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A B S T R A C T   

Short-range order (SRO) has a crucial impact on the mechanical strength of metallic alloys. 
Recent atomistic investigations defined an average SRO and attempted to correlate it with the 
yield strength. We propose that the local change in SRO upon slip advance must dictate the 
strengthening, and we elaborate the methodology to establish the “SRO change” on a slip plane 
considering the Wigner-Seitz cell. The model captures the variation of lattice resistance (Critical 
Resolved Shear Stress; CRSS) in the crystal as the SRO changes depending on the probability of 
neighboring atoms. The methodology was applied to Ni-V binary alloys for a wide range of 
compositions and stacking fault widths. Dislocation core widths were determined as a function of 
SRO and energy parameters (unstable and intrinsic stacking fault energies; γus, γisf ). The complex 
variation of CRSS with compositional variations shows good agreement with limited experimental 
results. The compositions corresponding to the transition from partial to full dislocations at higher 
vanadium contents are found depending on the SRO and the intrinsic energy levels.   

1. Introduction 

Short-range order (SRO) in crystalline alloys refers to the preferential positions that solute atoms occupy around a reference atom. 
It is defined upon consideration of series of shells surrounding the reference atom, so a large number of SRO values can be generated 
depending on the size of the cell considered. Typically, average SRO quantities over a domain are reported which can also be measured 
with diffuse scattering studies although local arrangements responsible for “SRO changes” upon atomic displacements are difficult to 
obtain experimentally. A comprehensive methodology based on atomistic simulations addressing the determination of SRO and its 
change upon slip deformation is the subject of this paper. 

The SRO is expected to have significant impacts on mechanical properties, including the strengths and deformation behaviors of 
substitutional alloys (Chen et al., 2021a, 2021b; Li et al., 2019; Zhang et al., 2022, 2019; Zhou et al., 2022). In equiatomic NiCoCr 
ternary alloy, for instance, it is found that yield strength increases with aging (Zhang et al., 2020) upon achieving a higher SRO 
compared to the solution-treated condition. Also, along with strength enhancement, NiCoCr represents a large variation of stacking 
fault width (SFW) in the negative stacking fault energy (SFE) (Ding et al., 2018; Niu et al., 2018; You et al., 2023a; Zhao et al., 2019, 
2017), statistically expected to result from the SRO arranged by multi-elements. A recent study, however, found that a simple binary 
Ni63.2V36.8 alloy has a higher yield strength compared to NiCoCr as well as the well-known high-entropy alloy NiCoCrFeMn (Oh et al., 
2019). Although there is an explanation on vanadium solute considering only solid-solution hardening effect (Yin et al., 2020a), the 
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SRO effect on strengthening and stacking fault (SF) is missing upon solute concentration and also underestimated in binary alloys. The 
addition of a secondary element vanadium to nickel could produce a number of compositions to illustrate the role of SRO which is 
considered in this study. 

The definition of SRO in multi-component alloys has been established based on the Warren-Cowley (WC) formalism (Cowley, 1960; 
Norman and Warren, 2004). It involves determining a set of probabilities of finding a particular type of solute atom in a specific 
coordination shell around the central reference atom. In the case of random distribution, the SRO is ideally zero, and either if atoms of 
the same type dominate the shell over a random case SRO > 0, or if atoms of the different type dominate then SRO < 0. A key 
development has been made by Fine and Cohen on the change of SRO on the slip plane (Cohen and Fine, 1962). Albeit it simplified to 
capture the change of SRO, it did not consider the actual change of coordination in the shell, i.e., missing the breaking and restoring of 
bonds during a slip. In this study, we extend this key to analyze the “SRO change” on the Wigner-Seitz (WS) cell which provides a 
correct representation. 

Although the early experimental observations referred to average SRO definitions over macroscopic domains, the motion of plane 
defect modifies the local SRO on each different slip-plane and the choice of the primitive cell is critical in evaluation of the SRO change. 
In this paper, we undertake local SRO calculations focusing on finite number of atoms governed by the WS cell. Such a treatment leads 
to the correct determination of the critical resolved shear stress (CRSS) as we will demonstrate. 

Previous reports that mainly focused on the SRO obtained the WC-based SRO parameters via Monte Carlo (MC) simulations of 
swapping atomic species (Chen et al., 2021a; Ding et al., 2018; Tamm et al., 2015). The importance of SRO is gaining attention in both 
theoretical and experimental studies (Ferrari et al., 2023; Kostiuchenko et al., 2020; Picak et al., 2023; Singh et al., 2015; Ziehl et al., 
2023). The MC approach has been well accepted. However, a rigorous treatment relating the SFE to the “SRO change” over the ac
curate cell-grid (WS cell in this work) is missing. Also, the variations in the SFEs and the SRO changes upon slip depend on each 
slip-plane, so a range of CRSS in the material can be correspondingly achieved with different slip-planes, which is consistent with 
experimental measurements. Therefore, with accurate formulation of the SRO change and its relation to SFE, one can potentially 
reduce the density functional theory (DFT) calculations to obtain thousands of SFEs representative of real materials. 

In the given crystal with more than two elements, the variations of SFEs due to the different slip-planes correspond to the distinctive 
CRSS, since it is strongly dictated by the SFEs (Celebi et al., 2022, 2023; You et al., 2023a, 2023b). With a distribution of SFE or SFW, 
one can also obtain a range of dislocation core-widths based on the current theory we describe. Therefore, the dislocation core-width is 
not a constant value and varies depending on the local composition and the SRO. Hence, the determination of “SRO change” upon slip 
governs the SFEs hence the CRSS in different slip-planes. 

In this study, we determine the variation of SRO during slip motion over the different slip-planes of FCC materials. We implement 
hybrid MC molecular dynamics (MD) simulations of swapping atomic species in FCC Ni-V binary alloys. For different bulk SRO states 
(average SRO of superlattice) of alloys, we apply a slip at a different slip-plane, and calculate the unstable and intrinsic SFEs, γus and 
γisf , based on DFT. We also calculate the average lattice constant and elastic constants (C11, C12, and C44) for the model alloy system. 
Then, we evaluate the CRSS, SFW, and core-widths using the WS cell-based ab-initio framework by Mohammed-Celebi-Sehitoglu 
(MCS) (Celebi et al., 2023; Mohammed et al., 2022). By evaluating the variation of SRO with hundreds of slip-planes, we gain a 
more comprehensive understanding of the role of chemical SRO mechanics. By incorporating the interaction energy of atomic pairs 
into the SRO change, we show that the SFEs in different slip-planes can be predicted obviating the need for SFE simulations. We also 
reveal the effect of solute concentration on SFEs and CRSS, as well as core-widths and SFWs is rather complex. This work shows the 
capabilities of exact “SRO change” in determination of SFEs and CRSS and can guide the experiments. 

An important distinction between this work and previous studies is the treatment of the “SRO change” upon slip. Upon slip dis
placements of magnitude b/2 and b within the WS lattice, where b is the magnitude of Burgers vector, certain bond pairs are lost while 
other pairs are added to the lattice. The atoms of pairs being lost and added can be different types of elements. This implies that the 
composition of the WS lattice is changing due to slip. Because different types of atoms are being introduced and removed, the local 
arrangement of atoms (i.e., SRO) also changes. In fact, the SRO is likely to decrease upon slip and the lattice structure becomes more 
random. This randomness is associated with a higher energy, similar to what is known as intrinsic faults within the lattice. Quantifying 
this change in SRO is a departure from previous studies, suggesting that understanding these changes could lead to an advanced 
treatment of CRSS in multi-component alloys. 

Finally, in this study a further insight on finite temperature effects on the CRSS is presented by considering combined ab-initio MD 
(AIMD) simulations. This approach has not been undertaken previously to evaluate CRSS based on our knowledge. The DFT is utilized 
for the calculation of forces based on electronic structure calculations while the MD provides the solution for the classical equations of 
motion to capture the actual dynamics and the new positions of the nuclei. Convergence to the desired temperature in the range 0–700 
K was achieved. Although computationally demanding, the method allows study of finite temperature effects and comparison of theory 
with experiments. The CRSS measurements in experiments are often conducted at room temperature and at 77 K (Abuzaid and 
Sehitoglu, 2017; Chowdhury et al., 2015; Liu et al., 2023). However, the DFT results are predominantly obtained at 0 K. Previous 
treatments of temperature effects in materials science have been semi-empirical and followed the developments from 
Ashby-Argon-Kocks-Haasen. However, these early treatments do not rely on first-principles calculations including electronic effects or 
the SRO effects considered in this work. The current treatment in this paper overcomes previous limitations and compares CRSS theory 
to experiments at finite temperatures as presented in the Appendix. 
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2. Methods 

2.1. Hybrid Monte Carlo molecular dynamics of swapping atom 

In order to get multiple SRO structures, we implement hybrid MC/MD simulations of swapping atomic species, each step performs 
DFT-based calculation. The hybrid MC/MD is suitable for the fast relaxation of crystal including atomic swaps with available inter
atomic potentials (Widom et al., 2014). In order to degrade empiricism in the potentials, we cross-validate energetics of atomic 
structures at each swapping atomic species using DFT via Vienna Ab-initio Simulation Package (VASP) (Kresse and Furthmüller, 1996). 
For hybrid MC/MD simulations of swapping atomic species, we utilize modified embedded atom model (MEAM) Ni-V interatomic 
potential (Shim et al., 2013), using the large-scale atomic/molecular massively parallel simulator (LAMMPS) package (Thompson 
et al., 2022). We create an oriented FCC Ni superlattice containing 270 atoms with 9 stacking layers of {111} plane. For targeting 
composition ratio, Ni atoms are correspondingly substituted to V atoms. Then, the hybrid MC/MD simulation of swapping atomic 
species (Ni and V) is carried out based on Metropolis-Hasting criterion (Hastings, 1970). It accepts the swapped configuration (1) if the 
energy of swapped configuration E(i +1) is lower than the previous one E(i), or (2) the following probability is equal to / greater than 
the random number (R) ranged by (0, 1), 

R ≤ exp
(

−
E(i + 1) − E(i)

kTs

)

(1)  

where k is Boltzmann constant, and Ts is temperature-scaling factor. We set it to 10 K for most compositions, except two more con
figurations (300 K, 500 K) in Ni63.7V36.3 composition for a structural variety. We apply 10 swapping atomic species in Ni and V at each 
MC step. 

2.2. Short-range order characterization 

For each hybrid MC/MD step, we calculate the DFT based energy and the Warren-Cowley (WC) based SRO parameters. The SRO 

Fig. 1. Definition and illustration of short-range order (SRO). (a) Schematic of first, second, and third nearest-neighbor (NN) shells surrounding Ni 
center host atom in FCC binary Ni-V alloys; Ni and V atoms are colored green and grey, (b) Atomic configuration of FCC Ni63.7V36.3 alloy ener
getically converged in hybrid Monte Carlo (MC) molecular dynamics (MD) simulation; 270 atoms (Ni: 172, V: 98) within 9 {111} planes, (c) 
Warren-Cowley (WC) based SRO parameter (αm

i−j) calculated in Ni63.7V36.3 alloy for the energetically converged superlattice. 
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parameters are defined at different nearest-neighbor (NN) shells surrounding the host atom. The SRO is defined as follows, 

αm
i−j = 1 −

pm
i−j

cj
(2)  

where pm
i−j is the probability of finding an atomic species (j) around the host (i) in m-th NN shell, and cj is the concentration of an atomic 

species (j). In Fig. 1a, we illustrate three different NN shells in Ni-V binary alloys. In the Supplementary Materials, we plot the DFT 
based energy and the SRO parameters at three different NN shells in Fig. S1 for 10 K Ts-factor in hybrid MC/MD. It generally leads to 
the convergences of the energy as well as the SRO parameters calculated in three distinctive shells. In the main text, we focus on the 
SRO parameter for the first (m = 1) NN shell since it dominantly contributes to the SRO (see Appendix F). In Fig. 1b and c, we 
demonstrate the atomic configuration and the SRO distribution of FCC Ni63.7V36.3 alloy (Ni: 172, V: 98) energetically converged in the 
hybrid MC/MD simulation. We obtain 12 different bulk SRO states (including randomly shuffled, special quasi-random; SQS, 7 in
termediates, and three final structures using different Ts-factors) of Ni63.7V36.3, and 2 states (SQS, and final) of other compositions (5, 
10, 15, 20, 25, and 30 at.%). For constructing SQS structure, we utilize ATAT package (van de Walle et al., 2013) to get the structure of 
the closest to zero SRO, i.e., the most random. 

2.3. Density functional theory calculation 

For different bulk SRO states of Ni-V alloys, we calculate the average lattice constant and elastic constants (C11, C12, and C44) for the 
superlattice based on the DFT calculation. We use volumetric-energy and strain-energy methods in determination of the lattice con
stant and elastic constants (C11, C12, and C44). In the Supplementary Materials, we demonstrate the details of calculations. After 
optimizing the lattice constant, we apply a slip at a different atomic plane, and calculate the SFEs. The SFE curve is calculated as below, 

Fig. 2. Schematic of the extended dislocation and Wigner-Seitz (WS) cell-based misfit energy and CRSS framework; (a) the conventional WS cell 
area defined in {111} plane; Ni and V atoms are colored green and grey. (b) Atomic structure in {111} plane of Ni63.7V36.3 alloy equally spaced by 
the alternative WS cell area aligned with lattice vectors; Disregistry distribution function f(x1) is plotted. (c) For a given core-structure of an 

extended dislocation in FCC materials with full Burgers vector (b
⇀

F), b
⇀

LP is the one for a leading partial, and b
⇀

TP for a trailing partial. b
⇀

F can be pure 
screw, edge, or mixed dislocation with angle of θ; Two Shockley partials are separated by stacking fault width (SFW, d); The LP is at position x1 = s1 

and the TP is at x1 = − s2, yielding the SFW as a distance between two partials, d = s1 + s2; Two partials have elastically anisotropic interaction 
with each other, and atomistic misfit occurs in a slip-plane lattice; Dislocation-density distribution ρ(x1) is plotted with the core-widths ξTP, ξLP of 
the trailing and leading partials, respectively; (d) Typical total energy contour determined by the WS cell-based framework for Ni63.7V36.3 alloy; 
Screw dislocation is considered in this sample. 
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suggested by Vítek (1968), 

γ =
E − E0

A
(3)  

where E0 and E are energies of initial and deformed states, and A is an area of slip-plane. The DFT calculations are implemented within 
the projected-augmented-waves (PAW) (Kresse and Joubert, 1999) approach via Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) 
exchange-correlation potentials. The PAW-PBE pseudopotentials for V and Ni are employed with V_sv and Ni_pv, respectively. The 
oriented FCC superlattice with 270 atoms is employed with Monkhorst-pack k-mesh 1 × 1 × 1 for hybrid MC/MD swapping atoms, 2 ×
2 × 2 for electronic minimization and ionic relaxation in allowing full distortions, lattice volumetric optimization, and elastic con
stants, and 2 × 2 × 1 for determining SFEs to hinder redundant SFs outside the periodic boundary. A 450 eV plane-wave energy cut-off 
is used for all the calculations. The tolerance criteria for energy and force are allowed within 1 meV and 5 meV/Å, respectively. For 
finite temperature simulations in AIMD, we use the same structures firstly optimized at 0 K. Details of AIMD are summarized in 
Appendix A. 

2.4. Wigner-Seitz cell based analytic framework 

The CRSS analytical framework is based on the notion of energy minimization utilizing a WS cell-based cell on the slip plane to 
establish the dislocation core width and partial dislocation separation. Fig. 2 represents the typical schematic and results based on the 
previous framework suggested by Mohammed-Celebi-Sehitoglu (abbreviated as MCS) (Mohammed et al., 2022). It has the originality 
of combining the anisotropic elastic interaction, the WS cell-based atomistic misfit energy, and the energy-minimization of inter
mittent motion of Shockley partial dislocations in FCC materials. In Fig. 2a, the conventional WS cell area is represented as purple 
hexagon in the atomic structure of {111} plane schematic in Ni63.7V36.3 alloy. This original definition of the WS cell is kept for later 
SRO calculation. In Fig. 2b, the equivalent WS cell area aligned with lattice vectors in {111} plane. This alternative WS cell area is 
proper to characterize the CRSS incorporated with the SFEs. Also, the core-disregistry distribution function f(x1) is plotted against 
slip-direction. 

In Fig. 2c, the core structure of an extended dislocation is depicted. As a slip occurs, the separated partials have a repulsive elastic 
interaction. At the same time, the WS cell-based misfit energy in a crystal lattice produces an attractive force and balances the elastic 
component. The total energy is a minimum at a finite separation distance. Also, the full, leading, and trailing partial Burgers vectors 

(b
⇀

F, b
⇀

LP, and b
⇀

TP) are represented. A dislocation character, the angle between b
⇀

F and the dislocation line, can result from various 
vectors in the specific coordinate system. Alternatively, we consider the fixed Burgers vectors as the references of the extended 
dislocation and vary the global coordinate systems. In this work, we demonstrate the framework mainly based on a screw dislocation 
with different SRO states and slip-planes in Ni63.7V36.3 alloy. The macroscopic material constants such as lattice constant and elastic 
constants C11, C12, C44 are considered for different SRO states, while the unstable and intrinsic stacking fault energies γus and γisf are for 

different slip-planes. The global coordinate for the screw character is defined as e⇀1‖[112], e⇀2‖[111], and e⇀3‖[110]. 
The dislocation-density distribution ρ(x1) is plotted in Fig. 2c. As a slip is introduced, the density of a full dislocation becomes 

separated into two components for Shockley partials, including the leading (LP) and trailing partials (TP) with the core-widths ξLP and 
ξTP, respectively. A distance between two partials is then characterized by the SFW as d. The distributions are derived from the core 
disregistry functions, f(x1), of the LP and TP. Both the core-disregistry distributions f(x1) and dislocation-density distributions ρ(x1) for 
the partial Burgers vectors are defined as the following equations 

fLP(x1) =
bp

2
+

bp

π tan−1
(

x1 − s1

ξLP

)

; ρLP(x1) =
bP

π

(
ξLP

(x1 − s1)
2

+ ξ2
LP

)

(4)  

fTP(x1) =
bp

2
+

bp

π tan−1
(

x1 + s2

ξTP

)

; ρTP(x1) =
bP

π

(
ξTP

(x1 + s2)
2

+ ξ2
TP

)

(5)  

where bp is the magnitude of the partial Burgers vector, and s1, s2 are the positions of LP and TP respectively, which determines the 
SFW as d = s1 + s2. Eqs. (4) and (5) are established in dislocation core model with respect to two Shockley partials where f(x1) is 
distance registry across the slip plane following arctan function and ρ(x1) is derivative of f(x1). These explicitly represent the several 
key parameters of the core structures in the extended dislocation, such as the core-width ξLP, ξTP, and the SFW based on the positions of 
partials. In the previous studies on the MCS framework, the core structure parameters are determined upon minimization of total 
energy (Etotal) of the extended dislocation in FCC crystals, as Etotal is composed of two energy components, 

Etotal(ξLP, ξTP, s1, s2) = Estrain(ξLP, ξTP, s1, s2) + Emisfit(ξLP, ξTP, s1, s2) (6)  

where Estrain is the elastic strain energy based on the anisotropic Eshelby-Stroh (E-S) formalism (Barnett and Lothe, 1974; Stroh, 1958), 
and Emisfit is the misfit energy utilizing the equivalent WS cell area in the crystal lattice. For the details of the elastic strain-energy and 
misfit energy formalism, the reader may refer to elsewhere (Mohammed et al., 2022). 

The strain energy component Estrain(ξLP, ξTP, s1, s2) for the extended dislocation can be calculated from the anisotropic interaction 
coefficients on each Shockley partial. Estrain(ξLP, ξTP, s1, s2) consists of the self-interaction energies of the LP and TP (such as E11

elastic and 
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E22
elastic, respectively) and the interaction energy between the two partials (E12

elastic). Therefore, Estrain(ξLP, ξTP, s1, s2) is expressed as 

Estrain(ξLP, ξTP, s1, s2) = E11
elastic + E22

elastic + E12
elastic (7)  

All terms on the right-hand side are summed up with the elastic interaction energy between infinitesimal fractional dislocations 
derived from the cores of the partials, and they are defined as follow, 

E11
elastic =

∫ ∞

−∞

∫ ∞

−∞

(
K11

2π

)

ρLP(x)ρLP(y)ln|x − y|dxdy

E22
elastic =

∫ ∞

−∞

∫ ∞

−∞

(
K22

2π

)

ρTP(x)ρTP(y)ln|x − y|dxdy

E12
elastic =

∫ ∞

−∞

∫ ∞

−∞

(
K12

2π

)

ρLP(x)ρTP(y)

(

b
⇀

LP.b
⇀

TP

)

ln|x − y|dxdy

(8)  

where K11, K22, and K12 are the anisotropic interaction coefficients to be computed. As an example, the procedure to determine K12 can 
be briefly explained. We can consider the LP and TP separated by a certain distance R. The continuum strain-fields surrounding each 
Shockley partial are determined and superposed based on the E-S formalism to determine the net strain-field. The strain energy density 
is then numerically integrated to calculate the total strain-energy of interaction at the chosen separation distance R, and a core region 
within radius 5bp around the center of each partial is excluded. By calculating the total strain-energy at varying R, the interaction 
coefficient K12 is determined. The choice of 5bp does not affect K12 calculation since the gradient of change of total strain-energy is 
conserved. The self-interaction coefficients K11 and K22 can be similarly determined by considering the interaction between two 
dislocations with the same Burgers vectors of them. For a more detailed exposition of anisotropic interaction coefficients and the E-S 
formalism, the reader is referred to elsewhere (Mohammed et al., 2022). 

For the formulation of the WS cell-based misfit energy Emisfit(ξLP,ξTP, s1, s2), the generalized stacking fault energy (GSFE) curve is 
required for each LP and TP. The GSFE curves for the LP and TP are defined as: 

γLP(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γisf +
(γus − γisf

2

)(

1 − cos
(

2πu
bP

))

for 0 ≤ u ≤
bP

2

γus

2

(

1 − cos
(

2πu
bP

))

for
bP

2
≤ u ≤ bP

(9)  

γTP(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γus

2

(

1 − cos
(

2πu
bP

))

for 0 ≤ u ≤
bP

2

γisf +
(γus − γisf

2

)(

1 − cos
(

2πu
bP

))

for
bP

2
≤ u ≤ bP

(10)  

where γus and γisf are unstable and intrinsic stacking fault energies, respectively. Eqs. (9) and (10) are established by Fourier series with 
two critical energy barriers γus and γisf . The reader is referred to elsewhere (Kibey et al., 2006) for a more detailed exposition of GSFE 
curve. Based on Eqs. (4), (5), and (9), (10), the Emisfit can be rewritten with the partitioned GSFE into the WS cell area for the individual 
Shockley partials, 

Emisfit(ξLP, ξTP, s1, s2) =
1

L2D

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑N0

n=−N0

∑−1

m=−Mmax

γTP

(
fTP

(
x(m,n)

1

))
ΔA

…… +
∑N0

n=−N0

∑Mmax

m=0
γLP

(
fLP

(
x(m,n)

1

))
ΔA

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(11)  

where x(m,n)

1 = (m a→1 + n a→2) ⋅ e→1, ΔA is the area of the WS cell, and L2D is the normalization length in the repeated dislocation lines. A 
summation limit of Mmax is chosen with a large number, of the order of 104, to sufficiently converge the Emisfit(ξLP,ξTP, s1,s2). The misfit 
energy in Eq. (11) is calculated per unit length of the dislocation line. For the positive γisf , four parameters (ξLP, ξTP, s1, s2) are 
consequently determined by the Eq. (6) with respect to the equilibrium core structure (ξ0

LP, ξ0
TP,s0

1,s0
2) at the global minimum of Etotal in 

such that 

∂Etotal

∂ξLP
= 0;

∂Etotal

∂ξTP
= 0;

∂Etotal

∂s1
= 0;

∂Etotal

∂s2
= 0 (12)  

The minimization routine is implemented with fmincon in MATLAB. Details for the dependence of each energy component on the core 
parameters are found in the previous study (Celebi et al., 2023; Mohammed et al., 2022). 
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2.5. Minimum energy path (MEP) of partial dislocations and crss 

The previous MCS framework formulated the minimum energy path (MEP) with the equilibrium core-widths (ξ0
LP, ξ0

TP) to find the 
triangular trajectory that allows the robust intermittent movement of Shockley partials (Mohammed et al., 2022; You et al., 2023b), 
which is also energetically favorable than the constant dissociation of partials. The positions of Shockley partials (s1,s2) are described 
by the following equations along with the triangular trajectory, 

s1 = s0
1 +

1̅
̅̅
2

√

(

t +
∑n

k=1
Ck

(
1 − P

(
Cp, j

))
)

s2 = s0
2 +

1̅
̅̅
2

√

(

− t +
∑n

k=1
Ck

(
1 − P

(
Cp, j

))
) (13)  

where t is a path variable to parametrize the trajectory. P(Cp, j) is the triangular pulse generator and j is a pulse-variable defined as 
follows, 

j =
t

Cq
+ Cp −

⌊
t

Cq
+ Cp

⌋

(14)  

P
(
Cp, j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for j ≤ 0
j

Cp
for 0 < j < Cp

1 − j
1 − Cp

for Cp < j < 1

0 for j ≥ 1

(15)  

where the lower bracket of ⌊x⌋ is a floor function ⌊x⌋. = max{X ∈ Z : X ≤ x}, and the parameter combination (C1,…,Cn,Cp,Cq) defines 
a shape for a triangular path of positions of Shockley partials. The total energy cumulated along with the triangular trajectory given in 
Eq. (13) is accordingly defined as the following objective function, 

Epath
(
C1, …, Cn, Cp, Cq

)
=

∑

i
Etotal

(
s1(ti), s2(ti), ξ0

LP, ξ0
TP

)
(16) (16)  

Eq. (13) and (16) respectively describe the triangular trajectories and energy landscape based on the positions of two Shockley partials 
corresponding to the minimum energy path, which were established in the previous papers (Mohammed et al., 2022; You et al., 
2023b). The number of periodic functions is simply set to n = 1 sufficient to capture the MEP. The roles of path parameters such as t 
and (C1,Cp,Cq) can be also understood with the equilibrium point found at t = 0 for (s0

1,s0
2) and the positive γisf with C1 = 0, which is the 

amplitude of triangular path. Cp and Cq are a peak position and a period of the triangular path, respectively. The triangular pulse 
generator P(Cp, j) is implemented with triangularPulse in MATLAB. The equilibrium parameters (ξ0

LP, ξ0
TP,s0

1,s0
2) for the case of positive 

γisf are employed along with the triangular trajectory described by Eq. (13), and the minimization routine in Eq. (16) is also imple
mented with fmincon and multiple initial points (MultiStart) in MATLAB to find the corresponding MEP. 

In the conventional Peierls-Nabarro (PN) model (Joós and Duesbery, 1997; Nabarro, 1947; Peierls, 1940), the CRSS has been 
calculated by taking only the simple misfit energy based on the one-dimensional cubic row-summation. Thus, it is expressed as, 

CRSSPN = max

(
1
bF

dEPN
misfit

du

)

(17)  

where bF is the magnitude of the full dislocation, EPN
misfit(u) =

∑∞
m=−∞γ(f(ma′ − u))a′, γ is the GSFE curve, f is the disregistry function 

given by equation x, and a′ is interplanar spacing perpendicular to the dislocation line, respectively. The MCS framework suggested the 
optimum-energy-trajectory (OET) approach for the CRSS prediction that resolved the limitations in the PN model such as (i) the motion 
of individual Shockley partials with a constant SFW, (ii) the dependency of CRSS on the full Burgers vector bF only, not on the partial 
Burgers vector bp, and (iii) the one-dimensional simple-cubic row-summation misfit-energy. For more detailed coverage of the OET 
approach and its derivation, readers are referred to the original work (Mohammed et al., 2022). Based on the OET approach, the CRSS 
is defined as, 

CRSSMCS = SFF ⋅ max
(

1
(SFLP ⋅ s′

1(t) − SFTP ⋅ s′
2(t))

1
bp

dEtotal

dt

)

(18)  

where bp is the magnitude of the Burgers vector in Shockley partials, SFF = (v⇀ ⋅ n⇀slip)(v⇀ ⋅ b
⇀

F), SFLP = (v⇀ ⋅ n⇀slip)(v⇀ ⋅ b
⇀

LP), and SFTP = (v⇀ ⋅ 

n⇀slip)(v⇀ ⋅ b
⇀

TP) are Schmid Factors (SFs) resolved in the full extended dislocation, LP, and TP, v⇀ is the unit vector along the uniaxial 

D. You et al.                                                                                                                                                                                                            



International Journal of Plasticity 174 (2024) 103919

8

tensile load direction [132], and n⇀slip = 1/
̅̅̅
3

√
[111] the normal vector to the slip plane, respectively. The CRSS in Eq. (18) appears 

different than the conventional PN approach in Eq. (17) where a single partial is solely considered, since the OET approach in this work 
includes partial separation trajectory. 

In Fig. 2d, a typical result for Ni63.7V36.3 alloy is shown with the MCS framework for a screw dislocation. The material parameters 
are determined by DFT calculation such as a = 3.597 Å, C11 = 265.2 GPa, C12 = 177.4 GPa, C44 = 122.2 GPa, γus = 277.0 mJ/m2, and 
γisf = 85.7 mJ/m2. This parameter-set is one of data in Ni63.7V36.3 alloy which is covered in the next section. In the total energy contour 
along with the positions of Shockley partials (s1, s2), the optimized MEP (red line) is represented. Based on the minimization in Eq. 
(12), the equilibrium core widths (ξ0

LP, ξ0
TP) of Shockley partials yield both ξ0

LP = ξ0
TP = 3.39 Å, and their equilibrium positions (s0

1,s0
2) are 

(6.48 Å, 4.27 Å), which results in the global equilibrium SFW, d0 = 10.7 Å. Then, the CRSS of the given input parameters finally yields 
the CRSS = 13.4 MPa based on Eq. (18), at the maximum derivative of total energy, which is resolved in its OET. The fluctuation in the 
SFW is due to the intermittent zig-zag motion of Shockley partials. 

3. Results and discussion 

3.1. Bulk and planar SRO in material constants 

For the SRO characterization of the given crystal, the average over total number of atoms is generally used. The average SRO is 
defined as follows, 

Fig. 3. Short-range order (SRO) effect in material bulk properties of Ni63.7V36.3 alloy; (a) an average of the WC-based SRO parameters over total 
number of atoms (αm

i−j); intermediate (triangle) and final (asterisk) structures are denoted as examples; total 12 different atomistic structures are 
sampled, (b) averages of lattice constant and (c) elastic constants (C11, C12, C44) as a function of summation of all pairs (αm

sum) for 12 structures. 
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αm
i−j =

1
ni−j

∑ni−j

k=1
αm

i−j,k (19)  

where ni−j is total number of atoms for i − j pairs, and αm
i−j,k is the SRO at k-th site of center atomic species i. For Ni63.7V36.3 alloy 

composition (Ni: 172, V: 98), we have 172 Ni-Ni pairs, 270 Ni-V pairs, and 98 V-V pairs, respectively. In Fig. 3a, the average SRO 
parameters αm

i−j for the first NN shell (1NN) in different types of pair are shown. The average quantities of pairs for the second and third 
NN shells are depicted in Fig. S1 in the Supplementary Materials. As Ni63.7V36.3 alloy is being energetically stabilized, the SRO is 
converged and Ni-V pair (-) becomes more favorable than Ni-Ni and V-V pairs (+) in the 1NN shell. We put the summation of each pair 
SRO parameter, defined as below, 

αm
sum =

∑

pair i−j
αm

i−j (20) 

We sampled out 12 different SRO states by using the average pair summation measurer. Two example structures are denoted by 
intermediate (triangle) and final (asterisk) ones. With 12 distinctive bulk SRO states, the lattice constant, and elastic constants (C11, 
C12, and C44). are varying in Fig. 3b and c. The details of determination of these constants are given in Fig. S2 in the Supplementary 
Materials. Since these material parameters (lattice constant and elastic constants) are usually characterized in the macroscopic 
deformation of given supercell, the average SRO quantity for total number of atoms indicates a good correlation. As the alloy is 
stabilized with respect to the energy and SRO parameters, the lattice constant decreases while the elastic constants (μ, C44) increase 
overall. This is because the lattice distortions decrease as the atomic configurations transition from a random configuration to a short- 
range ordered configuration. These changes may contribute to the CRSS increase or decrease for general FCC materials (You et al., 
2023b). The decreases in lattice constant and elastic constants are correlated with the increase in the CRSS. However, the changes are 
small, and the opposite contribution caused by decreasing lattice constant and increasing elastic constants may lead counterbalance to 
the CRSS. Therefore, other material constants such as unstable and intrinsic SFEs (γus, γisf ) are possibly critical factors to the CRSS, as we 
show in the next section. 

In Fig. 4, we show a large variation of the SFEs in the different slip-planes by taking samples from the stabilized atomic config
uration of Ni63.7V36.3 alloy in the hybrid MC/MD simulations at 10 K Ts-factor. We take three different slip-planes in the illustration 
shown in Fig. 4a, and they have heterogenous configurations in the slip-planes. Hence, it should be considered in the local definition of 
the SRO. We calculate the planar SRO parameters for three slip-planes. Each slip-plane is considered as the center atomic layer in the 
SRO calculation. In Fig. 4b, the SFE curves are shown for three slip-planes and the case of pure Ni as a comparer. It shows significant 
changes in SFE curves by selecting the different slip-planes, although they come from the same macroscopic SRO state. The unstable 
and intrinsic SFEs (γus, γisf ) for slip-planes A, B, and C are respectively (277.0 mJ/m2, 85.7 mJ/m2), (273.8 mJ/m2, 175.6 mJ/m2), and 

Fig. 4. Stacking fault energies (SFEs) with different slip-planes. (a) initial (before slip) states with varying slip-planes for the stabilized atomistic 
configuration of Ni63.7V36.3 alloy in hybrid MC/MD simulation; A, B, and C slip-planes are given as examples; Each planar SRO parameter is 
calculated by only considering each slip-plane as the center atomic layer; Ni and V atoms are colored green and grey. (b) SFEs upon slip 
displacement (u〈112〉) from zero to intrinsic stacking fault (ISF) points; Selecting slip-planes significantly changes SFEs, even with the same 
macroscopic SRO state; SFEs for pure Ni is also given and compared; the Burgers vector is a

6 〈112〉, where a is lattice constant. 
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(356.1 mJ/m2, 236.5 mJ/m2), while the one for pure Ni is (299.0 mJ/m2, 137.6 mJ/m2). The planar SROs in three slip-planes (α1NN
sum ; 

0.32, 0.264, 0.297) are distinctive from each other, while these are not enough to explain their correlations with the SFEs (γus, γisf ). As 
SFEs are varying upon slip displacement, the SROs in all atomic sites in each A, B, and C slip-plane are also changing during the slip 
motion. This has to be considered as well in the SRO characterization. In the next section, we formulate the “SRO change” upon slip, 
and investigate its contribution to the SFEs and the CRSS. 

3.2. Planar “SRO change” upon slip in Wigner-Seitz lattice 

In Fig. 5, we illustrate the change of SRO parameter during slip motion. We demonstrate the SRO change for a single Ni atom 
sampled from the superlattice of Ni63.7V36.3 alloy, and the 1NN shell is defined with the WS cell during the slip. In Fig. 5a, we illustrate 
it in 3D view with three layers for the 1NN including a center layer (Layer0) and two layers (Layer+1, Layer-1). In the calculation of SRO 
parameter, the host Ni atom in Layer0 is considered as the center atom. Two layers (Layer+1, Layer-1) are overlaid together as shown in 
Fig. 5b. The initial coordination number becomes 12, and the number of Ni-V pairs is 7. After the slip displacement around half of 
Burgers vector, the material reaches to the unstable stacking fault (USF) point with the energy barrier γus to overcome. Then the V atom 
in the initial 12th site of the Layer-1 is outside the WS cell, and its bond to the center Ni is broken in the 1NN shell based on the WS cell 
definition. Then the coordination number and the number of Ni-V pairs are respectively changed to 11 and 6. This significantly 
contributes to the SRO value. Similarly, at the intrinsic stacking fault (ISF) states, the new Ni atom in Layer-1 is included in the WS cell 
as new 12th site (‘12′), so its bond to the center Ni is restored. The coordination number becomes 12 again but the number of Ni-V pairs 
is already changed at the USF, so all three states (initial, USF, ISF) have distinctive SRO values (−0.607, −0.503, −0.378). 

This definition can be extended to different slip-planes by also applying local concentration of substitutional solute atoms. The 
concentration cj in Eq. (2) can be substituted with the local compositions (such as Layer0, Layer(−1,0), or Layer(−1,0,+1) composition). 
Then, the pair probability defined in the WS cell and the local composition in the slip-plane result in more accurate characterization of 
SRO parameters during slip motion. We also apply the current definition to the multiple WS cells in the slip-plane (Layer0). A total of 30 
WS cells (center atoms) in the slip-plane can be averaged into a single WS cell value with respect to each pair such as Ni-Ni, Ni-V, and V- 
V. Then we can analyze the correlation of accurate SRO metrics with the SFEs and CRSS. 

Fig. 6 represents the change of WS cell-based SRO parameters upon slip motion and its correlation with the SFEs and CRSS. We use 

Fig. 5. Schematic of “short-range order (SRO) change” on a single host atom during slip motion; (a) Total 3-layers (color-surfaces / color-outlines of 
atoms) illustrate a center layer (Layer0; blue) and two layers (Layer+1, Layer-1) upper and below Layer0. Color-outlines of atoms correspond to their 
layer colors. Layer0 is considered as the center atomic layer for calculating the SRO parameters upon slip throughout initial, unstable stacking fault 
(USF), and intrinsic stacking fault (ISF) states; For the Wigner-Seitz (WS) cell based planar SRO, an initial bond is broken around USF point, while a 
new bond is restored at ISF; Coordination number and probability (pm

i−j) of Ni-V pair are changed upon slip for selected host atom; Ni and V atoms 
are colored green and grey; The WS cell is represented as black hexagon defined in center Ni atom. (b) In the {111} plane view, the change of SRO 
during slip motion is illustrated. The WS cell (black hexagon) is projected in the plane. Layer+1 consists of atomic sites (1–3), Layer0 (4–9), and 
Layer-1 (10–12), respectively; By breaking or restoring the bond, the SRO αm

i−j of Ni-V pair is changed. 
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the average pair summation measurer α1NN
sum by using Eqs. (19) and (20) defined in the plane. The local composition, cj, is based on two 

planes (Layer(−1,0)) that contribute to the change of SRO in the 1NN shell. We utilize the example slip-planes shown in Fig. 4 to be 
consistent. As a function of the displacement, α1NN

sum varies in Fig. 6a. We can calculate the change of SRO parameters from initial state 
during the slip motion as follows, 

Δα1NN,u〈112〉

i−j = α1NN
i−j (u) − α1NN

i−j (0) (21)  

where u〈112〉 is the slip displacement (normalized by the Burgers vector). Δα1NN,u〈112〉

sum can be similarly obtained by summing up each pair 
quantity. In Fig. 6b, we plot intrinsic SFE (γisf ) and CRSS (screw dislocation) in the colormap by the change of SRO by the ISF point, 
Δα1NN,isf

sum . The unstable and intrinsic SFEs (γus, γisf ) of Ni63.7V36.3 alloy can respectively range by 165.4 mJ/m2 ~ 356.1 mJ/m2, and 1.71 
mJ/m2 ~ 265.5 mJ/m2, while the CRSS varies 1.28 MPa ~ 226.3 MPa. The increase of SFEs results in the CRSS enhancement, which is 
also found for general FCC materials in the previous works (Celebi et al., 2023; You et al., 2023b). 

The trend of “SRO change” by the ISF point, Δα1NN,isf
sum , is well captured in colormap by following the propensity between CRSS and 

γisf . The largely negative Δα1NN,isf
sum corresponds to higher CRSS and γisf , while the positive Δα1NN,isf

sum can even yield less than 10 MPa. The 
positive Δα1NN,isf

sum , however, is not physically preferred in short-range ordered materials, whereas chemically random configuration 
may have the positive Δα1NN,isf

sum . The data statistics also summarize that 19 data out of 108 (17.6 %) show positive Δα1NN,isf
sum cases and 

these are only in random and intermediate configurations of the MD/MC simulation. Therefore, the negative Δα1NN,isf
sum is statistically 

preferred, and it would result in the higher CRSS and γisf . Also, since the highest stress barrier should be overcome in the macroscale 
deformation, we assign the “highest CRSS” as a solution among the multiple slip-planes and structures. 

The current definition of SRO during slip motion is based on the local composition in the slip-plane and the change of the pair 
probability defined in the WS cell. The probability change originates from the bond broken/restored mechanism. This similar 
mechanism has been shown to correlate γisf and change of charge density (Kioussis et al., 2002; Qi and Mishra, 2007; Zhao et al., 2019), 

which requires another computational cost. The change of SRO Δα1NN,u〈112〉

sum can efficiently guide the SFEs (γus, γisf ) for multiple 

slip-planes with reduced DFT calculations. Also, Δα1NN,u〈112〉

sum can further improve the estimation of the SFEs (γus, γisf ) by applying the 
previous Cohen and Fine (1962) formula, 

γ =
Δε − TΔs

A
(22)  

where Δε is the change of total energy, Δs the change of entropy during slip, and A the slip-plane area. Δε can be also defined as 

Fig. 6. Change of SRO based on the WS cell during slip motion; (a) α1NN
sum defined at slip-plane (Layer0) varies upon slip deformation; Each slip-plane 

stems from Fig. 4 as a representation example; Δα1NN,u〈112〉

sum is defined as the difference of αm
sum between u〈112〉 distorted and initial states, (b) CRSS 

(screw) variation for intrinsic stacking fault energy (γisf ) and Δα1NN,u〈112〉

sum at ISF point with 9 different slip-planes in 12 different atomistic structures 
(total 108 data) of Ni63.7V36.3 alloy. 
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Δε = 2cicj

∑

m

∑

pair i−j
ZmUi−jΔαm (23)  

where ci and cj are the concentrations of i and j atomic species, Zm the coordination number for the m-th shell, Ui−j the interaction 
energy of i − j pair, and Δαm the change of SRO for the m-th shell. For 0 K, Eqn. (22) is reduced to direct relation between SFE and Δε. 
Also, we focus on the SRO parameters defined in the WS cell, so only 

∑
Ui−jΔα1NN term is considered. We then substitute Δα1NN,u〈112〉

i−j 

into Δα1NN, resulting in 
∑

Ui−jΔα1NN,u〈112〉

i−j . 
In Fig. 7, we demonstrate the further improved estimation of γisf by using the SRO change weighted by the interaction energy, 

∑
Ui−jΔα1NN,isf

i−j . In Fig. 7a, the interatomic energy on each pair is obtained by DFT calculations. In a large cubic cell (20 Å × 20 Å × 20 
Å), two atoms are isolated and incrementally spaced by interatomic distance, r. Then data is fitted by the standard Lennard-Jones 
(1931) form. We use the minimum interatomic energy at rm, where dE

dr ]rm
= 0, for each pair as a constant interaction term Ui−j, given by 

Ui−j = E(rm) (24)  

The interaction term of each pair is obtained as UNi−Ni = −4.21 eV, UNi−V = −7.20 eV, and UV−V = −9.85 eV. In Fig. 7b, γisf is esti

mated by the change of SRO based the WS-cell incorporated with the weighted summation by interaction energy 
∑

Ui−jΔα1NN,isf
i−j . For 

the average SRO change Δα1NN,isf
i−j , the corresponding average γisf is shown. The distributions of 

∑
Ui−jΔα1NN,isf

i−j and γisf are given in 

Fig. S3 in the Supplementary Materials. Most of data is on the positive and zero 
∑

Ui−jΔα1NN,isf
i−j (i.e., negative and zero Δα1NN,isf

i−j ). The 

quantity of Δα1NN,isf
i−j = 0 corresponds to the same atomic species (in Layer-1) restored in its WS cell during slip motion (unlike Fig. 5). 

This may be statistically close to the case of the slip in long-range (fully) ordered phases such as L11- or L12-type since the slip in the 
ordered materials also leads to zero quantity of Δα1NN,isf

i−j in plane-configuration (Layer(−1,0)). 

3.3. Effect of solute concentration 

In this section, we investigate the effect of V solute concentration in material properties and compare the results with experiment. 
In Fig. 8, the effect of V composition on bulk (macroscopic) properties is demonstrated. The lattice constant is gradually increasing 
with V concentration in Fig. 8a, which agrees well with the experiment (Smith et al., 1982). This results from the introduction of the 
vanadium atoms to the nickel lattice and the associated lattice expansion. The variation of lattice constant with V concentration is 10 
times larger than the one with the SRO in Fig. 3. This variation to the CRSS, however, will be negligible in different V concentrations 
since the larger variation (~ 0.3 Å) is needed to significantly change the CRSS (You et al., 2023b). In the meanwhile, the elastic 
constants are gradually decreasing in both (μ, C44) in Fig. 8b, which are double contributions in the CRSS increase, although their 

Fig. 7. Modeling intrinsic stacking fault energy (γisf ) based on interaction energy and the change of SRO; (a) Determination of interaction energy of 

each pair considered in Ni-V alloy; b) Δα1NN,isf
i−j multiplied by a pair-wise interaction energy component and its direct estimation for average intrinsic 

stacking fault energy (γisf ). 
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variations are up to ~ 20 GPa. The gap of elastic constants between random (SQS) and final MC/MD (SRO) structures is also varying 
with V concentration. The lower V concentration makes this gap smaller, since there is less possibility for V atom to occupy different 
configurations. This can be also applied to the variations of SFEs within V concentration. 

We investigate the effect of V concentration on the CRSS in the alloys. The determination of CRSS based on the MCS framework 
requires input variables (lattice constant, C11, C12, C44, γus, and γisf ). The investigation of unstable and intrinsic SFEs (γus, γisf ) in this 
study has been implemented in multiple slip-planes and configurations for all compositions as similar to Fig. 6b. Then the CRSS has also 
a range in other compositions as well, and we consistently show the “highest CRSS” among different slip-planes for all compositions in 

Fig. 8. Compositional effect on bulk properties in Ni-V; (a) Lattice constants of final MC/MD structures at each composition; Experimental lattice 
constants (Expt.a) are extracted from elsewhere (Smith et al., 1982), measured at room temperature, (b) Elastic constants (μ, C44) of SRO and SQS 
structures at each composition; Experimental constants for pure Ni (Expt.b) are from Ref. (Simmons and Wang, 1971), measured at low temperature. 

Fig. 9. Compositional effect on CRSS in Ni-V; The maximum CRSS among different slip-planes and structures for screw and 60◦ mixed dislocation 
characters; Experimental strength for pure Ni (Expt.*) is exploited from Ref. (Wu et al., 2014). For Ni63.7V36.3 alloy, additional experiments are 
conducted with polycrystalline samples in different temperatures and the Hall-Petch correction is incorporated (See Appendix (A). Experimental 
CRSS for Ni and Ni63V37 alloy are obtained by taking Taylor factor at zero temperature-extrapolation. 
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Fig. 9, as discussed in Fig. 6b. We calculate the CRSS for both screw and 60◦ mixed dislocations, since these are the possible dislocation 
characters that have the extreme CRSS (Celebi et al., 2023). The increase of CRSS in V 5 at.% ~ 10 at.% compared to pure Ni is mainly 
attributed to the elastic constants, since they have similar SFE values to pure Ni. However, the CRSS in screw dislocation becomes 
dominant in alloys because γisf gets close to γus barrier, which has been also found at pure aluminum (Celebi et al., 2023). In Table 1, we 
tabulate the input material constants that have shown the largest CRSS among all slip-planes and structures considered in each 
composition. The SFEs (γus, γisf ) in V 36.3 at.%, for instance, (320.4 mJ/m2, 236.6 mJ/m2) is showing the highest CRSS among 108 data 
in Fig. 6b including all possible “SRO change”, Δα1NN,isf

sum in different slip-plane configurations. Although the intermediate compositions 
(V 20 at.%, 25 at.%, 30 at.%) irregularly have higher SFEs (γus or γisf ) than V 36.3 at.%, there are also elastic constants decreasing and 
change of γus-γisf ratio, which can enhance the strength in V 36.3 at.%. The contribution of each parameter to the CRSS has been shown 
in the previous studies (Celebi et al., 2023; You et al., 2023a, 2023b). 

The CRSS in Fig. 9 and SFEs in Table 1 have been compared with other computations or experiments in good agreement. The SFEs 
(γus, γisf ) of pure Ni (299.0 mJ/m2, 137.6 mJ/m2) are comparable to the previous work (292.0 mJ/m2, 134.0 mJ/m2) (Celebi et al., 
2022). The experimental CRSS for pure Ni is exploited from elsewhere (Wu et al., 2014), and for Ni63.7V36.3 alloy, it has been reported 
to have yield stress ~ 750 MPa with grain size ~ 8.1 μm at room temperature (Oh et al., 2019). This is, however, insufficient to 
compare with the theory in this work since it has only one data in grain size and temperature dependencies. Therefore, we conduct 
additional experiments in this study. Details are elaborated in Appendix A. We obtain yield stresses of Ni63V37 alloy ~ 570 MPa and ~ 
410 MPa at 77 K and 298 K, respectively, and the average grain size as ~ 0.15 mm. The Hall-Petch coefficient is determined as ky ~ 
1248 MPa⋅μm½, based on available data including reference and current study. We then estimate the CRSS for single crystal Ni63V37 
alloy at two temperatures as ~ 152 MPa and ~ 102 MPa by using Taylor factor (M = 3.06). These agree well with theoretical pre
dictions of CRSS using SFEs at finite temperatures (See Appendix A). The experimental CRSS estimated at zero-temperature is eval
uated by ~ 206 MPa, which is also in the range of theoretical prediction 215.1 MPa (screw dislocation). We acknowledge that the 
current study has been compared with a limited number of experimental data available in SFEs and CRSS, which requires further 
studies such as for various vanadium concentrations and higher temperatures. 

In Fig. 10, we further illustrate the equilibrium dislocation core structures by the MCS framework. The V compositional effects on 
the core-width and partial separation distance (i.e., SFW) are depicted in Fig. 10a and b. The core-width propensity with V concen
tration is oppositely similar to the CRSS. The leading partial (LP) core-width ξLP is decreasing by V concentration, i.e., narrower core 
which results in higher CRSS, and ξLP for 60◦ mixed character is larger than the one for screw dislocation, since the core-widths of 
mixed dislocation characters usually have asymmetricity between ξLP and ξTP, trailing partials (TP). The SFWs for two dislocation 
characters, on the contrary, represent different propensity with V concentration. The SFW for screw dislocation is smaller than 60◦

mixed character, which also found in other FCC materials. The highest CRSS at 36.3 at.% of V corresponds to the lowest SFW in 60◦

mixed dislocation. In the V concentration range from 15 at.%, the SFW becomes smaller than the core-width (< 2.5 bp), meaning that 
the core structures of LP and TP are overlapped each other. Then Ni-V alloys exceeding 20 at.% of V concentration illustrate infini
tesimally small SFW, almost full dislocation structure. This is schematically shown in Fig. 10c. This undissociated structure is 
attributed to the small difference between the unstable and intrinsic SFEs (γus, γisf ), being similar to pure aluminum (Celebi et al., 
2023), and this fact results in the higher CRSS for screw dislocation rather than 60◦ mixed dislocation character. 

Regarding the core-width and the CRSS dependence, our previous work showed an increase in CRSS by decreasing the lattice 
constant (You et al., 2023b) in the range 6 to 3 Angstroms- the relationship is nonlinear. The effect of increasing V in Ni-V alloy is to 
increase the lattice constant from 3.5 Å to 3.6 Å, which is a relatively a small range and hence has a secondary effect on CRSS. On the 
other hand, surmounting a higher energy barrier corresponding to a higher local "SRO change" (Fig. 6b) has a significant effect on the 
CRSS. We note that lattice constant and elastic moduli are bulk properties before the slip occurs, so they are influenced by the initial 
SRO, but the “SRO change” is the key parameter to dictating the CRSS. 

4. Final comments 

In this work, we mainly found the contribution of the “SRO change” upon slip, not the initial SRO state, to the strengthening. Most 
recent studies in this field have often considered only “as-cast SROs” based on the existence of extra reflections in electron diffraction 

Table 1 
Compositional effect on fault energies in Ni-V; Stacking fault energies that resulted in the maximum CRSS at each composition; At each V composition 
from 5 at.% to 30 at.%, a total of 16 data is investigated within 2 structures; For 36.3 at.% of V, 108 data within 12 structures are included; SFEs (γus, 
γisf ) of pure Ni is comparable with (292.0 mJ/m2, 134.0 mJ/m2) from Ref. (Celebi et al., 2022).  

Material a [Å] C11 [GPa] C12 [GPa] C44 [GPa] γus [mJ/m2] γisf [mJ/m2] CRSS (Screw) [MPa] CRSS (60◦) [MPa] 

Ni 3.522 276.8 158.0 132.0 299.0 137.6 21.1 38.3 
Ni94.8V5.2 3.528 277.6 165.2 131.3 304.3 148.7 61.9 51.0 
Ni90V10 3.533 277.1 173.9 132.3 312.5 183.8 80.3 63.7 
Ni84.8V15.2 3.541 281.2 175.1 134.8 305.1 208.1 82.8 62.6 
Ni80V20 3.552 284.3 176.1 134.0 337.2 206.3 104.2 77.8 
Ni74.8V25.2 3.565 287.8 173.4 133.7 358.9 303.5 159.9 98.0 
Ni70V30 3.580 281.9 173.4 127.8 371.1 281.3 189.1 114.2 
Ni63.7V36.3 3.604 258.7 176.5 115.0 320.4 236.6 215.1 129.3  
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patterns. However, the role of SRO to the strengthening has been frequently questioned since theoretical explanation based on 
crystallography used to conflict with the experimental findings such as missing or abundant reflections. We reevaluate the previous 
concept of SRO variation suggested by Cohen and Fine (1962), but carefully formulate the SRO characterization to accurately connect 
it to the strengthening. In Appendix B, we demonstrate the SRO variation upon slip in close-packed view and compare our approach 
with the one of Cohen-Fine. The concept by Cohen-Fine only utilizes the initial SRO values for the prefixed coordination shells. It does 
not consider the actual change of constituent atoms lying in the neighbor shells from the center atom, which results in inaccurate 
prediction to the strengthening. In this work, the SRO characterization upon slip considers the correspondingly updated coordination 
shells at each disregistry. Based on the WS cell, the broken or restored atomic pair is carefully considered in the short-range domain. 
Therefore, the results of CRSS and SFEs show an insightful correlation with the “SRO change” upon slip. 

The current results of CRSS and SFEs in FCC Ni-V alloys agree well with the experimental results, although they are limited. One 
may still question the role of “SRO change” to the strengthening in experiment since the contribution of SRO (initial SRO) has been also 
controversial as commented above. A recent study (Walsh et al., 2023), nevertheless, has pointed out that the extra electron reflections 
in diffraction patterns may be ascribed to planar defects, not the as-cast SRO. Another experimental study also found that the evolution 
of SRO during the mechanical strain is characterized by in-situ electron diffraction (Seol et al., 2022). Both studies pointed out the role 
of SFs to the strengthening, which strongly supports our approach. Our SRO strengthening framework is to incorporate the planar “SRO 
change” in the WS cell during slip motion, and it is correlated well with the SFEs by simply combining the weight of interaction 
energies. To further emphasize our approach in the consistency with the experiments, we demonstrate the virtual diffraction analysis 
of slipping planes in Appendix C. We model the FCC unit-cell motifs in the WS cell to reproduce the planar diffraction images. The 
changes of intensity of diffraction pattern in different slip-planes show good agreement with the SRO changes for Ni63.7V36.3 alloy. 

Finally, we also emphasize that the “SRO change” in the WS cell upon slip can accurately predict the SFEs. This can reduce hundreds 

Fig. 10. Equilibrium dislocation core structures of Ni-V binary alloys by different compositions where the slip-plane is dictated by the maximum 
CRSS; (a) Core-widths; and (b) stacking fault width (SFW; d) for screw and 60◦ mixed dislocation characters; Both are normalized in partial Burgers 
vector, bp; (c) the schematic of undissociated and dissociated dislocation (full dislocation and partial separation). 
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of DFT calculations for the SFEs. The acquisition of accurate interaction energy might be less accessible than the calculation of SRO 
variation, although simply applying the standard diatom method still gives us a great prediction. For efficient utilization of current 
theory, the negatively maximum SRO change on the slip-plane guides us to know the prevailing CRSS in the given atomic configu
ration. For different solute compositions, this still holds although the negative limit of SRO change may vary, which has similar 
correlation with the maximum CRSS variation in V solute compositions (See Appendix D). The current theory applied to Ni-V alloys is 
validated by using additional experiments and AIMD in finite temperatures, both which are not covered previously. One can still apply 
the current approach to the classical MD as well by using its own empirical potential and a large superlattice. The extensions of this 
work to other material systems (e.g., medium- and high-entropy alloys), and crystal structures (e.g., hcp, bcc) remain future studies as 
well. 
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Appendix A: Theoretical and experimental validation in finite temperatures 

The field of atomistic simulations has been the focus of studies at 0 K without thermal effects while many of the experiments are 
conducted between 77 K and room temperature. Only in rare cases, there are experiments available at 4 K. The lattice resistance 
calculated at 0 K provides an important baseline for considerations of CRSS at finite temperatures. In this section, we review the 
experiments at liquid nitrogen (LT) temperature, 77 K, and at room temperature (RT), 298 K, on Ni63V37 and show our predictions at 
different temperatures.  
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Fig. A1. Tensile experiments of Ni63V37 binary alloy in different temperatures. (a) Tensile stress-strain curves at liquid nitrogen (LT, 77 K) and room 
temperature (RT, 298 K); Microstructure image is shown in the inset to get average grain size (~ 0.15 mm). (b) Incorporation of Hall-Petch 
contribution in Ni63V37 alloy to obtain the CRSS; Theory in this study with experiment from this study and from elsewhere (Expt.*) (Oh et al., 
2019) is included with data symbols. 

The binary Ni63V37 alloy (in atomic fraction) was arc-melted using pure elements (purity > 99.9 at.%). Following casting, the ingot 
was homogenized at 1200 ◦C for 24 h in an Ar atmosphere. The nominal composition and homogeneity of the ingot was confirmed by 
using energy dispersive spectroscopy. 4 mm thick strips were machined from the cast material and cold rolled to about 75% thickness 
reduction. Tensile specimens were subsequently machined from the homogenized ingot using electrical discharge machining. The dog- 
bone samples had 3 × 1.26 mm cross-section and 8 mm gauge-length. Prior to loading in each temperature, the solution heat-treatment 
was applied to all specimens at 1100 ◦C for 1 h, in air, followed by quenching in water to assure a single phase, FCC structure, which 
was confirmed using X-ray diffraction (Fig. S4 in the Supplementary Materials). Tensile experiments were conducted at two different 
temperatures such as LT (77 K) and RT (298 K). An Instron load frame was used to apply the tensile loading. For an experiment 
conducted at LT, the entire sample and loading grips were submerged in a liquid nitrogen bath prior to loading. The deformation was 
applied using displacement control with an average strain rate of ~ 10−3 s−1. 

In Fig. A1a, tensile stress-strain curves of Ni63V37 alloy at LT and RT are shown. The yield stresses for two temperatures are 
determined as ~ 570 MPa and ~ 410 MPa, respectively. Two or three times of tensile tests are repeated with high reproducibility 
(Fig. S5 in the Supplementary Materials). We also obtained the microstructure image using scanning electron microscopy (SEM). One 
of the SEM images is shown in the inset figure, and the average grain size of polycrystalline Ni63V37 alloy is determined as ~ 0.15 mm. 
Given the yield stresses and average grain size, we further calculated the Hall-Petch contribution to estimate the CRSS in single crystal 
in Fig. A1b. The Hall-Petch equation is defined as follows, σy = σ0 + ky/

̅̅̅̅
D

√
where σy the yield stress, σ0 the lattice friction, ky the Hall- 

Petch coefficient, and D is the grain size, respectively. We referred the yield stress data (~ 750 MPa) of Ni63.2V36.8 for smaller grain size 
(~ 8.1 μm) at RT from elsewhere (Oh et al., 2019). For the RT, the Hall-Petch coefficient is determined as ky ~ 1248 MPa⋅μm½. Based 
on available data, we assumed the same Hall-Petch coefficient at the LT, and then obtained the lattice friction stresses at LT and RT as 
σ0 ~ 466 MPa and ~ 312 MPa, respectively. Although some materials showed an increase of the Hall-Petch coefficient with decreasing 
temperature (Liu et al., 2023; Sun et al., 2019), it would have approximately a 5 % effect on the results but would not change the 
conclusion of this study. Therefore, we estimated the CRSS for single crystal Ni63V37 alloy at two temperatures as ~ 152 MPa and ~ 
102 MPa by using Taylor factor (M = 3.06) substituted in CRSS = σ0/M. In the following paragraph, we compared these experimental 
results to the theory given in this work by accommodating ab-initio MD simulations for SFEs in finite temperatures.  
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Fig. A2. Theoretical CRSS prediction of Ni63.7V36.3 alloy in finite temperatures using Ab-initio molecular dynamics (AIMD) simulation. (a) Tem
perature fluctuation of Ni63.7V36.3 alloy in AIMD; Example is shown for 300 K target; Temperature is stabilized to ~ 300 K in average. (b) Energy 
fluctuation for 300 K target. (c) Stacking fault energies (SFEs) of Ni63.7V36.3 alloy at the specific slip-plane that the maximum CRSS occurs at 0 K 
from the final configuration in hybrid MC/MD. (d) Comparison of theoretical and experimental CRSS of Ni63V37 alloy in this study. 

For finite temperature prediction of SFEs in this work, we use ab-initio molecular dynamics (AIMD). This approach does not rely on 
1) the empirical interatomic potential that is commonly used in the classical MD, and 2) the extrapolation of free energy from 0 K (such 
as quasi-harmonic approximation), so that we can more accurately estimate the SFEs in finite temperatures. For the electronic- 
structure problem in AIMD, we use the same PAW-PBE pseudopotentials for Ni and V. In this work, a Nosé-Hoover thermostat is 
chosen for drawing an equilibrium state from a canonical ensemble of sampled states (Hoover, 1985; Nosé, 1984). This introduces 
extra fields such as fictitious friction terms into the Hamiltonian such that, 

H′ =
∑N

i=1

mi

2
s2 r→2

i − Up( r→) +
Q
2

ṡ2 + 3NkTln(s) (A1)  

where N is total number of atoms, m the mass of atom in i site, s the fictitious parameter introduced, r→ the position of atoms, so that the 
first two terms are kinetic and potential energy (Up) of the given system. Q is the effective mass of s, k Boltzmann constant, and T is the 
temperature. We set Q = 1, and the simulation is controlled in 2 fs time-step (total 600 ~ 700 steps, i.e., 1.2 ~ 1.4 ps), 450 eV plane- 
wave energy cut-off, and single k-point Γ mesh-grid. We initially applied the same superlattice optimized at 0 K for all the calculations. 
We only selected the one slip-plane that gives the maximum CRSS in the final configuration of hybrid MC/MD. 

In Fig. A2, we summarize the theoretical results in finite temperatures. The equilibrated temperature along the time frame 
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approaches the target temperature on average for all the calculations. The proper equilibrating step is determined by the minimum 

error of mean, ϵ. The error of mean at each cutoff step (i) is defined by ϵi =
̅̅̅̅̅̅̅̅̅

Vi
Nt,i/κ

√
, where Vi is variance, Nt,i the number of data at each 

cutoff, and κ is correlation time based on autocorrelation such that κ = 1 + 2
∑Nt

j=1
1
V

1
Nt−j

∑Nt−j
k=1 (Xk − X)(Xk+j − X), and V, X, and Nt are 

variance, average, and total number of data for original X without cutoff. We present an example of undeformed structure (before slip) 
at 300 K target in Fig. A2a and b. In this example, the cutoff for equilibrating step is determined by i = 83 with the minimum error of 
mean ϵ = 0.92 K and autocorrelation time κ = 9.62. Total energy of undeformed structure also shows the converged value on average 
(denoted) by excluding the data in non-equilibrating steps. Similarly, the AIMD simulations on deformed structures at different 
temperatures directly enable the calculation of SFEs using equilibrated average values substituted in Eq. (3), since the resultant en
ergies include thermal excitations and change of entropy. In Fig. A2c, both unstable and intrinsic SFEs (γus, γisf ) exponentially drops as 
temperature increases. Using the SFE values and theory in this work, we obtain the CRSS in different temperatures in Fig. A2d, such as 
162 MPa at LT and 97 MPa at RT, which agree well with the experimental results 152 MPa, and 102 MPa, respectively. We extrapolate 
experimental data to zero temperature CRSS (~ 206 MPa) in the main text for consistency. For the temperature extrapolation with 
experimental strengths, we use the following fitting formula (Wu et al., 2014), τy(T) = τaexp

(
− T

C
)

+ τb, where τy is the CRSS, τa =

152.5 MPa, τb = 53.4 MPa, and C = 245.1 K. The fitting constants (τa, τb, C) are determined by using currently available data. 
We also predict the CRSS with consideration of strain rate effect as well accompanied by temperature in Fig. A2d. We note that 

strain rate effect in the current framework has no significant within the range of 10−5 s−1 ~ 10−2 s−1 by the following analysis. The 

common Arrhenius form of strain rate (Argon, 2007), ε̇̇ = ε̇̇0exp
(

−
ΔG(τ/τ0)

kT

)
, where ΔG(τ /τ0) is a stress-dependent activation energy of 

dislocation, ΔG(τ /τ0) = ΔG0

(
1 − τ

τ0

)α
, ΔG0 represents thermal activation energy required to overcome lattice resistance without aid 

from external stress, τ0 is CRSS at absolute zero temperature, respectively. The reference strain rate, ε̇̇0 = byρmν0, is determined (ε̇̇0 =

2.18 × 109 s−1) by substituting a typical value ν0 = 5 × 1011 s−1 by Argon, and b = bp, y = bp/2, ρm = 1
13A×18A for the current study. 

Two experiments at both LT and RT with the same strain rate (ε̇̇ = 10−3 s−1) determine the fitting constants ΔG0 and α as 2.962 eV and 
2.0458, respectively. The ΔG0 is in good agreement with the activation energy of V (2.939 eV) or Ni (2.956 eV) in Ni host system from 
the recent work (Wu et al., 2016). The CRSS predictions for different strain rates, say 10−5 s−1 ~ 10−2 s−1, at LT and RT are 148.3 ~ 
154.6 MPa and 93.9 ~ 106.0 MPa, respectively. These predicted levels are in close agreement with those stresses from experiments. We 
illustrate more curves of representative strain rates such as 104 s−1 and 108 s−1 for visual comparison. 

Appendix B: “SRO change” upon slip in the previous study and this work 

Fig. B1. Schematic of “SRO change” during slip motion in a single atom; (a) Both the previous (Cohen-Fine) and current studies characterize the 
SRO parameter the same at initial state. (b) Cohen-Fine suggested that SRO in prefixed shell numbers from initial state remains constants during 
entire slip disregistry. (c) In this work, SRO parameters are correspondingly updated as a slip-plane moves; Figure represents one slip motion in [112]

from initial to ISF state. Layer0 is a slip-plane. 

In this section, we describe the “SRO change” during slip motion with respect to the overall coordination in comparison with the 
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previous discussion. Cohen and Fine suggested that the SRO variation upon slip can contribute to the strengthening (Cohen and Fine, 
1962). However, the coordination of SRO used in their model is fixed in entire slip motion. We represent it in the schematic in 
Fig. B1a-b. Before a slip occurs, the coordination in any NN shells is determined by every center atom in Layer0, a slip-plane. For one 
center atom in Layer0, as an example, Cohen-Fine characterized the SRO for the 1NN shell during slip motion as follows, 

α1NN
slip =

9α1NN
0 + αa

0 + αb
0 + αc

0

12
(B1)  

where α1NN
0 is the initial SRO value (before a slip occurs) for the 1NN shell, and the parameters (αa

0, αb
0, and αc

0) are the initial SRO values 
for which a-th, b-th, and c-th NN shells of three atoms (such as 10, 11, 12 sites) are expected to lie in the 1NN range after a slip. For 
instance, before a slip occurs, the parameters (αa

0, αb
0, and αc

0) are equal to α1NN
0 , so α1NN

slip = α1NN
0 . After a slip motion in [112] direction, 

the parameters (αa
0, αb

0, and αc
0) are expected to be α1NN

0 , α1NN
0 , and α2NN

0 at a typical ISF position, and α1NN
slip becomes 11α1NN

0 +α2NN
0

12 . The 
numeric such as 12 or 9 in Eq. (B1) is derived from total or partial coordination number for the 1NN shell such as within Layer(−1,0,+1) 
or Layer(0,+1). The unchanged coordination number for the 1NN shell that is only captured above Layer-1 becomes 9 (in Layer(0,+1)) by 
subtracting 3 (in Layer-1) from 12. If only the coordination in Layer-1 is considered (only three atoms), the SRO during slip motion was 
suggested as follows (Cohen-Fine), 

α1NN,L−1
slip =

αa
0 + αb

0 + αc
0

3
(B2)  

Similarly, at each initial or ISF point, α1NN,L−1
slip equals to α1NN

0 or 2α1NN
0 +α2NN

0
3 , respectively. 

The method suggested by Cohen-Fine utilizes the initial SRO values for the prefixed coordination shells. This method does not 
consider the true change of constituent atoms lying in the NN shells from the center atom. Also, it is not defined at the unstable barrier 
(USF point) during slip motion, since it does not consider the movement of NN shell by a slip. In this work, the SRO variation in the WS 
cell considers these aspects. In Fig. B1c for direct comparison (also in Fig. 5), the schematic of the SRO variation is represented for this 
study. During slip motion, all the coordination shells from the center atom are correspondingly updated at each disregistry. At ISF 
point, the atom previously bonded in the 1NN shell is defined in the 2NN shell, while another atom previously bonded in the 2NN shell 
is then defined in the 1NN shell. It is also described in the main text and Fig. 5 from initial to USF, and ISF points. By considering the 
actual change of the SRO upon slip motion, the SFEs and CRSS can be accurately predicted. We also compare the SRO variations during 
slip motion based on Cohen-Fine and current study in Fig. B2 and three major states are tabulated in Table B1. The average SRO of Ni-V 
pair (Δα1NN,u〈112〉

Ni−V ) is shown in specific slip-plane (Plane B that is used for an example in Figs. 4 and 6) based on Eqs. (19)–(21). Based on 
initial SRO value, the one after a slip suggested by Cohen-Fine can be calculated by using either Eqs. (B1) or (B2). The estimation of 
SRO variation based on the previous study has discrepancy from the actual consideration of bond broken/restored mechanism in the 
shell movement. 

Fig. B2. Change of SRO based on the WS-cell (blue dashed line) and Cohen-Fine (black square) during slip motion; Δα1NN,u〈112〉

Ni−V defined at slip-plane 
(Layer0) varies upon slip deformation in current study, while the previous study is limited in the prefixed shell and discontinuity; A slip-plane stems 
from Plane B in Fig. 4 and 6 as a representation example.  
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Table B1 
“ SRO change” based on the WS-cell and Cohen-Fine during slip motion; Δα1NN,u〈112〉

Ni−V at three major states (initial, USF, 
ISF) are shown; The magnitudes of SRO changes between two show a large discrepancy.  

α1NN,slip
Ni−V α1NN,0

Ni−V α1NN,us
Ni−V α1NN,isf

Ni−V Δα1NN,isf
Ni−V

α1NN,0
Ni−V 

(%) 

This work −0.243 −0.230 −0.183 24.6 
Cohen-Fine −0.243 – −0.213 12.4  

Appendix C: Virtual diffraction patterns of slip plane 

Fig. C1. Virtual diffraction patterns and intensities of Ni63.7V36.3 alloy upon slip; (a) Diffraction pattern of a slipping plane (Plane–A defined in 
Fig. 4 in the main text) in [111] zone axis; Blue arrows denote the streaking of {110} planes, (b) Change of intensity of diffraction pattern of Plane–A 
in [111] zone axis upon slip to isf point; dashed line for figure c, and (c) line profile of change of diffraction intensity for different slip-planes (Plane– 
A, B, and C defined in Fig. 4). 

Recent studies for the SRO often claim its contribution to strength based on the existence of extra reflection spots. The main point in 
this work is the change of SRO in the WS cell upon slip motion, and its contribution to the strengthening. Therefore, we demonstrate 
virtual diffraction analysis based on unit-cell motifs by the following procedures. We take two layers (Layer0 and Layer-1) for one slip- 
plane and build the WS cell that can cover 3 atoms in Layer-1 from the 1 center atom in Layer0. Then each WS cell includes 1 unit-cell 
motif (4 atoms) for different diffraction pattern intensity. Since one layer has 30 atoms, we average the different diffraction pattern 
intensities from 30 WS cells for one slip-plane. In Fig. C1a, we depict a diffraction pattern of Ni63.7V36.3 alloy in a slipping plane 
(Plane–A defined in Fig. 4 in the main text) in [111] zone axis. We also characterize the streaking of {110} planes (blue arrows) in the 
virtual diffraction pattern. In Fig. C1b, the change of intensity of diffraction pattern of Plane–A in [111] zone axis is represented. Two 
diffraction patterns from initial and isf points are subtracted. For the line profile analysis, we define the example line (dashed line) in 
the diffraction and plot the change of diffraction intensities for different slip-planes (Plane – A, B, and C defined in Fig. 4) are 
demonstrated in Fig. C1c. The changes of SRO in pair summation Δα1st,isf

sum in three different slip-planes (Plane – A, B, and C) are –0.023, 
–0.096, and –0.091, respectively. The change of intensity in each slip-plane is also following this trend such that the smallest change of 
intensity in Plane – A, the largest change in Plane – B, and the one in Plane – C is an intermediate among three. Our claim for the SRO 
strengthening is based on the plane SRO variation upon slip, not the bulk SRO of initial state, which is consistent with the virtual 
diffraction pattern analysis here. 

Appendix D: “SRO change” effect in γisf within solute concentrations  
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Fig. D1. Correlation between γisf and the SRO change in different V solute compositions. (a) Linear relation between γisf and the SRO variation 
(Δα1NN,isf

sum ) in each V composition; For simple visualization, the linear fitting in 25 at.% and 30 at.% compositions are not depicted. (b) Slope between 
γisf and Δα1NN,isf

sum in each V composition. 

In this section, we further analyze the correlation between SFE and “SRO change” in different V solute compositions. As the 
correlation between the SRO variation, CRSS, and γisf for Ni63.7V36.3 alloy is shown in Fig. 6 in the main text, the linear correlations 
between the SRO variation and γisf for other compositions are also expected. In Fig. D1a, we plot the linear fitting of γisf versus the SRO 
change (Δα1NN,isf

sum ) in each V composition. Each linear correlation is determined by 18 data (9 slip-planes with 2 structures), except for 
Ni63.7V36.3 composition that has 108 data (9 slip-planes with 12 structures). As the solute concentration changes, there is a variation of 
change rate in γisf along Δα1NN,isf

sum that can be achieved during slip motion. Thus, we take the linear derivative between γisf and Δα1NN,isf
sum 

in each composition in Fig. D1b. This is similar to the CRSS variation in different V compositions. For a fixed composition, the 
negatively large SRO variation dictates the maximum CRSS, while the largest magnitude of SRO variation in different solute com
positions may significantly differ from each other. 

Appendix E: Comparison with Varvenne et al. theory 

The investigations into the solute effect are underpinned by inherent assumptions pertaining to elastic anisotropy and the treatment 
of dislocation core-widths based on semi-empiricism. In this sense, a comprehensive understanding of its relative contribution to the 
lattice resistance is needed. For Ni63V37 alloy composition, as an example, we employ Varvenne et al. (2016), Yin et al. (2020b) model. 
The main equation is given below. 

CRSSVarv = Aτ

(
Γ
b2

F

)−1
3
(

μV
avg

1 + vV
avg

1 − vV
avg

)4
3
(∑

cnΔV2
n

b6
F

)2
3

(E1)  

where μV
avg = C11−C12+3C44

5 and vV
avg =

3B−2μV
avg

2(3B+μV
avg)

the Voigt average of shear moduli and Poisson’s ratio, B = C11+2C12
3 the bulk modulus, 

bF the magnitude of full Burgers vector, Aτ ¼ 0.01785 the pre-factor, Γ = αμ110/111b2
F the line tension energy, α = 0.125 the line 

tension parameter, μ110/111 = C11−C12+C44
3 the shear modulus in {111} plane in 〈110〉 direction, cn the composition of constituent 

elements, and ΔVn the misfit volume parameter, which is defined as below. 

ΔVn =
∂Valloy

∂cn
−

∑N

m=1
cm

∂Valloy

∂cm
(E2) (E2)  

where Valloy = Valloy(c1, c2, …, cN−1) and ∂Valloy
∂cN

= 0 in which compositions are known for a given alloy and the change in volume 
with concentration are calculated from the DFT (in Fig. 8a). Then, Valloy = 13.35 − 2.681cNi, ΔVNi = − 0.9731, and ΔVV = +

1.7079 at Ni63.7V36.3. Using the elastic constants in Fig. 8b and Table 1, μV
avg and vV

avg are determined as 90.87 GPa and 0.3083, 
respectively. This procedure results in CRSSVarv = 249.0 MPa at 0 K. For finite temperature, the thermal activation corrections 
are described in the following equations, 
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CRSSVarv(T, ε̇̇) = CRSSVarv

[

1 −

(
kT

ΔEb
ln

ε̇̇0

ε̇̇

)2
3
]

(E3) 

where ε̇̇0 = 104 s−1 is reference strain-rate, ε̇̇ = 10−3 s−1 the same strain-rate used in the current experiment, and ΔEb the energy 
barrier for thermal activation which is defined as, 

ΔEb = AE

(
Γ
b2

F

)1
3

b3
F

(

μV
avg

1 + vV
avg

1 − vV
avg

)2
3
(∑

cnΔV2
n

b6
F

)1
3

(E4)  

where the pre-factor AE is 1.5618. Based on the thermal activation corrections, CRSSVarv at LT and RT are calculated as 213.8 
MPa and 161.9 MPa. These results indicate higher CRSS than the current theory (162 MPa at LT, 97 MPa at RT) or experiments 
(152 MPa at LT, 102 MPa at RT). Therefore, the Varvenne model overestimates the CRSS. These are summarized in Table E1.  

Table E1 
Comparison of CRSS by Varvenne et al., the proposed theory (MCS) in this work, and the experiment for Ni63V37 
alloy.  

CRSS by 0 K 77 K 298 K 

CRSSVarv (Eq. (E3)) 249 MPa 214 MPa 162 MPa 
CRSSMCS (This study, Eq. (18)) 215 MPa 162 MPa 97 MPa 
Expt. (This study) – 152 MPa 102 MPa  

The Varvenne model considers an edge dislocation and has a number of semi-empirical constants. For example, the core-width of 
partials are assumed as ξ/bF = 1.5 (or ξ/bp = 2.6), and the SFW, d, is assumed as d/bF ≫7 (or d/bp ≫12.1), which is valid for only low 
SFE materials. The NiV is a high SFE material. As shown in Fig. 10, Ni63V37 has core-width (ξ/bp) ~2.0 and SFW (d /bp) is less than 
~2.0 for the compositions studied. So, the Varvenne et al. assumptions cannot capture the materials considered in this study. Finally, 
the Varvenne et al. theory is valid for ideally random configuration of material and was not intended for SRO configuration. We 
provide a comparison of the models for further insight (Table E1) but our intention is not to depreciate the role of other models. 

Appendix F: Correlation with larger nearest neighbor shells 

We are considering the first NN shell (1NN) in calculation in Fig. 6a. We attribute the CRSS to the SRO change over the WS cell 
which corresponds to the first shell in our model. Indeed, this definition is consistent with the misfit energy calculation across atom 
pairs above and below the slip-plane over the WS cell arrangement of atoms. In fact, our main contribution is that misfit energy 
calculation that does not recognize the WS cell is erroneous which is the entire body of models in the literature. The Δα defined over the 
WS cell lattice will not go to zero. But, defining Δα beyond the first shell to a large cell limit poses an inconsistency with the misfit- 
energy calculation. 

First, we note that, for each atomistic configuration, the SFEs (such as γus and γisf ) and elastic properties are calculated by DFT. 
These are independent computations from the SRO calculation. Our goal is to find the order parameter that correlates best with the 
properties. In this section, we show how the correlation changes by including up-to 3NN in the SRO parameters below in Fig. F1. 
Fig. F1a includes only the first shell “SRO change” (Δα1NN,isf

sum ), which is the same picture in Fig. 6b for comparison. Fig. F1b include both 
the second (2NN) and third shell (3NN) “SRO changes”, namely Δαupto 3NN,isf

sum , defined as below for the normalization, 

Δαupto m,isf
sum =

1
∑

mZm

∑

m
ZmΔαm,isf

sum (F1)  

where Zm is coordination number. For instance, Z1NN = 12, Z2NN = 6, and Z3NN = 24. The weighted parameter by the coordination 
number is derived from Cohen-Fine formula which is in the Eq. (23). In other words, Δαupto1NN,isf

sum = 1
12 × 12 × Δα1NN,isf

sum , and Δαupto3NN,isf
sum 

= 1
12+6+24 × (12 × Δα1NN,isf

sum + 6 × Δα2NN,isf
sum + 24 × Δα3NN,isf

sum ). As shown in Fig. F1, including higher order shell parameters does not 
improve the correlation between itself and properties (CRSS, γisf ), and in fact has a negative impact on the correlation (Fig. F1b). Also, 
in order to convey the correlation quantitatively, we plot absolute Pearson’s correlation coefficient between γisf and each Δα parameter 
in Fig. F1c and d. Pearson’s correlation coefficient is defined as below (Pilania et al., 2013; You et al., 2019, 2022), 

ri =

∑n
k=1

(
xi,k − xi

)(
yi,k − yi

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1

(
xi,k − xi

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
k=1

(
yi,k − yi

)2
√ (F2)  

where xi is order parameter (such as Δα1NN,isf
sum , Δα2NN,isf

sum , Δα3NN,isf
sum , Δαupto2NN,isf

sum , and Δαupto3NN,isf
sum ), yi is output to compare (γisf ), and k 

stands for each data point of the total n = 108 slip-planes. As shown in Fig. F1c and d, including higher order parameters does not 
improve the correlation to the properties. 
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Fig. F1. Correlation analysis of higher SRO parameters: CRSS variation for intrinsic stacking fault energy (γisf ) and (a) Δα1NN,u〈112〉

sum or (b) Δαupto 3NN,isf
sum , 

summed up-to 3NN shell at ISF point for Ni63.7V36.3 alloy; Absolute Pearson’s correlation coefficients between γisf and each Δα parameter for (c) 
individual m-th shell “SRO change”, Δαm,isf

sum , and (d) including all “SRO changes” up-to m-th shell, Δαupto m,isf
sum . 
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