CSI RIS phase shifts
[126] | MISO-DL-MU | Continuous . Perfect 2 Generated by [27] Effective channel | BS beamforming
fading sum-rate FNN 5 layers -
matrix vector
Maximizing Generated b
MIMO-DL-SU | Continuous | Rician fading Perfect spectral DNN 4 layers Y CSI RIS phase shifts
[127] N random exploration
efficiency
Broadcasting Maximizing
. . . . - Generated by .
Communica- Continuous | Rician fading | Statistical spectral DNN 4 layers . CSI RIS phase shifts
[128] . N random exploration
tions for IoTs efficiency
MISO-DL-SU | Continuous Raylg igh Perfect Maximizing FNN 7 layers Generated as [17] CSI RIS phase shifts
[129] fading data rate
. FNN 6 layers Obtained from [131] CSI RIS phase shifts
Continuous/ Geometry-based Maximizing k-means is used to cluster RIS elements Estimated
[130]| MISO-DL-MU . ; clustered Estimated Co B ; RIS element
discrete delay line sum-rate based on their estimated cascaded channel cascaded channel lust
v coefficient without dataset. of RIS elements. clusters.

contrary, unsupervised learning can find hidden patterns of
unlabeled data without predefined targets or human interven-
tion. Table XII summarizes unsupervised learning algorithms
for RIS-aided wireless networks. It shows that neural networks
are used in unsupervised manners for RIS phase-shift con-
figuration. Meanwhile, some classic unsupervised learning
methods, such as k-means, can also be applied for clustering
RIS elements. This subsection will introduce unsupervised
neural networks and clustering algorithms.

1) Algorithm Training and Network Architecture of
Unsupervised Neural Networks: Supervised neural networks
aim to minimize the loss between predicted results and desired
target, i.e., predicted and target data rate in the dataset.
However, in unsupervised neural networks, the loss function
is directly related to optimization objectives. Specifically, we
consider a single-user scenario as an example, and the user
SNR is

’ (hRe)G + hD)p
Ng

‘ 2

Nk = . 27)

where p is the transmit power at the BS, G indicates the
channel gain from BS antennas to RIS elements, hE indicates

qA\w/A\W/

REOGIRL
—@c NN
G ~CEX SEEIRE
ALK "o"(
T
Loss(w) = — : > (h"OG + hP)
Predicting appropriate ® to

|(R"OG + hP)p|? minimize the training loss
Ng and meanwhile maximize SNR.

RIS phase
shift @

Tk =

Fig. 16. Unsupervised neural networks for optimizing RIS phase shifts.

the channel gain from RIS elements to the user, hP indicates
the channel gain from BS antennas to the user, NO2 is the
noise power, and © is the matrix of RIS phase shifts. As
shown in Fig. 16, the neural network considers the channel
state information as input, including G, hf and KD Then, the
output is the predicted RIS phase shifts . The loss function
is defined by

T
Loss(w) = —7ld Z(hRGG + hD>7 (28)
1=1
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TABLE XIII
SUMMARY OF REINFORCEMENT LEARNING FOR RIS-AIDED WIRELESS NETWORKS

Phase-shift

Channel

Ref. Scenario . . CSI Objectives Algorithm State definition Action definition Reward function
resolution settings
MISO-DL-MU Rayleigh N Maximizing - e .
[132] NOMA Discrete fading Perfect sum-rate DDPG Current RIS phases RIS phase shifts Sum-rate
Pmnblq—pqm Discrete Wldebagd Estimated Maximizing DRL CSI RIS phase shifts Data rate
[133] | communications geometric data-rate
MISO-DL-MU . Saleh- Maximizing RIS phase shifts and .
[89] UAV Continuous Valenzuela Imperfect secrecy rate DDPG CSI BS beamforming vector Secrecy rate with penalty
MISO-DL-MU . Quasi-static . Maximizing FaSt-POI]?y Previous jammer BS transmit power and Maxnlnmng data-rate,
L. Continuous X Perfect hill-climbing power and SINR, . decreasing BS power and
[134] with jammer flat-fading sum-rate . RIS phase shifts
learning current CSI SINR penalty
. Maximize the system
Rayleigh Maximizing CSL, previous secrecy BS beamforming vector secrecy rate
MISO-DL-MU Continuous . Delayed DRL rate and transmission X i . :
[135] fading secrecy rate and RIS phase shifts guaranteeing QoS
rate, QoS level .
requirements.
MISO-DL-SU | Continuous | ReYicigh Perfect | Matimizing DDPG SNR and current RIS RIS phase shifts Received SNR
[136] fading SNR phases
MISO-DL-MU ] Rayleigh Maximizing Current BS and RIS BS beamforming Throughput{ an{J the
Continuous R Perfect DDPG beamforming vectors, vectors and RIS phase penalty of adjusting the
[137] THz distribution sum-rate 5 . Lo
CSI shifts beamforming direction.
. . Maximizing BS beamforming
MISO-DL-MU | Continuous QuaSl_St,anC Perfect energy DRL CSLand energy level vector, RIS phase shifts Energy efficiency
[138] flat-fading N of RIS y
efficiency and on/off
. Quasi-static Power CSI, previous outage | BS beamforming vector .
[139] MISO-DL-SU Continuous flat-fading Perfect minimization DDPG events and RIS configurations Energy efficiency
Frequenc Maximizing Transmit and received BS beamformine vector
MISO-DL-MU | Continuous quency Perfect channel DDPG power, previous g ve Channel capacity
[140] flat fading . . and RIS phase shifts
capacity action, and CSI
MISO-DL-MU . Perfect/ Maximizing Distributed .
[141] mmWave Continuous | 3GPP model Imperfect J— RL CSI RIS phase shifts Data rate
SR RIS phases and . ;.
MISO-DL-MU . Rayleigh Maximizing Decaying positions, UE RIS phase and pml.t ton Energy efficiency with
Continous g Perfect energy o and BS beamforming
[142] NOMA fading . DDQN positions, and current penalty
efficiency - changes
BS power allocations
Multi-cell . Rayleigh Maximizing Multi-agent Local and neighbor RIS phaselshlfts, BS Sum-rate with
L Continuous g Imperfect beamforming vector, . . .
[143] | communications fading sum-rate DRL CSI, local sum-rate interference penalties
and UE power changes
MISO-UL-MU . Rician Minimizing . . Negative summation of
[144] ToT UAV Continuous fading Perfect sum Aol DRL SNR and UAV height UAV altitude changes age of information
Object Power allocation
[145] MISO-DL-MU Continuous Raylélgh Perfect Maximizing mlgratlf)n Current RIS phase coefficient Sum-rate
NOMA fading sum-rate automation
DDPG Current RIS phase RIS Phase changes Sum-rate difference

where 7 is the minibatch size. To minimize the loss function
equation (28), RO G + hP must be maximized. This means
that the neural network must predict appropriate RIS phase
shifts © to maximize h®©G + AP, and the SNR will be
maximized accordingly.

Table XII shows that most existing works apply 2 to 5
hidden layers. In particular, the hidden layer numbers are
related to the problem’s complexity. The authors in [127] used
1 hidden layer with 40 nodes for 8 x 2 MIMO, and 2 hidden
layers for 16 x 2 MIMO, achieving satisfactory simulation
results without overfitting or underfitting. In addition, similar
to supervised learning, early stop is applied in [126] to prevent
overfitting.

2) Clustering Algorithms: Clustering algorithms are
usually unsupervised ML algorithms, i.e., k-means and
Density-based spatial clustering of applications with noise
(DBSCAN). These algorithms are designed to partition
objects into multiple sets to minimize the within-cluster
sum of squares. Specifically, it aggregates objects with
the same hidden patterns. For instance, k-means is used
in [130] to group RIS elements according to estimated
channel coefficients, and then each group has the same RIS
configurations to reduce the computational complexity.

The main advantage of unsupervised learning is that it has
no requirement on predefined targets, which is more practical
in real-world applications. However, the absence of targets

means that the model output is hard to validate or verify, and
the solution quality cannot be guaranteed.

C. Reinforcement Learning-Based Optimization

RL is the most widely applied ML technique for
optimization, including model-free (e.g., Q-learning, DQN,
actor-critic learning) and model-based (i.e., dynamic program-
ming) algorithms. However, defining the Markov decision
process (MDP) is fundamental to applying model-based or
model-free RL algorithms [146] [147], and the RL agent
interacts with the environment under an MDP scheme to
learn the best long-term policy. Given the current system
state s, the agent selects an action a for implementation and
receives a reward r, and then the environment will move to the
next state s’. An MDP model is critical to transforming the
optimization problem into an RL context. Specifically, envi-
ronmental status, control variables, and optimization objectives
are defined as states, actions, and rewards, respectively. Then
RL algorithms can be used subsequently to maximize the
reward and improve the objective function. Table XIII sum-
marizes existing studies that apply RL to RIS-aided wireless
networks. This subsection will first analyze the state, action,
and reward function definitions of these existing studies,
and then present the algorithm architecture and training
methods.
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1) State Definition: Table XIII shows that the state may be
defined in various ways, e.g., CSI [89], [133], [134], current
RIS phase [132], [137], [142], position [142], [144], energy
level [138], previous transmission rate [135]. Specifically, the
state refers to the environment status that should be considered
for decision-making. For example, the CSI has a great effect on
the RIS phase shifts, and therefore CSI is involved in the state
definition of many studies [89], [133], [134]. Similarly, RIS-
aided UAVs are investigated in [144], and the UAV altitude is
included in the state definitions because the height will directly
affect the channel conditions.

2) Action Definition: In the context of MDP, the action
indicates control variables that will change the state, such
as RIS phase shifts [132], [133], [134], [135], [136], [137],
[138], [139], [140], [141], [142], [143], [144], [145], BS beam-
forming [89], [134], [135], [137], [138], RIS positions [142]
and elements on/off [138]. The control variables in problem
formulations are easily converted into actions. However, note
that many RL algorithms require discrete action spaces, but
the control variables in problem formulations are usually
continuous as shown in Section IIl. The first solution is to
quantize the control variables. For instance, the BS transmit
power is quantized with an interval of 1 W [138], and the
RIS phase changes A0 € {—{5,0, {5} in [79]. Another
solution is to apply the deep deterministic policy gradient
(DDPG) algorithm, which can handle continuous action-space
problems [89], [132], [137], [139], [145].

3) Reward Functions: The reward function is a cru-
cial part of RL. As shown in Table XIII, the reward
function definition mainly depends on the optimization objec-
tives, including data rate [132], [133], [141], [143], energy
efficiency [138], [139], [142], channel capacity [140], and
SNR [136]. Moreover, the reward function can include
multiple objectives and constraints to balance the overall
performance. As an example, the reward function in [134]
has data rate as a positive term to maximize the data rate,
while BS power consumption is a negative term to reduce
power consumption. RL focuses on the long-term accumulated
reward, which means it can better adapt to highly dynamic
wireless environments without requiring full knowledge of the
defined problem.

4) Algorithm Architecture and Training: In Q-learning, the
state-action values are updated by

Qnew(s7 a) _ QOld(S, a)
e+ e (¥ ) — Qs ),
(29

where Q°(s, a) and Q™Y (s, a) are old and new Q-values,
respectively. « is the learning rate (0 < o < 1), and 7 is the
discount factor (0 < n < 1).

Equation (29) indicates that a Q-table is used to record
all the state-action values, leading to slow convergence for
problems with large state-action space. To this end, DQN is
proposed to use neural networks for Q-value estimation:

Loss(w) = éa(r + 7 max Qs a,0) — Q(s, a,w)), (30)

where & represents the error between the predicted Q-value
Q(s,a,w) and target Q-value 7 + nmax, Q(s’, a,w’). w and
w’ are the weight of the main and target networks, respectively.
The main network is used to predict current Q-values by
Q(s,a,w), and the target network estimates target Q-values by
Qs a,u).

In DQN, max, Q(s’, a,w’) indicates that the target network
will select the action and meanwhile evaluate the action, and
the maximizing operator will result in over-optimistic Q-value
estimation. Then double deep Q-learning (DDQN) is proposed
to mitigate Q-value over-estimation by

Loss(w) = @ﬂ(r + r]Q(&’7 arg max Q(s, a, w),w')
- Q(s’ a” w))?

where arg max, Q(s’,a,w) means action selection of the
main network, and Q(s’,argmax, Q(s, a,w),w’) indicates
the action evaluation of the target network. Decoupling the
action selection and evaluation can provide more accurate
Q-value prediction and prevent over-estimation.

DRL has been used for RIS phase-shift optimization
in [133], [135], [136]. In these studies, continuous phase shifts
are quantized to form discrete action spaces for DQN or
DDQN. On the contrary, DDPG can handle continuous action
spaces directly without quantization, which has been used for
continuous RIS phase-shift control in [89], [132], [137].

DDPG is considered a combination of actor-critic learning
and DQN, in which the actor network selects actions, and
the critic network evaluates the state-action values. The loss
function of the critic network is defined as

LOSS(U}C) = cg’(r + UQ(S’, a(s’,w”),wcl)

ofs09)),

where a(s’,w?'") indicates that action a is selected by the tar-
get actor network with weight w4’, and Q(s’, a(s’,w?"),w?")
means the state-action value is evaluated by the target critic
network with weight w®’. For the actor network, the policy
gradient is

€1V

(32)

A’)

T
1
Vad & TZZ:;(V@QCS, a,wc>|5:5i,a:a(si,wf‘)

A
. vaa;(Si,w )|5:51),

In equation (33), the critic network provides the Q-value
Q(s, a, wc), and it represents the expected accumulated
reward for a given pair (s,a). The actor network is trained to
produce actions that can result in the maximum state-action
value as predicted by the critic network. Therefore, a common
approach to calculate the loss function of the actor network is

1 T
Loss(wA) 2—7. (Q(si,ai,wc))7
=1

which is computed by using the negative mean of the Q-values
predicted by the critic network.

Fig. 17 shows DRL-empowered RIS-aided wireless
networks, which include DDQN and DDPG as two DRL

(33)

(34)
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Fig. 17. DRL-empowered RIS-aided wireless networks.

examples. Based on the current state s, the agent selects BS
beamforming vectors and RIS phase shifts as the action a.
Then the action a is implemented and rewards r are collected,
e.g., sum-rate, energy efficiency, or power consumption. The
system will arrive at a new state s’ that is indicated by CSI,
user positions, or SNR. The experience tuple <s, a,r, s> is
saved in the experience pool, and a mini-batch is sampled
for network training. For the DDQN algorithm, the main
network is trained as equation (31), and the target network
will copy the weight of the main network, providing a stable
reference. By contrast, the actor and critic networks are trained
by equations (32) and (33) in DDPG, and it applies slow
update strategies for target networks.

Fig. 17 presents the application of DDQN and DDPG to
joint active and passive beamforming problems. Note that here
the DDQN and DDPG algorithms can be easily generalized
to many other RL algorithms without loss of generality. This
scheme can also be applied to other RIS-related scenarios.
For instance, for the UAV-RIS joint optimization problem, one
can include the UAV control variables in the action definition,
and add UAV altitude in the state. Finally, there have been
various reinforcement learning algorithms, but one common
deficiency is the low sampling efficiency. It requires substantial
numbers of interactions for agent training, leading to large
costs in real-world applications, e.g., hundreds of millions of
samples.

D. Federated Learning and RISs

Different from conventional centralized ML algorithms, FL
trains the model across multiple decentralized edge devices
or servers that hold local datasets without exchanging data.
In FL, each edge device will train a local model using local
samples, and then a global model is formed by aggregating
local model parameters. Afterwards, edge devices download
the global model to update local models. Table XIV summa-
rizes existing works focusing on FL and RIS-aided wireless
communications. This subsection first discusses RIS-enhanced
over-the-air FL. (AirFL), and then introduces how to use FL
optimization in RIS-aided environments.

1) RIS-Enhanced Over-the-Air FL: The main advantage of
FL is that it helps preserve data security and privacy, and the
distributed property makes wireless networks an ideal platform
for FL training. Therefore AirFL is proposed to combine FL
with wireless communications. In particular, AirFL imple-
ments FL in wireless networks, using edge devices for local
model training and edge servers for model aggregation.

However, the information exchange between local and
global servers may be affected by unreliable wireless links,
limited bandwidth, signal distortion, dynamic channel condi-
tions, and so on. The uncontrollable signal propagation path
can degrade the FL performance, e.g., slow uploading of local
models due to low data rate. Therefore, RISs are combined
with AirFL to realize the full potential of FL.
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TABLE XIV
SUMMARY OF FEDERATED LEARNING AND RIS-AIDED WIRELESS NETWORKS
Ref. Scenario Phase-gh ift Chap nel CSI FL-related objectives Control variables Constraints Algorithms
resolution settings
ANrFL with ] Rician Minimizing the gap EL device selecFlon, Device selection, receiver AO, Gibbs
[148] Continuous Perfect between converged and receiver beamforming and | beamform, and phase shifts i’
NOMA channel R L . . sampling, SCA
optimal training loss. RIS phase shifts. constraints
[149] AIrFL with Continuous | Rician fading | Perfect Minimizing global loss Transmit power ‘and RIS Power and dual constraints AO, QCQP, SDP
RISs ; o phase shifts : ; ’ ’
. . Rayleigh . L. . Transmit power, target rate,
(1sop | AUEL with e uous fading/ Perfect | Minimizing FL training | BS transmit power and MSE tolerance, and RIS AO, SCA, SDR
NOMA - . gap RIS configurations . .
Rician fading configuration constraints.
Minimizing average RIS phase shifts and bits, Training latency, Stochastic
RIS- . Generated by . convergence rate, and Lyapunov
[151] Discrete . Perfect system power bandwidth, and CPU . T
enhanced FL simulator . learning performance optimization,
consumption frequency . .
constraints greedy algorithm
ArFL with Empirical Perfect/ | Minimizing the MSE of Receive and transmit Total transmit power, phase
[152] RISs Continuous channel Imper- the aggregated AirFL beamformer, RIS phase shifts, and target rate AO, SCA
fading fect model shifts constraints
AirFL with Rayleigh Maximizing the User transmit power, BS Target rate and MSE, phase
[153] RISs and Continuous fa};_elg Perfect achievable hybrid rate of receive scalar, and RIS configuration and total AO, SCA, SDR
NOMA ading FL and NOMA phase shifts transmit power constraints
ANrFL with Transmit power, receive Total transmit power, phase
[154] RISs and Continuous Rfa):jl'elgh Perfect Mlmml(zjmg tdl}e ll:L MSE f;cglar, reﬂc:,ictllon ) co;ﬁsuratlorll; tar?;elt MSE, AO, SDR, SCA
NOMA ading and cardinality coefficients, and learning and the number of learning
participants devices
Minimizing the effect of . . . . .
. . . . . Device selection, Device selection, receiver . .
AirFL with . Obtained device selection and the . . X Gibbs-sampling,
[155] Continuous Perfect L over-the-air transceivers, beamforming, and phase
RISs from [156] communication error on . . . SCA
th and RIS phase shifts configurations
e convergence rate
RIS phase shifts Bandwidth allocation, RIS
[157] AIFL with Continuous Obtained Perfect Maximizing FL utility user-RIS association, and phase lcqnﬁgurauons and Malch'mg same,
RISs from testbed . A association, target SNR bisection search
bandwidth allocation .
constraints
CPU frequency, power Task completion time,
AirFL with . Rayleigh L and bandwidth allocation, maximum transmit power,
[158] RISs Continuous fading Perfect Power minimization RIS configurations and phase configuration, total AO, SDP, MM
accuracy design bandwidth
FL-aided Wld?'blm.ld/ A " Local models: local devices train local DNNs to predict channel
[159] RIS Continuous |  8OMCNY | pregicted verage rate rate using sampled channel vectors;
L Rayleigh maximization . 1
optimization fading Global model: edge server aggregates local DNN models and average.
FL-aided FL-DDPG is applied. Neural networks are trained at local agents
[160] mobile RIS Continuous | Rician fading | Predicted| Sum-rate maximization and then aggregated to predict Q-values. Control variables
optimization include RIS positions, phase shifts, and AP power allocation.
! The columns are combined because [159] [160] are different from other studies by using FL as an optimization approach, while FL in other works
of Table XIV is part of the optimization objectives. Therefore, instead of showing control variables and constraints, it is essential to present the local
and global models of FL-based optimization algorithms.
Global model aggregation
Edge
server
 FEE e EEs e s e R s E T T : :
I Conventional Air-FL ! Air-FL with RISs |
I Obstacles | I :
: ¢ Limited channel capacity and data . | : * Improved channel capacity due to |
122 s s :
| rate due to obstacles : E/EE : I indirect transmission link UE-RIS-BS |
| o Slow model uploading and / "ﬂ | I ¢ Efficient model uploading and I
: downloading - | : downloading :
| ® Degraded convergence rate E oo : | * Better convergence rate |
- - v . - .
I'e Lower accuracy of FL prediction . | ! .. ® Higher accuracy of FL prediction :
I Local model-training at | | Local model-training at |
' i l edge devics
L __ CECEN . SEITE |
Fig. 18. Comparison between conventional Air-FL and Air-FL with RISs.

As shown in Fig. 18, in conventional Air-FL, obstacles
may lead to high penetration loss between edge devices and
edge servers, and then the low channel capacity will result
in slow model uploading and downloading. Finally, the slow
parameter exchange efficiency may degrade the convergence
rate and lower the accuracy of Air-FL. By contrast, in Air-
FL with RISs, the indirect transmission between UE-RIS-BS
provides an alternative transmission path for local model
uploading or global model downloading. RISs improve the

channel capacity by manipulating the signal propagation path.
Therefore, efficient model uploading and downloading will
improve the convergence rate and precision of Air-FL.

There are a few works that investigate how to enhance FL
performance in RIS-aided wireless networks by minimizing
global training loss [148], [149], MSE [150], [154], power
consumption [151], [158], maximizing the FL utility [157].
In [149], Yang et al. aim to minimize the global training loss
of FL by controlling transmit power and RIS phase shifts,
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and the optimization problem is solved by AO-based QCQP
and SDP. Reference [157] proves that RISs can improve more
than 30% prediction accuracy of AirFL, and a 10 times lower
AirFL test error is reported in [154] by using multi-RIS. In
these works, the FL performance is improved by optimizing
the resource allocation and user-RIS association, and then
edge users can efficiently upload the local models. Meanwhile,
it is worth noting that these works still rely on model-
based optimization algorithms, such as AO, QCQP [149],
SCA [152], [153], [154], and MM [158].

2) FL for RIS-Aided Wireless Communications: FL can
also be used to optimize the performance of RIS-aided wireless
communications. For example, deploying a local FL model in
RISs may reduce the communication overhead between RISs
and the BS, since only local model parameters are shared
instead of sharing the whole dataset. In addition, FL can
better protect private information such as user CSI, which
may be used to infer user locations. Specifically, FL is used
in [159] and [160] for average rate maximization, in which
local models are deployed in user devices and the global
model is aggregated by edge servers. In [159], federated neural
networks consider sampled channel vectors as input to predict
achievable rates. FL. and DDPG are combined in [160], and
the local neural networks used in DDPG will be aggregated
and updated.

FL is an appealing technique for wireless networks as a
distributed ML algorithm. However, the distributed imple-
mentation also leads to high communication overhead due to
frequent parameter sharing. Meanwhile, the local devices may
have different computational capabilities and storage capaci-
ties, and such heterogeneity may affect model aggregation and
update in FL.

E. Graph Learning

Graph learning refers to a group of ML techniques in the
graph domain, including graph neural networks (GNN), graph
attention networks (GAN) and graph convolution networks
(GCN). Compared with CNN, which operates on regular
Euclidean data like images (2D grid) and text (1D sequence),
graph learning is more efficient in describing graphs and
structures. Graph learning aims to transform nodes, edges, and
their features into low-dimension vector spaces by preserving
properties such as graph structure [161].

Wireless networks are highly dynamic, and wireless data
may be collected from non-Euclidean domains, which is
represented by graph structure with high dependency on
network topology. The conventional approach of data pro-
cessing is to convert the data with graph structure into
Euclidean domain, but such transformation leads to high
complexity and extra overhead. By contrast, graph learning
enables the graph-structured data to be processed effectively,
and transforming the wireless network topology into graphs
can better describe the association and interference between
network devices [162]. Therefore, graph learning has been
applied to power control and interference management [163],
resource allocation [164], [165], network slicing [166], and so
on. In the following, GNN is used as an example to introduce

graph learning fundamentals, and then we explain how to
apply graph learning for RIS control and optimizations.

1) GNN Fundamentals: The primary motivation for devel-
oping GNN is to extend the existing neural network
architecture into graph-related data processing capabili-
ties [167]. In a graph, each node is described by its features
and related nodes. Suppose that 2, is a state vector to describe
the features of node v, and it is defined by

zv:f(yv7y5day1?e7z1?e)7 (35)
where ¥, and ygd are the features of node v and its edge, and
z3¢ and y,'° are the state and features of neighbour nodes,
respectively. Then, z, and y, are used to produce an output

0y by
ov = g(2v, Yv), (36)

where g is the output function to map the relationship between
states, features, and outputs.
Similarly, by collecting all the states and features, we have

Z”ﬂzzf<ZH4,Y),
0 =g(Z, Yn),

(37)
(38)

where Z!*1 indicates all the states at [?" iteration, Y indicates
all the features, Y,y means the node features, and O is the
overall output. Equation (37) shows that the system state is
updated in an iterative manner, which is inspired by Banach’s
fixed point theorem [168]. Finally, similar to conventional
neural networks, GNN aims to minimize the loss function.

2) Graph Learning for RIS Control and Optimizations:
Interference control is an important technique for multi-
user environments to maximize the system sum-rate, and the
interactions between RISs and UEs are easily described by
a graph. The graph in Fig. 19 includes K + 1 nodes, in
which one node represents the RIS and the rest are K UEs.
Given this scheme, GNN is applied to user scheduling and
RIS configurations in [169] and [170]. In particular, GNN is
trained in an unsupervised manner, and the inputs are user
weights and pilot sub-frames of the scheduled users, and the
outputs are RIS configurations and beamformers. Similarly,
unsupervised GNN is applied in [171] for network utility
maximization, which takes pilot signals as input to optimize
the BS beamforming and RIS configurations.

In [169], [170], [171], a useful feature of GNN is used
to reduce the interference between users. Specifically, when
updating one node in the GNN, all the neighbour nodes will
be included in the updating function, which means GNN
can better capture the mutual interference between users.
Meanwhile, RIS node updating is a function of all the user
nodes, enabling GNN to configure RIS elements to improve
the channel capacity of all users. In addition, the authors
in [171] note that another key advantage of GNN is the
generalization capability. For instance, when the number of
cell users constantly changes, conventional FNN must be
re-trained to handle various user numbers. In contrast, a
GNN can generalize to different numbers of users by simply
adding and removing components in its feature extraction and
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Fig. 19. Graph learning for RIS-aided wireless networks.

information exchange stages. Such generalization capability
can considerably alleviate ML model training efforts.

Graph learning is one of the most state-of-the-art ML
techniques. However, the application to wireless networks is
still in a very early stage. The real-time wireless environment
can produce dynamic and generative changing graphs, which
may prevent the application of graph learning.

F. Transfer Learning

Long training time and slow convergence are common
issues of most ML algorithms, and one of the main reasons
is that the model must explore the task from scratch. Fast
decision-making is critical in wireless communications, but
the low sampling efficiency may prevent applying ML to
RIS-aided wireless networks. This subsection will introduce
transfer learning fundamentals and explain how transfer learn-
ing can improve ML-enabled wireless networks with RISs.

1) Transfer Learning Fundamentals: Transfer learning can
be combined with many ML algorithms, and here we consider
transfer reinforcement learning (TRL) as an example [172].
In conventional RL, the decision-making Dy, of one agent is
described by

Dprr : s X X — a,r, (39)

where % represents the agent’s knowledge, s, a, and r are the
current state, selected action, and received reward, respectively.
In equation (39), the agent utilizes the collected knowledge
J for decision-making and action selection.

By contrast, the decision-making in TRL is

DTRL PS8 X M(%/expert) X *%/learner — a,r, 40)

where eppert and Hjeqrper are the knowledge of the
expert and learner agents, respectively. The learner is designed
to solve the target task, and the expert has some existing
knowledge of related source tasks. Considering the similarities
between the source and target tasks, the expert’s experience
may be reused by the learner as prior knowledge. The M
in equation (40) defines a mapping function. M (. czpert)
indicates that the expert’s experience will be transformed
into digestible knowledge, boosting the learning process of
the learner. With existing prior knowledge, the learner can
achieve a jump-start at the exploration phase, achieving a
higher exploration efficiency and average reward with faster
convergence [173].
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Fig. 20. Transfer reinforcement learning for RIS-aided wireless networks.
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2) Transfer Learning-Boosted Wireless Networks With
RISs: Wireless networks can be highly dynamic. For example,
user numbers and CSI patterns may change quickly in a short
period of time, and then the RIS control policy may need to
be retrained to handle these dramatic changes. However, ML
algorithms usually require many training iterations, preventing
the application to dynamic wireless networks. To this end,
TRL may become a promising solution. Fig. 20 illustrates how
TRL is used for RIS-aided wireless networks, which includes
source and target tasks. We assume that the expert agent
has existing knowledge of the source task, BS beamforming,
and the learner agent is designed for the target task, joint
active and passive beamforming. Due to the potential task
similarities, the learner may reuse the expert’s experience to
better handle target tasks. However, note that the expert’s
knowledge may exist in various ways, e.g., state-action values
and action selections, and then the mapping function may
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be defined in different manners. Fig. 20 provides an example
by finding similar states and actions, and a Q-value-based
mapping function can be defined by

Qe (sLyaL) _ QE(M(SL)M/(GL)) + Qold (SL’aL)
+ a(r + 1) max Q(s', a) — QOld (SL, aL)),
(41)

L L

where s~ and a~ are the learner’s state and action, M
and M’ are the state and action map functions, respec-
tively, and Q¥ indicates the state-action value of the expert.
Compared with conventional RL, the main difference is that
QF(M(s1), M'(a™)) is involved as an extra reward for
selecting o’ under s%. In particular, Fig. 20 shows the steps of
defining mapping functions for active and passive beamform-
ing tasks. Firstly, the state mapping function M is defined to
find s = M(s%), finding similar environment states such as
CSI or current BS beamforming vectors between the learner
and expert agents. Similarly, the action mapping function
M’ aims to find similar beamforming decisions between the
learner and expert action spaces. Finally, by finding these
similar network states and beamforming decisions, as shown
in equation (41), good actions with high Q-values in the expert
can provide extra rewards for the learner. Then the learner is
encouraged to select better actions to achieve a higher sum-
rate or energy efficiency.

With transfer learning, the RL agent can achieve higher
exploration efficiency and faster convergence, enhancing the
efficiency of RIS-aided wireless networks. Transfer learning
has been used in [172] for joint resource allocation of network
slicing, and [174] for mmWave networks, achieving faster
convergence and better network performance. Similarly, trans-
fer learning can be applied to ML-enabled RIS optimization
for faster convergence and achieving prompt phase-shift
responses. Transfer learning is a very useful technique to
mitigate ML model training effort. However, note that transfer
learning relies on existing experts to reuse prior knowledge,
and the mapping function definition may be difficult due to
the inherent task difference between experts and learners.

G. Hierarchical Learning

Hierarchical learning is another technique that can be
used for optimizing RIS-aided wireless networks. The main
idea of hierarchical learning is to decouple the long-term
task into multiple achievable goals to increase exploration
efficiency [175]. In particular, it defines a meta-controller
to select goals and a sub-controller to achieve these goals.
Based on the short-term performance of the sub-controller,
the meta-controller can adjust the goal dynamically to
guarantee the long-term performance of the whole system.
Hierarchical learning can also be applied to optimization
problems that include multiple control variables with different
time scales [57]. For instance, in [57], Zhou et al. consider
a meta-controller for sleep control, and sub-controllers for
transmission power and RIS control, enabling control variables
with different time scales.
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Fig. 21. Hierarchical reinforcement learning for RIS-aided wireless networks.

Fig. 21 shows how hierarchical reinforcement learning is
applied to RIS-aided wireless networks, and the agent consists
of a meta-controller and a sub-controller. Specifically, the sub-
controller can generate long-term policy instructions for the
sub-controller, such as the maximum number of active RIS
elements that is available. Then, as shown in Fig. 21, given
high-level goals, the sub-controllers can select short-term
decisions for RIS phase shifts. Meanwhile, the meta-controller
focuses on average power consumption in a period as long-
term network performance, and the sub-controller accounts for
delay or data rate as instant metrics. This scheme can coor-
dinate control variables with different time scales, balancing
instant and long-term network metrics. More specifically, the
state-action value of the meta-controller is updated by:

ld
Q;rlgzlf]a (Smeta ) gmeta) = Q;;Leta(smetav gmetu)

+ <Te-’t +n n’lgaX Qmeta (S;netaa g)

- Q;;’Lledta(Smetaa gmeta)> s (42)

!/

where Spmetq and s is the current and next meta-states,

meta
Jmetq 15 the goal, and r¢; is the extrinsic reward, respectively.
Qold, and QMeY are old and new state-action values for

the meta-controller, indicating the accumulated reward by
selecting gmetq Under state Spetq-
Similarly, the Q-value of the sub-controller is updated by

Q;fbw (ssubv 9meta, asub) = Q;‘%(Ssum 9meta, asub)
+ (Tin +n m(?,x Qsub (S;‘ulﬂ 9meta, a)
(43)

- Q:qi[é (Ssuln 9meta, asub)) 5

where sg,; and s;ub are current and the next sub-states, a,
is the action, and 7, is the intrinsic reward. Q17" and Qs"ﬁ
are defined similarly as the meta-controller, indicating the
expected reward of selecting a,; under state sg,; and goal
Jmeta- Equation (43) shows that the sub-controller is under
the policy control of the meta-controller.

Hierarchical learning is a promising technology to enable
hierarchical autonomy in RIS-aided wireless networks.
However, one key challenge is to define the relationship
between different hierarchies, e.g., meta-controller and sub-
controllers. In addition, decoupling one task into multiple
sub-tasks can be difficult in highly-dynamic wireless networks,
which may prevent the application of hierarchical learning.
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Fig. 22. Meta-learning for RIS-aided wireless networks.

H. Meta-Learning

Meta-learning refers to ML algorithms that extract the
experience of multiple learning episodes, e.g., a distribution
of related tasks, and then use such prior training to improve
the performance on target tasks [178]. In particular, meta-
learning is designed to learn how to learn across tasks, and
this learning-to-learn design can bring several benefits, such
as improved training and learning efficiency. In addition, it is
better aligned with human learning features, where learning
skills are constantly improved on a lifetime timescale and
evolutionary policy [179].

RIS-aided networks may include diverse elements, such
as RISs, BSs, UAVs, etc, and it can be difficult to train
ML models from scratch and meanwhile jointly consider all
these network elements. Fig. 22 shows an example of using
meta-learning schemes for UAV-aided joint active and passive
beamforming, in which RISs are deployed on the UAV for
location flexibility. The ML model is first pre-trained by
three existing tasks such as RIS passive beamforming, BS
beamforming, and UAV trajectory design. Then, using prior
experience, the ML model is expected to learn quickly on the
target task, which will jointly consider RISs, BSs, and UAVs.
Additionally, such a constant learning scheme can be more
useful when other future tasks are expected, and incoming new
tasks are always trained based on plenty of former knowledge.
There are few works on applying meta-learning to RIS-aided
networks. For instance, Jung and Saad apply meta-learning
for RIS channel estimation, and the ML model is pre-trained
at the BS by using pilot signals to rapidly estimate RIS
channels [176]. In [177], model-agnostic meta-learning is used
for joint RIS phase-shift control and power allocation, which
has a faster convergence rate than baseline ML algorithms.

However, meta-learning must balance the meta-training and
self-learning phases. Specifically, meta-training with a wide
variety of tasks may lead to underfitting, which means that
the agent is unable to specialize to the target task when
self-learning. By contrast, if the meta-training tasks are too
specific, the knowledge learned on the source tasks may have
difficulty in generalizing to target tasks [179]. Therefore, the
source task distribution in the meta-training phase has to be
carefully selected.

1. Discussions and Numerical Results

ML offers promising opportunities for optimizing RIS-aided
wireless communications. Table XV overviews various ML
techniques.*

Supervised learning trains ML models to best map the input
to output, e.g., CSI and user position to RIS phase shifts.
However, the model training relies on fine-grained labeled
datasets, which may be inaccessible in practice. By contrast,
unsupervised learning has no need for labeled datasets, and
it involves the objective function in the loss function for
improvement. Such unsupervised learning approaches can
reduce the dependence on labeled datasets, but the generated
results are hard to validate due to the absence of labeled data
in most circumstances.

RL is the most widely applied ML technique for
optimization problems, and each RL algorithm has its own
features and difficulties. For example, DDPG can handle
continuous action space of RIS but can be unstable [89],
[132], [137], [139], and DDQN can prevent overestimation but
sampling efficiency is low [142]. FL and graph learning are
newly emerging ML techniques. Most existing works consider
RIS-enhanced AirFL, demonstrating that RISs can improve the
training efficiency and performance of FL [148], [149], [150],
[151], [154], [158]. Graph learning has shown great potential
in many other fields, and wireless network applications include
power control and interference management [163], resource
allocation [164], [165], and network slicing [166]. Despite the
advantages, applying graph learning to wireless networks is
still an open issue that requires more effort.

Transfer learning and hierarchical learning are both promis-
ing ML techniques for RIS-aided wireless networks. Transfer
learning can reduce the model training efforts, while hierarchi-
cal learning provides a novel architecture for applying ML to
wireless communications with hierarchical intelligence, espe-
cially when optimization parameters have different timescales.
However, more research is needed on these techniques as
they are used for RIS-aided wireless networks. Both transfer
learning and meta-learning involve source tasks and prior
experience. The core feature of meta-learning is learn-to-learn,
which is an appealing advantage for enabling rapid adaptation
to dynamic wireless environments. Compared with transfer
learning, meta-learning provides a scheme that can be used
to facilitate transfer learning as well as other techniques. In
transfer learning, the prior knowledge is usually extracted from
the source task without defining a meta-objective. By contrast,
the prior experience in meta-learning is usually defined by
an outer optimization that evaluates the potential benefit of
handling new tasks. Meanwhile, meta-learning involves a
wider range of meta-representation problems than transfer
learning.

Instead of applying one specific ML algorithm solely, note
that these ML algorithms may be jointly used. For instance,
federated deep reinforcement learning deploys DRL in each

4Note that there are many ML algorithms applied to wireless communica-
tions. Instead of collecting all the existing ML algorithms, Table XV provides
a compressed taxonomy to understand the feature of each technique along
with RIS control applications.
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TABLE XV

SUMMARY OF ML-BASED CONTROL AND OPTIMIZATION ALGORITHMS FOR RIS-AIDED WIRELESS NETWORKS

Difficulties

RIS-related applications

vector machine.

ML . . .
techniques Typical algorithms Main features
The algorithm is trained to map the
Supervised DNN, relationship between the given input and
Supervised CNN, decision labeled output for classification and
1 er; rnir;g trees, and support prediction. The input data is fed into the

model, and then the model parameters are
adjusted until the output is properly fitted.

1) Supervised learning relies on
fine-grained datasets to train the
algorithm; 2) The algorithm
training may be
time-consuming; 3) The model
is easy to be overfitted.

Supervised learning is a promising
technique if there exist
fine-grained datasets, and then
various neural networks may be
used to predict full channel states
[117] or optimal RIS phase shifts
[121]- [125].
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The result performance is hard
to be testified or explain.

Unsupervised DNN can be
directly used for optimization
problems in RIS-aided networks
without involving datasets, which
designs RIS phase-shift by
defining objectives as loss
functions [127]- [129].

1)Long convergence time for
large state-action problems; 2)
Discrete states and actions only.

1) Long convergence iterations;
2) Unstable performance due to
the interaction between actor
and critic.

1) Hyperparameter tuning can
be difficult when lacking
experience. 2) The sampling
efficiency is low.

The coordination mechanism of
multiple agents must be
carefully designed.

1) Unstable and heavily
dependent on appropriate
hyperparameters; 2)
Overestimation in critic
network.

RL is the most widely
applied ML technique for
the control and optimization
of RIS-aided wireless networks,
e.g., power minimization [139],
sum-rate [132], [133], [144], [145],
secrecy rate [89], [135],
and energy efficiency [138], [142].
DDPG is especially useful
considering the continuous
RIS phase-shift control
requirements [89], [132].

RL can also be combined with
other ML techniques, e.g.,
transfer reinforcement learning,
federated reinforcement learning,
and meta reinforcement learning.

DRL

kemeans, Unsupervised learning algorithms aim to
Unsupervised DBSCAN, and SUDEIVISS & a2 ]
. : unveil hidden patterns of unlabeled
learning unsupervised
datasets.
neural networks.
The agent interacts with the environment
Q-learning under an MDP framework, recording
experience by a Q-table.
Actor-critic The actor is defined to select actions,
learning while the critic evaluates the actions.
Deep DRL applies neural networks to predict
reinforcement state-action values, solving the large
learning state-action issue of tabular Q-learning.
Remforc@ment Double deep DDQN pr9v1des a more ‘accurate Q-—value
learning . estimation by decoupling the action
Q-learning . .
selection and evaluation.
Multi-agent Each agent applies RL or DRL
reinforcement independently to optimize its performance
learning or achieve an overall goal.
DDPG combines actor-critic with policy
DDPG gradients, optimizing problems with
continuous action space.
Local models are first trained using local
datasets, and then the parameters are
Federated deep
Federated learnine. federated aggregated to form a global model. Local
learning & devices will download the global model

to update local models. User privacy is
well protected in FL.

1) High communication
overhead due to parameter
exchange; 2) The local device
heterogeneity will affect the
system performance.

On the one hand, RISs can
improve the AirFL performance
by improving the channel
capacity; on the other hand, FL is
used to optimize RIS-aided
network performance [159], [160].

Graph learning

Graph neural
networks, and
graph attention

Graph learning refers to ML on graphs. It
maps the graph features to vectors with
the same dimensions in the embedding
space, which is used for link prediction,

1) Dynamic and generative
changing graph;
2)Interpretability of graph
learning.

GNN is used for user schedule
and RIS configurations in
[169]-[171] to maximize network
utility and sum-rate. The general
application of graph learning is
still an open issue.

1) The mapping function is
hard to design, changing with
different algorithms; 2) Transfer
learning is vulnerable to
adversarial attacks.

When there are existing experts or
source tasks, transfer learning
may be used to accelerate ML
algorithm training in RIS-aided

wireless networks [172].

1) The goal and sub-task
selection require case-by-case
analyses; 2) The relationship

between the meta-controller and
the sub-controller may be
unstable.

Hierarchical learning is used for
optimizing RIS-aided networks
with control variables that have
different time scales or sparse
rewards [57], [103].

meta-learning

networks. . . .
matching and classification.
Transfer learning aims to reuse the
Transfer .
e existing knowledge of experts to
Transfer reinforcement .
. . accelerate the learning process on target
learning learning, transfer .
. . tasks, achieving faster convergence and
supervised learning .
less training efforts.
Hierarchical
. . reinforcement Hierarchical learning decouples the task
Hierarchical . . .
. learning, into multiple sub-tasks and goals,
learning . . . . . .
hierarchical deep increasing the task exploration efficiency.
learning
Meta . . .
. Using experience of former learning tasks
reinforcement - .
Meta-learning learning to improve the performance on target
L& tasks. The ML model will learn how to
supervised

learn across tasks.

1) Source task distribution must
be carefully designed; 2) How
to prevent overfitting and
underfitting.

Pre-training ML models at the BS
for RIS channel estimation [176];
Model-agnostic meta-learning for
joint RIS phase control and power
allocation [177].

local server for decision-making, and then uses a global server
to aggregate the main networks for overall estimation and
coordination. Such integration can make the most of each
algorithm’s advantages, achieving better overall performance.

Finally, Fig. 23 and 24 present examples of using transfer
learning and hierarchical learning for RIS-related optimization,

respectively. In particular, Fig. 23 compares the convergence
of transfer deep reinforcement learning (TDRL) and DRL,
and TDRL achieves faster convergence with higher aver-
age reward. The main reason is that TDRL can reuse the
former knowledge of existing experts, which will consider-
ably improve the exploration efficiency of ML algorithms.
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Fig. 23. Convergence performance of transfer deep reinforcement learning
(TDRL) and DRL. 1) TDRL: We assume there is an existing DRL agent that
has been trained under a limited number of UEs. Then a TDRL agent will
reuse the expert’s prior knowledge to adapt to the environment with more
diverse UEs. 2) DRL: conventional DQN-based RIS phase-shift control.
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Fig. 24. Energy efficiency performance by joint sleep control and RIS phase-
shift design. We consider a multi-BS and multi-RIS heterogeneous network.
Sleep control is a long-term decision to decide the BS on/off status, while
RIS phase-shift control is a short-term optimization based on dynamic channel
status. Detailed parameters can be found in [103].

Such improvement becomes more obvious when the number
of RIS elements increases, which indicates higher explo-
ration difficulty for conventional DRL algorithms. Meanwhile,
Fig. 24 shows the energy efficiency of hierarchical reinforce-
ment learning-enabled joint sleep control and RIS phase-shift
optimization [103]. It includes a multi-BS and multi-RIS
scenario, and sleep control can decide the on/off status of BSs
to reduce energy consumption, while RISs can improve the
channel capacity. Fig. 24 demonstrates that combining sleep
control with RISs can bring higher energy efficiency than
using each technique solely, and hierarchical reinforcement
learning can well coordinate different decisions with various
time scales.

VII. COMPARISON AND RELATIONSHIP BETWEEN
MODEL-BASED, HEURISTIC AND ML APPROACHES

This work has introduced three types of optimization
techniques: model-based, heuristic, and ML approaches. One
intuitive question is how to evaluate the advantages and
difficulties of these techniques as well as their relationships.
To answer this question, we compare these approaches in

Table XVI, including main features, advantages, drawbacks,
difficulties, and applications for RISs. In addition, Fig. 25
summarizes algorithm selection of applying various methods
and their relationships. Note that Fig. 25 provides a general
overview for optimizing RIS-aided wireless networks, but
the algorithm selection and design should be combined with
specific application scenarios.

1) Model-Based Method: Table XVI shows that model-
based approaches can provide efficient and stable solutions
once the problem is properly reformulated, especially when
closed-form expressions are obtained. However, model-based
algorithms are usually complicated to design, indicating a
series of transformations and relaxations, e.g., decoupling the
denominator and numerator in SINR terms and relaxing inte-
ger constraints. As a result, the approximation and relaxation
can undermine the quality of solutions. Additionally, environ-
mental uncertainties can significantly affect the performance
of model-based algorithms, since they require full knowledge
of the optimization parameters. One possible solution is to
assume environment changes follow some specific distribu-
tions, but the optimization over distributions will further
increase the complexity. Another solution is to use Monte
Carlo sampling and repeat the optimization to achieve average
results, which is time-consuming. As illustrated in Fig. 25,
given a joint optimization problem with coupled control
variables, one may use AO or BCD to decouple the joint
optimization into multiple sub-problems. Specifically, FP can
be used to eliminate fractional terms, e.g., SINR and energy
efficiency, and SDR is applied to relax non-convex constraints.
Then, various techniques may be applied, such as MM,
SCA, SOCP and BnB, to solve each sub-problem under the
alternating framework.

2) Heuristic Algorithms: The primary benefit of heuristic
methods is the low implementation complexity, i.e., optimizing
RIS control in an element-by-element manner, achieving a
trade-off between optimality and computational complexity.
Heuristic methods also show a high generalization capabil-
ity, e.g., genetic algorithm and PSO apply unified fitness
functions to represent the optimization objectives. However,
meta-heuristic algorithms are sensitive to key parameters,
e.g., population numbers and inertia weight in PSO, which
may require find-tuning efforts. But other heuristic methods,
especially greedy algorithms and matching theory, can be
easily applied with little tuning requirement. Meanwhile,
Fig. 25 shows that heuristic algorithms can also be used to
solve sub-problems that are defined under an AO scheme,
indicating possible combinations between model-based and
heuristic algorithms. For instance, to maximize energy effi-
ciency, Yang et al. define three sub-problems, and SCA is
deployed for active and passive beamforming, while a greedy
algorithm is used for RIS on/off control [54]. Such a combined
scheme demonstrates the capability of integrating model-based
algorithms with heuristic algorithms.

3) ML Algorithms: Wireless networks are highly dynamic,
and hence optimization techniques must be robust to envi-
ronmental uncertainties. With the learning capability, ML
algorithms can adapt well to dynamic environments. In par-
ticular, ML algorithms present unified optimization schemes,
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TABLE XVI

SUMMARY OF CONTROL AND OPTIMIZATION TECHNIQUES FOR RIS-AIDED WIRELESS NETWORKS

Optimization

approaches Main features Advantage Drawbacks Difficulties Application scenarios for RISs
aﬁ?jﬁ?@iﬁoﬁ%ﬁﬁl M(i)iel—lsaés;d]c[l]%? ng;ns’ Model-based solutions' are It ha§ to apply Numerous algorithms have
or at least sub-optimal pr(')v'i,de degailed i)roofs u:sually P r.oblem»'sp ccific tral?sf(?rmatlons, been d‘evelope(_i to sqlve
results for tareet problems and explanations for the with certain requirements d1\{151on, and RIS-aided optimization
Model- Th uall et pr f H' P ality. T: such as convexity and relaxation to convert problems, e.g., AO to
based " ey usually require tu optimality. grgct continuity, indicating the problem to specific decouple the active and
. nowledge of the problem problems are efficiently . .
algorithms to find near-optimal solved with guaranteed caseiby»case anal'yses and forms.‘These passive beamformmg,'SDR to
solutions by using optimality once the demgp. It has dlfﬁf:ulty trans.formatlons' need a | relax the rank cgnstralnts, and
transformation. relaxation closed-form solution is adaptu}g to dynamlcally dedicated design for SCA to'estlmate the
and approx’imation. ’ achieved. changing environments. each problem. sub-optimal results.
It applies heuristic rules to Heuristic algorithms Cogofg;idten:fgé};; lclz)%l}irol
find a trade-off between have much lower It only presents local Heuristic rules should probleﬁls hZuristic algorithms
Heuristic opt%mality and ) computational ) optimz} iq th; current be carefully sel}ected can pr()\;i de low-complexity
algorithms comgutgtlonal 90mplex1ty. comp_lexny. It has few stage, 1ndlcam_1g a bad and d‘es1gned, dlrgctly alternatives, i.c., sequential
Heuristic algorithms focus requirements for the performance in some affecting the algorithm hase shift N d N Joff control
on local optima and properties of target cases. performance. phase shilt an 10 n Oh con;c;
low-complexity solutions. problems. using gr9ed¥ rule, phase-shift
optimization using GA.
ML techniques are usuall Data-driven approaches . .
data—dri\gsn, providing Y avoid the comrgl)exity of . . L Various ML techniques have
unified control and building dedicated ] It ‘may require many Algorlt'hm 'trammg is been' appll(?d for RIS-related
ML optimization algorithms optimization models. Tt iterations for the glgorthm the main dlfﬁCule of optimizations, e.g., ngur‘al
techniques for certain types of can better adapt to the training. ML optimization | applying ML, whlgh is networks for CSI prediction
problems. Most algorithms dynamic wireless techniques d'o not data and computation- and RIS phase c.ontrol, and
are casily applied without environment given the guarantee optimality. demanding. DDPG fo; continuous RIS
requiring dedicated design. learning capability. phase-shift optimization.
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which are applied to diverse problems with few design
requirements. For instance, most optimization problems can
be converted into unified MDPs that include state, action,
transition probability and rewards, and then reinforcement
learning is utilized to maximize the reward for a higher
sum-rate or energy efficiency. Meanwhile, as summarized in
Fig. 25, reinforcement learning can be integrated with other
ML techniques to develop diverse optimization algorithms,
such as federated deep reinforcement learning, transfer rein-
forcement learning, and hierarchical reinforcement learning.
For example, transfer reinforcement learning can achieve faster
convergence and higher average reward than conventional
reinforcement learning algorithms. However, ML algorithm
training is usually computation-demanding, requiring a large
number of computational resources, e.g., iterative exploration
of RL and back-propagation for neural network training.
Finally, datasets are crucial to applying data-driven ML
algorithms, especially for supervised learning. Model-based
methods provide a useful approach for labeled dataset gener-
ation, which indicates the potential to combine model-based
and ML algorithms. For example, Hu et al. first apply the
BCD method for RIS-aided mobile edge computing, and
then the produced results serve as datasets for location-
based supervised learning algorithms [125]. This reveals the
potential benefit of integrating ML techniques with model-
based algorithms.

VIII. RIS-ASSISTED 6G APPLICATIONS: OPTIMIZATION
ANALYSES AND CHALLENGES

This section analyzes control and optimization techniques
for RIS-assisted 6G applications, e.g., potential optimization
difficulties and algorithm selections. In addition, we identify
several research challenges for the optimization of RIS-aided
wireless networks.

A. Control and Optimization Analyses of RIS-Assisted 6G
Applications

Table XVII summarizes RIS-assisted 6G applications,
including NOMA, SWIPT, mmWave and THz communica-
tions, NTNs, V2X communications, and ISAC. For example,
due to the resource-sharing nature, the NOMA system is
more vulnerable to security issues. Then RISs can be applied
to reshape the signal propagation environment for security
services against eavesdroppers. The low energy efficiency at
the energy receiver is one of the main issues for practical
SWIPT deployment, and RISs become a promising solution
to increase sum-rate, reduce transmit power, and maximize
the minimum received power. In addition, Table XVII
also summarizes the motivations for integrating RISs with
other 6G applications such as RIS-NTN, RIS-V2X, and
RIS-ISAC.

However, integrating RISs with 6G techniques also
increases the difficulties for network management. In RIS-
NOMA systems, the decoding order may be frequently
changed due to the dynamic RIS configuration, increasing
the difficulty of applying conventional model-based algo-
rithms. For V2X networks, a critical feature is the stringent
requirement for reliability and safety, which means the
proposed algorithm should guarantee the worst-case network
performance. Such a requirement means that the control
and optimization algorithms should be efficient, robust and
reliable. The potential optimization difficulties of other RIS-
assisted 6G applications are also reviewed in Table XVII.

Finally, we analyze optimization algorithm selections for
various RIS-assisted 6G applications. Integrating RISs will
substantially increase the network management complexity,
since RIS phase-shift control is highly coupled with other
control variables such as decoding order in NOMA, beam
selection in mmWave networks, and UAV altitude control.
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Fig. 25. Algorithm selection and relationship of model-based, heuristic and ML approaches.

ML algorithms become promising solutions to handle such methods can usually provide more stable performance than
complexity, such as DDQN [142] and DDPG [132], [145]. ML or heuristic approaches, providing detailed proofs and
In particular, these studies apply unified schemes to optimize explanations for the algorithm output.

network performance, overcoming the difficulties of reformu-

lation and transformation for convexity. However, conventional

ML algorithms require many iterations for model training, B Challenges and Future Directions

which may prevent the application to highly dynamic envi- This subsection identifies research challenges and possible
ronments such as RIS-UAV. To this end, transfer learning and  future directions.
meta-learning may be used to improve training efficiency and 1) Practical RIS Phase-Shift Design: Most existing RIS

make rapid responses. On the other hand, other applications optimization studies rely on perfect CSI acquisition and
such as V2X have more stringent service requirements to static user conditions, which are impractical assumptions
guarantee worst-case performance. In this case, model-based in the real world. Specifically, the wireless environment is
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TABLE XVII
CONTROL AND OPTIMIZATION ANALYSES FOR RIS-ASSISTED 6G APPLICATIONS
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6G ;.1pp11 Key features Motivations for integrating Potential optimization difficulties Analyse.s of optlm%zanon
cations RISs algorithm selections
NOMA enables . RIS-NOMA integration increases | ML techniques can be applied
. Due to the resource-sharing s . . .. .
spectrum sharing - the overall optimization for intelligent decision-making
nature, the NOMA system is . . .
among users, e.g., . complexity. Specifically, the in RIS-NOMA systems to
. more vulnerable to security . .
multiple users can use . decoding order may be handle the complexity and
RIS- . issues. Then RISs can be o
the same time and . . frequently changed due to the meanwhile improve long-term
NOMA applied to reshape the signal . . .
frequency resource . - dynamic RIS configuration, network performance. AO
- . propagation environment for . . .
blocks, improving user . . . increasing the difficulty of may be used to decouple the
. security services against . . .
fairness and spectral applying conventional RIS control with NOMA
- eavesdroppers. . L
efficiency. model-based algorithms. optimization.
Existing studies mainly apply ML approaches can be
. . The low energy efficiency at model-based methods for joint romising alternatives to
SWIPT is an attractive £y etie Y L J p £ . .
. . the energy receiver is one of optimization of RISs and handle the complexity of joint
solution to transmit .7 . . o
electricity without the main issues for practical wireless power transfer, optimizing RISs and SWIPT.
. Y . SWIPT deployment, and RISs requiring dedicated model For instance, the RL agent can
RIS- using physical wire . . . .
. h . become a promising solution, design. Although some explore the complicated IoT
SWIPT links, increasing the . . . . - . .
o . e.g., increasing sum-rate, low-complexity algorithms are environment without any prior
mobility, reliability, K : . . .
and safety of reducing transmit power, and proposed, i.e., MM [180] and knowledge, and intelligently
electronic dZvice% maximizing the minimum bi-section search [181], they still optimize energy and
” received power. require full knowledge of the information transfer and RIS
defined problem. control.
mmWave and THz N Compared with heuristic or
communications are The optimization of ML algorithms, model-based
The increasing traffic . RIS-mmWave and RIS-THz 8 ’ .
vulnerable to signal blockages algorithms are more reliable
demand and scarce . . systems rely on accurate and . .
. and attenuation, leading to . Lo in guaranteeing the worst-case
RIS- bandwidth resources practical channel estimation to
severe path loss and reduced . . .. performance for RIS-mmWave
mmWave make mmWave and identify the performance limit.
- cover range. RISs can be L and THz systems, e.g.,
and THz THz communications . . Therefore, robust optimization o
. applied to manipulate the . maximizing worst-case
become appealing . . techniques should be developed
. signal propagation S network performance, or
techniques. . . to handle the uncertainty in S o
environment when the direct L considering outage probability
PR channel estimation. :
transmission is blocked. constraints.
The NTN F.requent repositioning will UAV communications are highly To overcome the tedious
complements the increase the UAV power . . I L .
L . . dynamic due to their mobility, training iterations of
limitations of consumption, especially . . .
. S and ML algorithms can be used conventional ML algorithms,
terrestrial networks, considering that UAVs are R .
covidine flexible and owered by a battery [79]. In to handle such uncertainty. transfer learning and
RIS-NTN | Provicine PO y Y - However, ML model training meta-learning may be used to
reliable support for this case, RISs can be applied . . . . . . .
. . requires many iterations, which improve the training efficiency
remote areas by UAVs, | to overcome this challenge, in . .
. . . may prevent UAVs from making and make rapid responses to
high-altitude platforms which one can configure the real-time responses to network UAV dynamics, which is still
(HAPs) and low earth | RIS phase shifts instead of ] Eam‘ics yan N
orbit satellites. moving UAVs to save energy. Y ' P ’
Latency and reliability are the ML algorithms can quickly
most critical requirements of A critical feature of V2X adapt to dynamic
. . V2X networks for road safety. | communications is the stringent environments, but the model
V2X is a key paradigm . o L .
. However, the V2X requirement for reliability and training is time-consuming.
for envisioned 6G . . .
. transmission can be unstable safety, which means the Meanwhile, model-based
networks, enabling . . . X
. . due to fast-moving vehicles proposed algorithm should algorithms can produce stable
RIS-V2X intelligent . .
- . and the dynamic nature of guarantee the worst-case network results, but they require full
transportation with . . . . .
hieher road safety and wireless communications. performance. In addition, this knowledge of the environment.
g . y Therefore, RISs can be indicates that the control and Therefore, developing efficient
traffic efficiency. . : NP . N .
exploited to improve channel optimization algorithms should optimization algorithms for
capacity, coverage, signal be efficient, robust and reliable. V2X networks is still
strength and reliability. challenging for current studies.
. It is crucial to develop
. Targf.:t de‘tectlon and parameter ISAC offers significant potential efficient optimization
ISAC is recently estimation are two primary L . . .
. . . by combining sensing and techniques to realize the full
emerging as a key tasks in radar sensing [183], . . .
communication, but it also leads potential of the RIS-ISAC
RIS- technology to support and RISs can be deployed to . L
- . . . : to extra complexity for network system, e.g., decoupling joint
ISAC ubiquitous wireless provide virtual LoS signal LoLer .
.. .. . management, and such optimization into multiple
connectivity and transmission, enabling the . . .
. . complexity further increases by sub-problems using AO, and
accurate sensing [182]. radar to sense targets in involvine RISs applvine ML aleorithms for
blocked areas [184]. & ’ pplyms ! &
joint control.

highly dynamic due to various channel conditions and diverse
user demands. Therefore, developing robust and practical
algorithms for RIS control is of great importance for the

real-world deployment of RISs, e.g., imperfect CSI acquisition
and UEs with high mobility, which requires more research

efforts.
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2) Low-Overhead Control: Many advanced control and
optimization techniques have been proposed for RISs, but
the communication and control overhead is neglected in most
works. For example, frequent parameter exchange between
the BS and RISs may lead to high overhead, and the model
training overhead of ML algorithms can hamper the system
efficiency. These issues are still open challenges, and agile
optimization algorithms with low complexity and overhead are
yet to be developed.

3) ML-Enabled Intelligent RIS Beamforming: ML is one
of the most promising techniques to facilitate future 6G
networks, and integrating ML with RISs can bring intelli-
gent prediction, clustering, and decision-making for RIS-aided
wireless networks. Despite the significant potential, some
critical questions, e.g., algorithm deployment, offline or online
training, and training cost, are neglected in many existing
studies. Addressing these problems can further enable an
intelligent future wireless network.

4) Practical RIS Location Optimization: In many existing
studies, RIS location is considered as a predefined parame-
ter for simulation. However, RIS location can considerably
affect the system performance and therefore should be very
carefully handled. Moreover, the real-world environment is
more complicated when considering dense buildings and other
obstacles. RIS location and scale should be jointly optimized
by considering the wireless environment, user distribution, and
service requirements, which still require research effort.

5) Flexible Control Framework: The former analyses have
shown that each optimization approach has its advantages
and difficulties. Model-based methods have higher stability
and optimality, and heuristic methods have lower complexity,
while ML techniques are more robust. One intuitive direction
is to combine these methods to form a flexible optimization
framework that can make the most of each approach’s advan-
tages and complement the difficulties. However, many existing
studies stick with one type of optimization technique, and
flexible control schemes are considered future challenges.

IX. CONCLUSION

RIS technology is a key enabler for 6G networks, and
control and optimization techniques are critical to exploiting
the full potential of RISs. In this work, we have surveyed var-
ious approaches for optimizing RIS-aided wireless networks,
including model-based, heuristic, and ML approaches. We
have provided in-depth analyses of the algorithms’ features,
difficulties, and applications towards RIS, and we have further
compared the advantages and disadvantages of nearly 20 tech-
niques. Our analyses reveal that model-based methods exhibit
satisfying performance and stability, but the corresponding
algorithm design is complicated with low generalization
capability. Heuristic algorithms can obtain low-complexity
sub-optimal solutions, which are usually considered as base-
lines or supplements for other techniques. ML techniques
have high generalization capability and optimality, but ML
model training is computationally demanding and requires
experience. Finally, algorithm selection depends on specific
optimization requirements, which should be jointly considered

based on application scenarios. It is hoped that this survey
will serve as a roadmap for researchers to investigate advanced
optimization techniques for RIS-aided wireless networks.
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