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ARTICLE INFO ABSTRACT
Keywords: Recent atomistic simulations on medium entropy alloys uncovered the possibility of negative
Stacking fault intrinsic stacking fault energies (SFEs), which suggest infinite stacking fault widths (SFWs).

Critical stress
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Wigner-Seitz cell

However, experimental measurements of SFWs in the same alloys have shown that SFWs are
finite, which contradicts the classical derivations based on force balance. To address this
contradiction, we develop an advanced treatment employing atomistic lattice and continuum
theories that produce finite SFW solutions corresponding to negative SFEs. The idea is based on
energy minimization, where the finite SFW corresponds to the first local minimum in the energy
landscape. By exploring combinations of intrinsic and unstable fault energies, we identify regimes
in which solutions for finite SFWs exist for thousands of hypothetical materials. Elastic moduli
and lattice constants also impact the results, with lower moduli and smaller lattice constants
expanding the negative stacking fault energy domain corresponding to finite SFWs. Additionally,
the study has revealed a distribution of SFEs due to possible chemical heterogeneities within the
alloy, resulting in variations in SFWs within the same material. The work underscores the ca-
pabilities of the theory for SFW and CRSS (Critical Resolved Shear Stress) determination for
medium to high entropy alloys in agreement with experiments.

1. Introduction

A stacking fault (SF) is a planar defect that exists between two split partial dislocations and is characterized by the stacking fault
energy (SFE) (Vitek, 1968). The separation distance between the two partials, i.e., the stacking fault width (SFW), is ideally determined
from the balance between forces from elastic repulsion and planar misfit (attraction) of the two partials. The lower the intrinsic SFE
(7isf), the higher the SFW. The unstable SFE (y,,) represents the highest energy barrier of the Generalized Stacking Fault Energy (GSFE)
landscape. The higher the barriers y,, the higher the Critical Resolved Shear Stress (CRSS) (Joos and Duesbery, 1997) and the smaller
the dislocation core-width. This background has been well-established in the materials science (Chowdhury and Sehitoglu, 2017a,
2017b; Nabarro, 1967; Ogata et al., 2002; Phillips, 2001; Tadmor and Miller, 2011). In addition, the energy landscape also influences
the dislocation motion in deformation-induced twinning and martensitic transformation (Alkan and Sehitoglu, 2019; Alkan et al.,
2018b; Chowdhury and Sehitoglu, 2017a, 2017b; Kibey et al., 2007; Wang and Sehitoglu, 2013) and constitutes the bedrock of
materials science and mechanics. We draw attention to modifications to the above treatment that captures a strong dependence of
CRSS on the dislocation character (screw, edge, and mixed) affected by the elastic energies and the Wigner-Seitz cell describing the
correct periodicity at the crystal level (Celebi et al., 2023; Mohammed et al., 2022). Such a treatment unraveled the correct flow
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Fig. 1. A schematic of total energy variation upon stacking fault width (SFW; or the separation distance between Shockley partial dislocations). (a)
Total energy E,yq is the sum of the elastic interaction energy around the dislocations and the misfit energy in a lattice. The scenarios are divided into
positive, zero, negative, and largely negative intrinsic stacking fault energy (7;y). (b) A schematic of Eyq curves based on the Wigner-Seitz (WS) cell-

based misfit energy. The WS cell-based misfit energy characterizes multiple local Peierls valleys that can determine the finite SFW upon intermittent

dEipiq

Fea are denoted as dashed lines.

motion of partials. In each case, the derivatives
resistance (as CRSS) for dislocations of mixed character.

In summary, in the case of a positive value for y, there is a textbook understanding of how the energetics are balanced for partial
dissociation (Read, 1953). The elastically isotropic interaction between two partials and the SFE portion stretched by the equilibrium
SFW are energetically balanced together. This classical relation between SFW and y,; based on the assumption of isotropic FCC
materials is,

G b — S
— A (2 1/) (1 2w cos(26)> o
8w vy \1 — Vv 2—v

where G is shear modulus, b, the magnitude of a partial Burgers vector, v Poisson’s ratio, and 6 the angle between the full Burgers
vector and its dislocation line.

Now, we turn our attention to recent atomistic simulations that showed the negative SFEs in several alloys, but measurements show
a finite SFW. In earlier treatments, the y;; has been inferred from SFW measurements as potentially positive (Laplanche et al., 2017).
Nevertheless, the above classical formula cannot be defined at zero and should not be applied to negative SFE values. The negative
has been theoretically found in high nitrogen steels (Kibey et al., 2006) and medium or high entropy alloys (MHEAs) (Huang et al.,
2018; Li et al., 2022; Niu et al., 2018; Zhang et al., 2017a, 2017b; Zhao et al., 2017). Still, the results show finite SFWs in the ex-
periments (Laplanche et al., 2017; Liu et al., 2018, 2019; Okamoto et al., 2016; Picak et al., 2019; Wang et al., 2018b; Wei and Tasan,
2020; Zaddach et al., 2013; Zhang et al., 2020). This issue presents an anomaly. Also, the classical conversion formula does not show
dependency on the entire energy landscape and is uncoupled from the dislocation core-widths and anisotropic elastic energy.
Therefore, the relationship can be applied only to positive SFE values as emphasized in numerous textbooks (Hirth and Lothe, 1992;
Hull and Bacon, 2001; Read, 1953). This paper proposes a solution to this seeming contradiction with a new theory. We describe our
approach next.

In Fig. 1a, the typical curves for total energy Eq are plotted with respect to the SFW for the positive, zero, and negative y;; cases.
As two Shockley partials are dissociated, the elastic interaction between two partials produces a repulsive force, which is reduced as
the SFW increases. The positive y;; produces an attractive force opposing the elastic interaction. Then, the global equilibrium SFW can

be found by balancing the elastic interaction and positive misfit energy for the positive y;;. However, the global minimum cannot be
defined for the negative y;; as the elastic and misfit energies both decrease with increasing the SFW. For the y;; = 0 case, although the
misfit energy tends to stay constant with increasing separation distance, the elastic energy decreases due to the repulsive force between
the partials, and therefore will not yield a global minimum for the total energy E, -

Recently, the ab-initio/anisotropic elasticity framework, developed as Mohammed et al. (2022) (abbreviated as MCS) model, has
formulated the total energy for the motion of Shockley partials, including the Wigner-Seitz (WS) cell-based misfit energy in the crystal
lattice. It resulted in the correct determination of the CRSS, SFW, and core structures of Shockley partial dislocations. It was validated
for numerous metals and alloys (You et al., 2023) and with different dislocation characters (Celebi et al., 2023). In Fig. 1b, the total
energy E,q can be characterized by fluctuations based on the Peierls valleys, which dictate the intermittent zig-zag motion of partials.
Therefore, for the positive y;y, the finite SFW is derived for the local and global minima (a derivative of Eyal, g’T"% = 0). For the
negative y;y in general, there is no global minimum energetic point (global equilibrium SFW). However, E,q exhibits multiple local
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Fig. 2. (a) Schematic of the extended dislocation and Wigner-Seitz (WS) cell-based misfit energy; For a given core structure of an extended
dislocation in FCC materials with a full Burgers vector (EF =a/2[110)) on a (111) plane, ELP = a/6[121] is the one for a leading partial (LP), and Erp

= a/6[211] for a trailing partial (TP). Lyp is the normalization length in the repeated dislocation lines. by can be screw, edge, or mixed character with
an angle of . Two Shockley partials are separated by stacking fault width (SFW); The LP is at position x1 = s+ and the TP is at x1 = —sz, yielding the
SFW as s1 + sz (b) The plot of the dislocation-density distribution p(x1); A density of full dislocation is colored as gray, and two cases for partial
dislocations are black and red, where y;y is either positive and negative, indicating the core-widths &rp and &;p, respectively; As yi < 0, partial
dislocations are freely moving. (c) Minimum energy path (MEP) result of Shockley partials is shown with the zig-zag motion; Stacking fault energies,
7us = 300 mJ/m? and Yisg = 20 mJ/m?, are used to demonstrate a typical example of the previous framework.

minima corresponding to finite SFW. The first minimum is the smallest possible SFW, but this does not preclude the existence of
multiple metastable minima. In fact, this is consistent with other experimental observations that usually have a large variation of the
SFWs in the FCC materials (Laplanche et al., 2017; Liu et al., 2018, 2019; Okamoto et al., 2016; Picak et al., 2019; Wang et al., 2018b;
Wei and Tasan, 2020; Zaddach et al., 2013; Zhang et al., 2020), which may have the negative y;;. Recent approaches have attempted to
explain this discrepancy by proposing the existence of a frictional barrier bounding the stacking-fault width for negative y;;; materials
(Lu et al., 2023; Sun et al., 2021; Werner et al., 2023, 2021).

In this work, we numerically demonstrate a novel ab-initio framework extending the MCS model into the negative y;y criterion
described above. For the partial dislocation motion with negative y;, we consider the local minimum concept of Ey,q and the critical
stress to further dissociate the partials in the framework. These are consistent with experimental variations in the SFWs and CRSS.
Based on the results, we explain how the critical negative y;y () can be determined, which provides a stable regime of multiple finite
SFW. Then, we mainly illustrate the following new findings; (1) Stability regimes that map out non-zero solutions for the finite SFWs in
FCC materials by correlating y,, and Yisfs (2) Effects of lattice constant (a), and elastic moduli (C11, C1z and Cas) on the stability maps; (3)
SFW contours; and (4) CRSS and core-widths. All the results of (3) and (4) are defined in the stability maps, including both y,, and Yisf-
We finally predict and benchmark the characteristics of the well-known MHEA to validate the framework with their experimental
results.

2. Methods
2.1. Analytical framework

The current analytical framework is based on the notion of energy minimization utilizing the Wigner-Seitz (WS) cell-area on the slip
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plane to establish the dislocation core-width and partial dislocation separation. Fig. 2 represents the typical schematic and results
based on the previous framework suggested by Mohammed et al. (2022) (abbreviated as MCS). It has the originality of combining the
anisotropic elastic interaction, the WS cell-based atomistic misfit energy, and the energy-minimization of intermittent motion of
Shockley partial dislocations in FCC materials. In Fig. 2a, the core structure of an extended dislocation is depicted. As slip occurs, the
separated partials have a repulsive elastic interaction. At the same time, the WS cell-based misfit energy in a crystal lattice produces an
attractive force and balances the elastic component. The total energy is a minimum at a finite separation distance. In the given co-

ordinate system and a dislocation character (the angle between full Burgers vector by and the dislocation line), Burgers vectors (full br,

leading b, p, and trailing partial byp) can be correspondingly defined. Instead, we consider the fixed Burgers vectors as the references of
the extended dislocation and vary the global coordinate system that corresponds to the dislocation character. In this work, we
demonstrate the framework mainly based on a screw character with different material constants such as lattice constant a, elastic

moduli Cr, Crz Cas, fault energy barriers y,,, and ;4. The global coordinate system for the screw character is defined as e1|[112],

€,]/[111], and es||[110].

In Fig. 2b, the dislocation-density distribution p(x1) is plotted. As a slip is introduced, the density of a full dislocation becomes
separated into two components for Shockley partials, including the leading (LP) and trailing partials (TP) indicating the core-widths & p
and &rp, respectively. The distance between two partials is then characterized by the SFW. The p(x1) for two cases are represented as
black and red, where yig is either positive or negative. As we conceptually design the idea for the negative y;sf, the dissociation of p(x1)
can be largely defined or separated continuously. We first demonstrate the previous framework defined in the positive yjs, and finally
extend it into the negative region in Section 2.3. The dislocation-density distributions are derived from the core disregistry functions, f
(x1), of the LP and TP. Both the core disregistry distributions f(xs) and dislocation-density distributions p(x1) for the partial Burgers
vectors are defined as the following equations:

NN SUNTCE MY (. 2

fur(x1) 2 + —tan &, ) prp(x1) T <(x] _Sl>2 +§ZP> ®
_ li li X1+ 82 . _ b_P #

Sre(x1) = > +—tan~ ( m )7 Prp(x1) = T <(x1 +52)2 +§§'p> ?

where b, is the magnitude of the partial Burgers vector, and s;, s, are the positions of LP and TP respectively, which determines that
SFW =s; + s2. Egs. (2) and (3) explicitly represent the several key parameters of the core structures in the extended dislocation, such as
the core-width &, érp, and the SFW based on the positions of partials. In the previous studies on the MCS framework, the core structure
parameters are determined upon minimization of total energy (E,) of the extended dislocation in FCC crystals, as E, is composed of
two energy components,

Etotal(gLP7§TP7 51752) = Exlrain(gLPafTP7 51752) +Emi:ﬁr(§LP7§TP7 51752) ()]

where Egyqin is the elastic strain-energy based on the anisotropic Eshelby-Stroh (E-S) formalism (Barnett and Lothe, 1974; Stroh, 1958),
and Ep; is the misfit energy utilizing the equivalent WS cell-area in the crystal lattice. For the details of the elastic strain-energy and
misfit energy formalism, the reader may refer to elsewhere (Mohammed et al., 2022).

The strain-energy component Egyqin(&1p, E7p, S1,52) for the extended dislocation can be calculated from the anisotropic interaction

coefficients on each Shockley partial. Egerain(&p, 1p, $1,52) consists of the self-interaction energies of the LP and TP (such as E} . and
EZ .., respectively) and the interaction energy between the two partials (E}2 ;). Therefore, Egyqin(£1p, Erp, S1,52) is expressed as
Egrain(Epy Erps 51,52) = Ellla\m +E312a\m +Ellzmm ®)

All terms on the right-hand side are summed up with the elastic interaction energy between infinitesimal fractional dislocations
derived from the cores of the partials, and they are defined as follow,

o0 o0 K
B = [ [ (52 )purpustonis s

—00 —oo
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where K1, K22, and K, are the anisotropic interaction coefficients to be computed, and x and y are arbitrary variables defined in
x1-axis in Fig. 2b. As an example, the procedure to determine Kj, can be briefly explained. We can consider the LP and TP separated by
a certain distance R. The continuum strain-fields surrounding each Shockley partial are determined and superposed based on the E-S
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formalism to determine the net strain-field. The strain-energy density is then numerically integrated to calculate the total strain-energy
of interaction at the chosen separation distance R, and a core region within radius 5b, around the center of each partial is excluded. By
calculating the total strain-energy at varying R, the interaction coefficient K;5 is determined. The choice of 5b, does not affect K;»
calculation since the gradient of change of total strain-energy is conserved. Therefore, there is no effect of singularity in our theory,
although one may apply the non-singular formulation (Cai et al., 2006) instead and investigate this aspect in different studies. The
self-interaction coefficients K71 and Ky, can be similarly determined by considering the interaction between two dislocations with the
same Burgers vectors. For a more detailed exposition of anisotropic interaction coefficients and the E-S formalism, the reader is
referred to elsewhere (Mohammed et al., 2022).

For the formulation of the WS cell-based misfit energy Epsyic(é1p,E1p, 51,52), the generalized stacking fault energy (GSFE) curve is
required for each LP and TP. The GSFE curves for the LP and TP are defined as:

Vus — yixf) 2nu bp
) —) 1= —_— f <u<-—
}’,.x/+< 2 ( COS(bP>> 0r0_u_2

() = @

Yus 2mu bp
pc — - — < <
B <1 COS( by )) for ) u bp

Yus 27 bP
el — f <u<—
2( COS(bp)> orO_u_2

rre(u) = (€]

us ~ Vigt 2 b
Vi + (%) (1 — cos(%)) for 7}) <u<bp

where y,, and Yisf Are unstable and intrinsic stacking fault energies, respectively. Based on Egs. (2), (3), and (7), (8), the Epp: can be
rewritten with the partitioned GSFE into the WS cell area for the individual Shockley partials,

No -1 |
Z Z Y1p (fTP (x(lmﬂ ) ) AA
1 n=—No m=—Mpax
Em[sﬁz(fLP: gTP’ S1, SZ) = Q No M, (9)
------ £ 22 D i () an
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where xgm'") =(md; + n?z) - €1, AA is the area of the WS cell, and Lyp, is the normalization length in the repeated dislocation lines. A
summation limit of Minq, is chosen with a large number, of the order of 10% to sufficiently converge the Epyi; (&1p,é1p, $1,52). The misfit

energy in Eq. (9) is calculated per unit length of the dislocation line. For the positive yy, four parameters (£;p,&p, $1,52) are

consequently determined by the Eq. (4) with respect to the equilibrium core structure (5%,, 5‘%},75?752) at the global minimum of E,y in

such that
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The minimization routine is implemented with fmincon in MATLAB. Details for the dependence of each energy component on the core
parameters are found in the previous studies (Celebi et al., 2023; Mohammed et al., 2022).

2.2. Minimum energy path (MEP) of partial dislocations and CRSS

The previous MCS framework formulated the minimum energy path (MEP) with the equilibrium core-widths (£2,, £%,) to find the
triangular trajectory that allows the robust intermittent movement of Shockley partials (Mohammed et al., 2022; You et al., 2023),
which is energetically more favorable than the case where the partials move together with a constant separation width. The positions
of Shockley partials (s;,s2) are described by the following equations along with the triangular trajectory,

51 :S(])Jr% <,+§;Ck(l P(C"’j))>

(1)

sz—sg-‘r%(_t*‘;a‘(l _P(vaj))>

where t is a path variable to parametrize the trajectory. P(C,,j) is the triangular pulse generator and j is a pulse-variable defined as
follows,

t t

j=—+C, — C 12
J cq+ ' {cﬁ pJ (12)



D. You et al. International Journal of Plasticity 170 (2023) 103770

0 forj <0
% for0 <j<C,
P(C) =4 | (13)
. 1_i
I forc,<j<1
1= 4
0 forj > 1

where the lower bracket of |x| is a floor function |x|. = max{X € Z : X < x}, and the parameter combination (Cy,...,C,,Cp,C,) defines
a shape for a triangular path of positions of Shockley partials. The total energy cumulated along with the triangular trajectory given in
Eq. (11) is accordingly defined as the following objective function,

Epalh (Cla ey Cn7 Cp: Cq) = ZEmml (Sl (ti)ysz(ti)7 52,07 52}’ ) (14)

The number of periodic functions is simply set to n = 1 sufficient to capture the MEP. The roles of path parameters such as t and (C1,GCp,
C,) can be also understood with the equilibrium point found at t = 0 for (so,sg) and the positive Yisf with C; = 0, which is the amplitude
of triangular path. C, and C, are a peak position and a period of the triangular path, respectively. The triangular pulse generator P(Cj, j)
is implemented with triangularPulse in MATLAB. The equilibrium parameters (&%, £9p,59,59) for the case of positive 7iss are employed
along with the triangular trajectory described by Eq. (11), and the minimization routine in Eq. (14) is also implemented with fmincon
and multiple initial points (MultiStart) in MATLAB to find the corresponding MEP.

In the conventional Peierls-Nabarro (PN) model (Joos and Duesbery, 1997; Nabarro, 1947; Peierls, 1940), the CRSS has been
calculated by taking only the simple misfit energy based on the one-dimensional cubic row-summation. Thus, it is expressed as,

1 dE}L,
CRSSpy = max | — - (15)
bF du

where by is the magnitude of the full dislocation, Eﬁﬁﬁt(u) =3® _y(f(md — u))d, y is the GSFE curve, f is the disregistry function
given by equation X, and d is interplanar spacing perpendicular to the dislocation line, respectively. The MCS framework suggested the
optimum-energy-trajectory (OET) approach for the CRSS prediction that resolved the limitations in the PN model such as (i) the motion
of individual Shockley partials with a constant SFW, (ii) the dependency of CRSS on the full Burgers vector by only, not on the partial
Burgers vector by, and (iii) the one-dimensional simple-cubic row-summation misfit-energy. For more detailed coverage of the OET
approach and its derivation, readers are referred to the original work (Mohammed et al., 2022). Based on the OET approach, the CRSS
is defined as,

CRSSycs = SFr - max<

1 1 dEmml) (16)

(SFyp - 8, (t) — SFp - 5,(1)) b, dt

where b, is the magnitude of the Burgers vector in Shockley partials, SFr = (7 . ﬁszip) (7 . EF), SFip = (7 . ﬁsh»p)(; . BLP), and SFrp = (3 .
ﬁslip)(; . E”[‘p) are Schmid Factors (SFs) resolved in the full extended dislocation, LP, and TP, v is the unit vector along the uniaxial

tensile load direction [132], and ﬁslip = 1/v/3[111] the normal vector to the slip plane, respectively. The CRSS in Eq. (16) appears
different than the conventional PN approach in Eq. (15) where a single partial is solely considered, since the OET approach in this work
includes partial separation trajectory.

In Fig. 2c¢, a typical result is shown with the MCS framework for the positive yjs in a screw character. The material parameters are
setasa=3.6 /0\, C11 =221 GPa, C12= 152 GPa, C4s = 165 GPa, y,s = 300 mJ/m?, and vYist = 20 mJ/m?. In the total energy contour along
with the positions of Shockley partials (s1,s2), the optimized MEP (green line) is represented. Based on the minimization in Eq. (10), the
equilibrium core-widths (£2,, £%,) of Shockley partials yield both &2, = £9, = 3.20 A, and their equilibrium positions (s2,53) are (40.5 A,
7.42 R), which results in the global equilibrium SFW, SFW, = 47.9 A. Then, the CRSS of the given input parameters finally yields the
CRSS = 11.0 MPa based on Eq. (16), at the maximum derivative of total energy, which is resolved in its OET. The fluctuation in the
SFW, SFW = SFW, + ASFW, is due to the intermittent zig-zag motion of Shockley partials, and its magnitude ASFW for the present case
is 1.91 A which is dictated by the six material parameters.

2.3. Extension of framework into non-positive y;ss regime

As described in Sections 2.1 and 2.2, the MCS framework determines the global minimum of total energy E,y in the extended
dislocation of FCC crystals. For non-positive Yisfs however, the global minimum of E,y based on four parameters (&;p,Erp, S1,52)
cannot be defined since the anisotropic Eqir is continuously reduced and the WS cell-based Ey;5, component stays constant (yiss = 0)
or decreases (yisf < 0) with fluctuations as the SFW increases. Previous studies found that medium and high entropy alloys (MHEAs)
exhibiting negative Yisf (Huang et al., 2018; Liet al., 2022; Niu et al., 2018; Zhang et al., 2017a, 2017b; Zhao et al., 2017) demonstrate a

6
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Fig. 3. Freely extending motions of dislocations and their energetics with largely negative stacking fault energy. (a) Total energy landscape of screw
dislocation in the space of the positions (s, s2) of Shockley partials; The minimum energy path (MEP) is denoted as a black solid line. (b) Enlarged
view of total energy surface plot to see a zig-zag motion of partials in free dissociation. (c) The same energetics from two different MEP solutions A
(black circle) and B (purple line) in the SFW scale, SFW = s; + s2; A is an intermittent zig-zag motion of Shockley partials, and B is the isolated
motion with one of Shockley partials fixed (TP in this case). (d) A schematic of energy barrier upon varying positions of Shockley partials; One is
denoted as red, and the other as blue. Material constants used in this case are a = 3.6 10\, 1= 34.5 GPa, Cas = 165 GPa, y,s = 439 mJ/m?, and Yisf =
—50 mJ/m?, respectively.

significant variation in SFWs, as observed in experimental measurements (Laplanche et al., 2017; Liu et al., 2018, 2019; Okamoto
et al., 2016; Picak et al., 2019; Wang et al., 2018b; Wei and Tasan, 2020; Zaddach et al., 2013; Zhang et al., 2020). Therefore, in these
materials, the Shockley partial dislocations can be effectively modeled as being consistently separated from one another. In other
words, as yijsf < 0, partial dislocations are freely moving until any positive valleys on the fluctuations of E.,, which can be equivalently
evaluated if the derivative of E,, (or dissociation stress) becomes positive or not. Therefore, in this section, (i) we firstly make the
triangular trajectory start from the closely zero SFW, (ii) numerically show how E,; and its derivative vary with respect to the SFW,
and (iii) finally demonstrate the determination of a critical negative y;s (y.) to achieve finite SFW and CRSS.
The triangular trajectory defined in Eq. (11) can be expressed as follows,

. 1 4
si=s"+—t+S (1 -P(C,.j
o EO LI
17
. 1 "
S2:Sl"+7 t+ CklfPC,j
(e Sat-re)
where si and sT are the initial positions of Shockley partials that are to be specified. It is ideal that si* and s¥' are set to zero in order to

investigate E, versus the SFW, although two core structures of partials are overlapped at the small SFW region. Therefore, the
minimum threshold of SFWj, is set as SFW;, = s + st > 2&p. The change of sign convention in the path variable t in s, is intended to
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Fig. 4. Freely extending motions of dislocations and their energetics with slightly negative stacking fault energy. (a) Total energy landscape of
screw dislocation in the space of the positions (s;, s2) of Shockley partials; The MEP is denoted as a black solid line; (b) Enlarged view of total energy
surface plot to see a zig-zag motion of partials in free dissociation. Shockley partials traverse the minimum-energy path (MEP) including the points
0, A, and Oy; (c) Equivalent energies from two different MEP solutions A and B; The LP is fixed for the solution B of the isolated motion; (d) Plot of
derivative of total energy with respect to the SFW =s; + s,, in the given SFW range up to 100 A. Material constants used in this case are a = 3.559 A,
u = 45.2 GPa, Cas = 138.4 GPa, y,s = 418 mJ/m?, and vy;s = —10 mJ/m?, respectively.

model the motion of partials to be continuously dissociated. In arbitrary shapes of the triangular trajectory in the specified range of
SFW =51 + 52, two parameters (;p, £rp) can be iteratively determined at each set of values in s; and s, based on the Eq. (4) with respect
to the equilibrium core structure (ngp, fon,) at the minimum of E, in such that

aEm/aI —0: aEtoml _

= =0 18
0&.p T 0 (18)

Then, the outer loop searching for the MEP is implemented with Eq. (14) by changing the shape of the triangular trajectory.

Fig. 3 demonstrates an example of freely extending motions of Shockley partial dislocations based on Egs. (17) and (18). The
material constants needed for total energy calculation are referred to the one of HEAs (NiCoCrFeMn) with are a = 3.6 f\, u=(C1-C12)/
2 = 34.5 GPa, C4s = 165 GPa, y,s = 439 mJ/m?, and Yisf = 8 mJ/m? (Alkan et al., 2018a). Based on this input set, we investigate E;yq
variation with the SFW by hypothetically changing v;s into the negative side. Hence, we can determine a base point of y;y, i.e. the
critical value yy, for the given combination of the input set. Initially, y;y is set to be —50 mJ/m?, and s and s are 6 Aand 0 A, which
SFW;, becomes 6 A. The range of the SFW = s; + s5 to be calculated is set up to 100 A.In Fig. 3a, Eyq surface is depicted in the space of
the positions (s1, s2) of Shockley partial dislocations. The one of the MEPs is determined in the loop over Eq. (14) and denoted as a black
solid line. As shown in Fig. 3b, the MEP passes through the minimum valleys, as E;,,; keeps decreasing. It is comparably different from
the positive y;; case described in Fig. 2¢, which has a global valley in E;yyq.

In Fig. 3¢, Eyq is depicted along the MEP trajectory in the SFW axis by SFW = s; + s;. Also, another solution (B) of the MEP is
compared to the zig-zag trajectory (A). The solution B includes only one Shockley partial moving and the other being fixed at si or si.
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Fig. 5. Total energies and dissociation stresses in screw dislocation upon the variation of SFW with various y;s cases; (a) Plot of total energy in the
vicinity of the SFW for the global minimum (SFWo) and the first local minimum (SFWy,,). SFW, for the zero or negative v is not defined; (b)
Convergence of peak in the derivatives of total energy at high SFW. Critical intrinsic stacking fault energy (y.isr) is determined as closely at y;sf =
—50 mJ/m?. Gray curve represents the fluctuations in the derivative of total energy for y;s = —50 mJ/m? Material constants are a = 3.6 A, u = 34.5
GPa, Cas = 165 GPa, y,s = 439 mJ/m?. The minimum threshold of SFW is given as SFW > 2&p.

Therefore, the MEP for the negative y;; in the screw character has four equivalent solutions at the same initial values. As an example,

we show the solution B (isolated motion) for the TP being fixed at s = 0 A, and find that the solution A and B have the same energetics.
It can be also explained by the energy barrier needed for each Shockley partial to move, as shown in Fig. 3d as the schematic of the
solution A. It describes that one partial dislocation (red) moves away, while the other (blue) is fixed. Then, the latter one starts to move
in the same situation. In the perspective of continuous dissociation, either LP or TP moving cannot be distinguished. Likewise, the

energetics of the solution B is also not distinguishable from the solution A. In Fig. 3c, we also find no positive derivative of E with

AEioral
dSFW

partials to be continuously separated until Eq reaches its local minimum. Hence, in the given material constant set with y;
modulated to —50 mJ/m?, two partials will continue the dissociation beyond the SFW range of 100 A.

Fig. 4 demonstrates another example of freely extending motions of Shockley partial dislocations, but based on the slightly negative
vist- The material constants used in this case are referred to the one of MEAs (NiCoCr) with are a = 3.559 A (Huang et al., 2018), u= (C1
— C12)/2 = 45.2 GPa, C4s = 138.4 GPa (Laplanche et al., 2020). In this case, however, we modulate both SFEs (yys, Yisf), since not all
material constants are compatibly paired within the consistencies in MD or experiments. We here set y,s = 418 mJ /mz, and yjsf = —10
mJ/m?. The vist is chosen as a slightly negative value in the previous studies (Alkan et al., 2018a; Celebi et al., 2022; Chandran and
Sondhi, 2011; Datta et al., 2009; Ding et al., 2018; Huang et al., 2018; LaRosa and Ghazisaeidi, 2022; Li et al., 2022; Niu et al., 2018;
Shang et al., 2012; Siegel, 2005; Sun et al., 2021; Tian et al., 2017; Wang et al., 2018a; Zhang and Wang, 2022; Zhang et al., 2017a,
2017b; Zhao et al., 2019, 2017), which are tabulated in Table S1 in Supplementary Material. Based on the parameter set, we also
investigate E,, variation with the SFW by hypothetically changing both ys and yisf into the negative y;s¢ side. The initial values such as
sil", siz”, SFWi,, and the range of SFW are also set to 6 10\, 0 [o\, 6 1°\, and 6-100 [o\, respectively, as the same as the case in Fig. 3. In Fig. 4a,
E, 1 surface is depicted in the space of the positions (s;, s2) of Shockley partial dislocations. The one of the MEPs as a zig-zag solution A
is also determined. In Fig. 4b, the MEP in this case also passes through the minimum valleys well, such as O, A, and Os as indicated. In
Fig. 4c, Eypq is depicted along the MEP trajectory in the SFW axis, and the solution B also shows the equivalent energetics. Here, the
solution B has the LP fixed at s" = 0 A, and we note that the solution B (isolated motion) is computationally more efficient than the
solution A. Therefore, all further results after the demonstration are implemented by using the solution B.

In Fig. 4c, we find a transition point from negative to positive derivative of E,y, in the given range 6-100 A. This is described well

with the derivative curve as shown in Fig. 4d. The fluctuations in SSE;% stem from the variations in E, including Peierls valleys, which

respect to the SFW, i.e.,

< 0, in the given range up to 100 A. The main idea of this work is that the negative viss contributes two

are based on the WS cell-based misfit energy. Among the multiple local minima, we find the first intersection of % to initial zero
dissociation stress at SFW = 55.5 A. Therefore, the MEA NiCoCr with the given material constant set can have a least finite SFW at this
point, since it starts to require positive stress for partials to continue the dissociation. Also, the MEA NiCoCr is reported to have
multiple SFW varying 39.6 Ato725A (56.3 Aon average) in the screw character (0 < ~3) (Laplanche et al., 2017; Liu et al., 2018;
Shih et al., 2021), which agrees well with the calculation in this work. Nevertheless, if the external stress is continuously introduced at
a higher level than the dissociation stress, the statement that two partials keep separating still holds, as a large variation of the SFW is
shown in experiments. Therefore, we finally investigate the maximum dissociation stress by further extending partial separation.
Fig. 5 represents the total energies and their dissociation stresses upon changing the SFW with modulating vyis in three scenarios
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such as positive yjsf = +50 mJ, /rnz, zero yist = 0, and negative yjsr = —50 mJ/m? In Fig. 5a, Eyq is depicted in the narrow range where
its local or global minimum can be defined in each case. In the case of zero or negative yjgf, the global minimum cannot be defined since
the strain-energy is continuously reduced and the WS cell-based misfit energy stays constant or decreases with its oscillation. Only the
positive yisr (+50 mJ, /m?) determines the global minimum of E,y at its SFW denoted as the SFWo (18.6 10\). Also, the positive yisr (450

mJ/m?) introduces the multiple local minima including the global one. It can be easily identified with the multiple intersections in the

dEjoral
dSFW

(a2.1 A) where non-zero external stress is initially required to dissociate the partials. For the zero yjg, it has also multiple local minima,
and the SFWp,, is measured as 25.4 A. However, there is no local minimum found for the negative yisr (—50 mJ/m?) in the given
window.

dissociation stress

as similarly seen in Fig. 4d. Among the multiple minima, E,, at its first local one is denoted with the SFWpp

In Fig. 5b, we extend the dissociation into an infinitely large domain up to 2 x 10° A. The dissociation stress % for the negative yisr

(—50 mJ/m?) closely intersects with zero at infinitely large SFW, as compared to other cases yis = 0 or + 50 mJ/m?2. The intersections
and flucuations are described in Fig. Al in Appendix A. It implies that all y;jsr < —50 mJ. /m? will result in the non-positive dissociation
stress for any SFW, and therefore those types of materials will be unstable with respect to the dissociation. These materials hypo-
thetically continue their dissociation of partial dislocations without external stress. It can be deduced that they may stand no longer
belong to the FCC structure, since the continuous dissociation mechanism will accordingly create a deformation-induced phase
transformation. The negative yis (—50 mJ/m?) is therefore determined as the critical negative value vy for the given material
constants (a = 3.6 10\, 1 =34.5GPa, C4s =165 GPa, and yys = 439 mJ /m?). For Yisf > Yeisf> @ pOsitive external stress is required to further
dissociate the partials beyond the first local minimum (SFWy,j,). Here we define the maximum dissociation stress % as the CRSS in
FCC materials with the negative yiss. The maximum derivative of E,y is resolved in the one of MEPs as the same as the positive y;sf case.
In either case of the solution A or B, the OET approach is still applicable based on Eq. (16). In Fig. 4b for the solution A, we have s (t)
> 0 and s,(t) = 0 in the segment OA, given the MEP beginning at point O. In section AO+, similarly, we have s, (t) = 0 and s, (t) > 0. In
other words, along the trajectory, there is an intermittent motion of the Shockley partials where in any given segment (OA or AOx) only
one partial is moving. Considering the segment OA, the gradient of SFW is given by,

dSFW ) ) ,
dr =5,() + 5,(1) = 5,(1) 19
1 1 dE,. d SFW
CRSS, = SFr - max - — . 20
s = max(ce e e ) 20
Then, the substitution of Eq. (19) into Eq. (20) results in,
1 1 dEmml
CRSS, = SF - —_ 21
mes = S0 max((snp) b, d SFW) (21)
Therefore, the CRSS is rewritten as follows,
SFF dEmm[
CRSS, = . 22
MeS = g SFy T (dSFW) (22)

For the solution B of isolated motion, Eq. (19) is repeated for all segments (along either s; or s, axis), which also yields Eq. (22) from
Eq. (16). The maximum derivative occurs at the convergence limit by using the partial dissociation for yisf < yist < 0. The CRSS of the
zero yisf case, for instance, is determined as 290 MPa with the given material constants. Based on the framework described, we study
stability, SFW, and CRSS maps with various material constants in Section 3.

3. Results and discussion
3.1. Stability of partial dissociation

The characteristics of the negative yjs in current MCS framework are defined in the stable dissociation regime. It is important to
note that the specific combination of material variables to guarantee stability will depend on the given material constants. The non-
zero solutions such as SFW and CRSS therefore require the determination of ys baseline in the given material constants such as a, and
elastic moduli of C+1, Ci2, and Cas by modulating both yus and yis. In Fig. 6, we calculate the stability regimes for each material
parameter and correlate both y,s and vyisf in the domain, which are novel findings in the first place. Fig. 6 indicates stable and unstable
regimes by varying lattice constant (a) within 3.6-5.6 A. The other constants y = (G11-C12)/2 and Cu are fixed as 34.5 GPa and 165 GPa.
In the positive region of yisf, the stability condition of y,s > visf is set to be always satisfied, which is already known in the conventional
theory. In the negative region of yjs, as explained in Section 2.3, the determination of the initial zero derivative of E,y, is numerically
implemented on each point of SFEs (yys, vist) based on the given material constants. In a slightly negative yjsf, the dissociation stress
hypothetically requires a high level of y,s to make the materials stable. Then, in a highly negative region, the increase falls short of
ensuring stability. Any SFE (yys, vist) points outside the envelopes are considered unstable ones that rarely follow FCC dislocation
motion. As a increases, the baselines of stability move upward in the SFE (yys, yist) domain.
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Fig. 6. Stable and unstable regimes (a) varying lattice constant (a), and elastic moduli of (b) 4 = (C11 - C12)/2, and (c) Cas; All critical negative yis¢
points (baselines) are numerically determined at each unstable stacking fault energy (y,s) by using the given material constants a, Css, and y. The
initial envelope has a = 3.6 i\, # = 34.5 GPa, and C4s = 165 GPa, and each material constant is respectively varied (arrow) to determine the stable
envelope of SFEs. In the positive region of yi, the stability condition of y,s > vis is set to be always satisfied. Any regimes that are out of the
envelopes are considered unstable dissociations which rarely follow FCC dislocation motion. Stable regimes are gradually colored as a red shading
for each material constant, where the most stable regime is colored as the strongest red.

In Fig. 6b and c, the determination of stable regimes is similarly implemented for each effect on elastic moduli. We investigate the
envelopes for y = (C11- C12)/2 and Cas, and the lattice constant is fixed as a = 3.6 A. As y and Cas decrease, the baselines of stability also
move upward in (yys, visf) domain. Therefore, all three material constants (a, 4, and Cas) contribute to the stability of FCC dissociation.
The distinctive correlations between those constants and the CRSS have been also verified in the previous work (You et al., 2023).
Similarly, the dependencies of a, 1, and Cas on the stabilities can be deduced by the equilibrium core-widths (621» fOTp), as determined in
Eq. (18). The decreases in the elastic moduli ¢ and Cs« consequently result in narrower cores in each partial dislocation, which are
mediated by the strain-energy Egin between two partials and the WS cell-based misfit energy Epsy;, in the FCC lattice slip plane. As the
material constants (a, g, and Ca) are reduced, the Egqn is lowered in the interaction of two partials, and for a given Eng, the
dislocation cores become narrower. The stability of materials with respect to a is also similarly related to £, and &2, based on the
contribution of lattice spacing in En:. The findings in this work suggest the correlations between material constants, stabilities, SFW,
and the CRSS. In the following results, the SFW and CRSS are also described, and the characteristics are similarly mediated by the effect
of narrower £2, and £2,,.

3.2. Finite stacking fault width

Fig. 7 demonstrates the SFW contours upon stable regimes of both SFEs (yys, visf) domains. In Fig. 7a, we plot the global equilibrium
SFW (SFWo) as only determined in the positive yisr using Eq. (10). As the SFEs (yys, yisf) approach closer to the conventional stability
condition (yys = Visf), SFWo results in no solution (closely zero SFW). As the positive yisr decreases and approaches zero, then SFWo
diverges as infinity. This is also consistent with the classical formula, as stated in Eq. (1). yys can also contribute to the SFWo at the
overall domain, while y;sr becomes dominant at a higher level of y,s. Fig. 7b depicts the SFW for the first local minimum (SFWy,j) of
Etorq- Similarly, SFWy,;, is bounded by the stability conditions of yys > yisr as well as yys > Yeisf- The baseline y.isr is determined in Fig. 6
based on material constants are a = 3.6 Z\, 1= 34.5 GPa, and Cas = 165 GPa, respectively. The SFWp,;, also yields no solution as SFEs
(yus> Yist) approach to the conventional stability condition (yus ~ yist). However, both SFEs (yys, visf) are critical to determining the
SFWin at the overall domain, which is not fundamentally established before. Then, the SFWy,;, keeps increasing toward infinity as the
SFEs (yys, visf) approach the new stability condition baseline with the yjst.

From both contours of SFWo and SFWpy, in Fig. 7, any FCC materials can be investigated for finite SFWs. Based on the stability
regime, one may identify how much the level of SFEs (yys, visf) is required to get finite SFW at both positive and negative ;s sides. For
the positive yjgf, there is the maximum limit converged for the SFW (Fig. 7a), although the least possible SFW can be characterized as
well (Fig. 7b). This can be applied as a variation of SFW in the practical experiments. For the negative yisf, the non-zero solutions of
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Fig. 7. Stacking fault width (SFW) contours upon stable regimes of stacking fault energies (yys, yisp): (@) the SFW for the global minimum (SFWo) of
total energy, and (b) the SFW for the first local minimum (SFW,;,) of total energy; SFWo is bounded by yisr > 0 and y,s > yisf Since it goes to infinite
or is not defined at y;r < 0 and yys < yisr- Similarly, SFWy,;, is bounded by two stability conditions of y,s > Yeisf and yyus > yisr On the negative and

positive sides of y;s;, respectively. Material constants are a = 3.6 A, u = 34.5 GPa, and Cas = 165 GPa.
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Fig. 8. Contours upon stable regimes of stacking fault energies (yys, visf): (@) Critical resolved shear stress (CRSS), and (b) core-widths (¢); CRSS is
bounded by two stability conditions of yus > Yeisr and yus > yisr on the negative and positive sides of yis, respectively, as it becomes undefined
outward the stable curves. Material constants are a = 3.6 f\, 1 = 34.5 GPa, and Cas = 165 GPa, respectively.

SFW are available in the stability regime. The SFW for the negative yis can also diverge at the new criterion of baseline. Therefore,
materials with negative yjsr may result in a large variation of SFW. We note that, however, all the other material constants (a, u, C44, and
Yus) should be precisely measured since they are critically paired with the determination stability and SFWs. Along the contour with the
same level of SFWy,,, there are multiple solutions for SFEs (yys, vist), S0 theoretical studies on SFEs are independently recommended.
All the SFEs outside the stability hypothetically imply that no FCC materials can stand with respect to the dissociation of Shockley
partials. Therefore, if three material constants (a, u, and Cas) are only known without prior experimental knowledge, one can
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theoretically deduce which level of SFEs yields finite SFW with stable dissociation or other phases with different dissociation in un-
stable regimes.

3.3. CRSS and core-widths

Fig. 8 represents the CRSS and core-widths computed along the MEP on the E;,y landscape in this study. In Fig. 8a, the CRSS
contours include the results based on both Egs. (16) and (22). Along the stability conditions of both yys > Ycisf and yys > visf, the CRSS
approaches zero. It also yields no solution outside the conditions, which is negative dissociation stress. The CRSS exponentially in-
creases as yys rises, which is also known for the positive side of yjst in the previous study (You et al., 2023). The elevation of yi¢ is also
distinctive to characterize the CRSS, although it has a fluctuating trend. This usually stems from the discretization of misfit energy
along the MEP. For the WS cell-based Ey;; in Eq. (9), the number of WS cell area is divided as cumulative summation within integers.
Also, Epsfi; variation along the MEP has distinctive WS cells to calculate the resolved path and slope of Ejyq. Therefore, the intrinsic
stacking fault point coming from the disregistry domain also reflects discontinuous variation followed by its correlation with the CRSS,
which is different from the SFW trend.

In Fig. 8b, we plot equilibrium core-widths of partial dislocations (52,,, (}P), as both denoted as (&) for a screw dislocation. It includes
the results from both minimization Eqs. (10) and (18). The equilibrium core-widths (¢) on the negative side of vyjs in this material
constants (a = 3.6 A, u = 34.5 GPa, and C«s = 165 GPa) are usually less than 3 A. We have narrower symmetric cores for the negative yigf
in each partial dislocation. As we demonstrate the correlation of material constants and core-widths, they are mediated by the strain-
energy Eyrqin between two partials and the WS cell-based misfit energy Epyy; in the FCC lattice slip plane. The narrowly concentrated
dislocation cores, therefore, result in possibly higher CRSS. This is also validated with the positive y;sr materials in the previous study
(You et al., 2023). As the SFEs (yys, visf) approach the origin, the equilibrium core-widths (¢) diverge and yield the zero CRSS where
infinite SFWs are found in both SFWo and SFW ;.

3.4. Comparison of results with experimental data

We demonstrate the MCS framework in extended region of the SFEs (yys, visf) to illustrate stability, finite SFW, and CRSS. Here, we
further benchmark how the formalism works well with well-known material with a negative y;st. Most of the MHEAs have been shown
to possibly have negative yjgs. Still, some of them are reported to have finite SFW in experiments. Therefore, one of the MHEAs can be an
excellent candidate to validate the formalism in this work. Nevertheless, not all material constants are compatibly available within the
consistencies in MD or experiments. Hence, we choose NiCoCr MEA, demonstrated in Section 2.3 and Fig. 4. NiCoCr MEA is the one, to
the best of our knowledge, that shows the most consensus to have a negative vyis in the previous studies (Alkan et al., 2018a; Celebi
et al., 2022; Chandran and Sondhi, 2011; Datta et al., 2009; Ding et al., 2018; Huang et al., 2018; LaRosa and Ghazisaeidi, 2022; Li
et al., 2022; Niu et al., 2018; Shang et al., 2012; Siegel, 2005; Sun et al., 2021; Tian et al., 2017; Wang et al., 2018a; Zhang and Wang,
2022; Zhang et al., 2017a, 2017b; Zhao et al., 2019, 2017). Other MHEAs can have varying vyis on both positive and negative sides, but
some benchmarks are made in Table B1 in the Appendix B. We choose yist = —10 mJ/m? for NiCoCr case, demonstrated in Section 2.3
(yus = 418 mJ/m?) and Fig. 4, which is a slightly negative value among the independent theoretical results of yis. In Appendix B, other
hypothetical combinations of (yys, visf) for NiCoCr are demonstrated in Fig. B1. We tabulate the reported yisf of equiatomic MHEAs
available in Table S1 in Supplementary Material. By carefully choosing other material constants (a = 3.559 A (Huang et al., 2018), u =
(C11— C12)/2 = 45.2 GPa, C4s = 138.4 GPa (Laplanche et al., 2020)), the stability, SFW, and CRSS can be achieved. If the moduli and
lattice constants differ (i.e., lower values), it is possible that yisr value lower than —10 mJ/m? could give a finite SFW as well. The
critical curves point to strong sensitivity to moduli and lattice constants. We utilized the values for the single crystal constants obtained
from the literature experiment as described in the paper. For the screw case, we systematically demonstrate the procedure for
determining the SFW in Section 2.3 and Fig. 4.

Regarding the SFW we offer the following discussion. The classical relationship, Eq. (1) has been used with a positive SFW to infer
vist, usually in the range of +10 to +20 mJ /m2. However, by using the negative value of yj in this work, the theory predicts the finite
experimental SFW without recourse to Eq. (1). The current study accounts well for all the phenomena mentioned earlier involved in the
motion of the extended dislocation of non-positive y;ss in FCC materials. We also acknowledge that other factors influence the SFWs
such as short-range ordering (SRO), atomic-level compositional variations, i.e., solute effects, and non-straight dislocation lines (with
local curvature). These aspects might have an impact on compositionally complex alloys. The current study corrects the computation of
the classical SFEs (yys, visf) and SFW by including a first-order effect that has not been considered in previous publications. Future
studies will need to focus on further improvements to account for other factors as well.

Then, we further calculate the properties, including the CRSS in different dislocation characters such as ¢ = 60° In the range of
experimental results, the SFWp,;, and CRSS agree well with the MCS formalism, as shown in Table 1. The predictions for pure screw and
60° are similar (148 MPa) and agree with experiments at 77 K (140-160 MPa) that pinpoint precisely the onset of slip. There have been
debates on the role of solid solution hardening (SSH) versus SRO in NiCoCr. Suffice it to say that these other effects are manifested
through the fault energies associated with multi-elements on the slip plane (WS lattice). The SSH contribution calculations in the
literature for the edge dislocation case result in 124.1 MPa at low temperatures (see Appendix D), which is below the experimentally
reported results. It is our intention to address these calculations in later studies.
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Table 1

A summary of results for NiCoCr medium entropy alloy. For the cases of experimental SFWs and CRSS, the ranges are shown. For the negative y;s, a
slightly low value of —10 mJ/m? is chosen in the simulations. The framework in this work is in excellent conversion to the experiments based on the
negative yjg, particularly considering the dislocation character effects (screw and 60° cases). The experimental SFWs and CRSS are from elsewhere
(Abuzaid and Patriarca, 2020; Laplanche et al., 2017; Liu et al., 2018; Shih et al., 2021).

Material Yisf SFW (Expt.) SFWpyin (this study) CRSS (Expt.) CRSS (this study)
NiCoCr —-10 mJ/ 3.96 ~ 7.25 nm (screw, 6 < 5.55 nm (pure screw, 6 = 140 ~ 160 MPa (Single crystal at 77 148.3 MPa (pure screw, 0 =
m? ~3°) 0°) K) 0°)
7.72 ~ 14.92 nm (6 = ~60°) 10.76 nm (0 = 60°) 148.5 MPa (6 = 60°)
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Fig. 9. (a) Probability of SFWy,;, distribution based on its yis (inset), and (b) two functionals of SFWo and SFW,,;;, for the MCS framework with
respect to yisr. Datapoints in the positive and negative y;s region are colored blue and orange in both figures.

3.4. Distribution of stacking fault energy

Experimental findings point to various stacking fault widths in NiCoCr alloys. A similar distribution of the SFE in the microstructure
is expected due to local variations in chemistry and the positioning of atoms along the slipped region. Therefore, we can demonstrate
an extended MCS framework for hypothetical variations in SFEs in NiCoCr, based on the reported values (mean 30 mJ/m?, and
standard deviation 31 mJ/m?) (Ding et al., 2018). In Fig. 9a, the normal distribution of probability in yjs is depicted as an inset, and the
calculated SFWy,, values based on the sampled y¢r are represented. The sampled region of yis distribution covers —32 mJ/m? ~ 92
mJ/m? while the unstable dissociation stress is found at Yisf < —16.5mJ /m?. In the stable negative yjsf region, the SFWp, extends from
38.4At077.4A corresponding to —1 mJ /m? to —16.5 mJ/m?. Therefore, as yisr approaches its critical point, the probability of SFWpip
remains a narrow fraction of the skewed distribution, since the SFWp;, exponentially increases. This is unlike the normal distribution
of the yis. In Fig. 9b, the exponential increases of two functionals of SFWo and SFW i, are depicted with respect to yiss. The hypothetical
probability is symmetric on the mean yjsf ~ 30 mJ/; m? (SFWpin ~ 18.8 ;\, SFWo ~ 33.4 ;\), so possibly yiss ~ —16.5 mJ/m? (SFWpnin ~
77.4 A) and Yist ~ 76.5 mJ. /m? (SFWpin ~ 11.9 A) have the same probabilities. The skewed SFW distribution shape can also be found in
experimental observations in water-quenched NiCoCr (Zhang et al., 2020), compared to the aged sample showing the normal dis-
tribution and lower SFW (possibly higher vyis). Thus, the results provide further insight into the role of a possible yis distribution in
generating a skewed SFW distribution.

3.5. Character effect in stable/unstable operational regimes

As shown in Fig. 2, the character effect is denoted by the angle 6. For general hypothetical materials with negative vyis, the
dislocation character effect can be further investigated. In the main results above (Figs. 3-9), we demonstrated that for the pure screw
character case, and the intermittent motion of partial dislocations is energetically equivalent to the isolated motion with fixed one
partial. We here apply the isolated motion for varying dislocation characters from the pure screw (6 = 0) to the pure edge (¢ = 90). In
Fig. 10, the maximum dissociation stresses at the convergence are shown for slightly negative yisf material (—5 mJ/m?) based on two
different scenarios: i) LP is moving, and TP is fixed, or ii) vice versa. ys is selected as the maximum hypothetical limit of 740 mJ/m?,
and the elastic constants are taken from NiCoCr ones (a = 3.559 A (Huang et al., 2018), u = 45.2 GPa, C4s = 138.4 GPa (Laplanche
et al., 2020)). Pure screw, 30, 60, and pure edge characters only represent the stable (positive) dissociation of dislocation, while other
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Fig. 10. Dissociation stresses upon varying dislocation characters from pure screw (0 = 0) to the pure edge (¢ = 90). For the validation of stability,
the maximum dissociation stress at the convergence state (SFW > 2 x 10* A) is taken. Dislocation characters with unstable dissociation are enlarged
in the inset figure. Each black or red datapoint represents which partial dislocation is respectively moving.

Yisf >0 Yisf <0 m— TP
(i) Direction | (jj) (iii) Fixea —
SFW,

SFW,+ASFW SEW,,.. SEW,,
.llJ:—:L Jlli‘:,_LCRSS ’ e

Intermittent motion Intermittent motion Isolated motion

Fig. 11. Different scenarios of dislocation motion concerning yisr and dislocation character (TP=trailing partial, LP=leading partial). (i) Energet-
ically favorable intermittent motion for y;sf > 0. The red moves- blue is fixed (second row), followed by blue moves- red is fixed (third row), then red
moves- blue is fixed (fourth row). Such motion produces flow at lower CRSS. For mixed dislocation characters, the CRSS is direction-dependent
(motion to the right versus left) (ii) Intermittent motion for vy < O-for all characters; two different directions (forward versus reverse) are ener-
getically the same. (iii) Isolated motion where one partial is fixed (TP in this case) and the other is freely moving for y;ss < 0. For pure screw (6 = 0°)
and edge (90°) characters, both cases for which LP or TP is fixed are energetically the same as the intermittent motion. However, for mixed
characters, the intermittent ((i) and (ii)) and the isolated motions (iii) with LP or TP moving have all different energetics.

minor characters are unstable (negative stress), as shown in the inset figure. This implies that y.jsf will increase on most of dislocation
characters, compared to pure screw, as the dissociation stress decreases except 60° mixed dislocation. Either screw and 60 case can be
the maximum peak for a given material, which agrees well with the CRSS variation from the previous works (Celebi et al., 2023). In
two different isolated motions, pure screw and pure edge characters have a symmetricity, i.e., irrespective of whether one partial is

moving or fixed, the result remains the same.
On the other hand, the other characters present asymmetry (Fig. 10). This asymmetry becomes substantial for 30'and 60 characters,
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Fig. Al. Derivatives of total energy E, at low SFW region. (a) yist = —50 mJ/m?, (b) yisr = 0 mJ/m?, and (c) yiss = +50 mJ/m?. Material constants
are a = 3.6 A, 1 = 34.5 GPa, Cas = 165 GPa, y,s = 439 mJ/m?. The minimum threshold of SFW is SFW > 2Ep.

Table B1
Benchmarks of the extended MCS framework on different alloys. Among input material constants, y,s and y; are hypothetically changed since these
materials have inconsistencies in the reported y;y.

Materials a[A] C11 [GPa] C1z [GPa] Cas [GPa] Yus [mJ/m?] Yisf [mJ/m?] CRSSycs [MPa] CRSSgxpt. [MPa]
Nisz3.3C066.7 3.52 238.7 155.3 131.5 205 +20 4.2,13.8* ~15°
205 0 ~0 (RT)
NiCoCrFe 3.53 219 126 130 303 -11 Unstable ~99"
374 +10 125 (77 K)
374 0 121.7
360 0 92.7
364 0 99.1
374 -5 87.0
NiCoCrFeMn 3.60 221 152 165 281 -7 Unstable ~172¢
281 0 9.2 (77 K)
380 =31 Unstable
380 0 111.8
400 0 159.5
439 +8 177

* 60'mixed dislocation.

2 Ref. (Chowdhury et al., 2015).

P Ref. (Wu et al., 2015).

¢ Ref. (Abuzaid and Sehitoglu, 2017).

representing the higher dissociation stress for TP when LP is fixed. Therefore, the dissociation of partials is relatively stable and
favorable in the direction of TP motion. We elaborate on this finding in the next section.

3.6. Intermittent versus isolated motion of partials

The solution for slip motion exhibits asymmetry for mixed dislocation characters, i.e., the CRSS corresponding to LP and TP
motions differ. This behavior is not only confined to the negative y;s but can occur in positive yisf regimes, but the details differ, as we
explain below. We describe all possible scenarios in Fig. 11 for the two yjss regimes. We first discuss the y;s¢ > O cases. For materials with
vist > 0, (i) the intermittent motion in either direction is energetically preferable where one of the partials moves first, followed by the
other partial. This scenario holds since there is a positive contribution by misfit energy for increasing the SFW as discussed in Fig. 1. In
Fig. 11 for yisr > O in the mixed dislocation case (i), two different directions (e.g., right or left in the figure) are not equivalent,
preferring one over the other.

However, for yisr < 0, there are two possible scenarios: (ii) the partials can still dissociate intermittently, or (iii) TP can be fixed in
position when LP is freely moving, or vice versa. Since no energy component increases for the yjss < 0 cases, the global equilibrium is at
infinity, and the local equilibrium exists at a finite dissociation.

Nevertheless, for pure screw and edge dislocation characters, at yisr < 0, (ii) intermittent motions are energetically the same as (iii)
isolated motion(s). For mixed dislocation characters, however, their energetics differ. Therefore, for yijsr < 0 in the mixed dislocation
case, (ii) the intermittent motion is still energetically the same in forward vs. reverse motion directions. But, for the (iii) case of isolated
motion, (last column) the energetics are different. The forward motion is shown as an example. This may have implications for tension-
compression asymmetry in FCC materials, including the MHEAs.
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Fig. B1. CRSS contours upon hypothetically changing SFEs (yys, visf) for NiCoCr based on the material constants a = 3.559 A, 1 =45.2 GPa, and Cas
= 138.4 GPa, respectively.
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Fig. C1. Effect of elastic anisotropy in NiCoCr: (a) The hypothetical variation of the anisotropy ratio, A, for various values of the single crystal
constants. All the constants produce the same vag and vc‘,’vg corresponding to NiCoCr. The specific single crystal constants (C11 = 249.4 GPa, C1z =
159 GPa, and C« = 138.4 GPa) are marked with red triangles; (b) Simulations of CRSS corresponding to hypothetical values of the anisotropy ratio
A. The value A = 3.02 corresponds to the specific NiCoCr alloy resulting in the CRSS of 148.3 MPa; (c) The assumption of dislocation core-width/
burgers vector (¢/bp) as 1.5 in the literature is compared to the MCS model simulations (shown with data points). The A = 3.02 corresponds to
NiCoCr and results in a ratio of 0.887. The consequence of this result is that the previous models will underpredict the lattice resistance.

4. Final comments

We draw attention to the determination of dislocation core-widths and SFW, the assumptions commonly made in the literature, and
their implications. The widely stated assumptions have been the following: (1) The dislocation core-widths are assumed to be
approximately 1.5br (Nag et al., 2020), (2) the SFW is assumed to exceed 6-8by and the results are assumed insensitive to its value, (3)
the elastic moduli are assumed to have a negligible effect on the results, and (4) one partial moves while the other is stationary, or both
partials translate simultaneously in unison. These assumptions may hold in limited cases, but they will not generally lead to successful
prediction of experimental results. For example, if the dislocation core-width is overpredicted, the strength attributed to other con-
tributions is magnified, which could lead to incorrect interpretations. We address this point by changing the elastic anisotropy of
NiCoCr case in Appendix C. While (2) is valid for equiatomic NiCoCr, (1) is not. For example, for the binary alloy, Nig4V3e, where the
vist is close to the yys, (2) is not valid, while (1) may be approximately valid. For pure Al, (1) is approximately valid, but (2) is not valid
(Celebi et al., 2023). While (4) is valid for NiCoCer, it is not for Nig4V3e, Al, Ni, and many FCC metals.

We emphasize that we are describing a wide range of hypothetical compositions of FCC materials with intrinsic SFEs in the range of
750 to —200 mJ/m?>. In arriving at these energy values for specific alloy compositions, the standard procedure has been to utilize
density functional theory (DFT) or molecular dynamics (MD). The DFT is preferred because reliable interatomic potentials for multi-
element alloys are not available in MD. However, in the DFT calculations, substantial computational resources are needed when the
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Fig. C2. Stable and unstable regimes varying the anisotropy ratio, A; The critical negative y.ss points are based on the data in Fig. 6¢, by fixing
lattice constant a = 3.6 A, modulus g = 34.5 GPa. Any regimes that are out of the envelopes, including the conventional stability condition (y,s >
visf), are considered unstable ones which rarely follow FCC dislocation motion. Stable regimes are gradually colored as a red scale for anisotropy
ratio, A, where the most commonly stable is colored as the strongest red.

Table D1

A summary of the solid solution hardening (SSH) contribution in CRSS of edge dislocation in medium and high entropy alloys (MHEAs). Equiatomic
ternary NiCoCr is one of multicomponent alloys that have negative SFEs in multiple independent studies. CRSSssy for other alloys (NiCoCrFe,
NiCoCrFeMn, Niz3 3C0¢6.7), suggested in Table B1 in Appendix B, are also tabulated here under the fixed core-width assumption ¢ /by = 1.5.

CRSS NiCoCr NiCoCrFe NiCoCrFeMn Nis3.3C066.7
CRSSssy [MPa] 124.1* 85.5" 83.4* 5.2 (RT)
CRSSgypt [MPa] ~ 150 (77 K) ~ 99 (77 K) ~ 172 (77 K) ~ 15 (RT)

* Extracted from the previous works by (Varvenne et al., 2016; Yin et al., 2020).

number of atoms exceeds a few hundred. The following must be carefully noted: the placement of the atoms on the slip plane within the
simulation box dictates the SFEs in alloys. To construct the atom distribution to mimic alloys, special attention must be devoted to
obtaining energetically favorable configurations (Ding et al., 2018; van de Walle et al., 2013) with a finite number of atoms; then the
slip cuts would result in the SFE that varies similar to real materials. The current simulations considered a distribution of SFEs in
general conformity with experiments (Fig. 9).

The presence of SRO domains will also contribute to the local variations in the generalized energy levels (Zhang et al., 2020) and
specifically the yis. Such variations, including positive and negative SFEs, will produce a variation in SFWs (Chowdhury and Sehitoglu,
2017a; Laplanche et al., 2017). The model can predict the trends in the evolution of SFWs as the microstructure transitions to higher
chemical SRO manifested through changes in energy levels. With an increase in SRO, the narrower SFW in experiments has been found
in the 5 ~ 10 nm range, compared to 10 ~ 20 nm for smaller SRO cases in NiCoCr (Zhang et al., 2020). These trends are consistent with
the findings in this work. If there are drastic changes in elastic constants due to compositional differences, the model will accommodate
via the elastic strain-energy calculations. The role of elastic strain-energy Esrqin has yet to be well understood. Still, it is clearly
incorporated in the current model and can explain variations with a composition that is not evident based on the GSFE values alone.
Further investigations are needed to explain all the trends observed experimentally.

We note the need to measure the CRSS in experiments precisely. Experiments on single crystals with digital image correlation
resulted in a more precise level of 140-160 MPa (Abuzaid and Patriarca, 2020). If only polycrystalline data or RT is available, one must
carefully evaluate the assumptions when correcting the polycrystalline data and thermal activation theory for temperature effects to
obtain CRSS values. Also, regarding the temperature effect in the SFE, one may consider alternative methods such as ab-initio MD (de
Koning et al., 1998; Wirth et al., 2022), and thermodynamic models (Curtze et al., 2011; Olson and Cohen, 1976; Togo and Tanaka,
2015). These studies noted that the SFE increases with increasing temperature for low yis materials. In this study, we note that
Figs. 6-8 cover a very wide range of SFE values, but we are not specifying the corresponding temperatures. This is outside the scope of
our study.

Our approach’s lattice resistance alone for screw and 60° cases agrees closely with the experimental results. The current results for
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strength elevation due to lattice resistance are sufficient to capture the experimental values. Therefore, the lattice resistance deter-
mination of negative SFE multi-component alloys, as proposed in this study, is a significant step toward advancing the understanding
of mechanics of muti-component alloys. If the edge dislocation is considered, one would argue that the contributions from SRO or SSH
are substantial. We investigate the SSH contribution in edge dislocation of MHEAs in Appendix D. In Appendix D, we show that the
core-width assumption of £/br = 1.5 provides underestimation of experimental CRSS, depending on materials. In addition, we note
that the SRO represents domains that undergo fault energy elevation upon slip, producing strengthening. The formulation for the SRO
of negative SFE case and its change upon slip (Cohen and Fine, 1962) requires further studies and would provide further insights into
CRSS contributions and will be considered in future work.
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Appendix A. Derivative of total energy and finite stacking fault width

For yisf < 0, the derivative of total energy E,q;, including strain and misfit energies, is assessed as the dissociation stress of partials.
The fluctuations that stem from Peierls valleys can intersect with zero dissociation stress, which results in the least finite SFW (SFWp,)
for all regimes of yisr. In Fig. A1, the derivatives for three yisf cases are represented for yjsf = —50 mJ, /mz, 0mJ, /mz, and +50 mJ/m?>. For
Yist = —50 mJ /m?, the infinite SFW is required to intersect zero dissociation stress, while the finite SFWs are available for y;sf = 0 mJ/
m?, and +50 mJ/m2 Meanwhile, the global equilibrium (SFWo) cannot be resolved for the yi¢ = 0 mJ/m? case since no misfit energy
component attracts the lattice repulsed by the strain-energy. For yjsr = +50 mJ, /m?, SFWo is found at the balance between the strain and
misfit energies.

Appendix B. Hypothetical variation of SFEs in alloys and CRSS

Most reported MHEAs can theoretically have multiple yisf on both positive and negative sides, as tabulated in Table S1 in Sup-
plementary Material. Nevertheless, we select a few materials to benchmark the extended model by hypothetically changing y,s and yisf.
In Table B1, we tabulate input material constants (a, C+1, C1z Cas, yys, and yisf) and the resultant CRSS of each case for three alloys
(Nis3 3C066.7, NiCoCrFe, and NiCoCrFeMn). The input constants can be found elsewhere in (Alkan et al., 2018a; Chowdhury et al.,
2015; Huang et al., 2018; Niu et al., 2018, 2016; Zhang and Wang, 2022) or Table S1 in Supplementary Materials. Among the reported
equiatomic MHEAs, the NiCoCr case has the least inconsistency in theoretical SFEs and mostly shows yijsf < 0 in Table S1 in Sup-
plementary Material. We also further modulate both yys and yjs¢ for NiCoCr in Fig. B1. For any alloys, including NiCoCr, the possible
SFEs (yus, Visf) can be resolved in the current model, which are in agreement well with the experiments (Abuzaid and Patriarca, 2020;
Abuzaid and Sehitoglu, 2017; Chowdhury et al., 2015; Wu et al., 2015). Therefore, the careful determination on SFEs (yys, Yisf) iS
necessary, although other input constants (a, C+1, C12, and Cas) also sensitively vary the result.
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Appendix C. Elastic anisotropy with negative stacking fault energy
We demonstrate the effect of elastic anisotropy (Zener) ratio, A = Cjcjéu, for the case of equiatomic NiCoCr in Fig. Cla. The

reference elastic constants are C11 = 249.4 GPa, C12 = 159 GPa, and C« = 138.4 GPa (Laplanche et al., 2020), as A = 3.02, which is
considered high. The other points on the curve are constructed upon keeping the Voigt shear modulus (ﬂng = M) and
Poisson’s ratio (vg,, = 23(;#2:23:)
dislocation core-widths in the following steps.

The influence of anisotropy is frequently thought to have a less than 15% effect on the results. However, those models use the
incorrect assumption that the core-width is independent of the elastic strain-energy. We make the following observations on the
current model. The elastic anisotropy in this work (the MCS model) is known to affect the elastic strain-energy. Since the core-width is
determined from the minimization of total energy (which includes both elastic strain and misfit energies), the elastic strain-energy
calculation is critical to calculating the dislocation core-width. The elastic strain-energy varies with dislocation character produc-
ing different core-widths. Fig. C1b demonstrates our finding that CRSS significantly depends on the A ratio. In fact, for A < 1, the CRSS
levels are unstable. For A > 1, the CRSS increases with A, and the value of A = 3.02 for NiCoCr corresponds to 148.3 MPa. These results
are for the screw dislocation case.

To comprehend the simulation results of the MCS-based model, we demonstrate the role of the anisotropy on the core-width di-
mensions. There has been a tacit assumption that the core-width to burgers vector (full dislocation) ratio is approximately 1.5. This
level is marked in Fig. C1c with a horizontal line, along with our simulations that show that the ratio is 0.887, which is far less than 1.5
for most values of the parameter A. However, it is vital to note that the partial dislocations and their corresponding burgers vector must
be considered when analyzing low SFE materials. Compared to experiments, the CRSS prediction in this work is accurate as we do not
use the £/br = 1.5 assumptions.

In Fig. C2, we also investigate the stability envelope for the anisotropy ratio, A, by fixing lattice constant a = 3.6 A, modulus y =
34.5 GPa, and varying Cus, as it is similarly implemented for Cs in Fig. 6¢c. As A decreases, the baseline (ysf) of stability moves
downward in SFE (yys, yisf) domain. The anisotropy ratio can also be a parameter to classify the stability of FCC dissociation. Then, the
narrower equilibrium core-widths (£2,, £%,) in each partial dislocation would consequently result from the decreases in anisotropy
ratio. This is mediated by the strain-energy Egyqin between two partials and the WS cell-based misfit energy En. in the FCC lattice slip
plane.

) constant for the same alloy. This choice was made to assess the role of A on the CRSS and the

Appendix D. Solid solution hardening effect in edge dislocation

The origin of strengthening in MHEAs is an ongoing debate. The SSH-effect studies have several inherent assumptions regarding
elastic anisotropy and the treatment of dislocation core-widths, and the models should be treated as semi-empirical. Consequently, it is
important to understand its relative contribution in comparison with lattice resistance. We undertake such a comparison for four
materials employing the treatment by Varvenne et al. (2016) and Yin et al. (2020) for edge dislocations based on original derivations
from Labusch (1970).

The main equation given in the SSH theory is given below.

1 4 —
r\ = L+vi ' (Y eAV, Y
CRSSssy = A: | — v ag ) | =t D1
SSH (b} > (:uzwgl v ) bﬁv (D1)

avg

Wi

whereI” = apuq;q /Hlb}Z7 is line tension energy, a = 0.125 is line tension parameter, yi110/111 = w is shear modulus in {111} plane
in (110) direction, c, is composition of constituent elements, and AV, is misfit volume parameter. The Voigt average of shear moduli
u“{vg and Poisson’s ratio v(‘{vg, pre-factor A, (which depends on the anisotropy), the dislocation core-width, and finally the SFW, are also
reflected in this equation. The following equation is utilized for volume misfit,

N
AV, — Wattoy Z . WVaiioy (D2)

m
ac, =" dey,

where Vggoy = Vaitoy(€1, €2, ..., cn—1) and % = 0 where compositions are known for a given alloy and the change in volume with
concentration are calculated from atomistic methods. The assumed dislocation core-width, /by = 1.5 is taken as a universal
parameter for FCC metals and leads to A; = 0.01785. We showed in Appendix C that the £/br = 1.5 assumption is inaccurate for
NiCoCr. Neverthless, our aim is to establish SSH values in conformity with previous treatments and compare the results with the lattice
resistance. So, for the purposes of consistentcy with previous SSH work (Yin et al., 2020), the same input parameters were used for
NiCoCr (C11 = 252 GPa, C+2 = 158 GPa, and Cas = 142 GPa), and the misfit parameters were taken as follows (AVy; = —0.493 10\3, AV
= —0.497 10\3, and AV¢ = +0.990 A3). Then, the SSH contribution, i.e., CRSSssy at 0 K, is obtained as 124.1 MPa using Eq. (D1). This
prediction is below the average experimental level of 150 MPa at low temperatures (Abuzaid and Patriarca, 2020) and below the lattice
resistance predictions in this work.

We also evaluate CRSSgsy for the NiCoCrFe and NiCoCrFeMn alloys (Varvenne et al., 2016). The results are shown with asterisks in
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Table D1 and the SSH model underestimates the experimentally measured CRSS levels in all cases.
For the Nisg 3Cog6 7 binary alloy, there were no CRSSssy estimates to the best of our knowledge. So, we derive the misfit parameters
based on the lattice constants for binary Ni-Co system from elsewhere (Nishizawa and Ishida, 1983), which gives Vg, = 11.13 —

0.1841cp;, AVy;i = — 0.123, and AV, = + 0.307. The experimental results Niz3 3C0gg 7 are only available at room temperature. The
thermal activation correction based on the equation below has been widely used,
KT &0\
. &\’
R T,e) = CR 1—(—In— D
C SSSSH( ,6‘) C SSSSH (AEb n 8> ( 3)

where £ = 10* s7! is reference strain-rate, é =5 x 1075 s~! the applied strain-rate for Nig33Cogg7 used in the experiment

(Chowdhury et al., 2015), and AE, the energy barrier for thermal activation which is defined as,

2 1

ry\? L0\ (e, oV’
AE, =Ap|— ) B2 ) —28) =22 D4
’ E(b%) P Ty, b D

and the assumption of ¢/bp = 1.5 results in the pre-factor Ag is 1.5618 and A, is 0.01785. The resulting SSH value (5.2 MPa) un-
derestimates the experimental value (15 MPa)- see Table D1.

In summary, we showed that the £/br = 1.5 assumption does not hold for a wide range of FCC materials in Appendix C. The core-
width &/br cannot be assumed and must be derived from energy minimization which was undertaken in the main text. We also showed
that the SSH predictions in Table D1 underestimate the CRSS for the four benchmark FCC alloys (including the negative SFE cases) in
comparison with lattice resistance calculations given in Tables 1 and B1.
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