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Ground-penetrating radar investigation of regolith thickness on a periglacial
alpine summit flat, Uinta Mountains, Utah, USA

Jeffrey S. Munroe

Department of Earth & Climate Sciences, Middlebury College, Middlebury, Vermont, USA

ABSTRACT

Summit flats are low-relief, gently sloping landforms common in periglacial mountain environ-
ments. Apart from at their edges where summit flats are truncated by glacial headwalls and at their
crests where isolated tors are occasionally present, bedrock is typically mantled on a summit flat by
a continuous layer of regolith. This study applied ground-penetrating radar (GPR) to survey the
thickness of regolith on a summit flat in the Uinta Mountains (Utah, USA). More than 500 m of GPR
data were collected along transects extending from the edge of the summit flat to the crest, as well
as adjacent to a deep soil pit. Results indicate that the regolith thickness is quite variable, with
a mean of 91 + 38 cm when calculated with an appropriate radar velocity. Because the ground
surface of the summit flat is notably smooth, the variability in thickness is a consequence of
irregularities in the bedrock surface at depth, which is significantly rougher. Recognition that
regolith thickness can vary considerably beneath an alpine summit flat has implications for soil
formation, carbon storage, and the transmission and storage of shallow groundwater, as well as
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evolutionary models for periglacial mountain landscapes.

Introduction

Many high-mountain environments feature periglacial
landscapes that were above the limit of Pleistocene
alpine glaciation. The dominant landform in these set-
tings is often a low-relief, gently sloping, convex upland
referred to as a “summit flat” (Small et al. 1997;
R. S. Anderson 2002). The nearly flat appearance of
these features presents a dramatic contrast with the
precipitous slopes of the adjacent glacial valleys, ren-
dering them conspicuous to any observer of mountain
geomorphology. Early workers tended to consider
summit flats as isolated remnants of formerly contin-
uous, low-relief landscapes formed as pediments or
peneplains (as reviewed in W. C. Bradley 1987).
Other literature has explored the possibility that sum-
mit flats develop through expansion and coalescence of
cryoplanation terraces (Nelson 1989; Czudek 1995). In
this model, summit flats are time-transgressive land-
forms evolving in response to nivation (Thorn and Hall
2002; Nyland and Nelson 2020). Most recently, the
development of techniques for the measurement of
cosmogenic isotope abundances has allowed estimates
of erosion rates on summit flats (Small et al. 1997;

Small and Anderson 1998; Small, Anderson, and
Hancock 1999), supporting numerical modeling efforts
revealing that summit flats are predictable steady-state
landforms produced under periglacial conditions
(R. S. Anderson 2002; R. S. Anderson et al. 2006).
Descriptions of summit flats typically comment on
the layer of regolith overlying the bedrock, where rego-
lith refers to unconsolidated sediments that may or may
not be organized into soil profiles. Statements such as “A
regolith thickness of 1-2 m is common” (Small et al.
1997), “The regolith cover, where one can measure it, is
on the order of 1 m thick and is quite uniform in thick-
ness” (R. S. Anderson 2002, 38), or “... thin [roughly
1 m] but uniform” (R. S. Anderson et al. 2006, 400) are
widespread. This regolith is likely a composite of mate-
rial loosened from the wunderlying bedrock
(Waroszewski et al. 2013), vestigial material from an
older non-periglacial weathering regime (Mellor and
Wilson 1989; Goodfellow 2012), and eolian additions
of mineral dust (Litaor 1987; Muhs and Benedict
2006). Modeling efforts have proposed that the thickness
of this regolith reflects a balance between rock break-
down and downslope transport through frost creep,
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which ultimately delivers sediment to the edge of the
summit flat, where it is lost into the glacial valley below
by mass wasting (R. S. Anderson 2002). At larger spatial
scales, therefore, the distribution of this regolith is in
accordance with general diffusion models for soil forma-
tion and movement (Heimsath et al. 1999; Heimsath,
Furbish, and Dietrich 2005).

Despite recognition that a layer of regolith is
a universal characteristic of alpine summit flats, little is
known about how the thickness of this material varies at
smaller spatial scales. The frequent assertion that rego-
lith on summit flats is uniform and ~1 m thick is actually
based on a limited number of field observations (e.g.,
Small, Anderson, and Hancock 1999; Leopold et al.
2008). This is in contrast to non-alpine settings where
a considerable literature exists on regolith and soil thick-
ness (Heimsath et al. 1997; Phillips et al. 2005; Catani,
Segoni, and Falorni 2010; Patton et al. 2018; Ferrell,
Devine, and O’Geen 2023). Furthermore, the few studies
that have specifically investigated regolith thickness in
alpine settings have reported considerable inconsistency
(Volkel, Leopold, and Roberts 2001; Leopold et al. 2008,
2013), emphasizing that the spatial variability of summit
flat regolith thickness and its underlying controlling
factors remain insufficiently studied.

This knowledge gap is significant because regolith
plays important roles in the functioning of the “critical
zone” (CZ), the thin skin of the Earth where geology,
ecology, and hydrology intersect (Brantley, Goldhaber,
and Ragnarsdottir 2007). For example, regolith is crucial
for the storage and transmission of shallow groundwater
(Holbrook et al. 2014; Sprenger et al. 2019) and can
influence water chemistry (Checketts et al. 2020).
Regolith forming at the interface between soil and bed-
rock serves as a source of plant-available nutrients
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(Brantley 2010) and a sink for elements sequestered by
weathering (Chorover et al. 2007). Loose regolith is also
the medium hosting most of the rhizosphere, upon which
aboveground plants and the food webs they support are
fundamentally reliant (Amundson et al. 2007). Periglacial
soils and regolith, in particular, can be important reser-
voirs of carbon storage, aided by low mean annual tem-
peratures that slow rates of decomposition and can
facilitate the development of permafrost (Bockheim and
Munroe 2014). All of these important functions are
modulated to varying degrees by regolith thickness.
Therefore, understanding of how the alpine CZ functions
as a geoecological system would be improved by more
detailed information about the spatial variability of rego-
lith thickness derived from field studies.

In this study, I utilize ground-penetrating radar
(GPR) to survey the thickness of regolith in an alpine
summit flat locality that has been the focus of consider-
able previous research. GPR is a noninvasive geophysical
technique effective for investigating depth to bedrock
(Davis and Annan 1989; Doolittle et al. 2009) and is
particularly appropriate for settings like the alpine CZ
that are difficult to access and where techniques for
direct observation such as trenching with heavy equip-
ment would be too disruptive (Leopold et al. 2008). T use
the results of the GPR surveys to quantify regolith thick-
ness and address the assumption that thickness is uni-
form beneath the gently sloping summit flat surface.

Study area

Fieldwork for this project was conducted in the Uinta
Mountains (Figure 1), a Laramide-age uplift of
Precambrian metasedimentary rocks in northeastern
Utah, USA (Sears, Graff, and Holden 1982; Hansen
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Figure 1. True color image of the Uinta Mountains from the NAIP program, 2014. The location of the Chepeta weather station is marked
by a yellow triangle within the black box delineating the study area shown in Figure 3. Letters “a—d” refer to photographs in Figure 2;
symbols display the approximate orientation of each of the images. Inset shows the position of the weather station (yellow triangle)
within the Rocky Mountain system (dark gray) in western North America. The state of Utah (UT) is highlighted in black.



1986; Dehler et al. 2007). Maximum summit elevations in
the Uinta Mountains (hereafter, the Uintas) are in excess
of 4 km asl, and the range was extensively glaciated
during the Pleistocene (Munroe and Laabs 2009). On
the basis of cosmogenic surface exposure dating and
lacustrine sedimentary records, deglaciation of the
Uintas was complete in the latest Pleistocene (Munroe
and Laabs 2009); no alpine glaciers remain in these
mountains today, although there are hundreds of active
rock glaciers that likely contain perennial ice (Munroe
2018; Brencher, Handwerger, and Munroe 2021). Given
lapse rates for mean annual temperature, permafrost is
also likely present at the highest elevations in the Uintas
(Obu et al. 2019).

Summit flats are well developed and extensive in the
Uintas (Figures 1 and 2), as was noted by early researchers
curious about the morphology and geologic history of
these mountains (e.g., W. H. Bradley 1936). Previous
work calculated that summit flats comprise 43 percent
of the land area above 3,400 m and are more common
toward the eastern end of the range where alpine glacial
erosion was less severe (Munroe 2006). As is the case
elsewhere in the Rocky Mountains (Small, Anderson,
and Hancock 1999), there is no indication that summit
flats in the Uintas were covered by erosive glacial ice;
rocks and (rare) bedrock outcrops are not striated, and
streamlined bedforms like roche moutonnées are absent.
Although this is negative evidence and does not rule out
the former presence of cold-based ice (e.g., Rea et al
1996), it nonetheless strongly suggests that these uplands
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were not impacted by direct glacial erosion, likely because
their windswept nature precluded snow accumulation.
The study area for this project is located in a broad
saddle near the eastern end of the glaciated Uintas
(Figures 1 and 2). The saddle has a crest elevation of
~3,695 m, which is >300 m above modern treeline, and
slopes are generally <5°. The northern and southern
limits of the summit flat are valleys enlarged by glaciers
during the Pleistocene (Figure 1). Aside from the steep
terrain at these boundaries, bedrock outcrops are absent
on this summit flat. Instead, the surface is ornamented
by well-developed and apparently fossil sorted stone
polygons with diameters ~10 m (Munroe 2007).
Toward the edges of the summit flat, polygons transition
to stone stripes. Unvegetated and presumably active
periglacial frost boils with diameters <1 m are also pre-
sent. Otherwise, the ground surface is carpeted by low
(<10 cm) Acomastylis rossii and other alpine plants.
This specific summit flat was selected for study
because of the abundance of previous research con-
ducted here. A passive dust sampler has been in opera-
tion at this site since 2011 (Munroe 2014), constraining
rates of dust deposition (Munroe 2022). Soil profiles
from this summit flat have been described and sampled,
revealing the influence of long-term dust accumulation
on pedogenesis (Munroe et al. 2015, 2020). Radiogenic
isotope fingerprints (¥’Sr/*°Sr and eyq) determined for
modern dust and bedrock were used to estimate what
fraction of the soil at this location was delivered by
eolian processes (Munroe et al. 2020). Furthermore,

Figure 2. Photographs of summit flats in the Uinta Mountains. (a) Classic expression of periglacial summit flats truncated by alpine glacial
erosion on both sides. (b) Exposed bedrock at the top of a glacial headwall capped by regolith at the edge of a summit flat. (c) The flat-
floored saddle hosting the Chepeta site viewed from the west. The white oval highlights the Chepeta weather station. (d) The Chepeta site
viewed from the northeast. Photopoint locations and orientation of each image are shown in Figure 1.



4 J.S. MUNROE

deeper regolith exposed at the top of the glacial headwall
along the northern boundary of the summit flat is unex-
pectedly enriched in clay minerals, which have been
studied to illuminate the role of allochthonous materials
in soil formation (Munroe, Ryan, and Proctor 2021).
Finally, a remote automated weather station (RAWS)
has been in operation at this location since 1998
(Figure 1). Although there are gaps in the record due
to occasional instrument malfunctions, the meteorolo-
gical time series confirms the periglacial climate of this
site, with a mean annual temperature of —2°C (Munroe
2006). The RAWS has the official designation CHPU1
(40.81110° N, 110.07470° W, 3,680 m) and the name
“Chepeta”; thus, the location of this project is referred to
as the Chepeta site.

Methods

Ground-penetrating radar surveys at the Chepeta site
were conducted on 9 September 2021 with an SIR-4000
controller driving a 350HS antenna. Only 30 mm of
precipitation was recorded in the three weeks prior to
the fieldwork (0 mm in previous five days), and soil
moisture conditions were dry. With the goal of investi-
gating regolith expected to be on the order of a few
meters thick, the 350 MHz system offered an acceptable

compromise between resolution and depth of penetra-
tion, while also being portable enough to be backpacked
to the study site. GPR data were collected by pulling the
antenna across the ground surface at a walking pace
along two 237-m-long transects marked at 18-m inter-
vals. One transect (West) passed to the west of the
Chepeta RAWS and the other to the east (East). The
transects were not positioned directly along the fall line;
rather, each started at the northern lip of the summit flat
near where bedrock is exposed and continued to the
southeast, up and over the broad crest before curving
together to end at a common point (Figure 3). Each
transect was surveyed twice to check for consistency.
In addition, two perpendicular 10-m transects
(Figure 3) were surveyed with their intersection point
adjacent to a deep soil pit excavated in a previous study
(Munroe et al. 2020). Data were also collected in sta-
tionary mode adjacent to this pit. For all transects, the
GPR system collected 334 scans/second with 512 sam-
ples/scan. Spatial coordinates were automatically added
to the datafile every 2 seconds from an Emlid Reach RS2
GPS receiver connected to the SIR-4000 (e.g., Doolittle
et al. 2009), and reference marks were made in the
record at each marked point along the transects.
Processing of the GPR data in RADAN v7.6 (2024)
included aligning the first pulse of the radargram with the

Thickness (m)  Slope (°)
® 0.03-042 ™ 15.0
| ]
e 042-073
s 0.0
® 073-1.02
1.02-1.31
1.31-1.80

Figure 3. (a) Orthophoto mosaic of the Chepeta site derived from images collected by a UAV. Brown lines are 1 m contours. For clarity,
contours are not shown on the steep headwall descending down into the cirque to the north. The GPR transects are shown as white
lines: West (W), East (E), and the pair of crossing transects at the soil pit (P). (b) Slope map of the area shown in panel ‘a’. Values clipped
to <15° to highlight the summit flat surface. Inferred regolith thickness (in m) along the GPR transects is presented with overlapping
colored dots. Regolith tends to be thicker under higher topography at the southern ends of the long transects where slopes are lower.
(c) Photograph looking to the south toward the Chepeta weather station (on horizon) along the path of the East transect showing the

typical surface of the summit flat in the study area.



ground surface; distance normalization to convert data to
a constant horizontal scale using the 18-m reference points;
background removal to eliminate linear, nonstratigraphic
artifacts; high/low bandpass filtering to reduce noise; expo-
nential range gain to accentuate deeper radar reflectors;
topographic normalization based on the elevation compo-
nent of the GPS data; and horizontal stacking to compress
the long profiles for ease of viewing. To convert radar two-
way travel times into depth, a relative dielectric permittivity
value (¢,) suitable for dry sandy soils (Martinez and Brynes
2001) that collapsed hyperbolic reflection from objects in
the regolith (likely isolated boulders) was determined itera-
tively (Renning 2023). This value was checked against the
data for the crossing profiles collected near the soil pit
(Figure 3) where bedrock was not encountered and subse-
quently used to migrate the radar data.

In both long transects, as well as the 10-m transects
near the soil pit, a prominent continuous reflector was
visible in the subsurface. This reflector represents an
abrupt transition between materials with contrasting &,
values. Points were manually digitized along this reflec-
tor at the position of the maximum positive amplitude.
The depths of these points were then compared with the
elevation of the overlying ground surface (from the GPS
data) to compute the elevation of this reflector along the
transects. Imprecision inherent in determining the ver-
tical position of points along this reflector is estimated as
~20 cm, one-quarter of the radar wavelength at the
antenna center frequency. Digitizing along the reflectors
was repeated multiple times to determine that results
were reproducible.

To produce a high-resolution base map and terrain
model for the Chepeta site, the area was mapped with an
uncrewed aerial vehicle (UAV, drone). The UAV flew at
an altitude of 90 m above the ground surface, adjusted in
real time with respect to a 30-m digital elevation model
(DEM), collecting 258 images covering an area of 8.24 ha
with 80 percent overlap. Images were processed to yield
an orthophoto mosaic with a resolution of 2.2 cm per
pixel (Figure 3). Structure from motion analysis was
implemented to generate a DEM with an average resolu-
tion of 10 cm. This DEM was used in a GIS to generate
a hillshade and slope raster for the study area.

Results

The combination of GPR with integrated GPS receiver
and UAV-based mapping successfully defined the mor-
phology of the Chepeta site and revealed the dimensions
of the regolith layer underlying the ground surface. The
GPR data reveal an array of reflectors within the shallow
subsurface (Figures 4 and 5). Particularly notable in all
transects is a reflector, laterally continuous at the scale of
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one to tens of meters, distinguished by locally high
amplitude (e.g., Doolittle et al. 2009). This reflector is
interpreted to be the bedrock/regolith interface for sev-
eral reasons. First, its continuity indicates that it is not
a local feature within the regolith, such as a group of
stones concentrated by cryoturbation. Second, the
locally high amplitude of this reflector implies a strong
g, contrast between two overlying materials, which is
unlikely to be the case for a soil horizon or stratigraphic
layering in the bedrock. Third, the reflector typically has
a  positive-negative-positive  pattern, indicating
a contrast between an overlying material with higher €,
and a deeper material with lower €., as would be the case
in where soil and regolith with relatively higher clay
content overlies sandstone bedrock. Finally, the depth
of this reflector beneath the local ground surface varies
in a wavy, erratic manner, which is not what would be
expected for the water table (Doolittle et al. 2006).

Prominent hyperbolae visible in the GPR data, likely
representing individual rocks dispersed within the finer
regolith matrix, were iteratively determined to collapse
at €, values between 6 and 8. Applying the higher end of
this range to the radar data from near the soil pit
(Figure 5), however, placed the apparent depth of the
bedrock reflector shallower than the base of the pit
(92 cm) where bedrock was not encountered (Munroe
et al. 2020), suggesting that e, values greater than 6
might not be universally appropriate for the regolith at
the Chepeta site. All radar profiles were therefore
migrated with a &, of 6, corresponding to a radar velocity
of 0.12 m/ns, typical for dry, sandy soils (Martinez and
Brynes 2001).

To provide an uncertainty estimate for the regolith
thickness, depths of the bedrock reflector (Figures 5
and 6) were calculated with &, values of 4, 6, and 8,
all of which are reasonable for sandy materials with
low water content (Martinez and Brynes 2001). In
general, thickness is greater beneath the southern,
higher part of the transects and thins to the north
toward the edge of the summit flat (Figures 3-5). The
area of greater thickness roughly corresponds with
the part of the summit flat exhibiting gentler slopes
(Figure 3). Overall average thickness is slightly
greater along the West transect, with a mean
99 £ 44 cm with an & of 6 (Figures 6 and 7).
Along the East transect, the average is 76 + 35 cm.
Combining the data from both long transects and the
crossing transects near the soil pit (Figure 3) yields
a composite mean of 91 + 38 cm. This average rises
to 114 + 49 cm at ¢, of 4 and falls to 80 + 35 cm at &,
of 8 (Figure 7). Uncertainty in the depth estimates
arising from imprecision in digitizing points on the
reflector is not explicitly considered because it is less
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Figure 4. GPR data for the West (top) and East (bottom) transects. Horizontal and vertical scales are in m, and vertical exaggeration is
4.25:1. Arrows highlight the prominent reflector interpreted to be the bedrock surface beneath the regolith. Vertical white lines mark
the points measured along the transect at 18-m intervals used to define the horizontal scale.
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Figure 5. GPR profile for one of the short crossing transects at the soil pit (Figure 3). Arrows highlight the prominent reflector
interpreted to be the bedrock surface beneath the regolith. The dashed vertical line marks the center of the soil pit where bedrock was
not encountered within 92 cm of the surface; GPR data suggest the bedrock contact is at a depth of ~100 cm. The dimensions of the pit
are presented as the black box. Vertical exaggeration is 0.9:1. Upper right shows a field sketch of the cryoturbated soil horizons
observed in the pit and a possible correlation to the GPR data.
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Figure 6. Profiles of the ground surface (green) and regolith (brown) along the West and East transects. Regolith thickness is plotted
at the bottom for comparison. Roughness values for the ground surface (green) and bedrock surface (brown) are presented as mean
+ 1 standard deviation. Dots on the regolith thickness plot mark points digitized in the GPR data to trace the bedrock-regolith
contact (n = number of points along each transect). Vertical exaggeration is 13:1.
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Figure 7. Box and whisker plots of regolith thickness along the West (n = 139) and East (n = 152) transects, as well as for the composite of
all measurements at the Chepeta site (n = 369). Thickness was estimated with 3 different values of dielectric permittivity (¢,): 4, 6 and 8.

than the standard deviation on the depth averages
and because repeat digitizing of the reflector position
did not produce notably different results.

The reflector interpreted as the bedrock surface exhi-
bits notable irregularity, particularly beneath the higher
elevations at the southern end of the transects (Figures 4
and 6). There, depth of the bedrock below the ground
surface varies by as much as 30 cm between adjacent
measurements along the West transect and 44 cm along
the East transect. To evaluate this contrast further,
a topographic roughness (R;) index was calculated as,

R, = [abs(Z,—1 — Z,) + abs(Zy1 — Zp)] + 2

where Zyis the elevation of a point, Zp 1 s the elevation
of the preceding point along the transect, Z,,, is the
elevation of the following point along the transect, and
abs indicates absolute value. Values of R, average
0.14 + 0.1 for the bedrock surface compared to

0.07 = 0.1 for the ground surface, a difference that is
statistically significant (t = 8.9, p < .001). Thus, the
visibly smooth surface of the soil masks a significantly
rougher bedrock surface.

Moreover, roughness of the bedrock surface is not
random. A nonparametric runs test (Wald-Wolfowitz
test) demonstrates that the presence of fourteen runs
relative to the mean in the west transect and twenty
runs in the east transect is significant (p < .01), where
a run is a string of adjacent regolith thickness estimates
consistently above or below the mean value. Particularly
beneath the higher elevations, oscillations of the bedrock
reflector define irregular waves with an amplitude 21 m
over lengths of ~10 m (Figure 4). Because the spacing of
the points digitized to define the reflector was variable, it
is not possible to determine the exact form of the bed-
rock surface. However, it is clear that this roughness is
organized into topography at the multimeter scale that is
completely masked by the regolith.
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Discussion

Regolith thickness and form of the regolith-bedrock
interface

The results of this investigation, comprising half
a kilometer of GPS-referenced GPR survey lines, sup-
port previous predictions, based on limited data, that
regolith thickness on an alpine summit flat is on the
order of 1 m. Although estimated thickness varies in
response to the selected value of ¢,, using an intermedi-
ate value of 6, regolith thickness at the Chepeta site
averages ~90 cm (Figure 7). This conclusion supports
numerical modeling efforts demonstrating that summit
flat regolith thickness stabilizes at ~1 m regardless of
original thickness (R. S. Anderson 2002).

Convergence of the thickness at ~1 m reflects that
a certain amount of regolith holding water against
the bedrock surface accelerates rock weathering, yet
too great a thickness of regolith retards weathering
by insulating the bedrock from thermal and biogenic
disturbances propagating downward from the surface
(Gilbert 1877; Heimsath et al. 1999). A thickness of
~1 m, therefore, seems to provide the optimum con-
ditions for bedrock conversion to regolith, at a rate
that is balanced by the efficacy of frost creep in
moving regolith downslope toward the summit flat
edge (R. S. Anderson 2002).

The realization that the thickness of regolith beneath
a summit flat surface can vary considerably is a notable
outcome of this investigation. Previous work on summit
flats, utilizing scattered natural exposures and isolated
hand-dug pits, was unable to recognize this smaller scale
variability. At the Chepeta site, the standard deviation of
thickness measurements (38 cm) is nearly half as large as
the mean regolith thickness (91 cm), conveying the
degree of variability. Also striking is the full thickness
range; although the average thickness is ~90 cm, the
minimum is <10 cm and the maximum is nearly 2 m.
Thus, whereas the claim that summit flat regolith is thin
is confirmed by the GPR data presented here, the parallel
assertion that summit flat regolith is uniform in thick-
ness is not supported.

Many models of soil mantled landscapes predict that
soil thickness is a function of slope, because downslope
diffusion of soil on steeper slopes can happen at rates that
are faster relative to soil production (Heimsath et al.
1997). However, although soil thickness at the Chepeta
site is generally greater under the crest of the saddle where
slopes are gentler (Figure 3), there is no statistically sig-
nificant relationship between soil thickness and surface
slope across the full array of measurements made from
the GPR data. Instead, regolith thickness is unrelated to
overall slope of the summit flat surface.

Because the ground surface of the Chepeta site is
notably smooth (Figure 6), the variability in regolith
thickness is a consequence of roughness on the bedrock
surface. As seen in Figure 4 and plotted in Figure 6, the
bedrock surface, particularly beneath the crest of the
summit flat where average regolith thickness is greater,
is organized into an irregular pattern of waves with an
amplitude >1 m over horizontal scales of tens of meters.
Because both the West and East transects crossed similar
bedrock highs and lows, the pattern on the bedrock sur-
face must be aligned at least somewhat orthogonal to the
maximum ground surface slope; if the bedrock ridges
paralleled the surface slope, then the GPR transects
would not have crossed them. Without a greater density
of transects to enable a pseudo three-dimensional inves-
tigation of the bedrock surface (Grasmueck, Weger, and
Horstmeyer 2005), the true nature of this pattern cannot
be discerned. Nonetheless, it is clear that the bedrock
surface is not as smooth as the overlying ground.

Previous studies applying geophysics to the mountain
CZ provide a context in which to consider the results
from the Chepeta site. Leopold et al. (2008) employed
GPR and shallow seismic refraction to understand the
arrangement of sedimentary units over bedrock above
treeline at a site in Colorado. This effort was expanded
by later efforts utilizing electrical resistivity tomography
at lower elevations nearby (Leopold et al. 2013).
Collectively this work, which was conducted across
a broader array of topographic settings than the summit
flat considered at Chepeta, demonstrates that regolith
thickness in non-summit flat locations can be consider-
ably greater; regolith imaged on side slopes at one site in
Colorado has a maximum thickness >10 m (Leopold
et al. 2008). Moreover, just as at the Chepeta site, rego-
lith thickness in the Colorado studies exhibits consider-
able lateral variability (Leopold et al. 2008, 2013), and
there is no strong correlation between regolith thickness
and local surface slope. Similar results have been
reported for alpine and non-alpine settings in other
studies (Volkel, Leopold, and Roberts 2001; Sauer and
Felix-Henningsen 2004; Dethier and Lazarus 2006;
Migon and Kacprzak 2014).

A key distinction between the Colorado studies and
the Chepeta site is the report of saprolite atop the bed-
rock in Colorado. The presence of saprolite was not
inferred from the GPR results at the Chepeta site, and
none was encountered in the soil pit. Without deeper
excavations or boreholes, it is unclear whether deeply
weathered material exists here at the regolith-bedrock
boundary. On the other hand, the clay-enriched materi-
als locally exposed at the top of the headwall at the
northern boundary of the Chepeta site may reflect the
existence of saprolite mixed with weathered ash and



mineral dust (Munroe, Ryan, and Proctor 2021).
Overall, the spatial variability of regolith thickness
inferred at the Chepeta site connects with previous
work emphasizing that the mountain CZ can contain
a complicated array of spatially variable sedimentary
layers over bedrock.

Origin of the regolith

The regolith at the Chepeta site is likely a composite of
materials produced by different processes over time.
Physical weathering is certain to be an important
mechanism for decomposing bedrock and rock fragments
at this location. Data from the Chepeta weather station
demonstrate a subzero mean annual temperature (—2.8°C
in 2019, when only 5 percent of hourly measurements
were missing) and frequent oscillations (215 times in
2019) above and below 0°C, which would promote effec-
tive freeze—thaw weathering. Rock buried under a certain
amount of regolith might also spend more time in the
temperature range at which frost cracks expand most
rapidly (S. P. Anderson 1988, 2002). Furthermore, water
trapped within regolith will migrate toward segregation
ice lenses during freeze-up, increasing frost wedging
potential (Walder and Hallet 1985). Together these con-
ditions would accelerate frost shattering beyond rates
typical for bare bedrock outcrops. Some of the regolith
imaged by GPR, therefore, is likely produced through
mechanical breakdown of the local bedrock.

A second source for the fine component of the regolith
at the Chepeta site is eolian deposition of mineral dust.
Dust is currently accumulating at this site at a rate of
~3.3 g/m*/yr (Munroe 2022). Studies of lacustrine sedi-
ment records from elsewhere in the Rocky Mountains
indicate that dust fluxes increased as a result of European
settlement of the Southwestern United States in the nine-
teenth century, so it is unclear how representative this
modern rate is of fluxes over long timescales. On the
other hand, numerous lines of evidence suggest that
dust transport and deposition were enhanced under gla-
cial conditions (Petit et al. 1990; Kohfeld and Harrison
2001; Derbyshire 2003; Ujvéri et al. 2010), so the anthro-
pogenically elevated modern rate might be on the order of
the flux that characterized much of the Quaternary when
global ice volumes were greater than they are today. Bulk
density values of B and C horizons in Uinta alpine soils
average 1.5 g/cm’ (Munroe 2007), and deeper regolith is
likely slightly denser (Mouazen, Ramon, and
Baerdemaeker 2002). Assuming the dust as deposited
has a bulk density half that of the soil (0.75 g/cm3),
a flux of 3.3 g/m*/yr corresponds to an annual vertical
addition of 4.4 x 10™* cm to each square centimeter of the
ground surface. Over a million years, dust would
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accumulate to 4.4 m. This calculation is rudimentary;
however, it emphasizes that dust deposition over
Quaternary timescales could contribute substantially to
the fine fraction of the regolith present atop the bedrock
at the Chepeta site. It is also supported by mixing model
analysis estimating that as much 80 percent of the soil
(<2 mm size fraction) at the Chepeta site is of eolian
origin (Munroe et al. 2020). This insight is notable
because dust deposition is known to be an active process
in many of the mountain ranges where summit flats are
present (e.g., Dahms and Rawlins 1996; Muhs and
Benedict 2006), yet dust accumulation was not explicitly
considered in prior numerical modeling of summit flat
evolution (R. S. Anderson 2002).

Chemical weathering also likely plays a role in the
formation of this regolith. Due to the fundamental ther-
mal dependence of weathering reactions, it is typically
assumed that chemical weathering is less pronounced
under colder conditions (Lasaga 1984; Brady and Carroll
1994). However, dedicated studies have cast doubt on
that assertion, revealing that chemical weathering can
play a key role in the decomposition of bedrock in Arctic
and alpine settings (Dixon, Thorn, and Darmody 2004;
Dixon and Thorn 2005). Throughout the alpine zone of
the Uintas in general, and at the Chepeta site in parti-
cular, field and laboratory investigations have consis-
tently demonstrated an abundance of clay minerals in
the alpine soils (Olson 1962; Bockheim and Koerner
1997). Some of these are illite, demonstrated to be
a constituent of modern dust (Munroe 2014; Munroe
etal. 2015), so not all clays are evidence of local chemical
weathering. On the other hand, some soils at the
Chepeta site are notably enriched in interstratified kao-
linite-illite-smectite, which is not present in the modern
dust (Munroe, Ryan, and Proctor 2021). These minerals
likely formed in situ through weathering of muscovite
and potassium feldspar delivered by eolian activity.
Other soils at the Chepeta site contain beidellite,
a smectite mineral often produced through weathering
of biotite (Munroe, Ryan, and Proctor 2021). The Mg
content of these clays (~1.6 percent Mg) is higher than
that of modern dust (1.2 percent), despite the tendency
of Mg>* to be leached in from soils. Therefore, it has
been proposed that these minerals originated through
the weathering of biotite-bearing volcanic ash deposited
across the Uinta region ~30 Ma during the Oligocene
(Kowallis et al. 2005). Collectively, these results support
a role for in situ chemical weathering of mineral dust
and ash as a third source of regolith at the Chepeta site.

These various contributors to the regolith do not
result in a simple stratified deposit with physically weath-
ered rock on the bottom, weathering ash in the middle,
and dust closest to the surface. Cryoturbation driven by
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the periglacial climate at the Chepeta site is effective at
homogenizing these materials over time. Support for this
proposition comes from field observations of soils
throughout the Uintas, where a uniform layer of loess is
present atop landforms of vastly different age (Bockheim
et al. 2000). Even in the alpine zone near the Chepeta site,
soils in the centers of large sorted polygons, which were
presumably active under more rigorous periglacial con-
ditions during Last Glacial Maximum, are mantled by
a continuous loess cap (Munroe 2007). This situation
suggests that loess accumulates at the soil surface during
intervals of landscape stability, such as the modern inter-
glacial, and is mixed into the solum during times of active
cryoturbation. Given the general dimensions of the
sorted features at the Chepeta site and the relation
between patterned ground size and depth of mixing
(Hallet and Prestrud 1986), it is reasonable to assume
that cryoturbation during glacial times is sufficient to mix
the full thickness of this regolith, even if the ground
surface is generally stable under interglacial conditions.

Implications for the alpine CZ

Irregularities in bedrock surface beneath alpine summit
flats, and the resulting variable regolith thickness, have
implications for how the CZ functions in these settings.
The weathering processes that form regolith from bed-
rock (Graham, Rossi, and Hubbert 2010), the mosaic of
plant communities on the surface (Meyer et al. 2007),
periglacial processes such as cryoturbation (Hallet and
Prestrud 1986), and the storage of shallow groundwater
(Bales et al. 2011) will all likely be influenced, to at least
some degree, by the depth to bedrock. Similarly, varia-
tions in regolith thickness mean that thicker regolith
may be concentrated in local pockets. These deeper
pockets will may slow the lateral movement of soil
water (Hahm et al. 2019), possibly slowing chemical
weathering by leaching (Wilford and Thomas 2013).
Alternatively, in soils prone to moisture deficits, pockets
of thicker regolith may retain a larger soil water reser-
voir, which could benefit plants (Hahm et al. 2019) and
possibly enhance weathering reactions (Langston et al.
2011). The influence of many of these effects could be
heightened in alpine settings like the Chepeta site with
low mean annual temperatures, short growing seasons,
and siliciclastic bedrock deficient in nutrients needed by
plants. Thus, the irregular bedrock topography at the
Chepeta site likely means that the CZ at this location
operates differently than it would if the bedrock were as
smooth as the overlying ground surface.

Recognition that the bedrock surface beneath an
alpine summit flat can be locally irregular also has
implications for the history of these landforms.

Numerical modeling suggests that summit flats arise
through an equilibrium between regolith production
and frost creep (R. S. Anderson 2002), regardless of
starting condition. Yet at the same time, CZ research
across a diverse array of settings has consistently empha-
sized the important role of landscape history as a control
on CZ functioning, as summarized by Guo and Lin
(2016). The roughness of the bedrock surface at the
Chepeta site, and particularly the apparent concentra-
tion of this roughness beneath the ridge crest, is a clue to
the longer-term history of this landform. Perhaps the
bedrock highs and lows imaged by the GPR represent
isolated tors formed during an earlier periglacial interval
that were buried by colluvium transported into the sad-
dle from higher topography to the east and west
(Figure 1) or were progressively submerged by accumu-
lating ash and dust. Or maybe these local high points are
the expression of minor faulting along the crest of the
Uinta anticline during Laramide uplift. Alternatively,
perhaps weathering reactions beneath the regolith,
enhanced by positive feedback processes, have slowly
developed topography in situ on a formerly smooth
bedrock surface. Evaluating these contrasting interpre-
tations is beyond the scope of this study.

Ultimately, the realization that the thickness of rego-
lith in the alpine CZ is spatially variable, regardless of
origin or age, is an important consideration for efforts to
understand how the CZ works. As argued by previous
work (Leopold et al. 2013), conceptual and numerical
modeling of CZ functioning is improved by incorpora-
tion of realistic spatial variability of surficial materials
(Chaplot et al. 2004; Guo and Lin 2016). Efforts to
generate gridded estimates of regolith thickness at
large spatial scales are a significant step in this direction
(Wald, Graham, and Schoeneberger 2013; Pelletier et al.
2016), yet ground-truthed studies are still needed at the
local scale, particularly for settings like the mountain CZ
with steep environmental gradients and complicated
geologic histories (e.g., Leopold et al. 2013).

Limitations and directions for future work

Although the GPR approach employed here generated
orders of magnitude more information about regolith
thickness than would be possible by hand excavations,
this method does have limitations that should be
acknowledged and used to guide future work. The first
is that only one summit flat was investigated, and with
two primary transects. To expand on the results
reported here, similar surveys should be conducted
across other summit flats, perhaps with a range of slopes
or aspects. The extensive summit flat landscape within
the Uintas would provide the opportunity to do this in



locations with generally consistent bedrock lithologies.
Expanding this approach to other mountain ranges
where summit flats are present would permit the role
of lithology and weathering resistance to be investigated.

A second limitation is the reality that a GPR system
simply records the two-way travel time of radar waves
and that to convert these results into depths requires an
estimate of the radar velocity within the regolith. This
project took a conservative approach, using a range of
velocities (noted by varying €, values) plausible for the
sandy materials exposed in hand excavations at the
Chepeta site. These values were further refined by com-
paring the GPR results from adjacent to the deep soil pit,
where no bedrock was encountered. Therefore, it is
likely that these regolith thickness estimates are realistic.
Nonetheless, additional investigations to calculate
a radar velocity over reflectors of known depth, along
with direct calculation of velocity through the common
midpoint technique (Jacob and Urban 2016), which was
not possible with the bistatic antenna used here, could
improve these depth estimates further.

An additional consideration is that GPR is not the
only geophysical technique useful for evaluating the
stratigraphy of sediments and rock in the shallow CZ.
Shallow seismic refraction surveys could be employed in
concert with GPR to improve interpretative power
(Leopold et al. 2008). Passive seismic techniques are
also promising (Stanko and Markusi¢ 2020). This
approach was attempted at the Chepeta site, but high
wind speeds produced resonance of the seismometer at
a frequency similar to that of the underlying soil, making
it impossible to calculate regolith thickness.
Nonetheless, this approach might be fruitful under
more benign weather conditions and should be explored
further. Finally, methods for measuring electric resistiv-
ity have been shown to be helpful in imaging the CZ and
are particularly appropriate for delineating frozen and
nonfrozen materials (Leopold et al. 2013). Future work
on summit flats in the Uintas and elsewhere would
benefit from a combination of these methods.

Conclusion

Ground-penetrating radar surveying reveals that the
thickness of regolith overlying the bedrock on an alpine
summit flat in the Uinta Mountains (Utah, USA) averages
91 + 38 cm when calculated with a dielectric permittivity
(e,) of 6. This result corroborates previous studies pro-
posing that regolith thickness on these landforms is on
the order of ~1 m. Regolith thickness exhibits consider-
able previously unrecognized spatial variability; this rea-
lization was made possible by the density and lateral
extent of the GPR-derived depth measurements, which
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greatly exceed what would be possible through even the
most laborious physical excavations. Recognition that
regolith thickness can vary considerably beneath an
alpine summit flat has implications for soil formation,
carbon storage, and the transmission and storage of shal-
low groundwater, as well as evolutionary models for
periglacial mountain landscapes.
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