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Abstract

Use of generative models and deep learning for physics-based systems is currently
dominated by the task of emulation. However, the remarkable flexibility offered
by data-driven architectures would suggest to extend this representation to other
aspects of system analysis including model inversion and identifiability. We in-
troduce inVAErt (pronounced invert) networks, a comprehensive framework for
data-driven analysis and synthesis of parametric physical systems which uses a
deterministic encoder and decoder to represent the forward and inverse solution
maps, a normalizing flow to capture the probabilistic distribution of system out-
puts, and a variational encoder designed to learn a compact latent representation
for the lack of bijectivity between inputs and outputs. We formally analyze how
changes in the penalty coefficients affect the stationarity condition of the loss func-
tion, the phenomenon of posterior collapse, and propose strategies for latent space
sampling, since we find that all these aspects significantly affect both training and
testing performance. We verify our framework through extensive numerical ex-
amples, including simple linear, nonlinear, and periodic maps, dynamical systems,
and spatio-temporal PDEs.

1 Introduction

In the simulation of physical systems, an increase in model complexity directly corresponds to an
increase in the simulation time, posing substantial limitations to the use of such models for appli-
cations that depend on time-sensitive decisions. Therefore, fast emulators learned by data-driven
architectures and integrated in algorithms for the solution of forward and inverse problems are be-
coming increasingly successful.

Several contributions in the literature have proposed architectures for physics-based emulators de-
signed to limit the number of model evaluations during training. These include, for example,
physics-informed neural networks (PINN) [27], deep operator networks (DeepONet) [35], and
transformers-based architectures [18]. Other approaches include Gaussian Processes [42], Bayesian
networks [62], generative adversarial networks (GAN) [63], diffusion models [58], optimal trans-
port [37], normalizing flows [33, 40] and Variational Auto-Encoders (VAE) [65].

When using data-driven emulators in the context of inverse problems, other difficulties arise. In-
verse problems are often ill-posed as a result of non-uniqueness of solutions, or of ill-conditioning
due to high-dimensionality, data-sparsity, noise-corruption, and nonlinear response of the physical
systems [26, 5, 53, 4, 19]. Thus, robust solutions heavily rely on regularization of the Tikhonov-



Phillips type [31, 26, 5], on prior specification in Bayesian inversion [53, 11, 32] or, more recently,
on learning data-driven regularizers (see, e.g., the Network Tikhonov approach [34]).

First, we would like to emphasize that, even if forward and inverse problems are generally treated
separately in the literature, they are strongly related. A uniform emulator accuracy in the entire input
space, for example, is not required for the accurate solution of inverse problems, and accuracy only
around regions of high posterior density might suffice. In this context, incremental improvements of
data-driven emulators during inversion is explored in [59] in the context of variational inference, [8]
for residual-based error correction of neural operators, and [10] for adaptive annealing. In addition,
an increasing number of studies in the literature are looking at data-driven architectures that can
jointly learn the forward and inverse solution map [20, 57, 54].

Second we remark that, in many of the previous contributions, regularization and strong assumptions
on the distribution of model outputs or parameters are used to promote certain solutions in ill-posed
inverse problems. However, this may not be fully informative on the nature of such problems. In
other words, there may be several possible inputs belonging to a manifold (or, more generally, a
fiber or a level set) embedded in the ambient input space, that constitute the preimage of a given
observation. In this case, instead of selecting a solution with a particular structure, we would like to
characterize the entire manifold of possible solutions to the problem. Discovering this manifold is
analogous to the study of the identifiability of a physical system with a non-injective input-to-output
map. Thus, understanding and characterizing such manifold becomes essential for gaining insights
into the system and generating accurate emulators efficiently.

In this paper, we introduce inVAErt networks, a new approach for jointly learning the forward and
inverse model maps, the distribution of the model outputs, and also discovering non-identifiable
input manifolds. We also claim the following novel contributions

• An inVAErt network goes beyond emulation, learning all essential aspects of a physics-
based model and combining these aspects in a unique surrogate, or, in other words, per-
forming model synthesis.

• Our approach does not require strong assumptions about the distribution of inputs and
outputs, and provides a comprehensive sampling-based (nonparametric) characterization
of the set of possible solutions to an inverse problem.

• We formally analyze the interaction between penalty selection and accuracy in the emulator
and decoder through first-order loss stationarity. In addition we investigate the phenomenon
of posterior collapse, and explore several latent space sampling strategies to improve infer-
ential performance.

After an inVAErt network is trained, it greatly enhances the possibility of interacting in real-time
with a given physical model, by providing input parameters, spatial locations and time corresponding
to a single or multiple observations. For the solution of Bayesian inverse problems, an inVAErt
network can be seen as jointly learning both an emulator and a proposal distribution, hence it can be
easily integrated, for example, in MCMC simulation. For the interested reader, the source code and
examples can be found at https://github.com/desResLab/InVAErt-networks.

While finalizing this paper, we became aware of a similar network architecture studied in [1] and
later applied to the problem of quantum chromodynamics [2]. However, there are significant dif-
ferences between the proposed inVAErt networks and the architecture in [1]. First we separate the
emulator from the variational encoder, opening new possibilities to use architectures specifically de-
signed to learn space/time dependent solutions on structured or unstructured variable arrangements.
Second we train a density estimator for the model outputs that enables fast selection of representative
outputs in the training dataset, and is particularly useful to rank output combinations for inference
with missing data. Third, we investigate how the choice of the latent space dimensionality affects
inversion accuracy, and propose three possible approaches to generate latent space samples that are
better adapted to specific model outputs. Fourth, we investigate an extensive number of numeri-
cal tests, from simple maps to ODEs and PDEs where time and space are explicitly considered as
parameters. Fifth, we formally analyze the interaction between penalty selection, emulator and de-
coder accuracy under first-order loss stationarity, and discuss the phenomenon of posterior collapse.
Finally, we have performed endless tests to minimize the number of network parameters and training
samples without compromising accuracy.
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In addition, we would like to point out the similarities between our approach and the emerging
paradigm of simulation-based (or likelihood-free) inference (SBI, see, e.g., [12]). SBI combines
amortized inference with a neural approximation of the posterior distribution, likelihood function or
likelihood ratio [41, 13, 38]. Once trained, the conditional distribution corresponding to a new set of
observations is estimated without requiring additional model solutions. The same can be achieved
by training our inVAErt networks from deterministic or noisy inputs and outputs. In the first case,
the analysis of the latent space is indicative of the structural identifiability of the system, in the
second structural and practical identifiability coexist.

The paper is organized as follows. In Section 2, we provide an in-depth description of each compo-
nent in the inVAErt network. Section 3 presents a rigorous analysis of its properties, with a focus
on assessing the stationarity of the loss function gradients and latent space sampling. A number of
numerical examples, covering input-to-output maps and the solution of nonlinear ODEs and PDEs
in both spatial and temporal domains, are discussed in Section 4.

2 The inVAErt network

The network has three main components, an architecture-agnostic neural emulator, a density esti-
mator for the model outputs, and a decoder network equipped with a VAE for latent space discovery
and model inversion. Each of these components is explained in detail in the following sections.

2.1 Neural emulator

Consider a physics-based system defined through an input-to-output map or the solution of an ordi-
nary or partial differential equation

y = F (x, t,Φ) . (1)

The operator F can be described as a generic emulator (sometimes referred to as observation opera-
tor [53]), mapping the spatial coordinates x ∈ R

D, time t and a set of additional problem-dependent
parameters Φ = {ϕ1, ϕ2, · · · } to the system outputs y ∈ Y . To simplify the notation, we lump the
model inputs as v = [x, t,Φ] ∈ V such that this forward process can be rewritten as

y = F (v) = NNe (v;θe) , (2)

where a generic encoder, or neural emulator NNe with trainable parameters θe is used in place of
the abstract map F (·).

In practice, training NNe from (v,y) pairs can be challenging for complex physics-based systems
and one usually provides additional information as input, or designs specific network architectures
to improve accuracy. For example, recurrent or residual networks [43, 17, 56] are used to emulate
the evolution operator (flow map) of dynamical systems. These networks utilize one or multiple
solutions in the past to predict the future response. When a physical system involves space, convo-
lutional neural networks (CNN) or message-passing graph neural networks (GNN) [52, 47, 22] can
be used to gather neighbor information in structured and unstructured discretized domains, respec-
tively. Thus, to approximate the system output y at time instance tn and location x, i.e. y(tn,x,Φ),
we introduce the auxiliary set Dv of the form:

Dv =
{
· · · ,y

(
tn−2,B(x),Φ

)
,y

(
tn−1,B(x),Φ

)}
,

where B(x) represents the neighborhood of node x when dealing with a mesh (graph)-based dis-
cretization of a physical system that involves space, e.g. k-hop in GNNs [22]. For instance, in 1D,
we can have B(x) = {x − ∆x, x + ∆x} as a collection of the left/right neighbors at each node.
Consequently, our neural emulators can be redefined in general as: y = NNe(v,Dv;θe), and Dv

is disregarded when dealing with easy-to-learn forward maps.

In the numerical examples of Section 4 involving time discretizations, we adopt the ResNet [43]
model, which learns to update the value of the state y from two successive time steps as

y(tn,x,Φ) = y(tn−1,x,Φ) +NNe (v,Dv;θe) , (3)

and Dv can be formulated to contain solutions from a larger number of steps in the past. This simple
change in architecture with respect to fully-connected networks leads to significantly more accurate
emulators.
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2.2 Density estimator for model outputs

Besides the forward emulator, we would also like the ability to generate representative output sam-
ples y ∈ Y . Consider the situation where a collection of input samples v ∼ pv(v) (this is usually
taken as an uniform distribution for the test cases in Section 4) is available, and the corresponding
outputs y have distribution py(y), i.e. F(v) = y ∼ py(y). In this context, we train a K-layer
Real-NVP normalizing flow density estimator [14]

y ≈ zK = NNf (z0;θf ) , where z0 ∼ N (0, I) . (4)

Normalizing flows [46] (in their discrete form) consist of a collection of K bijective transformations
T = fK ◦ fK−1 ◦ · · · ◦ f1 (parameterized using θf = θf,1 ∪ · · · ∪ θf,K ) trained to learn the
mapping between an easy-to-sample distribution to the density of the available samples. Under this
transformation, the underlying density is modified following the change of variable formula

py(y) = pz(z)| detJ|
−1, or, equivalently log py(y) = log q0(z0) +

K∑

k=1

log

∣∣∣∣
∂zk

∂zk−1

∣∣∣∣
−1

, (5)

where q0(·) is usually the multivariate standard normal N (0, I) and zk = fk(zk−1;θf,k), k =
1, . . . ,K. The parameters θf are determined by maximizing the log-likelihood (MLE) of the avail-
able samples {yi}

N
i=1, i.e.

N∑

i=1

log py(yi) =
N∑

i=1

log q0(zi,0)−
N∑

i=1

K∑

k=1

log
∣∣∣ ∂zi,k

∂zi,k−1

∣∣∣ . (6)

Of the many possible choices for the transformation fk, k = 1, . . . ,K, an ideal candidate should
be easy to invert and the computational complexity of computing the Jacobian determinant should
increase linearly with the input dimensionality. Dinh et al. propose a block triangular autoregres-
sive transformation, introducing the widely used real-valued non-volume preserving transformations
(Real-NVP [14], but several other types of flows are discussed in the literature, see, e.g. [33, 40]).
Given dim(y) = m, the method of Real-NVP considers a m∗ < m and defines the bijection
zk = fk(zk−1;θf,k) through the easily invertible affine coupling

[zk]1:m∗ = [zk−1]1:m∗ ,

[zk]m∗+1:m = [zk−1]m∗+1:m ⊙ exp[sk([zk−1]1:m∗)] + tk([zk−1]1:m∗) ,
(7)

where [·]a:b is used to denote the range of components from a to b included, sk ∈ R
m∗

→ R
m−m∗

and tk ∈ R
m∗

→ R
m−m∗

are the scaling and translation functions implemented through dense
neural networks, and ⊙ denotes the Hadamard product. We alternate the variables that remain
unchanged in each layer (see Section 3.5 in [14]) and use batch normalization as proposed in [14].
Finally, observe how the above coupling does not apply to one-dimensional transformations, i.e.
m = 1, y ∈ R. For such cases, we concatenate to y auxiliary independent standard Gaussian
samples.

By training a density estimator on y ∼ py(y), we can quickly evaluate the likelihood of a given
output y, determining if it is representative or rare with respect to the selected training data. This
provides an efficient way to quantify the expected performance of the decoder. A normalizing-flow
based density estimator is also essential to provide information on the correlation between different
outputs in y. For situations where we would like to identify model parameters based on experimental
measurements with missing data, the trained density estimator provides valuable information on
possible ranges for the missing outputs that were seen during training. For example, assume we
would like to determine all parameters v that correspond to y∗ = [y∗1 , y

∗
2 , y3], where the value of y3

is missing. In such a case, one can sample a number of y from the trained density estimator and then
replace y1, y2 with the fixed values y∗1 , y

∗
2 . Next, we rank the samples by the corresponding density

values in order to select the most probable y3 compatible with y∗1 and y∗2 .

2.3 Inverse modeling

Consider the situation where the dimension of the output space Y is smaller than the dimension of
the input space V , i.e., dim(Y) < dim(V).
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In this case, to every input v we can associate a manifold1 My embedded in V with dim(My) ≤
dim(V) containing all the inputs producing the same output as v, i.e.,

F(v′) = F(v) = y, ∀v′ ∈ My.

As a result, it will not be possible to distinguish between two inputs v,v′ ∈ My from their outputs,
or, in other words, the inputs in My are non-identifiable from their common output y. A parameter
v ∈ V is identifiable by the map F if F(v) = F(v′) = y implies v = v′ [49], that is, when My =
{v}. In general, we have that My

1
∩My

2
= ∅ if y1 ̸= y2. The collection of distinct manifolds

My forms a partition of V with respect to a certain forward operator F and the dimensionality of
My may not be constant over V , depending on the rank of the Jacobian ∇F .

A dimensionality mismatch between v and y precludes the existence of an inverse, and may pose
difficulties when constructing a pseudo-inverse

v = G (y) , (8)

for which F
(
G(y)

)
= y and G is the inverse or pseudo-inverse operator. To overcome this problem

and restore bijectivity, we introduce a latent space W such that dim(V) ≤ dim(Ỹ) where Ỹ =

W × Y and ỹ ∈ Ỹ is obtained via concatenation as ỹ = [w,y]T with w ∈ W . This is similar to
the concept of invertible neural networks in [3] and can be understood as a dim(W)-dimensional
extension of Y . When the dimension of My is constant, each one of the manifolds can be identified
with the latent space W . Otherwise, W must have a sufficiently high dimensionality to include the
latent space representation of each My . As a concrete example, when all the above spaces are vector
spaces and the forward map F is linear, i.e. with the matrix representation F ∈ R

dim(Y)×dim(V), the
manifolds have the explicit form My = v∗ +Ker(F), for any particular v∗ satisfying Fv∗ = y.
Therefore, each one of them can be identified with the kernel, or the null space Ker(F) of map F.

We also consider the possibility that dim(Ỹ) > dim(V). As a consequence of the Whitney em-
bedding theorem [61], any smooth manifold can be embedded into a higher dimensional Euclidean
space. Intuitively, it is simpler to approximate a lower dimensional structure in a higher dimensional
space. In fact, an embedding into a high-dimensional space may smooth some geometric singulari-
ties, i.e., self-intersections, cusps, etc., that appear in a low-dimensional space. Think, for example,
about a curve that does not self-intersect if represented in R

3, but it does when projected on R
2.

A graphical representation of this decomposition is illustrated in Figure 1, where v ∈ R
3, y ∈ R

2

and w ∈ R, such that My is an one-dimensional fiber. In this case, the space Ỹ is obtained
by extending Y along the w direction. As discussed and shown in Figure 1, all v ∈ My∗ are

mapped to a single y∗ ∈ Y through F , while F(My∗) varies in Ỹ when augmented with w. Also,
as mentioned above, we would like to remark that under linear settings, i.e. when F = F, the
above discussion is consistent with the rank–nullity theorem, stating that dim (My) + dim (Y) =
dim (V).

In this paper, our goal is to learn the manifold My , conditioned on each model output y, i.e.
F(My) = y, using a VAE, or more precisely, a conditional VAE [50]. To do so, we consider a
W-valued stochastic process {W v}v∈V indexed by every v ∈ V , such that the probability density
of W v is concentrated near the image of My in W , which is responsible for the information gap
between the spaces V and Y . Hence, we seek a neural network NNv(· ;θv) : V → W such that

NNv(v;θv) = [µv,σv], W v ∼ N
(
µv,diag(σ

2
v)
)
, (9)

and another neural network NNd(·, · ;θd) : W × Y → V such that the parameters (θv,θd) are
optimally trained and

EW v
∥F

(
NNd(W v,y;θd)

)
− y∥2 ≈ 0 . (10)

Therefore, W v represents the missing information about v with respect to the forward pass y =
F(v), with samples generated during training [29] as

W v = µv + σv ⊙ ϵ with ϵ ∼ N (0, I) .

1In our discussion we assume the preimage of a single output {y} to have a local Euclidean structure,
consistent with the nature of the problems we analyze in Section 4. However, the proposed approach is based
on sampling and therefore, in principle, we can deal with more general settings and therefore the term manifold,
with an abuse of terminology, is sometimes used as a synonym for fiber, or level set of F .
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Figure 1: A graphical illustration of a non-identifiable parameter embedding and how input-output
bijectivity is restored by extending the output space.

We also impose that the samples of W v provide unbiased information about v in the sense that

EW v
∥NNd(W v,F(v);θd)− v∥2 ≈ 0, ∀v ∈ V . (11)

Remark. We use the notation w to denote a generic latent variable from the space W , while we
utilize Wv to show the dependence of latent space w.r.t the training samples of v.

2.3.1 An introduction to variational autoencoders

The VAE uses deep neural network-based parametric models to handle the intractability in tra-
ditional inference tasks, as well as to learn a low-dimensional embedding of the input feature
v [29, 30, 21, 15]. Given a distribution v ∼ pv(v) to be learned, we consider an unobserved
latent variable w ∼ pw(w), that correlates to v via the law of total probability

pv(v) = Ew∼pw(w)

[
p(v|w)

]
. (12)

The conditional probability p(v|w) quantifies the relation between a latent variable w (from an
easy-to-sample prior distribution pw(w), usually a standard Gaussian) and a specific input feature
v ∼ pv(v). However, computing p(v|w) is usually intractable, so one applies Bayes theorem to get

pv(v) = Ew∼pw(w)

[
pv(v)p(w|v)

pw(w)

]
= Ew∼p(w|v)

[
p(v,w)

p(w|v)

]
. (13)

Drawing w samples from the exact posterior distribution p(w|v) is also intractable but a variational
approximation q(w|v) ≈ p(w|v) can be used instead. The Jensen’s inequality and a log transfor-
mation are then applied to obtain

log pv(v) ≥ −KL
[
q(w|v)∥pw(w)

]
+ Ew∼q(w|v)

[
log p(v|w)

]
, (14)

where the term KL denotes the Kullback–Leibler (KL) divergence between two distributions p1 and
p2, defined as

KL
[
p1(x)∥p2(x)

]
= Ex∼p1(x)

[
log p1(x)− log p2(x)

]
, (15)

and the right hand side of (14) is also referred to as the evidence lower bound (ELBO). Then,
maximizing log pv(v) is equivalent to minimize the negative ELBO, leading to an optimization
problem of the form

q(w|v), p(v|w) = argmin
q̃(w|v;δ),p̃(v|w;τ )

{
KL

[
q̃(w|v; δ)∥pw(w)

]
− Ew∼q̃(w|v;δ)

[
log p̃(v|w; τ )

]}
.

(16)
The candidate distributions, q̃(w|v; δ) and p̃(v|w; τ ), are parameterized by variational and gen-
erative parameters, δ and τ , respectively [29]. The first objective of equation (16) aims to align
q̃(w|v; δ) with the prior distribution of w (usually a standard Gaussian w = N (0, I)), while the
second objective focuses on minimizing the reconstruction error. As previously mentioned, VAE
models both q̃ and p̃ via deep neural networks and q̃ is usually chosen as an uncorrelated multivari-
ate Gaussian distribution [30], with mean and variance equal to

δ = [µv,σv] = NNv(v;θv) ,

q̃(w|v; δ) = N
(
µv,diag(σ

2
v)
)
.

(17)
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The network NNv is referred to as the variational encoder, characterized by the trainable parameter
set θv . Finally, (16) is solved by stochastic gradient descent using the reparameterization trick [29].
This ensures the gradient and expectation operator can be exchanged, while also requiring minimal
modifications to the deterministic back-propagation algorithm.

2.4 InVAErt network training

A complete training workflow of the proposed inVAErt network is illustrated in Figure 2. Forward
model evaluations are learned using the deterministic emulator NNe. The network learns to gen-
erate model outputs from their density thanks to the normalizing flow density estimator NNf . The
non-identifiable manifold My and the inverse model map are learned through the variational en-
coder and decoder (NNv, NNd). As mentioned earlier, the auxiliary input data Dv = {Dvi

}Ni=1
only helps the emulator NNe to approximate complex forward processes and here we include it for
generality. Besides, if not specified otherwise, we adopt notations µ,σ instead of µv,σv in the
following sections for simplicity.

Figure 2: Training diagram for the inVAErt network. Emulator and density estimator are colored in
gray, as training can be performed separately for these components using the true outputs y.

For a given collection of N independent samples v ∼ pv(v) in V (e.g. uniformly distributed as
assumed in the numerical examples in Section 4) and their corresponding outputs {(vi,yi)}

N
i=1, an

optimal set of parameters θ = θe ∪ θf ∪ θv ∪ θd can be obtained by minimizing the following loss
function:

L = λeLe + λvLv + λfLf + λdLd + λrLr , (18)

where

Le(θe) =
1

N

N∑

i=1

∥yi − ŷi∥
2
2 ,

Lv(θv) =
1

2 ·N

N∑

i=1

dim(w)∑

k=1

(
µ2
i,k + σ2

i,k − log(σ2
i,k)− 1

)
,

Lf (θf ) = −
1

N

N∑

i=1

(
log q0(zi,0) +

K∑

k=1

log
∣∣∣ ∂zi,k

∂zi,k−1

∣∣∣
−1)

,

Ld(θv,θd) =
1

N

N∑

i=1

∥vi − v̂i∥
2
2 ,

Lr(θe,θv,θd) =
1

N

N∑

i=1

∥yi −
̂̂yi∥

2
2 , (19)

denote the forward MSE loss for the emulator NNe, KL divergence loss for the VAE encoder NNv ,
MLE loss for the Real-NVP density estimator NNf , reconstruction MSE loss for the decoder model
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NNd and another forward MSE loss to constrain the inverse modeling, respectively. Besides, λe,
λv , λf , λd, λr are penalty coefficients associated with each loss function component.

Note that, in the current implementation, the training of an inVAErt network can be accomplished by
independently training (1) the forward emulator (NNe), (2) the density estimator (NNf ) and (3) the
inverse model (NNv +NNd), using the labels {yi}

N
i=1 (instead of their predicted values) for each

of these three tasks. To further emphasize this fact, in Figure 2, we use gray color for the network
components that can be trained separately, and denote the output labels as y. However, end-to-end
training might be required for extensions to stochastic models or noisy inputs and outputs, which
are not discussed in this paper. A pseudocode for further explaining the current training workflow is
given in Algorithms 1 to 3.

Algorithm 1 Training the emulator NNe using the dataset {vi,yi}
N
i=1

1: for epoch = 1, 2, · · · do
2: for i = 1 : N do
3: ŷi = NNe(vi,Dvi

;θe)
4: end for
5: Calculate the MSE loss Le using the predictions ŷi and the labels yi

6: Optimize θe through gradient descent w.r.t Le

7: end for

Algorithm 2 Training the density estimator NNf using only the dataset {yi}
N
i=1

1: for epoch = 1, 2, · · · do
2: for i = 1 : N do
3: zi,0 = NN−1

f (yi;θf )
4: end for
5: Calculate the negative log-likelihood loss Lf from each map yi → zi through NF
6: Optimize θf through gradient descent w.r.t Lf

7: end for

Algorithm 3 Training the inverse model (NNv, NNd) using the dataset {vi,yi}
N
i=1

1: for epoch = 1, 2, · · · do
2: for i = 1 : N do
3: [µi,σi] = NNv(vi;θv) ▷ VAE encoding
4: wi = µi + σi ⊙ ϵ , ϵ ∼ N (0, I) ▷ wi ∼ q(wi|vi) = N (µi,σ

2
i )

5: v̂i = NNd(wi,yi;θd) ▷ Decoding

6: ̂̂yi = NNe(v̂i,Dvi
;θe) ▷ Emulator re-constraining

7: end for
8: Calculate the KL divergence loss Lv using the predicted means µi and variances σi

9: Calculate the MSE loss Ld using the inverse predictions v̂i and the exact inputs vi

10: Calculate the MSE loss Lr using the emulator predictions ̂̂yi w.r.t v̂i, and the labels yi

11: Optimize (θv,θd) through gradient descent w.r.t the joint loss λdLd + λvLv + λrLr

12: end for

Note that the loss Lr is consistent with condition (10), where the forward operator F is approximated
by the previously trained neural emulator NNe (using Lr to fine-tune the emulator parameter θe

is not recommended). However, for systems with less complex inverse processes, imposing Lr is
usually not necessary for achieving good performance. Therefore, we do not enforce Lr in a few of
our numerical experiments (e.g. Section 4.1, non-periodic part of Section 4.2, Section 4.3).

2.5 InVAErt network interrogation

Once trained, an inVAErt network can be used to answer a number of interesting questions about the
physical system it synthesizes. Essentially, we have the ability to control two trained samplers on y
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and w to investigate different types of inverse problems, and use the trained emulator for verification
or additional data generation. A diagram of how the network is used during inference is shown in
Figure 3. Note that appropriate auxiliary data must be used when evaluating a trained emulator from
an inverse prediction v̂, hence the notation Dv̂

Figure 3: Sampling and inference diagram for the inVAErt network.

We might be interested, as a first use case, in sampling from My∗ , the manifold of input parameters
corresponding to the specific model output y∗. To do so, we sample a number of latent space
realizations w from a multivariate standard normal or, alternatively, we use one of the approaches
discussed in Section 3.3. We then concatenate these realizations with the observation y∗ and feed the
resulting vector to the decoder. Note that this approach produces multiple possible input parameters
and therefore characterizes the inverse properties of the system in a way that is superior to most
regularization approaches, where a single solution is promoted, instead of the My∗ manifold. Note
also that the inputs v̂ obtained from the decoder can include time and spatial variables (see examples
in Section 4.4 and 4.5).

Alternatively, we can sample from the density of the model outputs y using NNf and set a constant
value w∗ for the latent variable. Ideally, decoding under this process, as opposed to sampling from
My , allows one to approximate the manifold transverse to My (which, in the linear case, coincides
with the orthogonal complement (M⊥

y = V \My). This transverse manifold is embedded in V ,
and is associated with the highest sensitivity in the model outputs.

In addition, we can also determine a local collection of non-identifiable neighbors of a given input
v∗. To do so, we decode the concatenation of F(v∗) and samples of w from the multivariate normal
distribution N

(
µv∗ ,diag(σ2

v∗)
)
, as obtained from the variational encoder NNv for the input v∗.

This process should help in parameter searches to identify directions along which the cost function,
formulated in terms of the system outputs, remains constant.

Additional examples related to the practical interrogation of an inVAErt network are provided in
Section 4.

3 Analysis of the method

To successfully train the proposed inVAErt network, we empirically find that is important to select
appropriate penalty coefficients in (18) and avoid posterior collapse. Thus we formally investigate
these two aspects through first-order stationarity conditions in the loss function. In doing so, we
focus on training NNv, NNd for inverse predictions, and assume the exact forward model F is
utilized to compute Lr, while in practice, it is replaced by the trained emulator NNe. Additionally,
we assume F is Fréchet differentiable. As a consequence, its first-order Taylor expansion at the
input v has the form:

F(v + α∆v) = F(v) + α∇F(v)∆v + o(α) , (20)

where ∇F denotes the Jacobian matrix of F with respect to the input v, and the notation o(α)
represents any term satisfying o(α)/α → 0 as α → 0.

First, note that the relations (10) and (11) lead us to an optimization problem of the form

NNd, NNv = argmin
D,V ∈D,V

T (D ,V ) ,

= argmin
D,V ∈D,V

[
λrJ(D ,V ) + λdH(D ,V ) + λvK(V )

]
, (21)
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with the smooth candidate functions D , V belonging to some general vector spaces D and V,
respectively. The target functional T : D × V → R is composed of three objective functionals J ,
H , K corresponding to our loss function components Lr,Ld and Lv in equations (19).

Let {(vi,yi)}
N
i=1 (disregarding, for simplicity, the auxiliary data Dv) be a set of i.i.d training sam-

ples, and we associate each sample with a set of standard Gaussian random variables {ϵij}
N,M
i,j=1. We

then define wij = V (vi)ϵij = µi+ ϵij ⊙σi to indicate the latent realization obtained from the i-th
training sample by adding noise ϵij .

The first functional J : D × V → R, as our main objective, consists of a discrete version of
equation (10), and enforces consistency between the forward and inverse problems

J(D ,V ) :=
1

2 ·N ·M

N,M∑

i,j=1

∥F
(
D(wij ,yi)

)
− yi∥

2
2 , (22)

where we use
∑N,M

i,j=1 in place of the nested sum
∑N

i=1

∑M
j=1. The first constraint H : D×V → R

focuses on minimizing the reconstruction loss of the system input:

H(D ,V ) :=
1

2 ·N ·M

N,M∑

i,j=1

∥D(wij ,yi)− vi∥
2
2 . (23)

Finally, the second constraint K : V → R promotes compactness in the support of w by minimizing
the divergence between the posterior distribution of the latent variables and a standard normal prior.
While any statistical measure of discrepancy between distributions can be used, here we adopt the
KL divergence (15), resulting in

K
(
V
)
:=

1

2 ·N

N∑

i=1

dim(w)∑

k=1

(
µ2
i,k + σ2

i,k − log(σ2
i,k)− 1

)
. (24)

In practice, a local minimizer of the full objective may not attain J(D ,V ) = 0, H(D ,V ) = 0
nor K(V ) = 0. However, we can still affirm that the local minimizer must satisfy the stationarity
conditions for the full objective. Hence, to better understand and interpret the results obtained
using our approach, we determine the first-order conditions for a local minimizer of T . In the
following sections, we discuss how these conditions yield insights into the trade-off between forward
prediction errors, decoding errors and the phenomenon of posterior collapse.

3.1 Trade-off between forward prediction and decoding errors

The first-order stationarity conditions of the decoder involve only the functionals J and H:

0 = δT (D ,V ; ∆D) = λrδJ(D ,V ; ∆D) + λdδH(D ,V ; ∆D) , (25)

where the δ(·) operator computes the Gâteaux derivative. Using the expressions derived in Ap-
pendix A, (25) becomes:

0 =

N,M∑

i,j=1

〈
λr∇F

(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)
+ λd

(
D(wij ,yi)− vi

)
,∆D(wij ,yi)

〉
,

(26)
where in practice, the perturbations ∆D depend on the characteristics of the decoder network. If a
sufficiently flexible architecture is selected, then for any i, j and an arbitrary ∆D, the decoder can
produce a feasible perturbation ∆D such that

∆Dij(wkl,yk) =

{
∆D , k = i, l = j

0 , otherwise
. (27)

Then (26) implies

0 = λr∇F
(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)
+ λd

(
D(wij ,yi)− vi

)
, ∀ i, j . (28)
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This relation suggests a trade-off between the forward prediction and the decoding error. On one
hand, we deduce

D(wij ,yi) = vi −
λr

λd

∇F
(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)
, ∀ i, j . (29)

and therefore errors in the approximation of F with NNe when training (NNv, NNd) might neg-
atively affect the decoder. This suggests, for example, increasing the value of λd while letting λr

fixed can reduce bias in D . On the other hand, if the Jacobian of F is full-rank, we then have

F
(
D(wij ,yi)

)
= yi −

λd

λr

(
∇F

(
D(wij ,yi)

)T)+(
D(wij ,yi)− vi

)
, ∀i, j , (30)

where (·)+ denotes the Moore-Penrose pseudo-inverse. Therefore, any error in the decoder becomes
a forward prediction error. A decoder error is also scaled by the pseudo-inverse of the Jacobian, and
thus depends on the local conditioning of the problem at D(wij ,yi). Furthermore, this effect is
proportional to λd/λr , showing that a balance must be reached when modulating the combina-
tion of λd, λr, based on the expected training complexity of the decoder and the accuracy of the
trained emulator, respectively. For instance, when dealing with difficult-to-learn forward maps and
so the expected emulator accuracy is limited, one would expect a relative large decoder error in
equation (29) which can be mitigated by choosing a larger λd and a smaller λr in (29). This, how-
ever, comes at the expense of increasing the forward prediction error in (30). In practice, we find
a suitable choice by letting λd ≫ λr, which can effectively improve the decoder training when the
forward map F is replaced by the trained emulator.

As an illustrative example, we evaluate these conditions when F is a full-rank linear map F. In this
case, (28) becomes

0 = FT
(
FD(wij ,yi)− yi

)
+

λd

λr

(
D(wij ,yi)− vi

)
, ∀i, j , (31)

whence

D(wij ,yi) = (FTF+
λd

λr

I)−1(
λd

λr

vi + FTyi) ,

= (FTF+
λd

λr

I)−1(
λd

λr

I+ FTF)vi ,

= vi , ∀i, j . (32)

Therefore, when the architecture is sufficiently expressive so that (27) holds, any stationary point
leads to a perfect decoder in the linear case.

3.2 Analysis of posterior collapse

The phenomenon of posterior collapse affecting VAEs can also impact the proposed inVAErt net-
work. It describes a scenario in which the learned posterior distribution q(w|v) becomes remark-
ably similar to the prior distribution pw(w) (usually a standard Gaussian), resulting in a trivial latent
space independent on the input v. This collapse in the posterior undermines the fundamental nature
of a generative model by preventing it from capturing inherent diversity between samples in V . Pos-
sible causes of posterior collapse are investigated in a number of articles [64, 9, 24, 16, 36, 45, 60]
(see also Appendix B). Here we analyze such a phenomenon using stationarity conditions.

First, we have the first-order condition on T with respect to V as:

0 = δT (D ,V ; ∆V ) = λrδJ(D ,V ; ∆V ) + λdδH(D ,V ; ∆V ) + λvδK(V ; ∆V ) . (33)

This condition has an impact on the probability density of the latent variable w. In particular, any
perturbation ∆V induces perturbations in the mean ∆µi and standard deviation ∆σi. Therefore, the
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condition in (33) can be represented as perturbations on the means and variances as (see Appendix A)

0 =
λr

M

M∑

j=1

〈
∇D(wij ,yi)

T∇F
(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)
,∆µi

〉

+
λd

M

M∑

j=1

〈
∇D(wij ,yi)

T
(
D(wij ,yi)− vi

)
,∆µi

〉

+ λv

〈
µi,∆µi

〉

+
λr

M

M∑

j=1

〈
ϵij ⊙∇D(wij ,yi)

T∇F
(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)
,∆σi

〉

+
λd

M

M∑

j=1

〈
ϵij ⊙∇D(wij ,yi)

T
(
D(wij ,yi)− vi

)
,∆σi

〉

+ λv

〈
σi − σ−1

i ,∆σi

〉
, ∀i .

(34)

Again, similar to (27), given a sufficiently flexible network architecture for the variational encoder,
for any choice of ∆µ, ∆σ and given sample vi we can find a perturbation ∆V such that

∆Vi(vk) =

{
(∆µ,∆σ) , k = i

0 , otherwise
. (35)

This yields an implicit relation for the mean

µi = −
λr

λv

1

M

M∑

j=1

∇D(wij ,yi)
T∇F

(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)

−
λd

λv

1

M

M∑

j=1

∇D(wij ,yi)
T
(
D(wij ,yi)− vi

)
, ∀i ,

(36)

as well as an implicit relation for the variance (Recall wij − µi = σi ⊙ ϵij)

σ2
i = −

λr

λv

1

M

M∑

j=1

(wij − µi)⊙∇D(wij ,yi)
T∇F

(
D(wij ,yi)

)T(
F
(
D(wij ,yi)

)
− yi

)

−
λd

λv

1

M

M∑

j=1

(wij − µi)⊙∇D(wij ,yi)
T
(
D(wij ,yi)− vi

)
+ 1 , ∀i , (37)

where 1 denotes a vector of ones with size dim(w). Conditions (36) and (37) readily imply that
when we have exact decoding over the samples, i.e.

D(wij ,yi) = vi , ∀i, j ,

then any candidate function V satisfying the first order conditions will make

µi = 0 and σ2
i = 1 .

In other words, we have posterior collapse. Although surprising, this is intuitive. When the decoding
is exact, the decoder becomes independent of w, which implies that optimal training is achieved at
the global optimum of K. Hence, to avoid posterior collapse, the decoder must necessarily incur
in some error. This aligns with previous studies which suggest reducing the decoder flexibility
(e.g. [9, 6]). This agrees with our experience, i.e., reducing the number of hidden layers and neurons
in the decoder can prevent posterior collapse when the penalty coefficients are kept fixed.

3.2.1 The role of discretization in posterior collapse

It is of interest to understand how to mitigate the risk of posterior collapse. In fact, our results
show that when conditions (27) and (35) hold then we necessarily have posterior collapse. For any
candidate function pair (D ,V ) satisfying the stationarity conditions, i.e.

{
δT (D ,V ; ∆D) = 0 ,

δT (D ,V ; ∆V ) = 0 .
(38)
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If both conditions (27) and (35) are satisfied then the optimality conditions for µi (36) and σ2
i (37),

as a consequence of (28), are reduced to

µi = −
1

λv ·M

M∑

j=1

∇D(wij ,yi)
T
(
λr∇F

(
D(wij ,yi)

)T (
F
(
D(wij ,yi)

)
− yi

)

+ λd

(
D(wij ,yi)− vi

))
= 0 , ∀i ,

σ2
i =

1

λv ·M

M∑

j=1

(wij − µi)⊙∇D(wij ,yi)
T
(
λr∇F

(
D(wij ,yi)

)T (
F
(
D(wij ,yi)

)
− yi

)

+ λd

(
D(wij ,yi)− vi

))
+ 1 = 1 , ∀i . (39)

It would seem that posterior collapse always happens! It can be seen that this is a consequence of
condition (27), which is much weaker than perfect decoding, and it occurs even when condition (35)
does not hold. For this reason it is illustrative to interpret this condition. In practice, it implicitly
represents a trade-off between the complexity of the decoder and the number of samples wij used
in training. If the decoder is too expressive relative to the number of samples, then condition (27)
states that the derivatives of the neural network with respect to its parameters are flexible enough to
interpolate any function on the set of samples (wij ,yi)

N,M
i,j=1. Hence, to prevent posterior collapse

for a given architecture of the decoder, one can increase M accordingly. In this case, condition (27)
may fail to hold, and thus we no longer suffer from posterior collapse at stationary points. Remark
that this analysis involves the architecture of the decoder, whereas the variational encoder NNv may
be very flexible without causing posterior collapse. In other words, the decoder is mainly responsible
for posterior collapse.

It is illustrative to study the limit M → ∞, in which case we redefine the functionals J,H as:

J(D ,V ) :=
1

2N

N∑

i=1

EW vi

[
∥F

(
D(W vi

,yi)
)
− yi∥

2
2

]
, (40)

H(D ,V ) :=
1

2N

N∑

i=1

EW vi

[
∥D(W vi

,yi)− vi∥
2
2

]
, (41)

where W vi
∼ N (µvi

,σ2
vi
) (see also Section 2.3). Then the first-order condition (26) turns to

0 =

N∑

i

EW vi

[〈
λr∇F

(
D(W vi

,yi)
)T(

F
(
D(W vi

,yi)
)
− yi

)

+ λd

(
D(W vi

,yi)− vi

)
,∆D(W vi

,yi)
〉]

. (42)

To obtain an expression of the form (28), it would be sufficient for the space generated by the
functions

(W v1
, · · · ,W vN

) 7→
(
∆D(W v1

,y1), · · · ,∆D(W vN
,yN )

)
,

to be dense. However, the network architecture always constrains the function spaces it generates,
and this fails to happen in practice. Characterizing the space generated by these perturbations,
namely the derivatives of the network with respect to the parameters, is related to the concept of
neural tangent kernel [25]. Therefore, our analysis implies that in order to avoid posterior collapse,
it is more effective to choose a value of M larger than the complexity of the decoder, rather than
focusing on adjusting the penalty coefficients in the loss function.

In our experiments, posterior collapse can be readily observed if the KL divergence loss Lv is nearly
zero during the early phase of training. However, in some cases, Lv will grow and then converge to
a non-zero constant value as the number of epoch increases. This aligns with our previous analysis
as longer training leads to a larger number M of latent variables wij seen by the network for each
vi. Also, as mentioned above, another practical strategy would be to reduce the complexity of
the decoder NNd. In terms of the penalty coefficients (see Equations (36) and (37)), increasing
λd, λr while decreasing λv promotes larger differences between µi and 0, as well as between σ2

i

and 1. This rule, λd, λr ≫ λv , applies globally to all our experiments (if the loss Lr is used, see
Appendix C) to avoid posterior collapse.
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3.3 Latent space sampling

As discussed in Section 2.3.1, a VAE forces the posterior distribution of w to be close to a standard
normal, promoting latent spaces with concentrated support in W . However, in practice, the process
{W v}v∈V is composed by the mixture of multiple uncorrelated multivariate Gaussian densities
(one for each training example) and might contain regions with probability much lower than the
standard normal. As we will discuss in Section 4, this may lead the decoder to generate incorrect
inverse predictions when w comes from low-density posterior regions. We refer to these spurious
predictions as outliers and dedicate the next sections to compare approaches to effectively sample
from the latent space posterior.

3.3.1 Direct sampling from the prior

A straightforward approach to generate samples from the entire W is to sample from the standard
normal prior. This approach performs well for simple inverse problems, as shown in a few numer-
ical experiments of Section 4. Nevertheless, as the complexity of the inverse problem increases,
this straightforward approach tends to produce sub-optimal results. To address this limitation, we
introduce alternative strategies in the following sections, which have proven to outperform the basic
sampling method.

3.3.2 Predictor-Corrector (PC) sampling

An alternative approach to reduce the number of outliers is the predictor-corrector method (see
Algorithm 4).

Algorithm 4 Predictor-corrector (PC) sampling.

1: For a given y∗, sample w[0] from N (0, I), or use a given set by other sampling method
2: Concatenate and decode to produce v̂[0] = NNd(w[0],y

∗) ▷ Prediction step
3: for r = 1, 2, · · · , R do ▷ Correction loop
4: VAE encode: [µ[r],σ[r]] = NNv(v̂[r−1])

5: Assign mean: w[r] = µ[r] ▷ Denoted as the operator: NNv,µ(·)
6: Concatenate and decode: v̂[r] = NNd(w[r],y

∗)
7: end for
8: Output v̂[R]

It consists of an iterative approach expressed as

β[r] + v̂[r] = NNd(w[r],y
∗) = NNd(NNv,µ(v̂[r−1]),y

∗), r = 1, . . . , R ,

where β[r] is the prediction error.

Now assuming the term H is sufficiently small in (21) as a result of gradient-based optimiza-
tion, then v̂[r] ≈ v̂[r−1], at least ∀ v̂[r] in the training set as r increases. Therefore, the operator
NNd

(
NNv,µ(·)

)
behaves as a contraction. In other words, a deterministic inVAErt network acts

as a denoising autoencoder, but it learns to reduce the effects of latent space noise rather than noise
in the input space.

In addition, the presence of potential overlap among latent density components W vi,i=1:N can
lead our iterative correction process to prioritize distributions with smaller support, and therefore
to promote contractions towards a small subset of the entire training set. A latent space sample wi

belonging to the support of multiple density components from W vi,i=1:N will tend to move towards
the mean of the component with the highest density at w, since such samples have been observed
more often during training. This poses limitation on the flexibility of PC sampling to explore the
global structure of the non-identifiable manifold (see, e.g., Figure 10d in Section 4.2). Thus, in
practical applications, the trade-off between the number of outliers and maintaining an interpretable
manifold structure can be achieved by varying the number R of iterations.
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3.3.3 High-Density (HD) sampling

A second sampling method (see Algorithm 5) leverages the training data to draw more relevant latent
samples, then ranks the samples based on the corresponding posterior density.

Algorithm 5 High-Density (HD) sampling.

1: Take a random subset of the training data input VS ⊂ V = {vi}
N
i=1 of size S

2: for vi in VS do
3: VAE encode: [µi,σi] = NNv(vi)
4: for j = 1 : Q do ▷ Q: sub-sampling size
5: Sample latent variable from the data-dependent distribution: wij ∼ N

(
µi, diag(σ2

i )
)

6: Record [wij ,µi,σi]
7: end for
8: end for
9: Initialize the PDF matrix as zeros: p ∈ R

S×Q ▷ Since w ∈ R
S×Q

10: for i = 1 : S do
11: Evaluate PDF and consider the overlapping: p += N

(
w;µi, diag(σ2

i )
)

12: end for
13: Rank all S ·Q samples based on their stacked PDF values and take samples from the top

It is important to note that the selection of the subset size S and the sub-sampling size Q require
careful consideration to prevent the loss of important latent space features. Similar to PC sampling,
HD sampling also tends to contract samples towards the means of highly-concentrated latent distri-
butions. In practice, relative to the size of the entire dataset, we typically keep both S and Q small
to attain more informative samples.

3.3.4 Sampling with normalizing flow

An additional sampling method considered in this paper uses normalizing flows to map the VAE
latent space to a standard normal (we refer this approach as NF sampling). Similar approaches have
been suggested in [7, 39], for improving VAE and manifold learning.

The learned Real-NVP based NF model, denoted as NNf,w, is conditioned on the learned posterior
distribution q(w|v), which is a mixture of multivariate Gaussian densities. We show the benefit of
NF sampling by an exaggerated case in Figure 4, where the transformation NNf,w can effectively
reduce the probability of selecting samples with high prior but low posterior density (see the blue
dots in Figure 4).

Indeed, the NF sampling produces similar results to HD sampling (see Algorithm 5), has minimal
reliance on hyperparameters (as opposed to S and Q in HD sampling), and improves with an in-
creased amount of training data. In practice, like Algorithm 5, we first feed the trained VAE encoder
NNv with the input set VS to obtain samples of w which correspond to inputs in the training set,
then estimate their density with the new NF model NNf,w.

Figure 4: Diagram of the normalizing flow model built on posterior distribution q(w|v) of the latent
variable w.
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4 Experiments

4.1 Underdetermined linear system

As a first example, we consider an under-determined linear system from R
3 → R

2 defined as

y =

[
y1
y2

]
=

[
π e 0
0 e π

]
·

[
v1
v2
v3

]
= Fv. (43)

The linear map represented by the matrix F is surjective (on-to) but non-injective (one-to-one) such
that we have a non-trivial one-dimensional kernel of the form

Ker(F) ⊂ R ≈ c∗[0.5475278,−0.6327928, 0.5475278]T , (44)

where c∗ ∈ R is an arbitrary constant and the kernel direction is normalized. As a result, any fixed v
in R

3 translating in the direction of Ker(F) will leave the output y invariant. In another words, this
system is non-identifiable along Ker(F). This line represents the manifold My of non-identifiable
parameters for this linear map F, as discussed above.

Due to the simplicity of this example, we omit showing the performance of the emulator NNe

and density estimator NNf , and focus on the VAE and decoder components NNv and NNd. We
generate the dataset by letting: v ∼ [U(0, 5)]3 and forward the exact model 104 times to gather the
ground truth. In addition, a recommended set of hyperparameters for this example is reported in the
Appendix.

First, we select a fixed y∗ and reconstruct inputs in R
3 by sampling a scalar w from the latent space.

Due to a non-trivial null space, if y∗ = Fv∗, any input of the form v∗ + Ker(F) will map to the
same y∗. Therefore the reconstructed inputs are expected to lay on a straight line in R

3 aligned
with the direction of Ker(F) (44), passing through v∗. This behaviour is correctly reproduced as
shown in Figure 5, where we either fix y∗ at 1 value or 5 different values, sampled from NNf .
For each fixed y∗, we draw 50 samples of the latent variable w from N (0, 1) to formulate ỹ∗ and
then pass it through the trained decoder (NNd), resulting a series of points in V . A simple linear
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(a) Decoded samples v̂ for a fixed output y∗.
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(b) Decoded samples v̂ when considering 5 different outputs y∗.

Figure 5: Model inversion results for the underdetermined linear system. We fix one or multiple
outputs y∗ and concatenate it with scalar samples w from the one-dimensional latent space.

regression through these locations provides a normalized direction vector (averaged of the 5 sets
shown in Figure 5) equal to

[−0.549, 0.632,−0.547]T

which is close to Ker(F) (44).

Next we jointly sample from w and y. This should pose no restrictions to the ability to recover all
possible realizations in the input space V , since Ker(F) as well as its orthogonal complement can be
both reached. To test this, we draw 2000 random samples of y from the trained NNf and w from
N (0, 1). We then use the trained decoder NNd to determine 2000 values of the corresponding v̂.
From Figure 6, it can be observed that most of the predicted samples reside uniformly in the [0, 5]3

cube, despite the existence of a few outliers.
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Figure 6: Model inversion results for the underdetermined linear system, when jointly sampling
form w and y. The initial uniform distribution of v is correctly recovered.

4.2 Nonlinear periodic map

We move to a nonlinear map F : R2 → R:

y = sin kx. (45)

Initially, we consider k ∈ [1, 3] and x ∈ [−π
6 ,

π
6 ] to avoid a periodic response. In this case [k, x]T =

v ∈ V , and the forward map y = F(v) is not identifiable on the subspace My ⊂ V , where
the product kx is constant. We again focus only on the inverse analysis task. The inputs k and x
are uniformly sampled from their prior ranges for 104 times, and the optimal hyperparameters are
reported in the Appendix.

As discussed for the previous example, we freeze y = y∗ at both positive and negative values
and, for each fixed y∗, we pick 50 samples from the latent variable w ∼ N (0, 1), concatenate and
decode with NNd. This results in the sample trajectories of v̂ shown in Figure 7a and Figure 7c,
respectively. These one-dimensional manifolds accurately capture the correct correlation between k
and x, leading to the same y = y∗ as confirmed in Figure 7b and Figure 7d (the superimposed blue
sine curves are based on the predicted k̂ values and a fixed sequence of x values. The red triangle
marks the predicted x̂ value that should lead to sin k̂x̂ = ŷ ≈ y∗). We then sample together from
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Figure 7: Model inversion results for the sine wave model without periodicity. We fix y∗ at both
positive and negative values, sample w from N (0, 1), concatenate and decode. The inverse predic-
tion v̂ leads to system output predictions (NN) close to y∗, as expected.

w and y, recovering the initial distributions utilized during training data preparation, for k and x, as
shown in Figure 8.

Next, we expand x from [−π/6, π/6] to [−π, π] and keep k ∈ [1, 3]. Consequently, the latent
manifold is no longer kx = const in this scenario due to periodicity. To prepare for training, we still
generate 104 uniform samples from the given ranges while we figure out a more complicated network
structure is required for achieving robust performance (please refer to Table 6 for recommended
hyperparameters), compared to the above monotonic case.

By construction, the latent space W built by the VAE network should be one-dimensional since
dim (V) = 2 and y ∈ R. However, for the current periodic system, we find the inverse prediction
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Figure 8: Model inversion results for the sine wave model without periodicity: sample w and y
together and the initial uniform distributions of k and x are recovered.

can be significantly improved if dim (W) is increased beyond 1. We first compare inverse prediction
results under dim (W) = 1, 2, 4, 8 with respect to the same fixed y∗ = 0.676. In Figure 9, we find
the original 1D latent space produces the poorest result, while if dim (W) increases beyond 1, the
performance remains relatively consistent.

(a) dim (W) = 1. (b) dim (W) = 2. (c) dim (W) = 4. (d) dim (W) = 8.

Figure 9: Model inversion results for the sine wave model with periodicity. We fix y∗ = 0.676 and
draw 400 latent variable samples from the standard Gaussian spaces of dimension 1, 2, 4, 8. Each
blue curve is based on a predicted k̂ value and a fixed sequence of x. The red triangle marks the
predicted x̂ value that should lead to y∗ ≈ sin k̂x̂.

Next, we demonstrate how the three sampling methods discussed in Section 3.3 enhance our inverse
predictions by removing the spurious outliers shown in Figure 9. We focus only on the case with
dim (W) = 8 and keep the sampling size as 400. We hypothesize that a more robust sampling
method requires fewer samples to unveil the underlying structure of the non-identifiable manifold
My , though a larger sample size always leads to better visualizations.
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Figure 10: Model inversion results for the sine wave model with periodicity and using PC sampling.
The model output y∗ = 0.676 is fixed and dim (W) = 8. The results are shown for iteration number
R = 2 and R = 50. Sample size: 400.
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First, compared to Figure 9d, the number of outliers is significantly smaller with PC sampling ap-
plied. Furthermore, as the number of iteration R increases, details of the learned manifold gradually
fade away, as the decoded samples are drawn towards the means of the posterior components with
smaller support, as shown in Figures 10b and 10d. This confirms our analysis in Section 3.3.2.

Moving to HD sampling, use of S = 500, Q = 3 can approximate the global structure of the
non-identifiable manifold with 400 samples, even through several outliers are still visible and some
details of the learned trajectories are missing (e.g., compare Figure 11b with Figure 10b). The
missing details attribute to the density ranking mechanism of the HD sampling scheme, consistent
with our discussion in Section 3.3.3. In this application, the performance of HD sampling can be
improved just by utilizing more samples, as illustrated in Figure 11c. Finally, we show that the two
sampling schemes (PC and HD) can be combined in Figure 11d.
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Figure 11: Model inversion results for the sine wave model with periodicity, using HD sampling.
The model output y∗ = 0.676 is fixed and dim (W) = 8. The results are shown for subset size
S = 500 and sub-sampling size Q = 3.

We then consider NF sampling. To do so, we first train NNf,w based on the latent variable samples
generated by the trained VAE encoder NNv (Please refer to Table 7 for hyperparameter choices).
The transformation associated with this flow should be simple if not trivial when the posterior
q(w|v) is close (in terms of an appropriate statistical distance or divergence) to a standard nor-
mal distribution. However, this is not the case as shown in Figures 12c and 12d. The learned latent
variable w displays spurious structures in two of its components, which we suspect to be associated
with low-density posterior regions that would be incorrectly sampled according to a standard normal
(see Section 3.3.4).
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Figure 12: Model inversion results for the sine wave model with periodicity, using NF sampling.
The model output y∗ = 0.676 is fixed and dim (W) = 8. Sample size: 400. Quantities in the
histogram: Exact: data distribution of the latent variable samples generated by the trained VAE
encoder NNv . NN: Learned distribution by the NF sampler NNf,w.

In contrast to Figure 9d, we notice a reduction of the outliers in Figure 12a when using NF sampling.
The remaining outliers, which may come from insufficient network training, or just due to the fact we
are transforming a continuous latent space into disconnected branches, can be effectively removed

19



if we further apply the PC sampling method to denoise (e.g. see Figures 11c and 11d, results not
shown for brevity).

Finally, the comparison of Figures 10b, 11b and 12b indicates that NF sampling can adequately
preserve the details of the non-identifiable manifold compared to HD sampling. Also due to their
similar nature of drawing high-density posterior samples, we omit presenting results from HD sam-
pling in the next sections.

4.3 Three-element Windkessel model

The three-element Windkessel model [48], provides one of the simplest models for the human ar-
terial circulation and can be formulated as a RCR circuit through the hydrodynamic analogy (see
Figure 13a). Despite its simplicity, the RCR model has extensive applications in data-driven phys-
iological studies and is widely used to provide boundary conditions for three-dimensional hemo-
dynamic models (see, e.g., [23, 59]). It is formulated through the following coupled algebraic and
ordinary differential system of equations





Qp =
Pp − Psys

Rp

,

Qd =
Psys − Pd

Rd

,

Ṗsys =
Qp −Qd

C
,

(46)

where C is the overall systemic capacitance which represents vascular compliance. Two resistors,
Rp and Rd are used to model the viscous friction in vessels and Pp, Pd and Psys stand for the aortic
(proximal) pressure, fixed distal pressure (see Table 1) and the systemic pressure, respectively. In ad-
dition, Qd represents the distal flow rate, whereas the proximal flow rate data Qp(t) is assigned [23]
(see Figure 13b).

(a) Schematic representation of an RCR circuit
model.
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(b) Proximal flow rate Qp over 5 cardiac cycles.

Figure 13: Schematic representation of the RCR model and assigned inflow.

This simple circuit model is non-identifiable. The average proximal pressure P̄p = (Pp,max +
Pp,min)/2 depends only on the total systemic resistance Rp + Rd, rather than on each of these
individual parameters. Thus, to keep the same P̄p, an increment of the proximal resistance Rp will
cause a reduction of the distal resistance Rd, which also allows more flow (Qp − Qd) exiting the
capacitor, resulting in an increasing capacitance C to balance the system, which affects the pulse
pressure, i.e., the difference between maximum and minimum proximal pressure. A nonlinear cor-
relation thus exists between the capacitance, proximal and distal resistances when maximum and
minimum proximal pressures are provided as data.

Rearranging equations (46) with respect to the variable of interest, Pp(t), the aortic pressure, result-
ing in the following first-order, linear ODE




Ṗp = RpQ̇p +

Qp

C
−

Pp −QpRp − Pd

CRd

,

Pp(0) = 0.
(47)

When tuning boundary conditions in numerical hemodynamics, the diastolic and systolic pressures
Pp,min and Pp,max are usually available. As a result, we consider the following map:

[Pp,max, Pp,min]
T = F(v), (48)
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Cardiac cycle (tc) 1.07 (s)
Distal pressure (Pd) 55 (mmHg)
Proximal resistance (Rp) [500, 1500] (Barye ·s/ml)
Distal resistance (Rd) [500, 1500] (Barye ·s/ml)
Capacitance (C) [1× 10−5, 1× 10−4] (ml/Barye)

Table 1: RCR model parameters and ranges.

where v = [Rp, Rd, C]T and by construction, the latent space is assumed to be one-dimensional,
i.e. dim(W) = 1, enough for achieving robust inverse predictions.

To generate training data, we take uniform random samples of Rp, Rd and C from the ranges listed
in Table 1 and solve the ODE 104 times using the fourth order Runge-Kutta time integrator (RK4).
To achieve stable periodic solutions, we choose a time step size equal to ∆t = 0.01 s and simulate
the system up to 10 cardiac cycles (10.7 s), where Pp,max and Pp,min are extracted from the last three
heart cycles. We then train the inVAErt network with the hyperparameter combination listed in the
Appendix.

First, we discuss the learned distributions of the system outputs Pp,max and Pp,min. The density
estimator correctly learns the parameter correlations and ranges, as shown in Figure 14.
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(c) Pp,max-Pp,min correlation.

Figure 14: Distributions of parametric RCR model outputs as learned by NNf .

Next, by inverse analysis, we would like to determine all combinations of Rp, Rd and C which
correspond to given systolic and diastolic distal pressures. To do so, we feed the trained decoder
NNd with a valid [P ∗

p,max, P
∗
p,min] sampled from the trained NNf and 50 w drawn from N (0, 1),

resulting in the trajectory displayed in Figure 15a. Additionally, we plot the binary correlations of
these predicted samples in Figure 16.

To confirm that the RCR parameters computed by the decoder correspond to the expected maximum
and minimum pressures, we integrate in time the 50 resulting parameter combinations with RK4.
The resulting periodic curves are displayed in Figure 15b. They are found to almost perfectly overlap
with one another, all oscillating between the correct systolic and diastolic pressures. In addition, we
can evaluate the performance of the trained emulator by examining the predicted P̂p,max and P̂p,min

values and comparing them with those obtained from the exact RK4 integration in time. These
predictions provide insight into the quality of the forward model evaluations.

Note that the process of obtaining correlated parameters from observations would normally require
multiple optimization tasks, since each of these tasks would converge to a single parameter com-
bination. Using the inVAErt network, this process is almost instantaneous and multiple parameter
combinations are generated at the same time, providing a superior characterization of all possible
solutions for this ill-posed inverse problem. Note also that any form of regularization would have
only provided a partial characterization of the right answer, since there is no one right answer.

4.4 Lorenz oscillator

The Lorenz system describes the dynamics of atmospheric convection, where x(t) relates to the
rate of convection and y(t), z(t) models the horizontal and vertical temperature variations, respec-
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Figure 15: Model inversion results for the parametric RCR system, setting [P ∗
p,max, P

∗
p,min] and

sampling from the latent space W . The decoded parameters v̂ leads to system output predictions
(RK4) close to [P ∗

p,max, P
∗
p,min]. The trained forward model NNe also provides accurate predictions

[P̂p,max, P̂p,min].
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Figure 16: Projected sample trajectories from Figure 15a when fixing [P ∗
p,max, P

∗
p,min] and sample

from W .

tively [51]. It is formulated as a system of ordinary differential equations of the form




ẋ = Pr(y − x),

ẏ = x(Ra− z)− y,

ż = xy − bz .

(49)

The parameters Pr,Ra are proportional to the Prandtl number and the Rayleigh number, respec-
tively and b is a dependent geometric factor.

The forward map of this nonlinear ODE system is defined via ResNet-based emulator as:

y(t) = NNe(v,Dv) + y(t−∆t), (50)

where v = [Pr,Ra, b, t]T and y(t) = [x(t), y(t), z(t)]T , resulting in a one dimensional latent space
W . The auxiliary dataset Dv , as described above, contains the time delayed solutions

Dv = {y(t− np∆t), · · · ,y(t− 2∆t),y(t−∆t)} .

A training dataset is obtained by randomly sample the parameter vector v from the specified ranges
listed in Table 2. Unlike previous examples, it is worth noting that we now consider the simulation
ending time t as an additional random parameter, drawn from a discrete uniform distribution with
an interval of ∆t = 5 × 10−4 s. This interval aligns with the time step size used in the RK4 time
integration. We solve the Lorenz system using 5000 sets of inputs v and take 30 time points at ran-
dom from each simulation, leading to 1.5× 105 total training samples. A suggested hyperparameter
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Initial conditions (x0, y0, z0) 0,1,0
Largest possible simulation time (Tf ) 4 (s)
Prandtl number (Pr) [8, 12]
Rayleigh number (Ra) [26, 30]
Geometric factor (b) [8/3-1, 8/3+1]

Table 2: Parameters of the Lorenz system.

choice is listed in the Appendix and additionally, in our experiments, we have observed that increas-
ing the number of lagged steps np up to 10 leads to noticeable benefits for the emulator learning.

We first focus on the accuracy of the trained emulator. We pick three sets of random samples
of Pr,Ra and b unseen during training and forward the trained encoder model NNe up to 6.5
seconds. Note that the model only requires the first np exact steps as inputs, after which, the emulator
outputs from previous time steps are used as inputs for successive steps (since the emulator, in this
example, is designed to learn the flow map). For the prior ranges of Pr,Ra, b listed in Table 2,
and up to 4 seconds simulation time, almost all solution trajectories converge towards one of the
attractors with regular oscillatory patterns, although varying in frequency, magnitude and speed of
convergence. Nevertheless, due to a relatively large Ra, the system has the potential to bifurcate
towards another attractor much earlier in time, even though this event is rare within the selected
prior ranges. Thus, as shown in Figure 17, an insufficient amount of training samples may lead to a
sub-optimal performance in predicting rare dynamical responses.
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z(t), superimposed to the exact Lorenz trajectory.
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(d) Phase plots for the learned dynamical response
and exact Lorenz trajectory.

Figure 17: Comparison between the dynamic response learned by the emulator NNe and the exact
solution computed with RK4 for the Lorenz system up to 6.5 seconds.

Next we find that the Real-NVP sampler NNf effectively identifies whether a spatial location re-
sides within the high-density regions, such as those around one of the attractors or in proximity to
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the initial condition, as shown in Figure 18. However its accuracy is reduced at the tails, which
corresponds to rare system trajectories.
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Figure 18: Density estimation of parametric Lorenz system outputs.

We then investigate the ability of the inVAErt network to solve inverse problems for the given para-
metric Lorenz system. From our definition of inputs and outputs in (50), we provide a predetermined
system output y∗, obtained by sampling from the trained Real-NVP model, and ask the inVAErt net-
work to provide all parameters Pr,Ra, b and time t where the resulting solution trajectory should
reach y∗ at time t.

To do so, we fix y∗ = [−3.4723,−8.9758, 26.2026]T , initially focusing on a state that the paramet-
ric Lorenz system can reach at an early time. We then draw 100 standard Gaussian samples for w
and apply NNd to the concatenated array ỹ

∗ = [w,y∗]. To verify the accuracy, we forward the

RK4 solver with each inverted sample v̂ = [P̂ r, R̂a, b̂, t̂] and terminate the simulation exactly at
t = t̂.

Our definition of the forward model (50) implies an one-dimensional latent space W , but in practice,
improved results can be obtained by increasing the latent space dimensionality. In this context, we
investigated latent spaces W with dimensions 2, 4, 6, and 8 and observed relatively consistent
performances across these dimensions. Nevertheless, it is crucial to recognize that utilizing a lower-
dimensional latent space can occasionally result in the loss of certain features when constructing
non-identifiable input parameter manifolds.

For brevity, we only plot the best results in Figure 19 and Figure 20, obtained using a six-dimensional
latent space. To evaluate how close the decoded parameters led to trajectories ending at the desired
coordinates, we introduce a relative error measure ζ defined as

ζ =
∥y∗ − ŷ

∗∥2
∥y∗∥2

, (51)

where ŷ
∗ is the RK4 numerical solution based on the inverse prediction v̂. A histogram of ζ gen-

erated from all 100 inverse predictions is presented in Figure 20b, which reveals that almost all of
these predictions yield a relative error less than 2%.

We also plot the learned correlations between the Prandtl number Pr and the other three input
parameters in Figures 20c to 20e. The correlation plots presented here depict the projections from

24



the learned 4D non-identifiable manifold My∗ ⊂ V , associated with our fixed y∗, onto 2D planes.
From these plots, we notice a positive correlation between Pr-Ra and Pr-b, and negative for Pr-t.
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Figure 19: Model inversion results for the parametric Lorenz system. We fix y∗ =
[−3.4723,−8.9758, 26.2026]T and sample w from a 6-dimensional standard Gaussian. Each RK4
solution trajectory generated from the decoded inputs v̂ is plotted (NN) and a marker is added to the
point computed at t = t̂.
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(a) Phase plot trajectories generated from v̂.
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Figure 20: Model inversion results for the parametric Lorenz system: fix y∗ =
[−3.4723,−8.9758, 26.2026]T and sample w from a 6-dimensional standard Gaussian distribution.
Phase plots, error measure and learned correlations between Pr and the other three parameters.

For the current fixed output y∗, direct sampling of the latent variable w from a standard Gaus-
sian performs relatively well. Therefore, we omit utilizing other sampling approaches mentioned
in Section 3.3 to refine the inverse prediction. However, sampling from a standard normal be-
haves poorly if we significantly increase the complexity of the inverse problem by selecting
y∗ = [−11.5224,−10.3361, 30.7660]T , a state that can be revisited by a single system multiple
times.

Like the periodic wave example studied in Section 4.2, the non-identifiable manifold induced by the
new fixed y∗ has disconnected components and contains outliers. To illustrate this, we first show
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the learned correlations between the geometric factor b and time t in Figure 21, where the latent
variables are generated using the sampling methods discussed in Section 3.3.
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Figure 21: Model inversion results for the parametric Lorenz system: fix y∗ =
[−11.5224,−10.3361, 30.7660]T . Comparing b-t correlations using different latent variable sam-
pling schemes. Sample size: 400, 6D latent space. Methods: sampling from N (0, I), PC sampling
(R = 4), NF sampling (see Table 10), combined NF+PC sampling (apply PC sampling to inverse
predictions v̂ associated with Figure 21c, R = 4).

The results in Figure 21 suggest that the values of (b, t) for which the Lorenz systems pass through
the selected spatial location consist of five disjoint regions. This is likely due to the presence of
five instances in time where the given y∗ can be reached within 4 seconds under a specific pa-
rameter combination, i.e. [Pr,Ra, b]. Again, as shown in Section 4.2, it is challenging for our
inVAErt network to deform a continuous Gaussian latent space to disconnected sets that represent
the non-identifiable manifold. Consequently, despite the concentration of samples around the cor-
rect locations, the classical VAE sampling scheme is still contaminated by numerous outliers (see
Figure 21a). These outliers can be effectively reduced using PC sampling, or by combining PC and
NF sampling (see Figure 21d). Besides, it is not surprising that NF sampling remains susceptible to
outliers ( see Figure 21c), as we observed the posterior q(w|v) in this case is almost the standard
normal distribution. In other words, the outliers may not come from the previously mentioned low
posterior density regions.

Next, we verify our inverse prediction by numerically integrating the Lorenz system using the sam-
ples of v̂ associated with Figure 21d, obtaining a relative error ζ smaller than 5% in most cases (see
Figure 22b). Finally, we would like to point out that we can also use the emulator NNe learnt by the
inVAErt network to verify whether a prediction v̂ suggested by the decoder results in an acceptable
error ζ, and deploy a rejection sampling approach to complement those discussed in Section 3.3.
To verify the applicability of this approach, we forward NNe with all 400 samples of v̂ produced
by the decoder NNd and plot the endpoints, i.e. t = t̂, for each solution component in Figure 22.
These predictions from the emulator, denoted as ŷ, match well with the RK4 solutions, and thus
may replace ŷ

∗ in equation (51), providing accurate approximations for ζ.

4.5 Reaction-diffusion PDE system

Finally, we consider applications to space- and time-dependent PDEs. To prepare the dataset,
we utilize the reaction-diffusion solver from the scientific machine learning benchmark repository
PDEBENCH [55]. The reaction-diffusion equations (52) model the evolution in space and time of two
chemical compounds c(x, t) = [c1(x, t), c2(x, t)]

T in the domain Ω = [−1, 1]2,





∂c/∂t = D∆c+R(c) in Ω× (0, T ],

∂c/∂x = 0 on ∂Ω× (0, T ],

c(x, 0) = c0(x) in Ω , at t = 0,

where D =

[
D1 0
0 D2

]
, (52)

where the nonlinear reaction function R(c) follows the Fitzhugh-Nagumo model [55] with reaction
constant κ, and is expressed as

R(c) =

[
c1 − c31 − κ− c2

c1 − c2

]
. (53)
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Figure 22: Model inversion results for the parametric Lorenz system: fix y∗ =
[−11.5224,−10.3361, 30.7660]T . NF sampling (see Table 10) is applied to generate 400 samples
of w, followed by PC sampling (R = 4) for denoising. Results corresponding to inversion samples
of v̂ associated with Figure 21d. Each RK4 solution trajectory from v̂ is plotted (NN) and the end
point is highlighted that corresponds to t = t̂. Endpoint predictions from the trained emulator NNe

is also plotted, denoted as ŷ = [x̂, ŷ, ẑ]T .

This system describes the pattern formation phenomenon in biology and c1, c2 are usually referred
as the enzyme activator and inhibitor, respectively [55]. PDEBENCH utilizes first order finite volumes
(FV) in space and a 4-th order Runge-Kutta integrator in time to solve the above reaction-diffusion
system, and we set c0(x) ∼ N ([2, 2]T , I), ∀x ∈ Ω for initializations. Additional details on the
simulations considered in this section are reported in Table 3.

Spatial discretization 32× 32
Time step size (∆t) 0.005
Largest possible simulation time (Tf ) 5
Diffusivity for c1 (D1) [2× 10−3, 5× 10−3]
Diffusivity for c2 (D2) [2× 10−3, 5× 10−3]
Reaction constant (κ) [2× 10−3, 5× 10−3]

Table 3: Simulation parameters of 2D reaction-diffusion system.

The first-order finite volume method assumes constant solution within each grid cell, with space
location identified through cell-center coordinates x = (x, y). We then consider a forward process
modeled via a ResNet-based emulator as:

[c1(x, y, t), c2(x, y, t)]
T = NNe(v,Dv) + [c1(x, y, t−∆t), c2(x, y, t−∆t)]T , (54)

with dependent parameters v = [D1, D2, κ, t, x, y]
T , and auxiliary data defined as

Dv = {c(x±∆x, y ±∆y, t−∆t), . . . , c(x, y, t− np∆t), . . . , c(x, y, t−∆t)},

containing solutions at a given cell “S" (see diagram in Figure 23) from the previous np time steps
and the solutions at its neighbors from the last step. Eight neighbors are considered for all cells
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by assuming the solution outside Ω is obtained by mirroring the solution within the domain (see
Figure 23). To gather training data, we simulate the system using PDEBENCH [55] for 5000 times
with uniform random samples of D1, D2 and κ. From each simulation, we randomly pick 10 cells
at 5 different time instances to effectively manage the amount of training samples (2.5 × 105 data
points in total) and to mitigate over-fitting.

Figure 23: Symmetry condition used to gather auxiliary data Dv at the boundary. Cell “S" here is at
the bottom right corner of a two-dimensional discretized domain.

The emulator NNe is trained by a residual network as discussed in Section 2.1, equation (3). We
apply logarithmic transformations to the inputs D1, D2, κ since their magnitudes are much smaller
compared to x, y, t, c1, c2. For a detailed list of hyperparameters, the interested reader is referred to
the Appendix.

We first show the performance of the emulator NNe. To do so, we pick two sets of parameters
D1, D2, κ that correspond to a low-diffusive and a high-diffusive regime and plot the contours at
t = 2.0 seconds in Figure 24. We also show the evolution of spatial-averaged, relative l2-error of
these two systems in Figure 25, up to 5 seconds.
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Figure 24: Comparison between the learned emulator dynamics (NN) at T = 2.0 seconds and refer-
ence numerical solutions (from the PDEBENCH package [55]) for the parametric reaction-diffusion
system. Top: Low diffusion regime (D1 = D2 = 2×10−3, κ = 3×10−3). Bottom: High diffusion
regime (D1 = D2 = 5× 10−3, κ = 3× 10−3). The coordinate of the left-bottom corner: (-1,-1).

Next, Figure 26 illustrates the ability of the Real-NVP flow NNf to learn the joint distribution
of two system outputs c1(x, y, t) and c2(x, y, t). High-density areas are well captured by NNf

whereas some approximation is introduced for rare states in the tails, as shown in Figure 26c. During
our experiments, we notice a strong correlation between those high-density regions and the close-
to-steady-state behavior of the reaction-diffusion system. This brings our first inversion task: Find
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Figure 25: Spatial-averaged, relative l2 prediction error of the two systems shown in Figure 24, up
to T = 5.0 seconds.

all combinations of parameters D1, D2, κ, spatial locations x, y and time t where the parametric
reaction-diffusion system reaches the selected state c∗ = [c∗1, c

∗
2]
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Figure 26: Generative model evaluation of the reaction-diffusion system outputs.

We select the state c∗ = [−0.6616,−0.5964]T sampled from the trained NNf , which belongs to
the high-density regions as illustrated in Figure 26c. To enrich the latent space representation, we
set dim(W) = 8, providing 4 additional dimensions compared to the difference between input and
output dimensionality.

First, we utilize various sampling schemes discussed in Section 3.3 to test the trained decoder NNd.
For conciseness, we only plot the learned correlations between the two diffusivity coefficients D1,
D2 and the spatial coordinates x, y in Figure 27. Like the Lorenz system, we found the poste-
rior distribution q(w|v) closely resembles a standard Gaussian density, which explains the result-
ing similarity of N (0, I) sampling and NF sampling. The PC sampling method, either applied to
the N (0, I) samples or those drawn from the trained NNf,w, exhibits promising potential in re-
vealing unrecognizable latent structures polluted by spurious outliers (e.g. compare Figure 27a to
Figure 27b).

Next, in Figure 28, we verify that our parametric reaction-diffusion system is indeed non-identifiable
under these inverse predictions. To realize this, we forward the FV-RK4 solver of PDEBENCH [55]
with all 500 v̂’s produced by the trained decoder NNd, plus the PC sampling approach (i.e. inver-
sion samples associated with Figures 27b and 27f). The simulation uses D̂1, D̂2, κ̂ ∈ v̂ as inputs and
finishes at t = t̂ ∈ v̂. From Figures 28b and 28c, we see all solution trajectories of c1, c2, originated
from various (x̂, ŷ) ∈ v̂, converge towards our prescribed values with a maximum relative error
around 3% (i.e. see Figure 28a).

However, the accuracy of the proposed approach deteriorates when inverting an output c∗ that is
rarely observed during training. This is due to an insufficient characterization of the fiber Mc∗ over
c∗ since the close-to-steady states outnumber the other possible states in the training dataset (e.g.
Figure 26c). Besides increasing the training set, one could also use the exact forward model or the
proposed emulator NNe to reject decoded inputs, as discussed in Section 4.4.

In the end, we would like to leverage the inVAErt network to quickly answer relevant question on
the inverse dynamics of the parametric reaction-diffusion system (52). Specifically, we would like to
identify the locations in space where the chemical compounds c1, c2 may fall within some prescribed
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Figure 27: Model inversion results for the parametric reaction-diffusion system: fix c∗ =
[−0.6616,−0.5964]T . Comparing D1-D2, x-y correlations using different latent variable sampling
schemes. Sample size: 500, 8D latent space. Methods: sampling from N (0, I), PC sampling
(R = 6), NF sampling (see Table 12), combined NF+PC sampling (apply PC sampling to inverse
predictions v̂ associated with Figures 27c and 27g with R = 6).
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Figure 28: Model inversion results for the parametric reaction-diffusion system: fix c∗ =
[−0.6616,−0.5964]T . PC sampling (R = 6) is applied to generate 500 samples of w. Results
corresponding to inversion samples of v̂ associated with Figures 27b and 27f. Each FV-RK4 solu-
tion trajectory from v̂ is plotted (NN) and a marker added at the time instance when t = t̂.

ranges. Answering this type of question represents a challenging inverse problem, but is well within
reach for the proposed architecture.

First, suppose the system output state c∗ is of particular interests if it belongs to an active region
around the high-density areas, defined as:

A = {c∗| − 1 ≤ c∗1 ≤ −0.8, 0.0 ≤ c∗2 ≤ 0.2} .

To collect states within A, we sample from the trained normalizing flow model NNf and reject all
samples outside of A (see Figure 29a). Then, using the trained decoder NNd to invert each of the
selected state, we obtain a sequence of inverse predictions v̂. Next, we track each (x̂, ŷ) ∈ v̂ and
accumulate the occurrence of its corresponding cell in space. This results in Figure 29b, where each
cell’s occurrence count is normalized by the maximum occurrence across all cells.

Finally, for verification, we take a small subset of all inverse predictions and forward the systems
with the FV-RK4 solver [55]. Then, we check the resulting time series solution of c1 and c2 at loca-
tions ranked 1st, 4th, and 9th with respect to the normalized occurrence count shown in Figure 29b.
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(a) The region A superimposed to the model out-
puts sampled from NNf . We utilize a reduced
sample size to enhance the clarity of the visual-
ization.

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.0

0.1

0.2

0.3

0.4

0.5

(b) Spatial locations where the output chemical com-
pounds are compatible with the region A. The max-
imum value is limited to 0.5 (instead of 1.0) for im-
proved visualization.

Figure 29: Model inversion results for the parametric reaction-diffusion system: chemical com-
pounds c∗ from a selected region A (left) and corresponding spatial locations (right). Color scale:
normalized occurrence of a spatial cell (x̂, ŷ) in the decoded samples. Results are generated using
PC sampling with R = 6, an eight-dimensional latent space, 1188/50000 c∗ selected from A, and
500 samples of w for each application of the decoder.

The results are reported in Figure 30, showing that most of the solution trajectories converge inside
the region A.
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(c) c1: 9th location.
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Figure 30: Model inversion results for the parametric reaction-diffusion system. Verification of three
possible locations (x̂, ŷ) associated with the 1st, 4th and 9th relative frequency among all inverse
predictions v̂. Each FV-RK4 solution trajectory from a small subset of all v̂ is plotted and the
predicted time point t = t̂ is marked.
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5 Conclusion

In this paper we introduce inVAErt networks, a comprehensive framework for data-driven analy-
sis and synthesis of parametric physical systems. An inVAErt network is designed to learn many
different aspects of a map or differential model including an emulator for the forward determinis-
tic response, a Real-NVP based density estimator for generating representative output samples, a
decoder to quickly provide an approximation of the inverse output-to-input map, and a variational
encoder which learns a compact latent space responsible for the lack of bijectivity between the input
and output spaces.

We describe each component in detail and provide extensive numerical evidence on the perfor-
mance of inVAErt networks with non-identifiable systems of varying complexity, including lin-
ear/nonlinear maps, dynamical systems, and spatio-temporal PDE systems. The current framework
is also expected to be extended to more complex inverse problems involving inputs and outputs with
significantly higher dimensionality, e.g. image reconstruction problems.

InVAErt networks can accommodate a wide range of data-driven emulators including dense, con-
volutional, recurrent, graph neural networks, and others. Compared to previous systems designed
to simultaneously learn the forward and inverse maps for physical systems, inVAErt networks have
the key property of providing a partition of the input space into non-identifiable manifolds and their
identifiable complements. In the current study, manifolds in the input space are indicative of struc-
tural non-identifiability, as we focus on training with noise-free input/output pairs. In the presence
of noise, an inVAErt can be extended to jointly analyze structural and practical non-identifiability.

We find that, in practice, the accuracy in capturing the inverse system response is affected by the
selection of appropriate penalty coefficients in the loss function and by the ability to sample from
the posterior density of the latent variables.

Once an inVAErt network is optimally trained from instances of the forward input-to-output map,
inverse problems can be solved instantly, and multiple solutions can be determined at once, pro-
viding a much broader understanding of the physical response than unique solutions obtained by
regularization, particularly when regularization is not strongly motivated in light of the underlying
physical phenomena.

This work represents a demonstration of the capabilities of inVAErt networks and a first step to
improve current understanding on the use of data-driven architectures for the analysis and synthesis
of physical systems. A number of extensions will be the objective of future research, from applied
studies to combination with PINNs or multifidelity approaches in order to minimize the number of
examples needed during training.
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A Gâteaux derivative of loss function

In this appendix, we compute Gâteaux derivatives of the cost function T (21) term by term. Recall
the expression o(α) denotes any function such that limα→0 α

−1o(α) = 0.

A.1 Derivatives of J

We first compute the partial derivative of J with respect to D :

J(D + α∆D ,V ) = J(D ,V ) + αδJ(D ,V ; ∆D) + o(α) , (55)

where

δJ(D ,V ; ∆D) := lim
α→0

J(D + α∆D ,V )− J(D ,V )

α
, (56)

denotes the Gâteaux derivative, or first variation, of the functional J at D in the direction of ∆D

and α ∈ R. We then merge the expansion (20) with the definition (22), leading to
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Neglecting the high order terms related to α2 and o(α) and comparing with (55), we have
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(58)

We then proceed to compute the partial derivative of J with respect to V . This process is equivalent
to deriving first-order conditions with respect to µi and σi through the VAE architecture. First,
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consider the following expansion of J

J(D ,V + α∆V ) =
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where ∇D denotes the Jacobian matrix of D with respect to V . Following similar procedure as (58),
the Gâteaux derivative of J is then
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A.2 Derivatives of H

Following the same procedure as above, we compute Gâteaux derivatives of the functional H with
respect to D and V as:

δH(D ,V ; ∆D) =
1
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A.3 Derivatives of K

Since the functional K only depends on parameters of V , it suffices to compute

K(V + α∆V ) = K(µi + α∆µi,σi + α∆σi) ,

= K(V ) +
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where σ−1
i is to be interpreted componentwise. Hence, the Gâteaux derivative δK can be computed

explicitly as:

δK(V ; ∆V ) =
1
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37



B Related work on posterior collapse

Posterior collapse is often attributed to the variational inference objective, e.g. ELBO (14) where the
posterior distribution is drawn towards the prior, leading to the collapse phenomenon. To address
this issue, one can either reduce decoder flexibility or decrease the impact of the KL loss [6, 64, 9,
24, 16]. However, Lucas et al. [36] challenge this perspective by comparing the ELBO objective to
the MLE approach in linear VAEs. They suggest that the ELBO objective may not be the only reason
for posterior collapse. Razavi et al. [45] propose an alternative approach that avoids modifying the
ELBO objective. They introduce δ-VAEs, which are specifically designed to constrain the statistical
distance between the learned posterior and the prior. Furthermore, Wang et al. [60] have shown
that posterior collapses if and only the latent variable is not identifiable in the generative model. To
mitigate this issue, they develop LIDVAE (Latent-IDentifiable VAE).

C Hyperparameter selection

This section outlines the optimal set of hyperparameters employed in each experiment. Unless
otherwise specified, our training approach consists of mini-batch gradient descent with the Adam
optimizer [28]. Besides, our learning rate η is set through the exponential scheduler η(z) = η0 · γ

z .
For a given epoch z, the initial learning rate η0 and the decay rate γ are treated as hyperparameters.

We also found that dataset normalization is particularly important to improve training accuracy. It
helps us control the amount of spurious outliers during inference and significantly helps with inputs
having different magnitudes. If not stated otherwise, we apply component-wise standardization to
both the network inputs and outputs, i.e.

v̄i =
vi − µvi

σvi

, i = 1 : dim(v) ,

where µvi
and σvi

stand for the calculated mean and standard deviation of component vi, from the
entire dataset.

The MLP (Multi-Layer Perceptron) serves as the fundamental building block of our neural network.
We use the notation: [a, b, c] to represent a MLP, where a, b, c denote the number of neurons per
layer, the number of hidden layers and the type of the activation function, respectively. We also
highlight the use of Swish activation function SiLU [44] in a few numerical examples, as it has been
shown to outperform other activation functions in our experiments.

For the Real-NVP sampler NNf , we use the notation [a, b, d, e] to specify the number of neurons
per layer (a), the number of hidden layers (b), and the number of alternative coupling blocks (c).
The Boolean variable e indicates whether batch normalization is used during training and our choice
of activation functions aligns with the original Real-NVP literature [14].

Note that the three components of our inVAErt network, i.e., emulator NNe, output density estima-
tor NNf , inference engine (NNv + NNd) can be trained independently (see Section 2.4), which
enables us to apply distinct hyperparameters for achieving optimal performance. To make this more
clear , we use the notation {A,B,C} for each of the aforementioned components, respectively. In
addition, we also include hyperparameter choices of the additional NF sampler NNf,w (see Sec-
tion 3.3.4), if it helps a certain numerical experiment by generating informative samples of latent
variable w.

Finally, although rare as our experiments suggest, it is worth mentioning that the phenomenon of
posterior collapse may still occur with these recommended hyperparameters, since the training also
implicitly depends on dataset, network initialization etc.
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Data scaling True

Initial learning rate η0 {1× 10−2, 1× 10−2, 1× 10−2}
Decay rate γ {0.98, 0.98, 0.999}
Mini-Batch size {128, 128, 64}
Parameters of NNe [3, 2, identity]
Parameters of NNf [6, 4, 4, False]
Parameters of NNv [8, 4, ReLU]
Parameters of NNd [10, 10, SiLU]
ℓ2-weight decay rate {0, 0, 1× 10−3}
Loss penalty λv , λd 1, 40

Table 4: Hyperparameter choices of the simple linear system.

Data scaling True

Initial learning rate η0 {1× 10−2, 1× 10−2, 1× 10−2}
Decay rate γ {0.99, 0.99, 0.998}
Mini-Batch size {128, 128, 128}
Parameters of NNe [10, 4, ReLU]
Parameters of NNf [10, 4, 4, False]
Parameters of NNv [10, 4, ReLU]
Parameters of NNd [10, 10, SiLU]
ℓ2-weight decay rate {0, 0, 1× 10−3}
Loss penalty λv , λd 1, 200

Table 5: Hyperparameter choices of the simple nonlinear system without periodicity.

Data scaling True

Initial learning rate η0 {1× 10−3, 1× 10−3, 1× 10−3}
Decay rate γ {0.998, 0.998, 0.999}
Mini-Batch size {64, 64, 32}
Parameters of NNe [16, 8, SiLU]
Parameters of NNf [10, 4, 4, False]
Parameters of NNv [24, 8, SiLU]
Parameters of NNd [48, 8, SiLU]
ℓ2-weight decay rate {0, 0, 0}
Loss penalty λv , λd, λr 1, 200, 5

Table 6: Hyperparameter choices of the simple nonlinear system with periodicity.

Data scaling True

Subset size S 10000
Sub-sampling size Q 20
Mini-Batch size 1024
Initial learning rate η0 5× 10−3

Decay rate γ 0.995
Parameters of NNf,w [10, 4, 6, False]
ℓ2-weight decay rate 0

Table 7: Hyperparameter choices of the additional NF sampler of the simple nonlinear system with
periodicity.
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Data scaling True

Initial learning rate η0 {1× 10−2, 1× 10−2, 1× 10−2}
Decay rate γ {0.995, 0.995, 0.9992}
Mini-Batch size {128, 128, 128}
Parameters of NNe [10, 6, ReLU]
Parameters of NNf [10, 4, 6, False]
Parameters of NNv [10, 4, ReLU]
Parameters of NNd [10, 10, SiLU]
ℓ2-weight decay rate {0, 0, 1× 10−3}
Loss penalty λv , λd 1, 400

Table 8: Hyperparameter choices of the RCR system.

Data scaling False

Initial learning rate η0 {1× 10−3, 1× 10−3, 1× 10−3}
Decay rate γ {0.999, 0.998, 0.999}
Mini-Batch size {512, 512, 512}
Parameters of NNe [64, 15, SiLU]
Parameters of NNf [12, 4, 8, False]
Parameters of NNv [24, 8, SiLU]
Parameters of NNd [80, 15, SiLU]
ℓ2-weight decay rate {0, 0, 0}
Loss penalty λv , λd, λr 1, 200, 7

Table 9: Hyperparameter choices of the Lorenz system.

Data scaling False

Subset size S 30000
Sub-sampling size Q 15
Mini-Batch size 2048
Initial learning rate η0 5× 10−3

Decay rate γ 0.995
Parameters of NNf,w [8, 4, 6, False]
ℓ2-weight decay rate 0

Table 10: Hyperparameter choices of the additional NF sampler of the Lorenz system.

Data scaling False

Initial learning rate η0 {1× 10−3, 1× 10−3, 1× 10−3}
Decay rate γ {0.999, 0.998, 0.998}
Mini-Batch size {1024, 1024, 1024}
Parameters of NNe [96, 12, SiLU]
Parameters of NNf [12, 4, 8, False]
Parameters of NNv [16, 8, SiLU]
Parameters of NNd [64, 8, SiLU]
ℓ2-weight decay rate {0, 0, 0}
Loss penalty λv , λd, λr 1, 200, 5

Table 11: Hyperparameter choices of the reaction-diffusion system.
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Data scaling False

Subset size S 50000
Sub-sampling size Q 10
Mini-Batch size 2048
Initial learning rate η0 1× 10−2

Decay rate γ 0.995
Parameters of NNf,w [10, 4, 6, False]
ℓ2-weight decay rate 0

Table 12: Hyperparameter choices of the additional NF sampler of the reaction-diffusion system.
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