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Abstract—Reconfigurable intelligent surfaces (RISs) have
received considerable attention as a key enabler for envisioned
6G networks, for the purpose of improving the network capacity,
coverage, efficiency, and security with low energy consumption
and low hardware cost. However, integrating RISs into the
existing infrastructure greatly increases the network management
complexity, especially for controlling a significant number of
RIS elements. To realize the full potential of RISs, efficient
optimization approaches are of great importance. This work
provides a comprehensive survey of optimization techniques
for RIS-aided wireless communications, including model-based,
heuristic, and machine learning (ML) algorithms. In partic-
ular, we first summarize the problem formulations in the
literature with diverse objectives and constraints, e.g., sum-
rate maximization, power minimization, and imperfect channel
state information constraints. Then, we introduce model-based
algorithms that have been used in the literature, such as alter-
nating optimization, the majorization-minimization method, and
successive convex approximation. Next, heuristic optimization
is discussed, which applies heuristic rules for obtaining low-
complexity solutions. Moreover, we present state-of-the-art ML
algorithms and applications towards RISs, i.e., supervised
and unsupervised learning, reinforcement learning, federated
learning, graph learning, transfer learning, and hierarchical
learning-based approaches. Model-based, heuristic, and ML
approaches are compared in terms of stability, robustness,
optimality and so on, providing a systematic understanding of
these techniques. Finally, we highlight RIS-aided applications
towards 6G networks and identify future challenges.
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NOMENCLATURE

α Learning rate

Θ Diagonal matrix that includes all θn
G The channel gain from BS antennas to RIS

elements

χ A binary decision variable

η Discount factor

γk The SINR of user k

x̂ Optimal control variable

E Expected value

T Minibatch size

U , B Sets of players in matching theory

E Error function

X A convex closed set

ω, ω′ Neural network weight of main and target

networks.

ωA,ωC Neural network weight of actor and critic

networks.

σ The efficiency of the transmit power amplifier.

θn Phase shift of RIS element n

	 RIS phase shift resolution

a Action in a Markov decision process

A, B, C, D Constant real matrix

ech Channel estimation error

f (x), F(x) Objective/utility function

g(x) Surrogate function

hDk The channel gain from BS antennas to user k

hRk The channel gain from RIS elements to user k

I Total number of control variables

i The index of variable number in a set

K The total number of single-antenna users

l The index of iteration number

M The total number of base station antennas

N The total number of RIS elements

N0 The noise power

p Base station transmit power

PBS Total hardware static power consumption in

BS
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Pmax Maximum transmission power of the base

station

PR(κ) Power consumption of one RIS reflecting

element with resolution κ
PUE Hardware static power consumed by one user

Pr() Probability

Q(s, a) State-action value in Q-learning

r Reward in a Markov decision process

RL, RE Data rate of legitimate user and eavesdropper

s, s ′ Current and the next state in a Markov deci-

sion process

u, u ′, b, b′ Matching theory players

V(s) State value at s in Q-learning

wk The weight of user k

x The control variable in an optimization

problem

I. INTRODUCTION

W
HILE 5G has entered the commercialization phase,

the research community has started the exploration of

future 6G networks. Compared with previous generations, 6G

networks are expected to present more stringent performance

requirements, i.e., terabits per second (Tbps) data rates for

virtual reality, and more than 107/km2 connection densities

with significantly lower latencies than 5G networks [1].

One of the main obstacles to wireless network evolution

is the uncontrollable radio environment with reflections,

diffractions, and scattering. Recently, reconfigurable intelligent

surfaces (RISs) have emerged as a promising technique to

enhance wireless signal propagation [2]. In particular, the

core feature of RISs is to manipulate the signal propagation

path by intelligently configuring numerous small elements.

Each RIS element can independently tune the phase of

the incident signal, creating a smart radio environment [3].

RISs not only are technically attractive but also require

low energy consumption and hardware cost, making this

technology a promising one for enhancing spectral efficiency

for real-world deployments. Given these advantages, RISs

can be combined with other emerging techniques, includ-

ing multiple-input multiple-output (MIMO), millimeter-wave

(mmWave) communications, unmanned aerial vehicle (UAV)

networks, non-orthogonal multiple access (NOMA), vehicle-

to-everything (V2X) networks, and so on [4], [5]. Many

existing studies and implementations have demonstrated RISs’

capability of improving network capacity, coverage, energy

efficiency, and security.

Despite their potential, integrating RISs into wireless

networks will significantly increase the complexity of

network management [6]. For example, each RIS ele-

ment requires independent phase-shift configurations, leading

to large solution spaces for optimization algorithms. The

RIS configuration is more complicated when other con-

trol variables are jointly involved, such as beamforming,

spectrum allocation, NOMA decoding order, or UAV tra-

jectory design. Therefore, advanced optimization techniques

are of paramount importance to handle such complexity and

take full advantage of RISs. Motivated by the importance

of optimization techniques, this work provides a compre-

hensive overview of optimization techniques for RIS-aided

wireless communications, including model-based, heuristic,

and machine learning (ML) approaches. There are several sur-

veys devoted to the theory, design, analyses, and applications

of RISs [7], [8], [9], [10], [11], [12]. However, this work

differs from existing surveys and tutorials by systematically

summarizing and analyzing the optimization techniques for

RIS-aided wireless networks, providing detailed comparisons,

as well as including more state-of-the-art ML techniques.

Specifically, as shown in Fig. 1, we focus on the following

aspects:

1) Problem Formulations: We first introduce the fundamen-

tal theories of RIS technology, and then provide an overview

of the problem formulations for optimizing RIS-aided wireless

networks, including maximization of sum-rate/capacity, energy

efficiency, user fairness, and secrecy rate, and minimization

of power consumption. In addition, we consider discrete

RIS phase shifts and resource management problems that

include integer control variables, and imperfect channel state

information (CSI) with different error model constraints.

2) Model-Based Methods: In this work, model-based meth-

ods refer to algorithms that rely on specific optimization

models with full knowledge of the defined problem.1 Model-

based algorithms usually have demanding requirements for the

properties and forms of problem formulations, e.g., convexity,

continuity, and differentiability. We include the following

model-based algorithms for optimizing RIS-aided wireless

networks: alternating optimization (AO), the majorization-

minimization (MM) method, successive convex optimization

(SCA), block coordinate descent (BCD), semidefinite relax-

ation (SDR), second-order cone programming (SOCP),

fractional programming (FP) and branch-and-bound (BnB).

3) Heuristic Algorithms: These algorithms apply heuristic

rules for problem-solving. They provide more efficient alter-

natives to conventional model-based methods by sacrificing

optimality and accuracy for low complexity and fast solutions.

Heuristic algorithms can be used to solve NP-hard problems

or serve as baselines and supplements for other algorithms. In

this survey, we review the convex-concave procedure (CCP)

algorithm, meta-heuristic algorithms, greedy algorithms, and

matching theory for optimizing RIS-aided wireless networks.

4) ML Algorithms: ML algorithms are recognized as

promising solutions for wireless network optimization [16]. ML

techniques do not need full knowledge of the defined problem,

and they learn from data or interact with environments to find

hidden patterns. We present state-of-the-art ML techniques for

optimizing RIS-aided wireless networks, including supervised

and unsupervised learning, reinforcement learning (RL),

federated learning (FL), graph learning, transfer learning,

hierarchical learning, and meta-learning. We provide in-depth

analyses for algorithm features and applications towards RISs,

i.e., the dataset acquisition of neural networks for RIS phase-

shift optimization, and loss function definitions of unsupervised

neural networks for data rate maximization. In addition, we

1Note that some machine learning algorithms are also model-based, but
here we use “model-based” to best describe the common features of a type
of optimization algorithms.
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Fig. 1. Organization and key topics covered in this work.

compare model-based, heuristic, and ML approaches in terms

of optimality, robustness, stability, and so on.

5) Applications and Challenges Towards 6G Networks:

We give an overview of RIS-assisted applications towards

envisioned 6G networks, including NOMA, simultaneous

wireless information and power transfer (SWIPT), mmWave

and THz communications, nonterrestrial networks (NTNs),

V2X communications, and integrated sensing and communi-

cation (ISAC). Moreover, we identify research challenges for

the control and optimization of RISs.

In summary, the main contribution of this work is that

we systematically survey optimization techniques for RIS-

aided wireless networks, ranging from problem formulations

to the features and applications of various approaches. Our

work aims to be a roadmap for researchers to optimize RIS-

aided wireless networks. The rest of this work is organized

as follows. Section II reviews related work, while Section III

presents the problem formulations. Sections IV–VI introduce

model-based, heuristic, and ML optimization approaches,

respectively, and we compare these three approaches in

Section VII. Section VIII includes RIS-aided applications

towards 6G networks and identifies future challenges. Finally,

Section IX concludes this survey.

II. RELATED SURVEYS

There are many research directions relating to RISs, includ-

ing channel modelling and estimation, signal processing,

performance analysis, passive beamforming, and hardware

designs. This work focuses on optimization techniques due to

their paramount importance, and Table I compares this work

with existing surveys in terms of control and optimization-

related contributions.

Table I shows that most existing works focus on model-

based approaches, including AO, MM, SCA, and SDR.

The main reason is that these techniques have been widely

applied, e.g., using AO to decouple joint active and passive

beamforming, and applying MM and SCA to approximate

non-convex objectives. Then, heuristic algorithms are usually

considered as low-complexity alternatives and supplements.

For example, greedy algorithms are used for element-by-

element RIS phase-shift control, and matching theory is

applied for resource allocation. However, despite their impor-

tance, heuristic approaches are omitted in many existing

surveys. Meanwhile, ML algorithms have been widely used

for wireless network management, but existing surveys are

limited in supervised learning and RL. In addition, some newly

emerging techniques, such as graph learning and hierarchical

learning, are not mentioned in existing surveys.

More specifically, in many existing studies [7], [8], [9], [10],

optimization techniques are very briefly discussed by introduc-

ing the algorithm titles that have been used in the literature,

but the motivations and algorithm features are not included.

Alghamdi et al. overviewed optimization and performance

analysis techniques of RISs, but it is limited in analyzing

problem formulations [12]. In [13], Faisal and Choi spe-

cialized in ML approaches for RIS-aided wireless networks,

but model-based and heuristic approaches are not included.

Besides, some state-of-the-art ML techniques, including graph

learning and hierarchical learning, are not included in [13].

By contrast, multiple model-based approaches are introduced

in [11] for signal processing of RISs, but many heuristic

and ML techniques are not covered. Liu et al. presented RIS

beamforming, resource management and ML for RIS-aided

wireless networks, but only RL is presented in detail [14].
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TABLE I
COMPARISON OF THIS WORK WITH EXISTING SURVEYS

Supervised learning, unsupervised learning, and FL are briefly

discussed in [14], while newer techniques, such as graph

learning, transfer learning, and hierarchical learning, are not

covered. In [15], Zheng et al. surveyed the channel estimation

and practical RIS control under imperfect/statistical/hybrid

CSI, but some optimization techniques are not included.

This work is different from existing studies in the following

aspects:

• Control and optimization have been included in many sur-

veys, but this work is the first to systematically investigate

optimization techniques of RIS-aided wireless networks,

ranging from problem formulations to steps, features,

advantages, and difficulties of nearly 20 techniques.

• We present in-depth analyses to apply these optimization

techniques to RISs. For example, deep neural network

(DNN) and deep reinforcement learning (DRL) are

included in many existing surveys, but some important

questions are not discussed, i.e., dataset acquisition for

neural network training in RIS-aided environments, and

customizing the state, action, and reward function defini-

tions for RL-enabled RIS control. The answers to these

questions are critical to taking full advantage of RISs.

• Finally, we present the most state-of-the-art ML tech-

niques for optimizing RIS-aided wireless networks, e.g.,

graph learning, transfer learning, and hierarchical learn-

ing, which are not included in existing surveys, to the

best of our knowledge. These novel techniques may bring

new research directions.

To summarize, this survey answers the following: what are the

state-of-the-art techniques for optimizing RIS-aided wireless

networks, and how do they cover different aspects with respect

to each other?

III. BACKGROUND AND PROBLEM FORMULATIONS FOR

OPTIMIZING RIS-AIDED WIRELESS NETWORKS

This section first introduces the fundamentals of RIS

technology, and then it overviews the problem formula-

tions of RIS-aided wireless networking solutions, including

maximization of sum-rate/capacity, energy efficiency, user

fairness, secrecy rate, and minimization of power consumption.

Fig. 2. Illustration of RIS operation and control principles.

For each objective, we summarize related works in terms

of scenarios, phase-shift resolutions, channel settings, CSI,

control variables, constraints, and algorithms. Additionally,

we investigate problem formulations with integer control

variables, such as discrete RIS phase shifts and resource

allocation problems. Finally, imperfect CSI scenarios are

discussed within deterministic and stochastic models.

A. Fundamental Theories of RIS Technology

This subsection introduces the fundamentals of RIS tech-

nologies, including RIS operation principles, RIS control,

and RIS deployment. Note that there are a few studies

that have explicitly introduced the fundamental principles of

RISs [2], [6], [14], and so this subsection serves as a brief

background in our work. The reader is referred to those studies

for further details.

1) RIS Operation Principles: An RIS is a man-made

two-dimensional reflecting surface, and the core feature of

RISs is that the electromagnetic response can be intelligently

reconfigured. Each RIS element can tune the phase of the

incident signal, enabling a customized signal propagation

environment. There have been various designs of RISs, which

can be can be categorized in terms of power sources, energy

consumption, tuning features, etc. [14]. For example, Fig. 2
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shows an example of a varactor-based RIS, which applies

varactor diodes with tunable biasing voltages to achieve

desired phase shifts. By reflecting the incident signal from the

BS, the RIS provides an alternative transmission link.

2) RIS Control: A smart RIS controller is usually deployed

using a device such as field-programmable gate array (FPGA).

As shown in Fig. 2, the RIS phase shift pattern is designed at

the BS, and it will send control signals to the RIS controller for

phase-shift configuration. In this case, the BS will collect the

required information for decision-making. Specifically, CSI

is one of the most important pieces of information for RIS

phase-shift design, since RIS elements have to respond rapidly

to channel dynamics. Meanwhile, other information may

also be required, which varies between different RIS phase-

shift design algorithms. For example, Huang et al. consider

user positions as input for phase-shift design, which means

the user location should be collected [17]. Additionally, the

communication frequency between the BS and RIS controller

depends on the specific RIS design. For instance, the unit

elements of passive metasurfaces will remain static during

normal operation, and the controller has fewer communication

demands with the BS [6]. By contrast, for RISs with active

tunability, the controller may require frequent information

sharing to make real-time responses to dynamic channel

conditions.

3) RIS Deployment: Due to the low hardware cost and low

energy consumption, RISs can be easily deployed on building

walls and ceilings. These terrestrial RISs may be deployed

in a centralized manner as a single large surface, or as

decentralized surfaces that are closer to users. The centralized

deployment means that more users can be covered, while the

decentralized deployment has lower control complexity. In

addition, RISs can also be placed on aerial platforms. For

instance, UAVs with RISs can provide full space reflections

with mobility and higher flexibility [18], [19].

To realize the benefits of deploying RISs in wireless

networks, RISs should be carefully configured, including

locations, on/off status, amplitude, phase shifts, etc. In par-

ticular, phase-shift design is the key to RIS operation,

which will directly affect network performance. Meanwhile,

other network decisions, such as transmit beamforming,

user association and resource allocation, should be jointly

optimized. These joint optimization problems are usually non-

convex and highly non-linear, requiring various optimization

techniques for different scenarios, e.g., joint active and pas-

sive beamforming, RIS-related resource allocation, physical

layer security, etc. In the following, we will introduce

the problem formulations for optimizing RIS-aided wireless

networks.

B. Sum-Rate/Capacity Maximization

Fig. 3 shows a RIS-aided downlink transmission system, in

which one base station (BS) with M antennas serves K single-

antenna users, and the RISs have N reflecting elements. The

users can receive signals by direct transmission link BS-user

and indirect transmission link BS-RIS-user. The signal-to-

interference-plus-noise ratio (SINR) of user k is:

Fig. 3. Downlink channel of RIS-aided multi-user systems.

γk =

∣∣∣
(
h
R
k ΘG + h

D
k

)
pk

∣∣∣
2

∑K
j=1,j �=k

∣∣∣
(
h
R
k ΘG + h

D
k

)
pj

∣∣∣
2
+ N 2

0

, (1)

where pk is the transmit power at the BS for active beamform-

ing, G ∈ C
N×M indicates the channel gain from BS antennas

to RIS elements, hRk ∈ C
1×N indicates the channel gain from

RIS elements to user k, hDk ∈ C
1×M indicates the channel

gain from BS antennas to user k, and N 2
0 is the noise power.

The RISs reflect the signal to users via a phase-shift vector

θn = ejφn for passive beamforming, and we define a diagonal

matrix Θ = diag(θ1, θ2, . . . , θn , . . . , θN ) ∈ C
N×N . Here

RISs may have different operation modes to change the phase

shifts, which depend on their specific designs. For instance,

RIS elements can be reconfigured electrically, mechanically,

or thermally based on their tuning design, and a thorough

survey can be found in [6]. However, note that RISs cannot

be completely passive due to their inherent property of being

configurable [14]. In addition, note that the BS in Fig. 3 can

serve multiple users simultaneously due to multi-antenna BS

beamforming, and RIS elements are used to reflect the incident

signal and change the phases [36].

Sum-rate/channel capacity improvement is one of the most

widely considered advantages of RIS. Compared with the

direct transmission BS-user, RISs provide an indirect link that

can be line-of-sight, leading to less path loss and higher SINR.

To maximize the weighted sum-rate

max
p,Θ

K∑

k=1

wk log(1 + γk ) (2)

s.t.
K∑

k=1

‖pk‖
2 ≤ Pmax , (2a)

|θn | = 1, n = 1, 2, . . . ,N , (2b)

where Pmax is the maximum transmission power of BS, wk

is the weight of user k. Equation (2) aims to maximize the

sum-rate of all K users, and equation (2a) is the transmission

power constraint. Equation (2b) is the RISs phase constraint

which can be continuous or discrete.

Table II summarizes sum-rate/channel capacity

maximization works in RIS-aided wireless communications,

including scenarios, phase-shift resolutions, channel settings,

CSI availability, control variables, constraints and algorithms.

This problem has been investigated in various scenarios,
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TABLE II
SUMMARY OF RIS-AIDED SUM-RATE/CAPACITY MAXIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

i.e., MIMO [20], [21], [22], [23], MISO [24], [25], [26],

[27], SISO [28], NOMA [29], mmWave [30] and vehicle

communications [30]. These works mainly consider BS

beamforming vectors and RIS phase shifts as control variables,

which are known as joint active and passive beamforming,

and the total transmit power and RIS phases are included

as constraints. However, the joint optimization problem is

very challenging due to network dynamics and the large

number of RIS elements. The fractional terms of SINR,

logarithm introduced by Shannon theory, and non-convex

constraint of RIS phase shifts lead to significant complexity

for the joint optimization. Consequently, most existing studies

decouple the control variables using AO [20], [21], [22],

[23], [26]. For example, a widely applied scheme is to first

optimize the BS beamforming vectors, then solve the RIS

phase shifts sub-problem iteratively. Finally, as one of the

core control variables, the RIS phase-shift control is supposed

to be continuous in many studies. The first reason is that

discrete control variables lead to integer constraints that are

NP-hard; another reason is that the achieved results can be

converted into the nearest discrete values using the rounding

method [37].

C. Power Minimization

Power minimization is another widely investigated topic

for RIS-aided wireless communications. Transmission power

reduction not only saves the power consumption of wireless

networks but also reduces the interference on adjacent cells.

Power minimization problems with QoS constraints can be

described by

min
p,Θ

K∑

k=1

‖pk‖
2 (3)

s.t. γk ≥ γmin , k = 1, 2, . . . ,K , (3a)

|θn | = 1, n = 1, 2, . . . ,N , (3b)

where γmin is the minimum SINR requirement of users. The

objective function is greatly simplified by minimizing power

consumption
∑K

k=1 ‖pk‖
2, and the quality of service (QoS)

requirements are balanced by SINR constraints as γk ≥ γmin .

Here, the SINR or date-rate requirements introduce fractional

or logarithmic terms in the constraints, which makes equa-

tion (3a) a challenging non-convex problem.

We summarize power minimization-related works in

Table III. These studies aim to minimize the transmit power

of BSs with SINR or data rate constraints. Similar to the

sum-rate maximization problem, power minimization is also

investigated in diverse scenarios, including MISO [38], [39],

[40], [41], SISO [43], NOMA [43], [44], [45], [46] and full-

duplex antennas [47]. Meanwhile, these studies still assume

continuous RIS phase shifts and perfect CSI to reduce the

optimization complexity [38], [41], [45], [46], and the main

control variables are BS beamforming vectors and RIS phase

shifts. BnB and successive refinement algorithm are applied
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TABLE III
SUMMARY OF RIS-AIDED POWER MINIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

in [39] for discrete optimization, and Zheng et al. obtain

the optimal RIS phase shifts first and then finds the nearest

discrete value [43]. In addition, imperfect CSI is investigated

in [40], [42], in which [40] applies penalty CCP to handle the

CSI uncertainty, and S-procedure and Bernstein-Type inequal-

ity are used in [42] to transform the QoS constraints under

CSI error. Perfect CSI is a common setting in many existing

studies, but such strong assumptions may be impractical in

real-world applications. On the one hand, more advanced

channel estimation methods should be developed to reduce

the CSI estimation error [15]; on the other hand, robust

optimization algorithms are expected to handle the channel

uncertainty.

D. Energy Efficiency Maximization

Energy efficiency is a critical metric for green 5G and

6G networks. Different from power minimization problems,

the objective of energy efficiency maximization includes both

transmission rate and energy consumption metrics, which can

better evaluate the power utilization efficiency. The main

benefit of RISs lies in the capability of reshaping the signal

propagation path with extremely low power consumption,

making RISs a promising technique to improve energy effi-

ciency. To maximize energy efficiency, one can formulate

max
p,Θ

∑K
k=1 wk log(1 + γk )

σ−1
∑K

k=1‖pk‖
2 +KPUE + PBS + NPR(	)

(4)

s.t.

K∑

k=1

‖pk‖
2 ≤ Pmax , (4a)

|θn | = 1, n = 1, 2, . . . ,N , (4b)

γk ≥ γmin , k = 1, 2, . . . ,K , (4c)

where σ is the efficiency of the transmit power amplifier,

PUE is the hardware static power consumed by one user,

PBS is the total hardware static power consumption in BS,

and PR(κ) is the power consumption of one RIS reflecting

element with resolution 	. To maximize energy efficiency

in equation (4), the numerator is to maximize the sum-

rate, while the denominator is to reduce power consumption.

Constraint (4a) is the total transmit power limit, (4b) is the RIS

phase constraint, and (4c) is the QoS requirement indicated by

target SINR or data rate.

Problem (4) is more complicated than sum-rate

maximization or power minimization problems, since it

includes both logarithm and fractional terms in the objection

function and constraints. Energy efficiency maximization-

related works are summarized in Table IV. Similar to former

problem formulations, BS beamforming vectors and RIS

phase shifts are main control variables, and constraints

include target data rate, total transmit power, and RIS

phases [50], [51], [55]. To solve the energy efficiency

maximization problem, the key is to decouple the transmission

rate and energy consumption items in equation (4). Dinkelbach

method is applied in [52], but these conventional methods

can not be directly applied to sum-ratio problems. Note that

the power consumption definition in equation (4) may change

case by case, which depends on the scenario of deploying

RISs. For example, the total power consumption in most

studies include BS transmit power, RIS energy consumption

and user device power. By contrast, Zhou et al. investigate

the energy efficiency with BS sleep control, and the total BS

power consumption becomes the denominator in the objective

of equation (4) [57].

E. User Fairness Maximization

Former problem formulations usually consider the total

or average network performance as objectives, but the fair-

ness among multiple users is equally important. Such user
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TABLE IV
SUMMARY OF RIS-AIDED ENERGY EFFICIENCY MAXIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

TABLE V
SUMMARY OF RIS-AIDED FAIRNESS MAXIMIZATION WORKS UNDER VARIOUS CONSTRAINTS

fairness metrics can describe the experience of cell-edge users,

guaranteeing the worst-case network performance. User fair-

ness maximization aims to maximize the minimum SINR or

data rate, indicating that users can achieve target performance

even in the worst case. For instance, the max-min SINR

problem can be defined by

max
p,Θ

min
k∈K

{γk} (5)

s.t.

K∑

k=1

‖pk‖
2 ≤ Pmax , (5a)

|θn | = 1, n = 1, 2, . . . ,N , (5b)

γk ≥ γmin , k = 1, 2, . . . ,K , (5c)

where mink∈K {γk} is the minimum SINR among K users.

Maximizing the worst user experience will improve the fair-

ness of the whole network.

Table V summarizes existing works for fairness

maximization problems in RIS-aided wireless networks.

Although various scenarios have been investigated, the primary

control variables are still BS beamforming vectors and RIS

phase shifts [37], [58], [60], [64], and the constraints focus

on total transmit power and RIS phases [58], [60], [63], [64].

The formulated problem (5) is more challenging than

conventional max-min fairness beamforming problems. RISs

not only introduce additional non-convex constraints but also

makes the reflective beamforming vector coupled with the

transmit beamforming vectors in the SINR term, thus making

problem (5) highly nonlinear and non-convex [60]. Therefore,

instead of optimizing the complicated objective functions

directly, approximation-based algorithms are frequently

applied. For example, MM and SCA algorithms construct

surrogate functions as the upper bound of original objective

functions, which are easier to be optimized than problem (5).

Additionally, the genetic algorithm (GA) and greedy-iterative
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Fig. 4. The downlink channel model of RIS-aided secure transmission.

method are used in [65] and [66] for RIS phase-shift control,

respectively. Compared with model-based algorithms, these

heuristic algorithms can obtain fast solutions efficiently, but

the optimality cannot be guaranteed.

F. Secrecy Rate Maximization

Physical layer security is increasingly of interest for wireless

communications, and various techniques have been proposed

to enhance physical layer security, e.g., artificial noise-

aided beamforming and cooperative jamming. However, these

approaches may lead to high hardware costs and power

consumption, and RISs provide a novel low-cost solution by

manipulating the signal propagation path.

Fig. 4 shows a RIS-aided downlink transmission system

with one legitimate user and one eavesdropper. The data rate

of the legitimate user is:

RL = log

(
1 +

∣∣(hLΘG + hd ,L

)
pL

∣∣2

N 2
L,0

)
, (6)

where hL is the channel from RISs to the legitimate user, hd ,L

is the direct transmission channel from RISs to the legitimate

user, and NL,0 is the Gaussian noise at the legitimate user.

Similarly, the data rate of the eavesdropper is:

RE = log

(
1 +

∣∣(hEΘG + hd ,E

)
pL

∣∣2

N 2
E ,0

)
, (7)

where hE is the channel from RISs to the eavesdropper, hd ,E

is the direct transmission channel from RISs to the eaves-

dropper, and NE ,0 is the Gaussian noise at the eavesdropper.

Finally, to maximize the secrecy rate, we have

max
p,Θ

RL − RE (8)

s.t. ‖p‖2 ≤ Pmax , (8a)

|θn | = 1, n = 1, 2, . . . ,N . (8b)

Table VI summarizes the RIS-aided secure transmissions-

related studies. It shows that most existing works apply

continuous phase shifts with perfect CSI sharing, and BS

beamforming and RIS phase shifts are still the major con-

trol variables. Most existing studies consider single-user

cases [67], [68], [69], [70], [71], [72], [73], which signifi-

cantly lower the optimization complexity without considering

interference between multiple legitimate users. Moreover, the

perfect CSI acquisition of legitimate users may be unrealistic

in practice, indicating a gap between theoretical studies and

real-world applications.

On the other hand, RIS technique is also combined

with conventional secure transmission strategies, i.e., artificial

noise, to achieve secure transmissions [69], [74], and the

simulations demonstrate that integrating RIS with artificial

noise can achieve a higher secure transmission rate. However,

these coupled control variables also increase the optimization

complexity. The main difficulties of solving problem (8)

are the non-convex objective function and RIS phase-shift

constraints (8b). Subsequently, AO-based estimation methods

are widely applied as low-complexity solutions. For instance,

the original problem is decoupled into multiple sub-problems

by optimizing one control variable and holding other variables

fixed, and then applying approximation-based algorithms, e.g.,

SCA [69], [72], [74] and MM [73], [75], to solve each sub-

problem.

G. Optimization With Integer Constraints: Discrete RIS

Phase Shifts and Resource Allocation Problems

Previous sections show that many existing studies assume

continuous RIS phase shifts for simplicity, but practical RISs

usually have limited phase-shift resolutions, indicating discrete

phase shifts for the incident signal. However, such realistic

settings will lead to discrete control variables along with mixed

integer nonlinear programming (MINLP) problems, consider-

ably increasing the difficulty of optimization. In addition, RIS

element on/off control, resource allocation, and association

problems will also involve integer control variables.

Compared with former problem formulations, the main

difference is that discrete control variables lead to integer

constraints. For instance, discrete RIS phase shifts include a

constraint θn ∈ {0, 2π2� , . . . , (2
� − 1)2π2� , 2π}, where 	 is the

RIS phase-shift resolution. RIS elements on/off, subchannel

allocation, and user association problems will involve binary

constraints as χ ∈ {0, 1}, where χ is the binary deci-

sion variable. We summarize three approaches to formulate

optimization problems with integer control variables:

• Relaxation method: This method is to relax the discrete

RIS phase shifts θn ∈ {0, 2π2� , . . . , (2
� − 1)2π2� , 2π} into

continuous phase shifts with 0 ≤ θn < 2π. Similarly,

the binary control variables in resource allocation and

association problems with χ ∈ {0, 1} are converted

into 0 ≤ χ ≤ 1. Such linear programming relaxation

can transform NP-hard problems into related problems

that may be solvable in polynomial time. In addition,

the relaxation method may introduce penalties in the

objective function by allowing violating constraints such

as Lagrangian relaxation. Then, the reformulated problem

formulations are solved by using algorithms such as SCA

or MM. These methods will be included in Section IV.

• Quantization approach: The quantization method is

mainly used to simplify the RIS phase-shift control.

It considers continuous RIS phase shifts when solving

the problem, and then the achieved optimal RIS phase

shifts are quantized into the closest discrete values as

θn ∈ {0, 2π2� , . . . , (2
� − 1)2π2� , 2π}. For example, the
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TABLE VI
SUMMARY OF RIS-AIDED SECURE TRANSMISSION-RELATED WORKS UNDER VARIOUS CONSTRAINTS

TABLE VII
SUMMARY OF DISCRETE CONTROL VARIABLES FOR OPTIMIZING RIS-AIDED WIRELESS NETWORKS

authors in [37] maximize the received signal strength

by using BCD and SDR, and the achieved continuous

RIS phase shifts are easily converted into the nearest

discrete values. Compared with the relaxation method, the

quantization approach has much lower complexity with

few reformulations. However, the solution quality may be

considerably degraded when quantizing the continuous

values into discrete solutions. For example, the quan-

tization approach may have difficulty handling binary

decision problems since all continuous solutions between

0 and 1 can only be quantized into values 0 or 1. In this

case, the relaxation method is more appropriate for binary

decision-making.

• Heuristic and ML techniques: Heuristic and ML

techniques also provide attractive solutions for MINLP

problems. Discrete control variables are directly

optimized without relaxation and transformation, which

will be introduced in Sections V and VI.

In summary, the quantization approach has the lowest

complexity by transforming continuous RIS phase shifts into

the nearest discrete values, but such brute-force transforma-

tion may degrade the network performance. The relaxation

method converts discrete control variables into continuous

optimization problems. It may guarantee optimality but require

case-by-case analyses and complicated design. By contrast,

heuristic and ML techniques can better handle discrete

optimization problems by using heuristic rules and ML algo-

rithms. For instance, discrete RIS phase shifts are defined

as actions in [79], and then the DRL agent interacts with

the wireless environment directly to maximize the long-term

benefit.

Table VII overviews integer control variables that are

involved in the optimization of RIS-aided wireless networks,

including discrete RIS phase shifts, RIS on/off control,

resource allocation and association, D2D-user pairing for

RIS-D2D communications, and task offloading decisions for
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TABLE VIII
SUMMARY OF DIFFERENT CSI ERROR MODELS FOR OPTIMIZING RIS-AIDED WIRELESS NETWORKS

RIS-aided MEC. Table VII shows that handling these integer

control variables is critical to optimize network performance,

and heuristic and ML algorithms are regarded as appealing

approaches to solve these NP-hard problems.

H. Optimization Constraints for Imperfect CSI

CSI availability is critical for properly optimizing RIS-

aided wireless networks. Note that there are many advanced

channel estimation methods to provide accurate CSI [15], and

then most existing studies assume perfect CSI as shown from

Table II to VI. However, obtaining perfect and instant CSI

is impractical due to limited feedback overhead, noise, and

interference. As shown in Table VIII, the CSI estimation error

can be described by deterministic or stochastic models.

• Deterministic model: The deterministic model indicates

an upper bound of the CSI error as ‖eCh‖ ≤ eCh,max ,

where eCh is the estimation error and ≤ eCh,max is the

upper bound. Then ‖eCh‖ ≤ eCh,max will be included

in the problem formulations shown from Sections III-B

to III-F. In addition, problem formulations with the deter-

ministic error model will become a max-min problem to

guarantee the worst-case performance, which is similar

to Section III-E.

• Statistical model: On the other hand, the statistical model

considers the CSI error as a random variable with spe-

cific distributions such as complex Gaussian distribution.

Without CSI error bound, an extra constraint is required

to guarantee the network performance Pr(γ ≥ γmin) ≥
Prmin , where γmin is the minimum SINR requirement,

and Prmin is the minimum probability requirement that

the SINR is higher than the target value. Pr(γ ≥
γmin) ≥ Prmin is a probabilistic constraint because there

is no upper limit on the CSI error, and a large error will

unavoidably lead to system outages.

Finally, note that there are many algorithms that can be used

to optimize problems with imperfect CSI constraints, including

AO, SCA, SDR, and DRL, which will be introduced in the

following sections.

I. Discussions and Analyses

Sections III-B–III-H have investigated various problem

formulations for RIS-aided networks, and then this sub-

section aims to analyze the common features of these

formulations. Especially, identifying the main challenges of

solving these problems can motivate us to find more efficient

solutions.

1) Non-Convex Objectives and Constraints: One com-

mon feature of RIS-related optimization problems is that

the objectives and constraints are usually non-convex and

highly non-linear. For instance, fractional terms are frequently

involved with SINR, and the logarithm is usually included

due to Shannon’s formula. These fractional and logarithmic

terms lead to non-convex terms in objectives and constraints.

Thus dedicated transformation and relaxation are needed to

reformulate the problem for convexity, which requires case-

by-case analyses for each problem formulated.

2) Highly Coupled Control Variables: RIS passive beam-

forming is often combined with other techniques, e.g., BS

active beamforming, NOMA, and UAVs. This results in

highly coupled control variables, e.g., RIS phase-shift design,

user decoding order in NOMA, BS transmit power control,

UAV trajectory design, and so on. For instance, in RIS-UAV

systems, when changing the UAV altitude, the RIS phase shifts

must be simultaneously optimized to maintain the network

performance. Compared with optimizing RIS phase shifts

solely, such correlation between network functions and control

variables is much more complicated. The ideal solution is

to jointly optimize all variables simultaneously, but this can

be extremely difficult due to the interactions between these

techniques.

3) Large Solution Spaces: RIS-related optimization prob-

lems usually involve a large solution space due to the

considerable number of RIS elements. Meanwhile, the inte-

gration with other techniques also contributes to the size of

the solution space. For instance, compared with RIS passive

beamforming, joint active and passive beamforming problems

are more complicated by including BS beamforming vectors,

leading to a much larger solution space. Such large solution

spaces indicate extra difficulty when exploring the optimal

solution, e.g., large datasets and action spaces for deploying

ML algorithms.

4) Integer Control Variables: As introduced in Section III-G,

integer control variables are frequently involved in optimizing

RIS-aided networks, e.g., resource allocation and user-RIS-

BS association. These integer control variables will result

in NP-hard problems, which cannot be efficiently solved in

polynomial time. In addition, optimization problems become

more complicated when both integer and continuous control

variables are included, such as joint RIS phase-shift design

and elements on/off control.

Finally, given the above features, it is critical to investigate

efficient optimization algorithms to handle these challenges

and realize the full potential of RIS-aided networks. In the
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following sections, we will introduce model-based, heuristic,

and ML optimization approaches.

IV. MODEL-BASED OPTIMIZATION ALGORITHMS FOR

RIS-AIDED WIRELESS NETWORKS

This section introduces model-based algorithms and appli-

cations for optimizing RIS-aided wireless networks, including

AO, MM, SCA, BCD, SDR, SOCP, FP, and BnB. In addition,

we summarize the features, advantages, drawbacks, difficul-

ties, and applications of these techniques.

A. Alternating Optimization

AO has been widely applied for RIS-related control and

optimizations. The main reason is the high complexity of

joint optimization problems that include multiple control

variables such as the BS beamforming matrix and RIS phase

shifts. For instance, the joint active and passive beamforming

is usually decoupled into an active BS beamforming sub-

problem and passive RIS beamforming sub-problem, and then

each sub-problem is alternatively optimized. In particular,

for an optimization problem with I control variables �x =
(x1, x2, . . . , xi , . . . , xI ) and xi ∈ Xi , to minimize objective

function f (�x ), AO method is summarized by

• Step 1: Initializing the control variables by setting �x0 =
(x01 , x

0
2 , . . . , x

0
i , . . . , x

0
I ). Defining control variable num-

ber i = 1, iteration number l = 1, maximum iteration

number L, and termination threshold δ.

• Step 2: In the l th iteration, for control variable x li ,

optimizing f (�x ) by finding xi that satisfies

x
l
i ← argmin

xi∈Xi

f

⎛

⎜
⎝x

l
1, x

l
2, . . . , x

l
i−1

︸ ︷︷ ︸

done

, xi ,
︸︷︷︸

current

x
l−1

i+1 , . . . , x
l−1

I
︸ ︷︷ ︸

todo

⎞

⎟
⎠,

(9)

while holding all the other control variables

(x l1, x
l
2, . . . , x

l
i−1, x

l−1
i+1 , . . . , x

l−1
I ) constant.

• Step 3: i = i + 1 and repeating from Step 2 until i ≤ I.

• Step 4: If f (�xl )− f ( �xl−1) ≤ δ, stopping all iterations and

�xl is the optimal solution; if not, moving to step 5.

• Step 5: If l ≤ L, then l = l + 1, and setting control

variable number i = 1 and repeat from Step 2; if not,

outputting �xL as the optimal solution.

In equation (9), AO simplifies joint optimization problems

by optimizing single control variables alternatively while

holding other variables unchanged [90]. Each iteration is

time-efficient by optimizing one individual variable, which

is easily implemented. In addition, it does not require step

size parameter tuning and extra storage vectors. AO provides

an iterative optimization scheme, but it still relies on other

techniques to solve each sub-problem. Also, having each

variable monotonically decrease at each iteration does not

guarantee the algorithm will converge to a global minimum,

and moreover, the convergence may slow down near an

optimum point [90].

The RIS is often combined with other techniques for

joint optimization, such as joint active and passive beam-

forming, RIS-related resource allocation, RIS-NOMA, and

RIS-MEC, leading to coupled control variables and large

solution spaces. AO is particularly useful in solving such joint

optimization problems. For example, the RIS-MEC system

can be decoupled into RIS phase-shift control sub-problem

and task offloading sub-problem, and these two sub-problems

will be iteratively optimized to reduce the overall complexity.

Joint active and passive beamforming is another example that

has been widely investigated, which applies AO to generate

BS active beamforming and RIS passive beamforming sub-

problems [38], [39].

B. Block Coordinate Descent

Coordinate descent is a very useful method to solve

large-scale optimization problems, and BCD is considered

a generalized version to improve computation efficiency.

Compared with AO, each block in the BCD algorithm may

include several control variables, enabling dynamic block

generation, selection and updating. Therefore, BCD method

is more suitable than AO for optimizing a large number

of control variables simultaneously, which has been widely

applied to RIS-related optimization problems.

BCD method sequentially minimizes the objective function

F (�x ) in each block xi while the other blocks are held fixed.

Specifically, it minimizes x li ← argminxi∈X i
(f (xi )+ fi (xi ))

while holding other blocks x1, x2, . . . , xi−1, xi+1, . . . , xI
fixed. However, it is worth noting that each block consists of

multiple control variables, and the block selection and updat-

ing method will affect the BCD performance. An ideal block

selection method is expected to maximize the improvement

by choosing the blocks that decrease F (�x ) by the largest

amount [91]. On the other hand, there are many alternatives for

the block updating method such as block proximal updating

x li ← argmin
xi∈X i

(
f (xi ) + fi (xi ) +

Ll−1
i

2

∥∥∥xi − x l−1
i

∥∥∥
2
)
, (10)

where Ll−1
i > 0. Equation (10) is more stable than con-

ventional BCD by including
Ll−1

i
2 ‖xi − x l−1

i ‖2. The BCD

algorithm is easily deployed with low memory requirements

and iteration costs, allowing parallel or distributed imple-

mentations. But the block selection may affect the algorithm

performance, and block updating is difficult in some cases.

Similar to AO, BCD is considered as an iteration-based

scheme to reduce problem-solving complexity. BCD has been

applied to sum-rate maximization [21], [25], [27], user fair-

ness maximization [37], and power minimization [48]. As an

example, a two-block BCD is used to maximize the sum-rate

in [27], in which the first block is for BS active beamforming

and the second is for RIS passive beamforming, then these

blocks are iteratively optimized.

C. Majorization-Minimization Method

MM is an iterative optimization method that has been

applied for RIS control and optimizations. Consider an

optimization problem minx f (x ) and x ∈ X , where f (x) is a

continuous objective function and X is a convex closed set. In

RIS-related control problems, the f (x) is usually complicated
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Fig. 5. MM method for RIS-related optimizations.

to solve directly due to fractional and logarithmic terms. As

shown in Fig. 5, the main idea of the MM algorithm is to

construct a surrogate function g(x) that can locally approxi-

mate the objective function f (x), e.g., power minimization or

sum-rate maximization. g(x) is considered an upper bound of

f (x), which is easier to be optimized. Therefore, optimizing

g(x) can either improve the objective function value or leave

it unchanged with g(x) ≥ f (x) [92].

Constructing a surrogate function g(x) is the first step of

applying the MM algorithm, since g(x) will be optimized

directly instead of the original objective f (x). The g(x) con-

struction rules include:

A1): g(x l−1|x l−1) = f (x ); A2): g(x |x l−1) ≥ f (x );
A3): g ′(x |x l−1; d)|x=x l−1 = f ′(x l−1; d)|x=x l−1 ;

A4): g(x |x l−1) is continuous in x and x l−1,

where x l−1 is the produced point at iteration l − 1. g(x |x l−1)
is an approximation function of f (x) at the iteration l, and “|”
in g(x |x l−1) means that the point x l−1 is already on this

function. d indicates the distance from a point x to a set X

and d = inf
x ′∈X

‖(x−x ′)‖. f ′(x ; d) is the directional derivative

of f (x) in direction d. Assumptions (A1) and (A2) indicate that

g(x |x l−1) is a tight upper bound of the original objective f (x).

It guarantees that optimizing g(x |x l−1) can meanwhile find an

improved objective value for f (x). Note that surrogate function

may be defined in various ways, e.g., Jensen’s inequality,

Convexity inequality, Cauchy–Schwarz inequality. Then, the

surrogate function g(x |x l−1) is iteratively minimized and

updated by x l ← argminx∈X g(x |x l−1) until convergence.

As an estimation-based method, MM is considered

a low-complexity solution for many RIS-related opti-

mizations, including sum-rate maximization [21], fairness

maximization [58], [64], secure transmission [73] and so

on. For example, the joint active and passive beamforming

problem is decoupled into BS transmit power control and RIS

phase-shift optimization in both [21] and [64]. Then, the RIS

phase-shift optimization problem is first converted into a non-

convex quadratically constrained quadratic program (QCQP)

problem,2 and a MM algorithm is applied to obtain locally

optimal solutions by minθ g(θ|θ
l ) with constraint |θn | = 1.

After that, the optimal phase shift θ in current iteration l is

2A QCQP problem example is given by equation (12) in Section IV-E,
which is frequently formulated in wireless networks.

Fig. 6. Using SCA algorithm for RIS-related optimization.

obtained as θ̂l , and then l = l + 1 and θ̂l becomes a new θl

in minθ g(θ|θ
l ).

The MM applies surrogate functions to avoid the com-

plexity of optimizing the non-convex objective function

directly, transforming non-differentiable problems into smooth

optimizations. The MM method requires that the surrogate

function g(x) must be a global upper bound for f (x), which is

a fundamental assumption for using MM. However, defining

such a tight upper bound can be impractical in some cases,

which may prevent the application of the MM method.

D. Successive Convex Approximation

Similar to the MM algorithm, SCA applies a surrogate

function g(x) to approximate the original objective function

f (x), which is shown in Fig. 6. However, the g(x) in the SCA

algorithm does not have to be a tight upper bound for f (x),

reducing the complexity of the surrogate function design [93].

Therefore, SCA is more flexible and easier to be implemented

for RIS-related optimization problems.

The SCA method first constructs a surrogate function g(x),

and the assumptions are similar to the MM algorithm:

A1): g(x |x l−1) is continuous in X ;

A2): g(x l−1|x l−1) = f (x );
A3): g(x) is differentiable with ∇x g(x |x

l−1)|x=x l−1 =
∇x f (x )|x=x l−1 .

SCA relaxes the upper bound condition for the surrogate

function, but g(x |x l−1) must be strongly convex in X .

Then, solving the constructed surrogate problem x̂(x l ) ←
argmin
x∈X

g(x |x l−1), and smoothing the next point by

x l = x l−1 + βl−1
(
x̂

(
x l
)
− x l−1

)
, (11)

where βl−1 is the step size for value updating. Finally,

g(x) construction and solving are repeated until meeting the

convergence criteria. In SCA, the surrogate function g(x) does

not have to be a tight upper bound for f (x). Therefore, the step

size in each iteration requires dedicated designs to guarantee

an accurate approximation. The factor βl−1 is used to control

the x l updating step size. Meanwhile, the MM algorithm

updates the whole control variable x at each iteration, but SCA

can be naturally implemented in a distributed manner when

the constraints are separable.
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Compared with MM, SCA is more frequently applied in

RIS-related optimizations due to the relaxed upper bound,

e.g., sum-rate maximization in [24], [29], [30] and power

minimization in [41], [46]. Defining a surrogate function is

the key to using the SCA method, which depends on specific

objective functions and constraints in RIS-related applications.

For instance, the non-convex BS transmit power constraint

in [41] is replaced by a first-order Taylor approximation to

apply the SCA algorithm. By contrast, Pan et al. in [11] claim

that the unit modulus constraint of the RIS phase shift |θn | = 1
can be relaxed as a series of convex constraints, e.g., 1 ≤
2Re{θ∗nθ

l
n} − |θln |

2, where Re{·} denotes the real part of a

complex argument and θ∗ is the conjugate of θ.

E. Semidefinite Relaxation

Many RIS-related signal processing problems can be

described by QCQP formulations, and SDR is an efficient

solution to solve QCQP problems [94]. The QCQP problem

is defined by

min
x∈X

xTCx

s.t. xTDix ≥ bi , i = 1, 2, 3, . . . n, (12)

where the “≥” in the constraint can also be replaced by

“≤“. Note that xTCx produces an 1 × 1 matrix, and

therefore xTCx = CxT x = Tr(CxT x ). Similarly, xTDix =
Dix

T x = Tr(Dix
T x ) is achieved. By introducing X = xxT ,

then

min
x∈X

Tr(CX )

s.t. Tr(DXi ) ≥ bi , i = 1, 2, 3, . . . I ,

X � 0,

rank(X ) = 1, (13)

where Tr indicates the trace operation, and X � 0 indicates

that X is positive semidefinite with X = xxT . Then, the non-

convex constraint rank(X) = 1 is relaxed and achieve

min
x∈X

Tr(CX )

s.t. Tr(DXi ) ≥ bi , i = 1, 2, 3, I ,

X � 0. (14)

Equation (14) is an SDR of (13), which can be efficiently

solved by semidefinite programming (SDP) [95]. SDR has

been very generally applied to RIS-related optimization prob-

lems, since the rank(x) = 1 is frequently formulated for phase

control. Specifically, the RIS phase shift constraint |θn | = 1
is non-convex with θθT = 1. Then we can define V = θθT

with V � 1 and rank(V) = 1, which can be then transformed

and relaxed as shown by equations (13) and (14).

However, the main obstacle to applying SDR is to transform

a globally optimal solution V̂ into a feasible solution θ̂. An

ideal solution is that V̂ is rank-one, and then θ̂ is easily

obtained by solving V̂ = θ̂θ̂T . Otherwise, if rank(θ̂) > 1, a

rank-one approximation may be used to obtain a sub-optimal

solution θ̃. There are multiple methods to find a feasible θ̃
from V̂ , leading to various solution qualities. For instance,

Fig. 7. An example of a second-order cone in 3D space.

Mu et al. propose a penalty-based method to relax the rank-

one constraint, finding a sub-optimal solution by introducing

penalties if rank(x̂ ) > 1 [4]. SDR has been used for sum-rate

maximization [26], [34], [96], power minimization [40], [41],

[42], [46], fairness maximization [37], [60], [63], [64], and

secure transmission [67], [69], [70], [72], [74].

F. Second-Order Cone Programming

SOCP is another method that is used to efficiently solve

optimization problems in wireless networks, especially for

QCQP and fractional problems. Fig. 7 presents a second-order

cone example in 3D space. SOCP is a generalization of linear

and quadratic programming that allows for affine combinations

of variables to be constrained inside a second-order cone

min
x∈X

CT x

s.t. ‖Aix + bi‖ ≤ cTi x + di , i = 1, 2, 3, . . . I , (15)

where A ∈ R
ni×n , bi ∈ R

ni , ci ∈ R
n , and di ∈ R. The x

in equation (15) may be RIS phase shifts, BS beamforming

vectors, and so on, which depends on specific application

scenarios. Consider the inverse image of the unit second-order

cone with an affine mapping

‖Aix + bi‖ ≤ cTi x + di ↔

[
Ai

cTi

]
x +

[
bi
di

]
∈ C ni+1. (16)

Therefore, SOCP is a convex optimization problem with a con-

vex objective function and convex constraints. Equation (16)

indicates the core properties of SOCP problems, and hence

many problems are converted into SOCPs and solved effi-

ciently [97].

For instance, sum and fractional problems are frequently

defined in RIS-related problems to maximize the sum-rate or

total throughput regarding the SINR

min
x∈X

I∑

i=1

∥∥CT
i +Di

∥∥2

AT
i x + Bi

s.t. AT
i x + Bi ≥ 0, i = 1, 2, 3, . . . I , (17)

which is converted into a SOCP by

min
x∈X

I∑

i=1

ti

s.t.
(
CT
i +Di

)T(
CT
i +Di

)
≤ ti

(
AT
i x + Bi

)
,

AT
i x + Bi > 0, i = 1, 2, 3, . . . I . (18)
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SOCP can be efficiently solved by the interior point method.

Meanwhile, SOCP is less general than SDP since equation (15)

may be transformed into an SDP problem. However, the

complexity of solving SOCP is O(n2∑
i ni ), while the

complexity for SDP is O(n2∑
i ni

2) [98]. Such complexity

difference is crucial for large-dimension problems.

Finally, to apply SOCP for RIS-aided optimizations, the first

step is to utilize AO or BCD scheme to decouple the control

variables into multiple sub-problems, e.g., BS precoding

matrix and RIS passive beamforming [44], [58], [64],

coordinated transmit beamforming and RIS passive beamform-

ing [60]. For example, the max-min data rate problem in [64]

is decoupled into SOCP-based BS beamforming and SDR-

based RIS phase-shift control, and the data rate maximization

problem in [25] is converted into a SOCP-based BS active

beamforming and SDR-based RIS passive beamforming.

G. Fractional Programming

FP refers to optimization problems involving ratios or

fractional terms. FP is particularly useful for wireless network

optimizations due to the fractional terms in communication

systems, especially for SINR and energy efficiency [99].

Consider a single-ratio FP problem to maximize the

SINR of single UE by maxx∈X f (x )/g(x ), where f (x) is

the signal strength and g(x) is the interference and noise.

There are many classic methods to solve FP problems,

such as Charnes-Cooper transform and Dinkelbach’s trans-

form [100]. Dinkelbach’s method reformulates the problem

into maxx∈X ,y∈R f (x ) − yg(x ), where y is the auxiliary

variable that is updated iteratively y(l+1) = f (x )l/g(x )l ,
and l is the iteration number. Then, alternatively updating y

and x will lead to a converged solution with non-decreasing

y l . However, instead of the single-ratio problem, sum-

ratio FP problems are more frequently involved in wireless

networks, i.e., maximizing sum-rate or total channel capacity

as maxx∈X

∑I
i=1 fi (x )/gi (x ).

However, classic methods can not be directly generalized

to sum-ratio cases, since maximizing single ratios cannot

guarantee the convergence and maximization for sum-ratio

cases. An equivalent transform proposed by [101] is

max
x∈X ,y∈R

2yf (x )0.5 − y2g(x ), (19)

which can be readily converted into sum-ratio problems. In

addition, equation (19) is further generalized to sum-ratio

problems as

max
x∈X ,y∈R

I∑

i=1

Fi

(
2yiCi (x )

0.5 − y2i Di (x )
)
, (20)

where Fi is a non-decreasing function. Equation (20) is

particularly useful given the frequently used term
∑

log(1 +
SINR) in wireless communications.

The FP method can significantly lower the problem-solving

complexity by eliminating fractional items. This transforma-

tion is very useful for RIS-related optimization problems,

especially considering that RIS phase shifts will affect the

received signal strength and interference simultaneously. In

addition, the FP method can be particularly useful for

RIS-related max-min fairness problems, which are usually

formulated as maxx∈X min1≤i≤I fi (x )/gi (x ), where x

indicates the control variables, e.g., RIS phase shifts and BS

transmit power. fi (x ) can be the signal strength of user i, and

gi (x ) indicates the interference and noise. Then the max-min

fairness problems can be reformulated as

max
x∈X ,y,z∈R

z

s.t. 2yi fi (x )
0.5 − y2i gi (x ) ≥ z ; i = 1, 2, 3, . . . I .

(21)

where z is an intermediate objective function that is included

in the constraint. A detailed proof of obtaining equation (21)

can be found in [101].

The FP method significantly reduces the optimization

complexity by decoupling the fractional terms. Therefore,

it has been widely used in wireless network optimizations,

including power control, beamforming, energy efficiency, and

so on [27], [52]. However, note that FP is usually used for

transformation, and then the reformulated problems still need

to be solved by other techniques. A widely considered method

is first to apply FP to eliminate the fractional terms in

objective functions, e.g., throughput and power consumption

for energy efficiency maximization, received signal strength

and interference for SINR maximization. And then, AO is used

to separate the coupled control variables, e.g., RIS phase-shift

design and BS transmit power control, and optimize each sub-

problem iteratively.

H. Branch-and-Bound

BnB is a classic scheme for combinatorial and discrete

optimization problems [102]. To minimize f (x) with x ∈ X ,

BnB applies a tree scheme to enumerate all possible subsets

Xi ⊆ X , and each subset Xi indicates a sub-problem fi (x ).
Solving sub-problems fi (x ) will generate and prune branches

based on the estimated lower and upper bounds.

A BnB algorithm consists of three basic operations: branch-

ing, bounding, and pruning. Considering a non-linear integer

programming problem, and the BnB scheme is summarized

as Fig. 8, including the search method, branching strategies,

and pruning rules. In particular, the search method indicates

the order of sub-problem exploration in the tree, e.g., which

RIS phase-shift combination is first explored. The branching

strategy specifies how to generate new sub-problems from the

solution space, e.g., how to generate a new set of phase-shift

designs. Finally, pruning rules can prevent exploring specific

regions of the tree, which will eliminate sub-optimal RIS

phase-shift solutions. BnB produces a series of sub-problems

fi (x ) that are equivalent to the original f (x), which is much

more efficient than brute-force enumeration. It provides an

alternative solution for challenging problems that cannot be

solved directly. An important advantage is that the quality of

the solution is controlled by customized searching, branching,

and pruning rules.

BnB is mainly applied for RIS control with discrete

phase shift, including sum-rate maximization [26], power
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Fig. 8. Using BnB for RIS control with discrete phase shifts.

minimization [39], and max-min SINR [62]. The main reason

is that the problem formulations are usually MINLP problems,

which are NP-hard and intractable. As shown in Fig. 8,

the MINLP is converted into an 0-1 integer linear pro-

gramming using the special ordered set of type 1 (SOS1)

transformation [39] and reformulation-linearization [62]. BnB

performance is very dependent on search and pruning rules,

and defining these rules can be difficult in some cases. In

addition, the algorithm may converge slowly when constantly

searching and branching for new solutions, which may be

caused by the considerable number of RIS elements.

I. Discussions and Numerical Results

Table IX summarizes model-based algorithms for RIS-aided

wireless networks, including main features, advantages, disad-

vantages, difficulties, and application scenarios.

Firstly, considering the high complexity of RIS-related

optimization, AO is regarded as the primary scheme to

decouple the joint optimization problem into several sub-

problems. Then, each sub-problem is alternatively solved

by using different algorithms, e.g., SCA, SDR, and BnB.

Compared with AO, the BCD algorithm applies a similar

iterative optimization scheme, but one block may include

multiple control variables. When there are a large number of

control variables, the BCD algorithm can be more efficient,

e.g., coupled optimization problem with a considerable number

of control variables.

MM and SCA are two estimation-based algorithms that

avoid the complexity of direct optimizations. However, the

MM algorithm requires a tight upper bound when designing

the surrogate function. Such requirements can be impractical

in some cases, especially considering non-convex and highly

non-linear RIS phase-shift design problems. By contrast, the

SCA method relaxes the upper bound requirement for surro-

gate functions, which is more flexible and easier for design and

implementation. However, without the upper bound constraint,

the updating step size in SCA may affect the solution quality,

which should be carefully selected. MM and SCA are usually

considered low-complexity solutions for RIS-aided wireless

network optimizations.

Fig. 9. Simulation results by combining AO and FP to maximize the channel
throughput. We consider a MISO system with one BS and multiple UEs, and
the daily traffic load pattern is shown in 9(a). Detailed simulation parameters
and algorithms can be found in [103].

SDR and FP are usually combined with other techniques

for optimizations. In particular, SDR is mainly used to

relax the RIS phase constraints, while FP can decouple

the numerator and denominator for SINR and energy effi-

ciency terms. These two techniques reformulate the original

problems into low-complexity or even convex forms, then

other techniques can be applied. Meanwhile, SOCP takes

advantage of the property of the second-order cone, which

is efficiently solved by many existing methods. But the main

difficulty is how to transform the problem with logarithm

and fractional terms into a second-order cone. BnB is mainly

designed for combinational and discrete optimization prob-

lems, e.g., RIS control with discrete phase shifts and elements

on/off.

Finally, it is worth noting that these algorithms are not

independent, and multiple algorithms are usually combined

for transformation and optimizations. The main objective of

Table IX is to analyze the feasibility of these problems for

various RIS-related optimizations, and the most efficient solu-

tion for specific scenarios requires case-by-case analyses. For

instance, Fig. 9 shows an example of combining AO and FP

for RIS phase-shift control in an MISO system with multiple

UEs. Specifically, it applies FP to decouple the received
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TABLE IX
SUMMARY OF MODEL-BASED OPTIMIZATION ALGORITHMS FOR RIS-AIDED WIRELESS NETWORKS

signal strength with interference and noise, and then uses

AO to optimize multiple control variables alternatively [103].

Fig. 9(a) presents the average throughput under various peak

traffic loads, which involves a daily traffic load pattern as

shown by the blue shade in Fig. 9(a). Meanwhile, we consider

surrogate optimization as a baseline, which applies surrogate

functions to approximate the objective function in a black-

box manner. When the peak traffic load is light, one can

observe that AOFP and surrogate function have comparable

performance, which means that the channel capacity can

already satisfy the traffic demand. However, when peak traffic

load increases, AOFP attains higher throughput than baselines,

which demonstrates that RIS control and deployment strategy

should consider dynamic UE traffic demand. Additionally,

Fig. 9(b) presents the convergence performance of AOFP,

in which the objective function is improved with increasing

iterations and finally converges. This reveals the basic features

of AO, which is to guarantee the objective function will be

improved iteration-by-iteration, and such a scheme has been

widely used in RIS-related optimization studies.

V. HEURISTIC ALGORITHMS FOR RIS-AIDED

WIRELESS NETWORKS

As presented in Section IV, model-based algorithms have

specific requirements for problem formulations, especially for

convexity and continuity. Meanwhile, the large number of RIS

elements, dynamic channel conditions, and various CSI levels

further contribute to the overall complexity. Therefore, trans-

formations and relaxations are required to convert the original
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Fig. 10. Convex concave procedure for RIS-related optimization.

problem into specific forms. Moreover, these transformations

are usually problem-specific, requiring case-by-case analyses

and dedicated design.

By contrast, heuristic algorithms have fewer requirements

for objective functions and constraints, which will significantly

reduce the complexity. Compared with model-based methods,

heuristic algorithms are usually considered low-complexity

solutions. In the following, we will introduce four heuristic

algorithms, including CCP, meta-heuristic algorithms, greedy

algorithms, and matching-based algorithms.

A. Convex-Concave Procedure

The CCP algorithm uses the local heuristic to solve dif-

ference of convex (DC) problems, which is considered a

low-complexity solution for complicated wireless network

optimization.3

DC problems are frequently formulated in many fields, rep-

resenting many scenarios that cannot be solved in polynomial

time. The DC problem is defined as

max
x∈X

f0(x )− g0(x )

s.t. fi (x )− gi (x ) ≤ 0; i = 1, 2, 3, . . . I , (22)

where f (x) and g(x) are both convex. DC problems are usually

non-convex unless gi (x ) are affine, which is generally hard to

solve.

As shown in Fig. 10, the core idea of CCP is to find x l+1

in the l + 1 iteration that satisfies ∇x f (x
l+1) = ∇x g(x

l ),
indicating a point on f (x) that has the same tangent with

g(x l ) [105]. The CCP algorithm will first form

g i

(
x |x l

)
= gi

(
x l
)
+∇x g(x )

(
x − x l

)
, i = 0, 1, 2, 3, . . . I .

(23)

Then it solves the following problem to get x l+1

max
x∈X

f0(x )− g0

(
x |x l

)

s.t. fi (x )− g i

(
x |x l

)
≤ 0; i = 1, 2, 3, . . . I . (24)

3The main reason that CCP is considered a heuristic algorithm is that it
applies a simple heuristic rule for optimization, which is iteratively finding
two points with the same tangent vectors [104]. Hence, CCP fits well with
our defined classifications of heuristic algorithms.

Equation (24) is equivalent to ∇x f (x
l+1) = ∇x g(x

l ) by

deriving the objective function, and equations (23) and (24)

are iteratively repeated until reaching the stop criteria. CCP

algorithm does not require a dedicated step size design, and

the main reason is that the estimator f0(x )−g0(x |x
l ) is global.

It retains all the information from the convex component f (x)

and only linearizes the concave portion g(x).

Moreover, there are multiple extensions of the CCP algo-

rithm. For instance, the penalty CCP includes a penalty term

for violations, which removes the requirements for feasible

initial points. The RIS phase shift optimization problem is

reformulated as [11]

max
θ,τ>0

f (θ)− τ l
2I∑

i=1

vi

s.t. g(θ) ≥ D ,
∣∣∣θli

∣∣∣
2
− 2Re

{
θ∗i θ

l
i

}
≤ vi − 1,

|θi |
2 ≤ 1 + vi+I , i = 1, 2, 3, . . . I , (25)

where τ l
∑2I

i=1 vi is the penalty term, vi are slack variables,

and τ l is a coefficient that will decline in each iteration for

convergence. After some transformations, problem (25) can be

solved by using the CVX toolbox, and the detailed procedure

is included in [11].

CCP has been applied in [30], [35], [42], [78], [106]

for controlling RIS phase shifts. In these works, the joint

optimization problem is first decoupled into multiple sub-

problems using BCD or AO, then penalty CCP is used to solve

the RIS phase shifts sub-problem. The main motivation is the

high complexity of solving non-convex RIS control problems.

For example, the sum-rate maximization problem in [35] is

converted into three sub-problems: joint optimization of the

transmit power and spectrum sharing, SDR-based multi-user

detection, and CCP-based RIS phase shifts. However, note that

CCP is a heuristic algorithm that will find a locally optimum

solution, and the initial point x0 may affect the final output. In

particular, there may exist multiple locally optimal solutions,

and CCP can easily get stuck in a sub-optimal one.

B. Meta-Heuristic Algorithms

One of the main difficulties of controlling RISs is the

large number of RIS elements, leading to huge solution

spaces. Therefore, it is hard to achieve exact solutions by

finding a closed-form expression, and hence model-based

approximation algorithms such as SCA and MM are applied.

However, these methods have stringent requirements for objec-

tives and constraints, especially for convexity, continuity, and

differentiability. By contrast, meta-heuristic algorithms can

search significantly large solution spaces with few or no

additional requirements on problem forms [107]. It usually

contains intelligent policies to guide the heuristic exploration,

producing high-quality solutions efficiently. Meta-heuristic

algorithms have been extensively developed, e.g., genetic

algorithm (GA), particle swarm algorithm (PSO), ant colony

optimization, simulated annealing, and tabu search [108].

Fig. 11 shows the steps of using population-based meta-

heuristic algorithms for RIS phase-shift design. The first step
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Fig. 11. Population-based meta-heuristic algorithms for RIS phase-shift
control.

is to initialize the algorithm parameters such as population

numbers and crossover rate in a genetic algorithm. Then,

the algorithm will produce initial individuals, which indicates

various RIS phase-shift designs. The objective function is

converted into a fitness function, e.g., the sum-rate or energy

efficiency. After that, the algorithm will constantly search

for better solutions using heuristic rules iteratively, such

as evolution strategy in a genetic algorithm, and particle

movement for PSO. Finally, the heuristic exploration will stop

if the fitness function values converge or reach maximum

iteration numbers.

Compared with model-based methods, the main advantage

is that meta-heuristic algorithms can easily adapt to both

continuous and discrete RIS phase shifts without relaxation

and transformation. PSO and GA are used for RIS phase shifts

in [31] and [65] to maximize the data rate. Statistical CSI is

investigated in [32] to obtain a closed-form expression of the

uplink ergodic data rate, then GA is deployed for phase control

to maximize the data rate. In addition, Tabu search is applied

to irregular RIS to decide the element design in [20].

The simulations in [20], [31], [32], [65] show that meta-

heuristic algorithms can significantly reduce the optimization

complexity, especially for MINLP problems. However, it may

be trapped in local optima, and the algorithm performance

relies on the parameter settings. For example, the phase

shifts of hundreds of RIS elements require a large number

of populations in GA, leading to high exploration costs. By

contrast, reducing the population numbers may lower the

probability of finding optimal solutions.

C. Greedy Algorithms

Most former algorithms are designed to find global optima

of the objective function. However, many problems are

NP-hard and non-convex, and the solutions are usually

Fig. 12. Greedy method for RIS phase shift control.

problem-specific with a series of transformations. To this

end, greedy algorithms are proposed as low-complexity

alternatives. In particular, greedy algorithms refer to the

problem-solving heuristic that makes locally optimal decisions

at each stage regardless of global optima [109]. Consider

an minimization problem min f (�x ), and the control variables

�x include �x = {x1, x2, . . . , xi , . . . ,XI }. At each stage, the

greedy algorithm will optimize only one control variable xi by

x̂i = argminxi∈Xi
f (�x ), while holding the rest of variables

unchanged. Then it moves to the next stage until i = I.

RIS elements’ on/off control is a non-convex problem with

discrete constraints. It may be solved by relaxing the integer

constraint χ ∈ {0, 1} into 0 ≤ χ ≤ 1, but the reformulated

problem can still be complicated. A low-complexity solution is

a greedy element-by-element control. Specifically, it evaluates

the on/off decision of one RIS element at each stage by observ-

ing the changes in objective functions. If the performance is

improved by achieving a higher sum-rate and lower power

consumption, then the on/off status will be updated [54].

Similarly, as shown in Fig. 12, this greedy scheme can also

be applied to control RIS phase shifts, indicating that one

element is optimized at a time by observing the improvement

of objective functions, e.g., achieving higher data rate or

energy efficiency. Then, the next RIS element is optimized

sequentially [33], [66], [110].

In addition, greedy algorithms are used to relax the con-

straints. For example, the RIS phase shift is allowed to violate

the stringent constraints in [111], then the achieved objective

values are compared with the theoretical optimal results to

find a feasible solution. Greedy schemes may be combined

with AO to handle problems with multiple sub-objectives. For

instance, a greedy scheme is applied in [112] to maximize

the served users by controlling RIS phase shifts, then it

schedules the users to minimize the age of information. The

main advantage of the greedy algorithm is the low complexity

by decoupling the joint optimization into multiple stages.

However, instead of global optima, it can only achieve local

optima. The simple greedy policy means that there is no

guarantee for the algorithm’s performance, which may lead to

poor output in some cases.

D. Matching Theory-Based Methods

The matching theory is useful for optimizing resource

allocation problems, i.e., subcarrier assignment, user-BS and

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:51:45 UTC from IEEE Xplore.  Restrictions apply. 



800 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

user-RIS association, and mode selection. These problems are

formulated as MINLPs, and a possible solution is to relax

the zero-one constraints and reformulate the problem. A linear

conic relaxation method is proposed in [113] for the user-RIS

association, but it further requires SDP to solve the relaxed

formulation, leading to high computational complexity. In

addition, the problem becomes even more complicated when

RIS on/off control and phase shifts are involved. Consequently,

the primary motivation for applying matching theory is to

achieve low-complexity solutions efficiently.

Consider the most widely applied many-to-one matching

problem with two finite and disjoint sets of players U and B.

U represents users, and B may be BS, RIS or subchannels.

Definition 1: The considered many-to-one matching

problem is defined by

(a) Matching relationship function f := U × B with u ∈ U
and b ∈ B, e.g., the many-to-one association relationship

between multiple users and one BS;

(b) |f (u)| = 1 with ∀u ∈ U , indicating that one u can

only be matched with at most one b in many-to-one matching

problem, e.g., one user can be associated with at most one BS.

(c) |f −1(b)| ≥ K with ∀b ∈ B, which means that b has a

capacity limit for the connection with u. For example, one BS

has a maximum service capability for users.

(d) b = f (u) ↔ u = f −1(b). This means the matching is

bidirectional and mutual.

To describe the exchange operation between different

matching, the swap matching is considered

Definition 2: Given u ∈ f −1(b) and u ′ ∈ f −1(b′) with

u, u ′ ∈ U and b, b′ ∈ B, the swap matching is defined by

fu,b,u ′,b′ = {f \{(u, b)(u ′, b′)}} ∪ {(u, b′)(u ′, b)}.

Swap matching allows u and u ′ to exchange their matched

b and b′, while other players remain unchanged. For instance,

two users can exchange their associated BSs without changing

other association pairs.

Definition 3: u and u ′ become a swap blocking pair if and

only if

(a) For all players in {u, b, u ′, b′}, F (fu,b,u ′,b′) ≥ F (f ),
where F is the utility function of players. This means that the

utility functions of all involved players will not decrease.

(b) At least one player in {u, b, u ′, b′} has F (fu,b,u ′,b′) >
F (f ), indicating that at least one player’s utility is improved,

e.g., at least one user achieves higher channel capacity or data

rate by switching pairs.

Definition 3 shows that the overall utility can be improved

by finding swap matching pairs. Then the stable matching is

defined by

Definition 4: The matching relationship between two sets

U and B is two-sided exchange-stable if there is no swap

blocking pairs. This means that the overall utility such as

channel capacity or sum-rate cannot be improved by switching

user-BS associations.

Definition 4 is very useful in matching theory, since it

provides locally optimal criteria, and it is easily achieved

by searching and eliminating all the swap blocking pairs.

Fig. 13 presents the applications of matching theory in

RIS-aided wireless networks, including D2D-user pairing,

user-BS-RIS association, channel assignment, etc. It shows

Fig. 13. Matching theory applications in RIS-aided wireless networks.

that matching theory provides an efficient solution for over-

coming these NP-hard problems. For instance, a RIS-aided

maritime communication system is investigated in [49], in

which many-to-one matching was applied for the joint mode

selection and power control of BSs. In RIS-assisted NOMA

system, many-to-one matching is used for channel assign-

ment [80], [81] and user clustering [56], while many-to-one

and many-to-many matching are jointly considered in [34]

for the UE association and channel assignment. Moreover,

matching theory is applied in [114] for edge computation

offloading in RIS-aided networks, and a deferred acceptance

matching game is formulated in [115] for user association

in mmWave networks with RISs. The simulations in [34],

[49], [56], [80], [81], [114], [115] demonstrate that matching

theory is a low-complexity solution for resource allocation and

association problems in RIS-aided communication systems.

However, matching theory relies on iterative searching to

eliminate swap blocking pairs, and the searching cost may

increase exponentially with more players. In addition, the

wireless network players will affect each other, changing the

overall interference level. Such peer effects may increase the

complexity of applying matching theory.

E. Discussions and Numerical Results

Table X compares heuristic algorithms in terms of main

features, advantages, drawbacks, difficulties, and applications.

Compared with model-based algorithms, a common advantage

of heuristic algorithms is their low complexity.

RIS-related optimization problems may involve summation,

logarithm, fractional terms, and discrete constraints in problem

formulations, which are non-convex and highly non-linear.

Applying model-based algorithms generally require a series of

transformation and relaxation to achieve a convex or a concave

reformulation, but this complexity is avoided in heuristic

algorithms. For instance, many problems are easily converted

into DC forms, and the CCP algorithm can be applied by

iteratively finding two points with the same tangent vectors.

Compared with other estimation-based methods such as MM

or SCA, the CCP method has much lower complexity, since no

extra surrogate function is required. However, the initial point

selection may affect the solution quality of the CCP algorithm.
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TABLE X
SUMMARY OF HEURISTIC ALGORITHMS FOR RIS-AIDED WIRELESS NETWORKS

Greedy algorithms employ a simple greedy policy for

decision-making. They aim to maximize the current benefit,

disregarding the effect on future stages. Greedy algorithms

can efficiently solve problems in near-linear time complexity.

However, greedy algorithms can only generate locally optimal

results, and the increasing number of control variables may

lead to poor performance.

By contrast, meta-heuristic algorithms apply more advanced

heuristic rules for iterative exploration, e.g., genetic algo-

rithm, tabu search, and PSO. Similar to greedy algorithms,

meta-heuristic algorithms have no requirements for problem

formulations and constraints, and objective functions can be

easily converted into fitness functions. However, compared

with greedy algorithms, meta-heuristic algorithms can better

guarantee the solution quality by using heuristic rules for

iterative optimization.

Different from previous approaches, matching theory

specializes in solving resource allocation and association prob-

lems. In matching-based methods, the control variables are

considered as matching operations, and the objective function

is improved by searching swap matching pairs. Therefore,

when handling these allocation problems, matching theory

is more efficient than other heuristic algorithms due to its

dedicated design.

Note that heuristic algorithms may be combined with

model-based algorithms. For instance, the energy-efficiency

maximization problem in [54] is decoupled into the beamform-

ing optimization, phase control, and RIS on/off optimization,

in which beamforming and phase control are solved by SCA,

and RIS on/off is optimized by the greedy algorithm. Other

combinations can be found in [66] by combining SDR with

greedy heuristic, and in [34] by combining SCA and SDR with

matching methods.

Finally, Fig. 14 shows an example with greedy and genetic

algorithms. In particular, the greedy algorithm applies element-

by-element RIS phase-shift control. It decides the phase-shift

of one element at each time by observing the improvement

in sum-rate, and then moves to the next element. Meanwhile,

genetic algorithm considers different phase shift combinations

as individuals, and uses evolutionary strategies to find near-

optimal solutions. Fig. 14(a) provides the sum-rate under

various numbers of RIS elements. It shows that heuristic

algorithms can achieve satisfactory performance with a limited

number of RIS elements. However, when the number of

RIS elements increases, both greedy and genetic algorithms

present sub-optimal results. In addition, Fig. 14(b) illustrates

the convergence performance of the genetic algorithm. It

shows that the average values of individuals increase with

iterations, and finally the optimal objective value converges.

The main reason is that the genetic algorithm applies evolu-

tionary policies, which will select elite individuals to produce

new solutions, and therefore the solution quality is constantly

improved.

VI. ML-ENABLED OPTIMIZATION FOR RIS-AIDED

WIRELESS NETWORKS

ML has achieved great success in various fields, and

this section investigates ML applications for the control and

optimization of RIS-aided wireless networks, including super-

vised learning, unsupervised learning, RL, FL, graph learning,

transfer learning, hierarchical learning, and meta-learning.

A variety of algorithms have been developed to optimize

RIS-aided wireless networks. Early studies mainly consid-

ered model-based methods, and some heuristic algorithms

are deployed as low-complexity solutions. However, there
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Fig. 14. Simulation results of greedy and genetic algorithms. We consider
a MISO system with one BS and multiple UEs, and detailed simulation
parameters and algorithms can be found in [116].

are several challenges for these conventional optimization

techniques:

1) Highly Dynamic Wireless Environment: Wireless

networks are highly dynamic due to frequently changing chan-

nel conditions, traffic demands, and user conditions. These

dynamics lead to great difficulty for conventional optimization

schemes. As an example, model-based methods need full

knowledge of the formulated problem, but some sensitive

information, e.g., real-time user locations, may be unknown

in practice.

2) Evolving Network Architecture: The wireless network

architecture is constantly evolving from RAN to cloud RAN,

virtual RAN, and Open RAN. Consequently, these new archi-

tectures increase the complexity of network management, and

conventional algorithms may have difficulty modelling and

optimizing such complicated systems.

3) Diverse User Requirements: Wireless network user

types are not limited to enhanced Mobile Broad Band, Ultra

Reliable Low Latency Communications, and massive Machine

Type Communications. Some newly emerged applications,

such as virtual and augmented reality, have more stringent

requirements on network metrics, leading to a great burden

for conventional optimization methods.

Given these challenges, ML-enabled control and

optimization techniques have become appealing approaches

for wireless communications in general, as well as for RIS-

aided wireless networks. In the following, we will introduce

the fundamentals and applications of various ML techniques.

It is worth noting that ML algorithms can be applied to

optimize RIS-aided networks in various ways, e.g., controlling

RIS elements directly or jointly optimizing the whole RIS-

aided network scenario. Here we focus on the application of

using ML algorithms to optimize RIS elements directly, e.g.,

supervised learning-based sum-rate prediction, unsupervised

learning-enabled RIS phase-shift optimization, RL-enabled

RIS phase-shift control, and so on.

A. Supervised Learning-Enabled Optimization

Supervised learning is designed to find the hidden rela-

tionships between inputs and labeled outputs. Supervised

learning algorithms adjust their parameters to map the input

to the expected output, and this relationship is used for the

prediction and classification of unseen data. Table XI sum-

marizes supervised learning-based control and optimization

studies for RIS-aided wireless networks. It shows that most

studies consider partial CSI or pilot signals as input to

predict full CSI or RIS phase shifts, and then utilize the

prediction results to maximize the data rate. Meanwhile, there

are various approaches for neural network model selection,

dataset acquisition, input and output data definitions, etc.

This subsection will discuss how to apply supervised learning

for optimizing RIS-aided wireless networks, including data

acquisition, neural network architecture, loss functions and

algorithm training.

1) Dataset Acquisition in RIS-Aided Environments: A fine-

grained dataset is the prerequisite for deploying supervised

learning, since it relies on the labeled output for val-

idation. Table XI indicates that the dataset is generated

in various ways: simulators, exhaustive searches, code-

book, model-based optimization algorithms or live networks.

For example, the exhaustive searches mean trying differ-

ent solutions and then collecting the corresponding output

to form labeled datasets [119] [120]. By contrast, a

more efficient method is to reuse the data produced by

AO [124] and BCD [125] as model-based optimization

algorithms.

In addition, the algorithm performance also depends on the

dataset size, ranging from 5000 [121] and 30000 [119], [120]

to 200000 [125] in several studies. The simulation results

in [119], [120] demonstrate that the achievable data rate is

significantly improved when the number of training samples

increases from 5000 to 30000. Note that the complex entry

of the input data, especially the channel coefficient, is usually

split into real and imaginary parts, increasing the dimension

of the neural network input. Although there are several ways

to generate the data for supervised learning, most existing

datasets are simulation-based. Realistic datasets that are pro-

duced in real-world RIS-aided environments are still very rare.
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TABLE XI
SUMMARY OF SUPERVISED LEARNING FOR RIS-AIDED WIRELESS NETWORKS

2) Loss Functions and Algorithm Training: Given the huge

number of training samples, supervised learning models are

trained to produce the expected output. Suppose that the

prediction output is the RIS phase shifts [117], [120], [121],

and the loss function is defined to minimize the mean square

error (MSE) of algorithm training

Loss(ω) =
1

N

N∑

i=1

(
θi − θ̂i (ω)

)2
, (26)

where N is the total number of outputs, i.e., the number of RIS

elements, θi is the desired phase shift given by the dataset,

ω is the neural network weight, and θ̂i (w) indicates the RIS

phase shifts predicted by neural networks. The desired phase

shift θi can be obtained in various ways, such as exhaustive

search or model-based approaches [119], [124], which have

been introduced in Section VI-A1. For example, Song et al.

apply AO to produce a dataset with desired targets for DNN

training [124], and Hu et al. apply BCD algorithm to generate

target phase shift to train DNN models [125]. Meanwhile,

note that the dataset must be divided into training and

validation samples, since the objective of algorithm training

is to predict unseen data. For example, the authors in [124]

include 10000 samples to predict the RIS phase shifts, of

which 90% is used for training and the remaining 10% for

testing purposes.

3) Neural Network Architecture and Overfitting: Table XI

shows that DNN is used in most studies to predict CSI or

RIS phase shifts, and the network architecture ranges from 4

to 9 layers. It is known that more hidden layers may provide

a better performance, but the computational complexity and

training time will increase. Hence, the network architecture

selection should consider the trade-off between performance

and training costs.

Overfitting is another important issue for neural network

training. It means that the algorithm fits exactly to the current

training data, but cannot achieve satisfactory prediction for

unseen data, which should be carefully prevented. One solution

is to add a random dropout layer with probabilities, ignoring

the contribution of some neurons [125]. Multiple methods are

provided by [124] to suppress overfitting in predicting RIS

phase shifts, including larger datasets (CSI and RIS phase shift

pairs), decreasing hidden layers, and early stopping.

Fig. 15 summarizes how to apply supervised learning for

RIS-aided wireless networks. Firstly, the datasets can be

produced by various methods, including simulators, exhaustive

searches, testbed, and model-based methods. The collected

dataset may include UE positions, data rates, and pilot sig-

nals received at the transmitter and receiver, which mainly

depends on the designed prediction algorithms. Then, one

specific model will be selected, i.e., FNN, convolutional neural

networks (CNNs), and recurrent neural networks (RNNs).

Note that each neural network model has unique features and

advantages, e.g., RNNs are suitable for handling sequential

data, and CNNs can better handle spatial data. The selection of

neural network models requires case-by-case analyses of the

dataset size, quality, and data-processing demands. The num-

ber of nodes and hidden layers of neural networks should be

carefully designed, which will affect the network training time

and accuracy. Finally, selected models are trained and imple-

mented, and the algorithm output includes RIS phase shifts,

achieved data rate, BS beamforming vectors and so on, which

are further used to optimize network performance. Supervised

learning has been widely used for wireless networks. However,

note that it relies on high-quality labeled datasets for model

training, which may be inaccessible in practice. In addition,

the algorithm performance is sensitive to hyperparameters, and

the fine-tuning of parameters requires considerable experience.

B. Unsupervised Learning-Based Optimization

Supervised learning is data-demanding, but fine-grained

labeled datasets may be inaccessible in practice, preventing

the application of supervised learning algorithms. On the
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Fig. 15. Supervised learning for RIS-aided wireless networks.

TABLE XII
SUMMARY OF UNSUPERVISED LEARNING FOR RIS-AIDED WIRELESS NETWORKS

contrary, unsupervised learning can find hidden patterns of

unlabeled data without predefined targets or human interven-

tion. Table XII summarizes unsupervised learning algorithms

for RIS-aided wireless networks. It shows that neural networks

are used in unsupervised manners for RIS phase-shift con-

figuration. Meanwhile, some classic unsupervised learning

methods, such as k-means, can also be applied for clustering

RIS elements. This subsection will introduce unsupervised

neural networks and clustering algorithms.

1) Algorithm Training and Network Architecture of

Unsupervised Neural Networks: Supervised neural networks

aim to minimize the loss between predicted results and desired

target, i.e., predicted and target data rate in the dataset.

However, in unsupervised neural networks, the loss function

is directly related to optimization objectives. Specifically, we

consider a single-user scenario as an example, and the user

SNR is

ηk =

∣∣∣
(
h
R
ΘG + h

D
)
p
∣∣∣
2

N 2
0

, (27)

where p is the transmit power at the BS, G indicates the

channel gain from BS antennas to RIS elements, hR indicates

Fig. 16. Unsupervised neural networks for optimizing RIS phase shifts.

the channel gain from RIS elements to the user, hD indicates

the channel gain from BS antennas to the user, N 2
0 is the

noise power, and Θ is the matrix of RIS phase shifts. As

shown in Fig. 16, the neural network considers the channel

state information as input, including G, hR and h
D . Then, the

output is the predicted RIS phase shifts Θ. The loss function

is defined by

Loss(w) = −
1

T

T∑

i=1

(
h
R
ΘG + h

D
)
, (28)
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TABLE XIII
SUMMARY OF REINFORCEMENT LEARNING FOR RIS-AIDED WIRELESS NETWORKS

where T is the minibatch size. To minimize the loss function

equation (28), hR
ΘG +h

D must be maximized. This means

that the neural network must predict appropriate RIS phase

shifts Θ to maximize h
R
ΘG + h

D , and the SNR will be

maximized accordingly.

Table XII shows that most existing works apply 2 to 5

hidden layers. In particular, the hidden layer numbers are

related to the problem’s complexity. The authors in [127] used

1 hidden layer with 40 nodes for 8 × 2 MIMO, and 2 hidden

layers for 16 × 2 MIMO, achieving satisfactory simulation

results without overfitting or underfitting. In addition, similar

to supervised learning, early stop is applied in [126] to prevent

overfitting.

2) Clustering Algorithms: Clustering algorithms are

usually unsupervised ML algorithms, i.e., k-means and

Density-based spatial clustering of applications with noise

(DBSCAN). These algorithms are designed to partition

objects into multiple sets to minimize the within-cluster

sum of squares. Specifically, it aggregates objects with

the same hidden patterns. For instance, k-means is used

in [130] to group RIS elements according to estimated

channel coefficients, and then each group has the same RIS

configurations to reduce the computational complexity.

The main advantage of unsupervised learning is that it has

no requirement on predefined targets, which is more practical

in real-world applications. However, the absence of targets

means that the model output is hard to validate or verify, and

the solution quality cannot be guaranteed.

C. Reinforcement Learning-Based Optimization

RL is the most widely applied ML technique for

optimization, including model-free (e.g., Q-learning, DQN,

actor-critic learning) and model-based (i.e., dynamic program-

ming) algorithms. However, defining the Markov decision

process (MDP) is fundamental to applying model-based or

model-free RL algorithms [146] [147], and the RL agent

interacts with the environment under an MDP scheme to

learn the best long-term policy. Given the current system

state s, the agent selects an action a for implementation and

receives a reward r, and then the environment will move to the

next state s ′. An MDP model is critical to transforming the

optimization problem into an RL context. Specifically, envi-

ronmental status, control variables, and optimization objectives

are defined as states, actions, and rewards, respectively. Then

RL algorithms can be used subsequently to maximize the

reward and improve the objective function. Table XIII sum-

marizes existing studies that apply RL to RIS-aided wireless

networks. This subsection will first analyze the state, action,

and reward function definitions of these existing studies,

and then present the algorithm architecture and training

methods.
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1) State Definition: Table XIII shows that the state may be

defined in various ways, e.g., CSI [89], [133], [134], current

RIS phase [132], [137], [142], position [142], [144], energy

level [138], previous transmission rate [135]. Specifically, the

state refers to the environment status that should be considered

for decision-making. For example, the CSI has a great effect on

the RIS phase shifts, and therefore CSI is involved in the state

definition of many studies [89], [133], [134]. Similarly, RIS-

aided UAVs are investigated in [144], and the UAV altitude is

included in the state definitions because the height will directly

affect the channel conditions.

2) Action Definition: In the context of MDP, the action

indicates control variables that will change the state, such

as RIS phase shifts [132], [133], [134], [135], [136], [137],

[138], [139], [140], [141], [142], [143], [144], [145], BS beam-

forming [89], [134], [135], [137], [138], RIS positions [142]

and elements on/off [138]. The control variables in problem

formulations are easily converted into actions. However, note

that many RL algorithms require discrete action spaces, but

the control variables in problem formulations are usually

continuous as shown in Section III. The first solution is to

quantize the control variables. For instance, the BS transmit

power is quantized with an interval of 1 W [138], and the

RIS phase changes 
θ ∈ {− π
10 , 0,

π
10} in [79]. Another

solution is to apply the deep deterministic policy gradient

(DDPG) algorithm, which can handle continuous action-space

problems [89], [132], [137], [139], [145].

3) Reward Functions: The reward function is a cru-

cial part of RL. As shown in Table XIII, the reward

function definition mainly depends on the optimization objec-

tives, including data rate [132], [133], [141], [143], energy

efficiency [138], [139], [142], channel capacity [140], and

SNR [136]. Moreover, the reward function can include

multiple objectives and constraints to balance the overall

performance. As an example, the reward function in [134]

has data rate as a positive term to maximize the data rate,

while BS power consumption is a negative term to reduce

power consumption. RL focuses on the long-term accumulated

reward, which means it can better adapt to highly dynamic

wireless environments without requiring full knowledge of the

defined problem.

4) Algorithm Architecture and Training: In Q-learning, the

state-action values are updated by

Qnew (s , a) = Qold (s , a)

+ α
(
r + ηmax

a
Q
(
s ′, a

)
−Qold (s , a)

)
,

(29)

where Qold (s , a) and Qnew (s , a) are old and new Q-values,

respectively. α is the learning rate (0 < α < 1), and η is the

discount factor (0 < η < 1).
Equation (29) indicates that a Q-table is used to record

all the state-action values, leading to slow convergence for

problems with large state-action space. To this end, DQN is

proposed to use neural networks for Q-value estimation:

Loss(ω) = E

(
r + ηmax

a
Q(s ′, a, ω′)−Q(s , a, ω)

)
, (30)

where E represents the error between the predicted Q-value

Q(s,a, ω) and target Q-value r + ηmaxa Q(s ′, a, ω′). ω and

ω′ are the weight of the main and target networks, respectively.

The main network is used to predict current Q-values by

Q(s,a, ω), and the target network estimates target Q-values by

Q(s ′, a, ω′).
In DQN, maxa Q(s ′, a, ω′) indicates that the target network

will select the action and meanwhile evaluate the action, and

the maximizing operator will result in over-optimistic Q-value

estimation. Then double deep Q-learning (DDQN) is proposed

to mitigate Q-value over-estimation by

Loss(w) = E

(
r + ηQ

(
s ′, argmax

a
Q
(
s ′, a, ω

)
, ω′

)

− Q(s , a, ω)
)
, (31)

where argmaxa Q(s ′, a, ω) means action selection of the

main network, and Q(s ′, argmaxa Q(s ′, a, ω), ω′) indicates

the action evaluation of the target network. Decoupling the

action selection and evaluation can provide more accurate

Q-value prediction and prevent over-estimation.

DRL has been used for RIS phase-shift optimization

in [133], [135], [136]. In these studies, continuous phase shifts

are quantized to form discrete action spaces for DQN or

DDQN. On the contrary, DDPG can handle continuous action

spaces directly without quantization, which has been used for

continuous RIS phase-shift control in [89], [132], [137].

DDPG is considered a combination of actor-critic learning

and DQN, in which the actor network selects actions, and

the critic network evaluates the state-action values. The loss

function of the critic network is defined as

Loss
(
wC

)
= E

(
r + ηQ

(
s ′, a

(
s ′, ωA′

)
, ωC ′

)

− Q
(
s , a, ωC

))
, (32)

where a(s ′, ωA′

) indicates that action a is selected by the tar-

get actor network with weight ωA′

, and Q(s ′, a(s ′, ωA′

), ωC ′

)
means the state-action value is evaluated by the target critic

network with weight ωC ′

. For the actor network, the policy

gradient is

∇ωAJ ≈
1

T

T∑

i=1

(
∇aQ

(
s , a, ωC

)
|s=si ,a=a(si ,ωA)

· ∇ωAa
(
si , ω

A
)
|s=si

)
, (33)

In equation (33), the critic network provides the Q-value

Q(s , a, ωC ), and it represents the expected accumulated

reward for a given pair (s,a). The actor network is trained to

produce actions that can result in the maximum state-action

value as predicted by the critic network. Therefore, a common

approach to calculate the loss function of the actor network is

Loss
(
wA

)
= −

1

T

T∑

i=1

(
Q
(
si , ai ,w

C
))

, (34)

which is computed by using the negative mean of the Q-values

predicted by the critic network.

Fig. 17 shows DRL-empowered RIS-aided wireless

networks, which include DDQN and DDPG as two DRL
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Fig. 17. DRL-empowered RIS-aided wireless networks.

examples. Based on the current state s, the agent selects BS

beamforming vectors and RIS phase shifts as the action a.

Then the action a is implemented and rewards r are collected,

e.g., sum-rate, energy efficiency, or power consumption. The

system will arrive at a new state s ′ that is indicated by CSI,

user positions, or SNR. The experience tuple <s , a, r , s ′> is

saved in the experience pool, and a mini-batch is sampled

for network training. For the DDQN algorithm, the main

network is trained as equation (31), and the target network

will copy the weight of the main network, providing a stable

reference. By contrast, the actor and critic networks are trained

by equations (32) and (33) in DDPG, and it applies slow

update strategies for target networks.

Fig. 17 presents the application of DDQN and DDPG to

joint active and passive beamforming problems. Note that here

the DDQN and DDPG algorithms can be easily generalized

to many other RL algorithms without loss of generality. This

scheme can also be applied to other RIS-related scenarios.

For instance, for the UAV-RIS joint optimization problem, one

can include the UAV control variables in the action definition,

and add UAV altitude in the state. Finally, there have been

various reinforcement learning algorithms, but one common

deficiency is the low sampling efficiency. It requires substantial

numbers of interactions for agent training, leading to large

costs in real-world applications, e.g., hundreds of millions of

samples.

D. Federated Learning and RISs

Different from conventional centralized ML algorithms, FL

trains the model across multiple decentralized edge devices

or servers that hold local datasets without exchanging data.

In FL, each edge device will train a local model using local

samples, and then a global model is formed by aggregating

local model parameters. Afterwards, edge devices download

the global model to update local models. Table XIV summa-

rizes existing works focusing on FL and RIS-aided wireless

communications. This subsection first discusses RIS-enhanced

over-the-air FL (AirFL), and then introduces how to use FL

optimization in RIS-aided environments.

1) RIS-Enhanced Over-the-Air FL: The main advantage of

FL is that it helps preserve data security and privacy, and the

distributed property makes wireless networks an ideal platform

for FL training. Therefore AirFL is proposed to combine FL

with wireless communications. In particular, AirFL imple-

ments FL in wireless networks, using edge devices for local

model training and edge servers for model aggregation.

However, the information exchange between local and

global servers may be affected by unreliable wireless links,

limited bandwidth, signal distortion, dynamic channel condi-

tions, and so on. The uncontrollable signal propagation path

can degrade the FL performance, e.g., slow uploading of local

models due to low data rate. Therefore, RISs are combined

with AirFL to realize the full potential of FL.
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TABLE XIV
SUMMARY OF FEDERATED LEARNING AND RIS-AIDED WIRELESS NETWORKS

Fig. 18. Comparison between conventional Air-FL and Air-FL with RISs.

As shown in Fig. 18, in conventional Air-FL, obstacles

may lead to high penetration loss between edge devices and

edge servers, and then the low channel capacity will result

in slow model uploading and downloading. Finally, the slow

parameter exchange efficiency may degrade the convergence

rate and lower the accuracy of Air-FL. By contrast, in Air-

FL with RISs, the indirect transmission between UE-RIS-BS

provides an alternative transmission path for local model

uploading or global model downloading. RISs improve the

channel capacity by manipulating the signal propagation path.

Therefore, efficient model uploading and downloading will

improve the convergence rate and precision of Air-FL.

There are a few works that investigate how to enhance FL

performance in RIS-aided wireless networks by minimizing

global training loss [148], [149], MSE [150], [154], power

consumption [151], [158], maximizing the FL utility [157].

In [149], Yang et al. aim to minimize the global training loss

of FL by controlling transmit power and RIS phase shifts,
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and the optimization problem is solved by AO-based QCQP

and SDP. Reference [157] proves that RISs can improve more

than 30% prediction accuracy of AirFL, and a 10 times lower

AirFL test error is reported in [154] by using multi-RIS. In

these works, the FL performance is improved by optimizing

the resource allocation and user-RIS association, and then

edge users can efficiently upload the local models. Meanwhile,

it is worth noting that these works still rely on model-

based optimization algorithms, such as AO, QCQP [149],

SCA [152], [153], [154], and MM [158].

2) FL for RIS-Aided Wireless Communications: FL can

also be used to optimize the performance of RIS-aided wireless

communications. For example, deploying a local FL model in

RISs may reduce the communication overhead between RISs

and the BS, since only local model parameters are shared

instead of sharing the whole dataset. In addition, FL can

better protect private information such as user CSI, which

may be used to infer user locations. Specifically, FL is used

in [159] and [160] for average rate maximization, in which

local models are deployed in user devices and the global

model is aggregated by edge servers. In [159], federated neural

networks consider sampled channel vectors as input to predict

achievable rates. FL and DDPG are combined in [160], and

the local neural networks used in DDPG will be aggregated

and updated.

FL is an appealing technique for wireless networks as a

distributed ML algorithm. However, the distributed imple-

mentation also leads to high communication overhead due to

frequent parameter sharing. Meanwhile, the local devices may

have different computational capabilities and storage capaci-

ties, and such heterogeneity may affect model aggregation and

update in FL.

E. Graph Learning

Graph learning refers to a group of ML techniques in the

graph domain, including graph neural networks (GNN), graph

attention networks (GAN) and graph convolution networks

(GCN). Compared with CNN, which operates on regular

Euclidean data like images (2D grid) and text (1D sequence),

graph learning is more efficient in describing graphs and

structures. Graph learning aims to transform nodes, edges, and

their features into low-dimension vector spaces by preserving

properties such as graph structure [161].

Wireless networks are highly dynamic, and wireless data

may be collected from non-Euclidean domains, which is

represented by graph structure with high dependency on

network topology. The conventional approach of data pro-

cessing is to convert the data with graph structure into

Euclidean domain, but such transformation leads to high

complexity and extra overhead. By contrast, graph learning

enables the graph-structured data to be processed effectively,

and transforming the wireless network topology into graphs

can better describe the association and interference between

network devices [162]. Therefore, graph learning has been

applied to power control and interference management [163],

resource allocation [164], [165], network slicing [166], and so

on. In the following, GNN is used as an example to introduce

graph learning fundamentals, and then we explain how to

apply graph learning for RIS control and optimizations.

1) GNN Fundamentals: The primary motivation for devel-

oping GNN is to extend the existing neural network

architecture into graph-related data processing capabili-

ties [167]. In a graph, each node is described by its features

and related nodes. Suppose that zv is a state vector to describe

the features of node v, and it is defined by

zv = f
(
yv , y

ed
v , ynev , znev

)
, (35)

where yv and yedv are the features of node v and its edge, and

znev and ynev are the state and features of neighbour nodes,

respectively. Then, zv and yv are used to produce an output

ov by

ov = g(zv , yv ), (36)

where g is the output function to map the relationship between

states, features, and outputs.

Similarly, by collecting all the states and features, we have

Z l+1 = f
(
Z l+1,Y

)
, (37)

O = g(Z ,YN ), (38)

where Z l+1 indicates all the states at l th iteration, Y indicates

all the features, YN means the node features, and O is the

overall output. Equation (37) shows that the system state is

updated in an iterative manner, which is inspired by Banach’s

fixed point theorem [168]. Finally, similar to conventional

neural networks, GNN aims to minimize the loss function.

2) Graph Learning for RIS Control and Optimizations:

Interference control is an important technique for multi-

user environments to maximize the system sum-rate, and the

interactions between RISs and UEs are easily described by

a graph. The graph in Fig. 19 includes K + 1 nodes, in

which one node represents the RIS and the rest are K UEs.

Given this scheme, GNN is applied to user scheduling and

RIS configurations in [169] and [170]. In particular, GNN is

trained in an unsupervised manner, and the inputs are user

weights and pilot sub-frames of the scheduled users, and the

outputs are RIS configurations and beamformers. Similarly,

unsupervised GNN is applied in [171] for network utility

maximization, which takes pilot signals as input to optimize

the BS beamforming and RIS configurations.

In [169], [170], [171], a useful feature of GNN is used

to reduce the interference between users. Specifically, when

updating one node in the GNN, all the neighbour nodes will

be included in the updating function, which means GNN

can better capture the mutual interference between users.

Meanwhile, RIS node updating is a function of all the user

nodes, enabling GNN to configure RIS elements to improve

the channel capacity of all users. In addition, the authors

in [171] note that another key advantage of GNN is the

generalization capability. For instance, when the number of

cell users constantly changes, conventional FNN must be

re-trained to handle various user numbers. In contrast, a

GNN can generalize to different numbers of users by simply

adding and removing components in its feature extraction and
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Fig. 19. Graph learning for RIS-aided wireless networks.

information exchange stages. Such generalization capability

can considerably alleviate ML model training efforts.

Graph learning is one of the most state-of-the-art ML

techniques. However, the application to wireless networks is

still in a very early stage. The real-time wireless environment

can produce dynamic and generative changing graphs, which

may prevent the application of graph learning.

F. Transfer Learning

Long training time and slow convergence are common

issues of most ML algorithms, and one of the main reasons

is that the model must explore the task from scratch. Fast

decision-making is critical in wireless communications, but

the low sampling efficiency may prevent applying ML to

RIS-aided wireless networks. This subsection will introduce

transfer learning fundamentals and explain how transfer learn-

ing can improve ML-enabled wireless networks with RISs.

1) Transfer Learning Fundamentals: Transfer learning can

be combined with many ML algorithms, and here we consider

transfer reinforcement learning (TRL) as an example [172].

In conventional RL, the decision-making DRL of one agent is

described by

DRL : s × K → a, r , (39)

where K represents the agent’s knowledge, s, a, and r are the

current state, selected action, and received reward, respectively.

In equation (39), the agent utilizes the collected knowledge

K for decision-making and action selection.

By contrast, the decision-making in TRL is

DTRL : s ×M
(
K expert

)
× K learner → a, r , (40)

where K expert and K learner are the knowledge of the

expert and learner agents, respectively. The learner is designed

to solve the target task, and the expert has some existing

knowledge of related source tasks. Considering the similarities

between the source and target tasks, the expert’s experience

may be reused by the learner as prior knowledge. The M
in equation (40) defines a mapping function. M(K expert )
indicates that the expert’s experience will be transformed

into digestible knowledge, boosting the learning process of

the learner. With existing prior knowledge, the learner can

achieve a jump-start at the exploration phase, achieving a

higher exploration efficiency and average reward with faster

convergence [173].

Fig. 20. Transfer reinforcement learning for RIS-aided wireless networks.

2) Transfer Learning-Boosted Wireless Networks With

RISs: Wireless networks can be highly dynamic. For example,

user numbers and CSI patterns may change quickly in a short

period of time, and then the RIS control policy may need to

be retrained to handle these dramatic changes. However, ML

algorithms usually require many training iterations, preventing

the application to dynamic wireless networks. To this end,

TRL may become a promising solution. Fig. 20 illustrates how

TRL is used for RIS-aided wireless networks, which includes

source and target tasks. We assume that the expert agent

has existing knowledge of the source task, BS beamforming,

and the learner agent is designed for the target task, joint

active and passive beamforming. Due to the potential task

similarities, the learner may reuse the expert’s experience to

better handle target tasks. However, note that the expert’s

knowledge may exist in various ways, e.g., state-action values

and action selections, and then the mapping function may

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:51:45 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: SURVEY ON MODEL-BASED, HEURISTIC, AND ML OPTIMIZATION APPROACHES 811

be defined in different manners. Fig. 20 provides an example

by finding similar states and actions, and a Q-value-based

mapping function can be defined by

Q
new

(

s
L
, a

L
)

= Q
E
(

M

(

s
L
)

,M
′

(

a
L
))

+Q
old

(

s
L
, a

L
)

+ α

(

r + ηmax
a

Q
(
s
′
, a

)
−Q

old
(

s
L
, a

L
))

,

(41)

where sL and aL are the learner’s state and action, M
and M′ are the state and action map functions, respec-

tively, and QE indicates the state-action value of the expert.

Compared with conventional RL, the main difference is that

QE (M(sL),M′(aL)) is involved as an extra reward for

selecting aL under sL. In particular, Fig. 20 shows the steps of

defining mapping functions for active and passive beamform-

ing tasks. Firstly, the state mapping function M is defined to

find sE = M(sL), finding similar environment states such as

CSI or current BS beamforming vectors between the learner

and expert agents. Similarly, the action mapping function

M′ aims to find similar beamforming decisions between the

learner and expert action spaces. Finally, by finding these

similar network states and beamforming decisions, as shown

in equation (41), good actions with high Q-values in the expert

can provide extra rewards for the learner. Then the learner is

encouraged to select better actions to achieve a higher sum-

rate or energy efficiency.

With transfer learning, the RL agent can achieve higher

exploration efficiency and faster convergence, enhancing the

efficiency of RIS-aided wireless networks. Transfer learning

has been used in [172] for joint resource allocation of network

slicing, and [174] for mmWave networks, achieving faster

convergence and better network performance. Similarly, trans-

fer learning can be applied to ML-enabled RIS optimization

for faster convergence and achieving prompt phase-shift

responses. Transfer learning is a very useful technique to

mitigate ML model training effort. However, note that transfer

learning relies on existing experts to reuse prior knowledge,

and the mapping function definition may be difficult due to

the inherent task difference between experts and learners.

G. Hierarchical Learning

Hierarchical learning is another technique that can be

used for optimizing RIS-aided wireless networks. The main

idea of hierarchical learning is to decouple the long-term

task into multiple achievable goals to increase exploration

efficiency [175]. In particular, it defines a meta-controller

to select goals and a sub-controller to achieve these goals.

Based on the short-term performance of the sub-controller,

the meta-controller can adjust the goal dynamically to

guarantee the long-term performance of the whole system.

Hierarchical learning can also be applied to optimization

problems that include multiple control variables with different

time scales [57]. For instance, in [57], Zhou et al. consider

a meta-controller for sleep control, and sub-controllers for

transmission power and RIS control, enabling control variables

with different time scales.

Fig. 21. Hierarchical reinforcement learning for RIS-aided wireless networks.

Fig. 21 shows how hierarchical reinforcement learning is

applied to RIS-aided wireless networks, and the agent consists

of a meta-controller and a sub-controller. Specifically, the sub-

controller can generate long-term policy instructions for the

sub-controller, such as the maximum number of active RIS

elements that is available. Then, as shown in Fig. 21, given

high-level goals, the sub-controllers can select short-term

decisions for RIS phase shifts. Meanwhile, the meta-controller

focuses on average power consumption in a period as long-

term network performance, and the sub-controller accounts for

delay or data rate as instant metrics. This scheme can coor-

dinate control variables with different time scales, balancing

instant and long-term network metrics. More specifically, the

state-action value of the meta-controller is updated by:

Q
new
meta (smeta , gmeta ) = Q

old
meta (smeta , gmeta )

+ α

(

rex + ηmax
g

Qmeta

(
s
′

meta , g
)

−Q
old
meta (smeta , gmeta )

)

, (42)

where smeta and s ′meta is the current and next meta-states,

gmeta is the goal, and rex is the extrinsic reward, respectively.

Qold
meta and Qnew

meta are old and new state-action values for

the meta-controller, indicating the accumulated reward by

selecting gmeta under state smeta .

Similarly, the Q-value of the sub-controller is updated by

Qnew
sub (ssub , gmeta , asub) = Qold

sub(ssub , gmeta , asub)

+ α

(

rin + ηmax
a

Qsub

(
s′sub , gmeta , a

)

− Qold
sub(ssub , gmeta , asub)

)
, (43)

where ssub and s ′sub are current and the next sub-states, asub
is the action, and rin is the intrinsic reward. Qnew

sub and Qold
sub

are defined similarly as the meta-controller, indicating the

expected reward of selecting asub under state ssub and goal

gmeta . Equation (43) shows that the sub-controller is under

the policy control of the meta-controller.

Hierarchical learning is a promising technology to enable

hierarchical autonomy in RIS-aided wireless networks.

However, one key challenge is to define the relationship

between different hierarchies, e.g., meta-controller and sub-

controllers. In addition, decoupling one task into multiple

sub-tasks can be difficult in highly-dynamic wireless networks,

which may prevent the application of hierarchical learning.
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Fig. 22. Meta-learning for RIS-aided wireless networks.

H. Meta-Learning

Meta-learning refers to ML algorithms that extract the

experience of multiple learning episodes, e.g., a distribution

of related tasks, and then use such prior training to improve

the performance on target tasks [178]. In particular, meta-

learning is designed to learn how to learn across tasks, and

this learning-to-learn design can bring several benefits, such

as improved training and learning efficiency. In addition, it is

better aligned with human learning features, where learning

skills are constantly improved on a lifetime timescale and

evolutionary policy [179].

RIS-aided networks may include diverse elements, such

as RISs, BSs, UAVs, etc, and it can be difficult to train

ML models from scratch and meanwhile jointly consider all

these network elements. Fig. 22 shows an example of using

meta-learning schemes for UAV-aided joint active and passive

beamforming, in which RISs are deployed on the UAV for

location flexibility. The ML model is first pre-trained by

three existing tasks such as RIS passive beamforming, BS

beamforming, and UAV trajectory design. Then, using prior

experience, the ML model is expected to learn quickly on the

target task, which will jointly consider RISs, BSs, and UAVs.

Additionally, such a constant learning scheme can be more

useful when other future tasks are expected, and incoming new

tasks are always trained based on plenty of former knowledge.

There are few works on applying meta-learning to RIS-aided

networks. For instance, Jung and Saad apply meta-learning

for RIS channel estimation, and the ML model is pre-trained

at the BS by using pilot signals to rapidly estimate RIS

channels [176]. In [177], model-agnostic meta-learning is used

for joint RIS phase-shift control and power allocation, which

has a faster convergence rate than baseline ML algorithms.

However, meta-learning must balance the meta-training and

self-learning phases. Specifically, meta-training with a wide

variety of tasks may lead to underfitting, which means that

the agent is unable to specialize to the target task when

self-learning. By contrast, if the meta-training tasks are too

specific, the knowledge learned on the source tasks may have

difficulty in generalizing to target tasks [179]. Therefore, the

source task distribution in the meta-training phase has to be

carefully selected.

I. Discussions and Numerical Results

ML offers promising opportunities for optimizing RIS-aided

wireless communications. Table XV overviews various ML

techniques.4

Supervised learning trains ML models to best map the input

to output, e.g., CSI and user position to RIS phase shifts.

However, the model training relies on fine-grained labeled

datasets, which may be inaccessible in practice. By contrast,

unsupervised learning has no need for labeled datasets, and

it involves the objective function in the loss function for

improvement. Such unsupervised learning approaches can

reduce the dependence on labeled datasets, but the generated

results are hard to validate due to the absence of labeled data

in most circumstances.

RL is the most widely applied ML technique for

optimization problems, and each RL algorithm has its own

features and difficulties. For example, DDPG can handle

continuous action space of RIS but can be unstable [89],

[132], [137], [139], and DDQN can prevent overestimation but

sampling efficiency is low [142]. FL and graph learning are

newly emerging ML techniques. Most existing works consider

RIS-enhanced AirFL, demonstrating that RISs can improve the

training efficiency and performance of FL [148], [149], [150],

[151], [154], [158]. Graph learning has shown great potential

in many other fields, and wireless network applications include

power control and interference management [163], resource

allocation [164], [165], and network slicing [166]. Despite the

advantages, applying graph learning to wireless networks is

still an open issue that requires more effort.

Transfer learning and hierarchical learning are both promis-

ing ML techniques for RIS-aided wireless networks. Transfer

learning can reduce the model training efforts, while hierarchi-

cal learning provides a novel architecture for applying ML to

wireless communications with hierarchical intelligence, espe-

cially when optimization parameters have different timescales.

However, more research is needed on these techniques as

they are used for RIS-aided wireless networks. Both transfer

learning and meta-learning involve source tasks and prior

experience. The core feature of meta-learning is learn-to-learn,

which is an appealing advantage for enabling rapid adaptation

to dynamic wireless environments. Compared with transfer

learning, meta-learning provides a scheme that can be used

to facilitate transfer learning as well as other techniques. In

transfer learning, the prior knowledge is usually extracted from

the source task without defining a meta-objective. By contrast,

the prior experience in meta-learning is usually defined by

an outer optimization that evaluates the potential benefit of

handling new tasks. Meanwhile, meta-learning involves a

wider range of meta-representation problems than transfer

learning.

Instead of applying one specific ML algorithm solely, note

that these ML algorithms may be jointly used. For instance,

federated deep reinforcement learning deploys DRL in each

4Note that there are many ML algorithms applied to wireless communica-
tions. Instead of collecting all the existing ML algorithms, Table XV provides
a compressed taxonomy to understand the feature of each technique along
with RIS control applications.
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TABLE XV
SUMMARY OF ML-BASED CONTROL AND OPTIMIZATION ALGORITHMS FOR RIS-AIDED WIRELESS NETWORKS

local server for decision-making, and then uses a global server

to aggregate the main networks for overall estimation and

coordination. Such integration can make the most of each

algorithm’s advantages, achieving better overall performance.

Finally, Fig. 23 and 24 present examples of using transfer

learning and hierarchical learning for RIS-related optimization,

respectively. In particular, Fig. 23 compares the convergence

of transfer deep reinforcement learning (TDRL) and DRL,

and TDRL achieves faster convergence with higher aver-

age reward. The main reason is that TDRL can reuse the

former knowledge of existing experts, which will consider-

ably improve the exploration efficiency of ML algorithms.
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Fig. 23. Convergence performance of transfer deep reinforcement learning
(TDRL) and DRL. 1) TDRL: We assume there is an existing DRL agent that
has been trained under a limited number of UEs. Then a TDRL agent will
reuse the expert’s prior knowledge to adapt to the environment with more
diverse UEs. 2) DRL: conventional DQN-based RIS phase-shift control.

Fig. 24. Energy efficiency performance by joint sleep control and RIS phase-
shift design. We consider a multi-BS and multi-RIS heterogeneous network.
Sleep control is a long-term decision to decide the BS on/off status, while
RIS phase-shift control is a short-term optimization based on dynamic channel
status. Detailed parameters can be found in [103].

Such improvement becomes more obvious when the number

of RIS elements increases, which indicates higher explo-

ration difficulty for conventional DRL algorithms. Meanwhile,

Fig. 24 shows the energy efficiency of hierarchical reinforce-

ment learning-enabled joint sleep control and RIS phase-shift

optimization [103]. It includes a multi-BS and multi-RIS

scenario, and sleep control can decide the on/off status of BSs

to reduce energy consumption, while RISs can improve the

channel capacity. Fig. 24 demonstrates that combining sleep

control with RISs can bring higher energy efficiency than

using each technique solely, and hierarchical reinforcement

learning can well coordinate different decisions with various

time scales.

VII. COMPARISON AND RELATIONSHIP BETWEEN

MODEL-BASED, HEURISTIC AND ML APPROACHES

This work has introduced three types of optimization

techniques: model-based, heuristic, and ML approaches. One

intuitive question is how to evaluate the advantages and

difficulties of these techniques as well as their relationships.

To answer this question, we compare these approaches in

Table XVI, including main features, advantages, drawbacks,

difficulties, and applications for RISs. In addition, Fig. 25

summarizes algorithm selection of applying various methods

and their relationships. Note that Fig. 25 provides a general

overview for optimizing RIS-aided wireless networks, but

the algorithm selection and design should be combined with

specific application scenarios.

1) Model-Based Method: Table XVI shows that model-

based approaches can provide efficient and stable solutions

once the problem is properly reformulated, especially when

closed-form expressions are obtained. However, model-based

algorithms are usually complicated to design, indicating a

series of transformations and relaxations, e.g., decoupling the

denominator and numerator in SINR terms and relaxing inte-

ger constraints. As a result, the approximation and relaxation

can undermine the quality of solutions. Additionally, environ-

mental uncertainties can significantly affect the performance

of model-based algorithms, since they require full knowledge

of the optimization parameters. One possible solution is to

assume environment changes follow some specific distribu-

tions, but the optimization over distributions will further

increase the complexity. Another solution is to use Monte

Carlo sampling and repeat the optimization to achieve average

results, which is time-consuming. As illustrated in Fig. 25,

given a joint optimization problem with coupled control

variables, one may use AO or BCD to decouple the joint

optimization into multiple sub-problems. Specifically, FP can

be used to eliminate fractional terms, e.g., SINR and energy

efficiency, and SDR is applied to relax non-convex constraints.

Then, various techniques may be applied, such as MM,

SCA, SOCP and BnB, to solve each sub-problem under the

alternating framework.

2) Heuristic Algorithms: The primary benefit of heuristic

methods is the low implementation complexity, i.e., optimizing

RIS control in an element-by-element manner, achieving a

trade-off between optimality and computational complexity.

Heuristic methods also show a high generalization capabil-

ity, e.g., genetic algorithm and PSO apply unified fitness

functions to represent the optimization objectives. However,

meta-heuristic algorithms are sensitive to key parameters,

e.g., population numbers and inertia weight in PSO, which

may require find-tuning efforts. But other heuristic methods,

especially greedy algorithms and matching theory, can be

easily applied with little tuning requirement. Meanwhile,

Fig. 25 shows that heuristic algorithms can also be used to

solve sub-problems that are defined under an AO scheme,

indicating possible combinations between model-based and

heuristic algorithms. For instance, to maximize energy effi-

ciency, Yang et al. define three sub-problems, and SCA is

deployed for active and passive beamforming, while a greedy

algorithm is used for RIS on/off control [54]. Such a combined

scheme demonstrates the capability of integrating model-based

algorithms with heuristic algorithms.

3) ML Algorithms: Wireless networks are highly dynamic,

and hence optimization techniques must be robust to envi-

ronmental uncertainties. With the learning capability, ML

algorithms can adapt well to dynamic environments. In par-

ticular, ML algorithms present unified optimization schemes,
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TABLE XVI
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which are applied to diverse problems with few design

requirements. For instance, most optimization problems can

be converted into unified MDPs that include state, action,

transition probability and rewards, and then reinforcement

learning is utilized to maximize the reward for a higher

sum-rate or energy efficiency. Meanwhile, as summarized in

Fig. 25, reinforcement learning can be integrated with other

ML techniques to develop diverse optimization algorithms,

such as federated deep reinforcement learning, transfer rein-

forcement learning, and hierarchical reinforcement learning.

For example, transfer reinforcement learning can achieve faster

convergence and higher average reward than conventional

reinforcement learning algorithms. However, ML algorithm

training is usually computation-demanding, requiring a large

number of computational resources, e.g., iterative exploration

of RL and back-propagation for neural network training.

Finally, datasets are crucial to applying data-driven ML

algorithms, especially for supervised learning. Model-based

methods provide a useful approach for labeled dataset gener-

ation, which indicates the potential to combine model-based

and ML algorithms. For example, Hu et al. first apply the

BCD method for RIS-aided mobile edge computing, and

then the produced results serve as datasets for location-

based supervised learning algorithms [125]. This reveals the

potential benefit of integrating ML techniques with model-

based algorithms.

VIII. RIS-ASSISTED 6G APPLICATIONS: OPTIMIZATION

ANALYSES AND CHALLENGES

This section analyzes control and optimization techniques

for RIS-assisted 6G applications, e.g., potential optimization

difficulties and algorithm selections. In addition, we identify

several research challenges for the optimization of RIS-aided

wireless networks.

A. Control and Optimization Analyses of RIS-Assisted 6G

Applications

Table XVII summarizes RIS-assisted 6G applications,

including NOMA, SWIPT, mmWave and THz communica-

tions, NTNs, V2X communications, and ISAC. For example,

due to the resource-sharing nature, the NOMA system is

more vulnerable to security issues. Then RISs can be applied

to reshape the signal propagation environment for security

services against eavesdroppers. The low energy efficiency at

the energy receiver is one of the main issues for practical

SWIPT deployment, and RISs become a promising solution

to increase sum-rate, reduce transmit power, and maximize

the minimum received power. In addition, Table XVII

also summarizes the motivations for integrating RISs with

other 6G applications such as RIS-NTN, RIS-V2X, and

RIS-ISAC.

However, integrating RISs with 6G techniques also

increases the difficulties for network management. In RIS-

NOMA systems, the decoding order may be frequently

changed due to the dynamic RIS configuration, increasing

the difficulty of applying conventional model-based algo-

rithms. For V2X networks, a critical feature is the stringent

requirement for reliability and safety, which means the

proposed algorithm should guarantee the worst-case network

performance. Such a requirement means that the control

and optimization algorithms should be efficient, robust and

reliable. The potential optimization difficulties of other RIS-

assisted 6G applications are also reviewed in Table XVII.

Finally, we analyze optimization algorithm selections for

various RIS-assisted 6G applications. Integrating RISs will

substantially increase the network management complexity,

since RIS phase-shift control is highly coupled with other

control variables such as decoding order in NOMA, beam

selection in mmWave networks, and UAV altitude control.
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Fig. 25. Algorithm selection and relationship of model-based, heuristic and ML approaches.

ML algorithms become promising solutions to handle such

complexity, such as DDQN [142] and DDPG [132], [145].

In particular, these studies apply unified schemes to optimize

network performance, overcoming the difficulties of reformu-

lation and transformation for convexity. However, conventional

ML algorithms require many iterations for model training,

which may prevent the application to highly dynamic envi-

ronments such as RIS-UAV. To this end, transfer learning and

meta-learning may be used to improve training efficiency and

make rapid responses. On the other hand, other applications

such as V2X have more stringent service requirements to

guarantee worst-case performance. In this case, model-based

methods can usually provide more stable performance than

ML or heuristic approaches, providing detailed proofs and

explanations for the algorithm output.

B. Challenges and Future Directions

This subsection identifies research challenges and possible

future directions.

1) Practical RIS Phase-Shift Design: Most existing RIS

optimization studies rely on perfect CSI acquisition and

static user conditions, which are impractical assumptions

in the real world. Specifically, the wireless environment is
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TABLE XVII
CONTROL AND OPTIMIZATION ANALYSES FOR RIS-ASSISTED 6G APPLICATIONS

highly dynamic due to various channel conditions and diverse

user demands. Therefore, developing robust and practical

algorithms for RIS control is of great importance for the

real-world deployment of RISs, e.g., imperfect CSI acquisition

and UEs with high mobility, which requires more research

efforts.
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2) Low-Overhead Control: Many advanced control and

optimization techniques have been proposed for RISs, but

the communication and control overhead is neglected in most

works. For example, frequent parameter exchange between

the BS and RISs may lead to high overhead, and the model

training overhead of ML algorithms can hamper the system

efficiency. These issues are still open challenges, and agile

optimization algorithms with low complexity and overhead are

yet to be developed.

3) ML-Enabled Intelligent RIS Beamforming: ML is one

of the most promising techniques to facilitate future 6G

networks, and integrating ML with RISs can bring intelli-

gent prediction, clustering, and decision-making for RIS-aided

wireless networks. Despite the significant potential, some

critical questions, e.g., algorithm deployment, offline or online

training, and training cost, are neglected in many existing

studies. Addressing these problems can further enable an

intelligent future wireless network.

4) Practical RIS Location Optimization: In many existing

studies, RIS location is considered as a predefined parame-

ter for simulation. However, RIS location can considerably

affect the system performance and therefore should be very

carefully handled. Moreover, the real-world environment is

more complicated when considering dense buildings and other

obstacles. RIS location and scale should be jointly optimized

by considering the wireless environment, user distribution, and

service requirements, which still require research effort.

5) Flexible Control Framework: The former analyses have

shown that each optimization approach has its advantages

and difficulties. Model-based methods have higher stability

and optimality, and heuristic methods have lower complexity,

while ML techniques are more robust. One intuitive direction

is to combine these methods to form a flexible optimization

framework that can make the most of each approach’s advan-

tages and complement the difficulties. However, many existing

studies stick with one type of optimization technique, and

flexible control schemes are considered future challenges.

IX. CONCLUSION

RIS technology is a key enabler for 6G networks, and

control and optimization techniques are critical to exploiting

the full potential of RISs. In this work, we have surveyed var-

ious approaches for optimizing RIS-aided wireless networks,

including model-based, heuristic, and ML approaches. We

have provided in-depth analyses of the algorithms’ features,

difficulties, and applications towards RIS, and we have further

compared the advantages and disadvantages of nearly 20 tech-

niques. Our analyses reveal that model-based methods exhibit

satisfying performance and stability, but the corresponding

algorithm design is complicated with low generalization

capability. Heuristic algorithms can obtain low-complexity

sub-optimal solutions, which are usually considered as base-

lines or supplements for other techniques. ML techniques

have high generalization capability and optimality, but ML

model training is computationally demanding and requires

experience. Finally, algorithm selection depends on specific

optimization requirements, which should be jointly considered

based on application scenarios. It is hoped that this survey

will serve as a roadmap for researchers to investigate advanced

optimization techniques for RIS-aided wireless networks.
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