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A B S T R A C T   

Recent atomistic simulations on medium entropy alloys uncovered the possibility of negative 
intrinsic stacking fault energies (SFEs), which suggest infinite stacking fault widths (SFWs). 
However, experimental measurements of SFWs in the same alloys have shown that SFWs are 
finite, which contradicts the classical derivations based on force balance. To address this 
contradiction, we develop an advanced treatment employing atomistic lattice and continuum 
theories that produce finite SFW solutions corresponding to negative SFEs. The idea is based on 
energy minimization, where the finite SFW corresponds to the first local minimum in the energy 
landscape. By exploring combinations of intrinsic and unstable fault energies, we identify regimes 
in which solutions for finite SFWs exist for thousands of hypothetical materials. Elastic moduli 
and lattice constants also impact the results, with lower moduli and smaller lattice constants 
expanding the negative stacking fault energy domain corresponding to finite SFWs. Additionally, 
the study has revealed a distribution of SFEs due to possible chemical heterogeneities within the 
alloy, resulting in variations in SFWs within the same material. The work underscores the ca
pabilities of the theory for SFW and CRSS (Critical Resolved Shear Stress) determination for 
medium to high entropy alloys in agreement with experiments.   

1. Introduction 

A stacking fault (SF) is a planar defect that exists between two split partial dislocations and is characterized by the stacking fault 
energy (SFE) (Vítek, 1968). The separation distance between the two partials, i.e., the stacking fault width (SFW), is ideally determined 
from the balance between forces from elastic repulsion and planar misfit (attraction) of the two partials. The lower the intrinsic SFE 
(γisf ), the higher the SFW. The unstable SFE (γus) represents the highest energy barrier of the Generalized Stacking Fault Energy (GSFE) 
landscape. The higher the barriers γus, the higher the Critical Resolved Shear Stress (CRSS) (Joós and Duesbery, 1997) and the smaller 
the dislocation core-width. This background has been well-established in the materials science (Chowdhury and Sehitoglu, 2017a, 
2017b; Nabarro, 1967; Ogata et al., 2002; Phillips, 2001; Tadmor and Miller, 2011). In addition, the energy landscape also influences 
the dislocation motion in deformation-induced twinning and martensitic transformation (Alkan and Sehitoglu, 2019; Alkan et al., 
2018b; Chowdhury and Sehitoglu, 2017a, 2017b; Kibey et al., 2007; Wang and Sehitoglu, 2013) and constitutes the bedrock of 
materials science and mechanics. We draw attention to modifications to the above treatment that captures a strong dependence of 
CRSS on the dislocation character (screw, edge, and mixed) affected by the elastic energies and the Wigner-Seitz cell describing the 
correct periodicity at the crystal level (Celebi et al., 2023; Mohammed et al., 2022). Such a treatment unraveled the correct flow 
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resistance (as CRSS) for dislocations of mixed character. 
In summary, in the case of a positive value for γisf , there is a textbook understanding of how the energetics are balanced for partial 

dissociation (Read, 1953). The elastically isotropic interaction between two partials and the SFE portion stretched by the equilibrium 
SFW are energetically balanced together. This classical relation between SFW and γisf based on the assumption of isotropic FCC 
materials is, 

SFW =
G b2

p

8π γisf

(
2 − ν
1 − ν

)(

1 −
2ν cos(2θ)

2 − ν

)

(1)  

where G is shear modulus, bp the magnitude of a partial Burgers vector, ν Poisson’s ratio, and θ the angle between the full Burgers 
vector and its dislocation line. 

Now, we turn our attention to recent atomistic simulations that showed the negative SFEs in several alloys, but measurements show 
a finite SFW. In earlier treatments, the γisf has been inferred from SFW measurements as potentially positive (Laplanche et al., 2017). 
Nevertheless, the above classical formula cannot be defined at zero and should not be applied to negative SFE values. The negative γisf 

has been theoretically found in high nitrogen steels (Kibey et al., 2006) and medium or high entropy alloys (MHEAs) (Huang et al., 
2018; Li et al., 2022; Niu et al., 2018; Zhang et al., 2017a, 2017b; Zhao et al., 2017). Still, the results show finite SFWs in the ex
periments (Laplanche et al., 2017; Liu et al., 2018, 2019; Okamoto et al., 2016; Picak et al., 2019; Wang et al., 2018b; Wei and Tasan, 
2020; Zaddach et al., 2013; Zhang et al., 2020). This issue presents an anomaly. Also, the classical conversion formula does not show 
dependency on the entire energy landscape and is uncoupled from the dislocation core-widths and anisotropic elastic energy. 
Therefore, the relationship can be applied only to positive SFE values as emphasized in numerous textbooks (Hirth and Lothe, 1992; 
Hull and Bacon, 2001; Read, 1953). This paper proposes a solution to this seeming contradiction with a new theory. We describe our 
approach next. 

In Fig. 1a, the typical curves for total energy Etotal are plotted with respect to the SFW for the positive, zero, and negative γisf cases. 
As two Shockley partials are dissociated, the elastic interaction between two partials produces a repulsive force, which is reduced as 
the SFW increases. The positive γisf produces an attractive force opposing the elastic interaction. Then, the global equilibrium SFW can 
be found by balancing the elastic interaction and positive misfit energy for the positive γisf . However, the global minimum cannot be 
defined for the negative γisf as the elastic and misfit energies both decrease with increasing the SFW. For the γisf = 0 case, although the 
misfit energy tends to stay constant with increasing separation distance, the elastic energy decreases due to the repulsive force between 
the partials, and therefore will not yield a global minimum for the total energy Etotal. 

Recently, the ab-initio/anisotropic elasticity framework, developed as Mohammed et al. (2022) (abbreviated as MCS) model, has 
formulated the total energy for the motion of Shockley partials, including the Wigner-Seitz (WS) cell-based misfit energy in the crystal 
lattice. It resulted in the correct determination of the CRSS, SFW, and core structures of Shockley partial dislocations. It was validated 
for numerous metals and alloys (You et al., 2023) and with different dislocation characters (Celebi et al., 2023). In Fig. 1b, the total 
energy Etotal can be characterized by fluctuations based on the Peierls valleys, which dictate the intermittent zig-zag motion of partials. 
Therefore, for the positive γisf , the finite SFW is derived for the local and global minima (a derivative of Etotal, dEtotal

dSFW = 0). For the 
negative γisf in general, there is no global minimum energetic point (global equilibrium SFW). However, Etotal exhibits multiple local 

Fig. 1. A schematic of total energy variation upon stacking fault width (SFW; or the separation distance between Shockley partial dislocations). (a) 
Total energy Etotal is the sum of the elastic interaction energy around the dislocations and the misfit energy in a lattice. The scenarios are divided into 
positive, zero, negative, and largely negative intrinsic stacking fault energy (γisf ). (b) A schematic of Etotal curves based on the Wigner-Seitz (WS) cell- 
based misfit energy. The WS cell-based misfit energy characterizes multiple local Peierls valleys that can determine the finite SFW upon intermittent 
motion of partials. In each case, the derivatives dEtotal

dSFW are denoted as dashed lines. 
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minima corresponding to finite SFW. The first minimum is the smallest possible SFW, but this does not preclude the existence of 
multiple metastable minima. In fact, this is consistent with other experimental observations that usually have a large variation of the 
SFWs in the FCC materials (Laplanche et al., 2017; Liu et al., 2018, 2019; Okamoto et al., 2016; Picak et al., 2019; Wang et al., 2018b; 
Wei and Tasan, 2020; Zaddach et al., 2013; Zhang et al., 2020), which may have the negative γisf . Recent approaches have attempted to 
explain this discrepancy by proposing the existence of a frictional barrier bounding the stacking-fault width for negative γisf materials 
(Lu et al., 2023; Sun et al., 2021; Werner et al., 2023, 2021). 

In this work, we numerically demonstrate a novel ab-initio framework extending the MCS model into the negative γisf criterion 
described above. For the partial dislocation motion with negative γisf , we consider the local minimum concept of Etotal and the critical 
stress to further dissociate the partials in the framework. These are consistent with experimental variations in the SFWs and CRSS. 
Based on the results, we explain how the critical negative γisf (γcisf ) can be determined, which provides a stable regime of multiple finite 
SFW. Then, we mainly illustrate the following new findings; (1) Stability regimes that map out non-zero solutions for the finite SFWs in 
FCC materials by correlating γus and γisf ; (2) Effects of lattice constant (a), and elastic moduli (C₁₁, C₁₂, and C₄₄) on the stability maps; (3) 
SFW contours; and (4) CRSS and core-widths. All the results of (3) and (4) are defined in the stability maps, including both γus and γisf . 
We finally predict and benchmark the characteristics of the well-known MHEA to validate the framework with their experimental 
results. 

2. Methods 

2.1. Analytical framework 

The current analytical framework is based on the notion of energy minimization utilizing the Wigner-Seitz (WS) cell-area on the slip 

Fig. 2. (a) Schematic of the extended dislocation and Wigner-Seitz (WS) cell-based misfit energy; For a given core structure of an extended 

dislocation in FCC materials with a full Burgers vector (b
⇀

F = a/2[110]) on a (111) plane, b
⇀

LP = a/6[121] is the one for a leading partial (LP), and b
⇀

TP 

= a/6[211] for a trailing partial (TP). L2D is the normalization length in the repeated dislocation lines. b
⇀

F can be screw, edge, or mixed character with 
an angle of θ. Two Shockley partials are separated by stacking fault width (SFW); The LP is at position x₁ = s₁ and the TP is at x₁ = −s₂, yielding the 
SFW as s₁ + s₂. (b) The plot of the dislocation-density distribution ρ(x₁); A density of full dislocation is colored as gray, and two cases for partial 
dislocations are black and red, where γisf is either positive and negative, indicating the core-widths ξTP and ξLP, respectively; As γisf ≤ 0, partial 
dislocations are freely moving. (c) Minimum energy path (MEP) result of Shockley partials is shown with the zig-zag motion; Stacking fault energies, 
γus = 300 mJ/m2 and γisf = 20 mJ/m2, are used to demonstrate a typical example of the previous framework. 
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plane to establish the dislocation core-width and partial dislocation separation. Fig. 2 represents the typical schematic and results 
based on the previous framework suggested by Mohammed et al. (2022) (abbreviated as MCS). It has the originality of combining the 
anisotropic elastic interaction, the WS cell-based atomistic misfit energy, and the energy-minimization of intermittent motion of 
Shockley partial dislocations in FCC materials. In Fig. 2a, the core structure of an extended dislocation is depicted. As slip occurs, the 
separated partials have a repulsive elastic interaction. At the same time, the WS cell-based misfit energy in a crystal lattice produces an 
attractive force and balances the elastic component. The total energy is a minimum at a finite separation distance. In the given co

ordinate system and a dislocation character (the angle between full Burgers vector b
⇀

F and the dislocation line), Burgers vectors (full b
⇀

F, 

leading b
⇀

LP, and trailing partial b
⇀

TP) can be correspondingly defined. Instead, we consider the fixed Burgers vectors as the references of 
the extended dislocation and vary the global coordinate system that corresponds to the dislocation character. In this work, we 
demonstrate the framework mainly based on a screw character with different material constants such as lattice constant a, elastic 
moduli C₁₁, C₁₂, C₄₄, fault energy barriers γus, and γisf . The global coordinate system for the screw character is defined as e⇀1‖[112], 

e⇀2‖[111], and e⇀3‖[110]. 
In Fig. 2b, the dislocation-density distribution ρ(x₁) is plotted. As a slip is introduced, the density of a full dislocation becomes 

separated into two components for Shockley partials, including the leading (LP) and trailing partials (TP) indicating the core-widths ξLP 
and ξTP, respectively. The distance between two partials is then characterized by the SFW. The ρ(x₁) for two cases are represented as 
black and red, where γisf is either positive or negative. As we conceptually design the idea for the negative γisf, the dissociation of ρ(x₁) 
can be largely defined or separated continuously. We first demonstrate the previous framework defined in the positive γisf, and finally 
extend it into the negative region in Section 2.3. The dislocation-density distributions are derived from the core disregistry functions, f 
(x₁), of the LP and TP. Both the core disregistry distributions f(x₁) and dislocation-density distributions ρ(x₁) for the partial Burgers 
vectors are defined as the following equations: 

fLP(x1) =
bp

2
+

bp

π tan−1
(

x1 − s1

ξLP

)

; ρLP(x1) =
bP

π

(
ξLP

(x1 − s1)
2

+ ξ2
LP

)

(2)  

fTP(x1) =
bp

2
+

bp

π tan−1
(

x1 + s2

ξTP

)

; ρTP(x1) =
bP

π

(
ξTP

(x1 + s2)
2

+ ξ2
TP

)

(3)  

where bp is the magnitude of the partial Burgers vector, and s1, s2 are the positions of LP and TP respectively, which determines that 
SFW = s1 + s2. Eqs. (2) and (3) explicitly represent the several key parameters of the core structures in the extended dislocation, such as 
the core-width ξLP, ξTP, and the SFW based on the positions of partials. In the previous studies on the MCS framework, the core structure 
parameters are determined upon minimization of total energy (Etotal) of the extended dislocation in FCC crystals, as Etotal is composed of 
two energy components, 

Etotal(ξLP, ξTP, s1, s2) = Estrain(ξLP, ξTP, s1, s2) + Emisfit(ξLP, ξTP, s1, s2) (4)  

where Estrain is the elastic strain-energy based on the anisotropic Eshelby-Stroh (E-S) formalism (Barnett and Lothe, 1974; Stroh, 1958), 
and Emisfit is the misfit energy utilizing the equivalent WS cell-area in the crystal lattice. For the details of the elastic strain-energy and 
misfit energy formalism, the reader may refer to elsewhere (Mohammed et al., 2022). 

The strain-energy component Estrain(ξLP, ξTP, s1, s2) for the extended dislocation can be calculated from the anisotropic interaction 
coefficients on each Shockley partial. Estrain(ξLP, ξTP, s1, s2) consists of the self-interaction energies of the LP and TP (such as E11

elastic and 
E22

elastic, respectively) and the interaction energy between the two partials (E12
elastic). Therefore, Estrain(ξLP, ξTP, s1, s2) is expressed as 

Estrain(ξLP, ξTP, s1, s2) = E11
elastic + E22

elastic + E12
elastic (5)  

All terms on the right-hand side are summed up with the elastic interaction energy between infinitesimal fractional dislocations 
derived from the cores of the partials, and they are defined as follow, 

E11
elastic =

∫∞

−∞

∫∞

−∞

(
K11

2π

)

ρLP(x)ρLP(y)ln|x − y|dxdy

E22
elastic =

∫∞

−∞

∫∞

−∞

(
K22

2π

)

ρTP(x)ρTP(y)ln|x − y|dxdy

E12
elastic =

∫∞

−∞

∫∞

−∞

(
K12

2π

)

ρLP(x)ρTP(y)

(

b
⇀

LP.b
⇀

TP

)

ln|x − y|dxdy

(6)  

where K11, K22, and K12 are the anisotropic interaction coefficients to be computed, and x and y are arbitrary variables defined in 
x1-axis in Fig. 2b. As an example, the procedure to determine K12 can be briefly explained. We can consider the LP and TP separated by 
a certain distance R. The continuum strain-fields surrounding each Shockley partial are determined and superposed based on the E-S 
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formalism to determine the net strain-field. The strain-energy density is then numerically integrated to calculate the total strain-energy 
of interaction at the chosen separation distance R, and a core region within radius 5bp around the center of each partial is excluded. By 
calculating the total strain-energy at varying R, the interaction coefficient K12 is determined. The choice of 5bp does not affect K12 

calculation since the gradient of change of total strain-energy is conserved. Therefore, there is no effect of singularity in our theory, 
although one may apply the non-singular formulation (Cai et al., 2006) instead and investigate this aspect in different studies. The 
self-interaction coefficients K11 and K22 can be similarly determined by considering the interaction between two dislocations with the 
same Burgers vectors. For a more detailed exposition of anisotropic interaction coefficients and the E-S formalism, the reader is 
referred to elsewhere (Mohammed et al., 2022). 

For the formulation of the WS cell-based misfit energy Emisfit(ξLP,ξTP, s1, s2), the generalized stacking fault energy (GSFE) curve is 
required for each LP and TP. The GSFE curves for the LP and TP are defined as: 

γLP(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γisf +
(γus − γisf

2

)(

1 − cos
(

2πu
bP

))

for 0 ≤ u ≤
bP

2

γus

2

(

1 − cos
(

2πu
bP

))

for
bP

2
≤ u ≤ bP

(7)  

γTP(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γus

2

(

1 − cos
(

2πu
bP

))

for 0 ≤ u ≤
bP

2

γisf +
(γus − γisf

2

)(

1 − cos
(

2πu
bP

))

for
bP

2
≤ u ≤ bP

(8)  

where γus and γisf are unstable and intrinsic stacking fault energies, respectively. Based on Eqs. (2), (3), and (7), (8), the Emisfit can be 
rewritten with the partitioned GSFE into the WS cell area for the individual Shockley partials, 

Emisfit(ξLP, ξTP, s1, s2) =
1

L2D

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑N0

n=−N0

∑−1

m=−Mmax

γTP

(
fTP

(
x(m,n)

1

))
ΔA

…… +
∑N0

n=−N0

∑Mmax

m=0
γLP

(
fLP

(
x(m,n)

1

))
ΔA

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)  

where x(m,n)

1 = (m a→1 + n a→2) ⋅ e→1, ΔA is the area of the WS cell, and L2D is the normalization length in the repeated dislocation lines. A 
summation limit of Mmax is chosen with a large number, of the order of 10⁴, to sufficiently converge the Emisfit(ξLP,ξTP, s1,s2). The misfit 
energy in Eq. (9) is calculated per unit length of the dislocation line. For the positive γisf , four parameters (ξLP, ξTP, s1, s2) are 
consequently determined by the Eq. (4) with respect to the equilibrium core structure (ξ0

LP, ξ0
TP,s0

1,s0
2) at the global minimum of Etotal in 

such that 

∂Etotal

∂ξLP
= 0;

∂Etotal

∂ξTP
= 0;

∂Etotal

∂s1
= 0;

∂Etotal

∂s2
= 0 (10)  

The minimization routine is implemented with fmincon in MATLAB. Details for the dependence of each energy component on the core 
parameters are found in the previous studies (Celebi et al., 2023; Mohammed et al., 2022). 

2.2. Minimum energy path (MEP) of partial dislocations and CRSS 

The previous MCS framework formulated the minimum energy path (MEP) with the equilibrium core-widths (ξ0
LP, ξ0

TP) to find the 
triangular trajectory that allows the robust intermittent movement of Shockley partials (Mohammed et al., 2022; You et al., 2023), 
which is energetically more favorable than the case where the partials move together with a constant separation width. The positions 
of Shockley partials (s1, s2) are described by the following equations along with the triangular trajectory, 

s1 = s0
1 +

1̅
̅̅
2

√

(

t +
∑n

k=1
Ck

(
1 − P

(
Cp, j

))
)

s2 = s0
2 +

1̅
̅̅
2

√

(

− t +
∑n

k=1
Ck

(
1 − P

(
Cp, j

))
) (11)  

where t is a path variable to parametrize the trajectory. P(Cp, j) is the triangular pulse generator and j is a pulse-variable defined as 
follows, 

j =
t

Cq
+ Cp −

⌊
t

Cq
+ Cp

⌋

(12) 
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P
(
Cp, j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for j ≤ 0
j

Cp
for 0 < j < Cp

1 − j
1 − Cp

for Cp < j < 1

0 for j ≥ 1

(13)  

where the lower bracket of ⌊x⌋ is a floor function ⌊x⌋. = max{X ∈ Z : X ≤ x}, and the parameter combination (C1,…,Cn,Cp,Cq) defines 
a shape for a triangular path of positions of Shockley partials. The total energy cumulated along with the triangular trajectory given in 
Eq. (11) is accordingly defined as the following objective function, 

Epath
(
C1, …, Cn, Cp, Cq

)
=

∑

i
Etotal

(
s1(ti), s2(ti), ξ0

LP, ξ0
TP

)
(14)  

The number of periodic functions is simply set to n = 1 sufficient to capture the MEP. The roles of path parameters such as t and (C1,Cp,

Cq) can be also understood with the equilibrium point found at t = 0 for (s0
1,s0

2) and the positive γisf with C1 = 0, which is the amplitude 
of triangular path. Cp and Cq are a peak position and a period of the triangular path, respectively. The triangular pulse generator P(Cp, j)
is implemented with triangularPulse in MATLAB. The equilibrium parameters (ξ0

LP, ξ0
TP,s0

1,s0
2) for the case of positive γisf are employed 

along with the triangular trajectory described by Eq. (11), and the minimization routine in Eq. (14) is also implemented with fmincon 
and multiple initial points (MultiStart) in MATLAB to find the corresponding MEP. 

In the conventional Peierls-Nabarro (PN) model (Joós and Duesbery, 1997; Nabarro, 1947; Peierls, 1940), the CRSS has been 
calculated by taking only the simple misfit energy based on the one-dimensional cubic row-summation. Thus, it is expressed as, 

CRSSPN = max

(
1
bF

dEPN
misfit

du

)

(15)  

where bF is the magnitude of the full dislocation, EPN
misfit(u) =

∑∞
m=−∞γ(f(ma′ − u))a′, γ is the GSFE curve, f is the disregistry function 

given by equation x, and a′ is interplanar spacing perpendicular to the dislocation line, respectively. The MCS framework suggested the 
optimum-energy-trajectory (OET) approach for the CRSS prediction that resolved the limitations in the PN model such as (i) the motion 
of individual Shockley partials with a constant SFW, (ii) the dependency of CRSS on the full Burgers vector bF only, not on the partial 
Burgers vector bp, and (iii) the one-dimensional simple-cubic row-summation misfit-energy. For more detailed coverage of the OET 
approach and its derivation, readers are referred to the original work (Mohammed et al., 2022). Based on the OET approach, the CRSS 
is defined as, 

CRSSMCS = SFF ⋅ max
(

1
(SFLP ⋅ s′

1(t) − SFTP ⋅ s′
2(t))

1
bp

dEtotal

dt

)

(16)  

where bp is the magnitude of the Burgers vector in Shockley partials, SFF = (v⇀ ⋅ n⇀slip)(v⇀ ⋅ b
⇀

F), SFLP = (v⇀ ⋅ n⇀slip)(v⇀ ⋅ b
⇀

LP), and SFTP = (v⇀ ⋅ 

n⇀slip)(v⇀ ⋅ b
⇀

TP) are Schmid Factors (SFs) resolved in the full extended dislocation, LP, and TP, v⇀ is the unit vector along the uniaxial 

tensile load direction [132], and n⇀slip = 1/
̅̅̅
3

√
[111] the normal vector to the slip plane, respectively. The CRSS in Eq. (16) appears 

different than the conventional PN approach in Eq. (15) where a single partial is solely considered, since the OET approach in this work 
includes partial separation trajectory. 

In Fig. 2c, a typical result is shown with the MCS framework for the positive γisf in a screw character. The material parameters are 
set as a = 3.6 Å, C₁₁ = 221 GPa, C₁₂ = 152 GPa, C₄₄ = 165 GPa, γus = 300 mJ/m2, and γisf = 20 mJ/m2. In the total energy contour along 
with the positions of Shockley partials (s1,s2), the optimized MEP (green line) is represented. Based on the minimization in Eq. (10), the 
equilibrium core-widths (ξ0

LP, ξ0
TP) of Shockley partials yield both ξ0

LP = ξ0
TP = 3.20 Å, and their equilibrium positions (s0

1,s0
2) are (40.5 Å, 

7.42 Å), which results in the global equilibrium SFW, SFW0 = 47.9 Å. Then, the CRSS of the given input parameters finally yields the 
CRSS = 11.0 MPa based on Eq. (16), at the maximum derivative of total energy, which is resolved in its OET. The fluctuation in the 
SFW, SFW = SFW0 + ΔSFW, is due to the intermittent zig-zag motion of Shockley partials, and its magnitude ΔSFW for the present case 
is 1.91 Å which is dictated by the six material parameters. 

2.3. Extension of framework into non-positive γisf regime 

As described in Sections 2.1 and 2.2, the MCS framework determines the global minimum of total energy Etotal in the extended 
dislocation of FCC crystals. For non-positive γisf , however, the global minimum of Etotal based on four parameters (ξLP, ξTP, s1, s2)

cannot be defined since the anisotropic Estrain is continuously reduced and the WS cell-based Emisfit component stays constant (γisf = 0) 
or decreases (γisf < 0) with fluctuations as the SFW increases. Previous studies found that medium and high entropy alloys (MHEAs) 
exhibiting negative γisf (Huang et al., 2018; Li et al., 2022; Niu et al., 2018; Zhang et al., 2017a, 2017b; Zhao et al., 2017) demonstrate a 
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significant variation in SFWs, as observed in experimental measurements (Laplanche et al., 2017; Liu et al., 2018, 2019; Okamoto 
et al., 2016; Picak et al., 2019; Wang et al., 2018b; Wei and Tasan, 2020; Zaddach et al., 2013; Zhang et al., 2020). Therefore, in these 
materials, the Shockley partial dislocations can be effectively modeled as being consistently separated from one another. In other 
words, as γisf ≤ 0, partial dislocations are freely moving until any positive valleys on the fluctuations of Etotal, which can be equivalently 
evaluated if the derivative of Etotal (or dissociation stress) becomes positive or not. Therefore, in this section, (i) we firstly make the 
triangular trajectory start from the closely zero SFW, (ii) numerically show how Etotal and its derivative vary with respect to the SFW, 
and (iii) finally demonstrate the determination of a critical negative γisf (γcisf ) to achieve finite SFW and CRSS. 

The triangular trajectory defined in Eq. (11) can be expressed as follows, 

s1 = sin
1 +

1̅
̅̅
2

√

(

t +
∑n

k=1
Ck

(
1 − P

(
Cp, j

))
)

s2 = sin
2 +

1̅
̅̅
2

√

(

t +
∑n

k=1
Ck

(
1 − P

(
Cp, j

))
) (17)  

where sin
1 and sin

2 are the initial positions of Shockley partials that are to be specified. It is ideal that sin
1 and sin

2 are set to zero in order to 
investigate Etotal versus the SFW, although two core structures of partials are overlapped at the small SFW region. Therefore, the 
minimum threshold of SFWin is set as SFWin = sin

1 + sin
2 > 2ξP. The change of sign convention in the path variable t in s2 is intended to 

Fig. 3. Freely extending motions of dislocations and their energetics with largely negative stacking fault energy. (a) Total energy landscape of screw 
dislocation in the space of the positions (s1, s2) of Shockley partials; The minimum energy path (MEP) is denoted as a black solid line. (b) Enlarged 
view of total energy surface plot to see a zig-zag motion of partials in free dissociation. (c) The same energetics from two different MEP solutions A 
(black circle) and B (purple line) in the SFW scale, SFW = s1 + s2; A is an intermittent zig-zag motion of Shockley partials, and B is the isolated 
motion with one of Shockley partials fixed (TP in this case). (d) A schematic of energy barrier upon varying positions of Shockley partials; One is 
denoted as red, and the other as blue. Material constants used in this case are a = 3.6 Å, µ = 34.5 GPa, C₄₄ = 165 GPa, γus = 439 mJ/m2, and γisf =

−50 mJ/m2, respectively. 
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model the motion of partials to be continuously dissociated. In arbitrary shapes of the triangular trajectory in the specified range of 
SFW = s1 + s2, two parameters (ξLP, ξTP) can be iteratively determined at each set of values in s1 and s2 based on the Eq. (4) with respect 
to the equilibrium core structure (ξ0

LP, ξ0
TP) at the minimum of Etotal in such that 

∂Etotal

∂ξLP
= 0;

∂Etotal

∂ξTP
= 0 (18)  

Then, the outer loop searching for the MEP is implemented with Eq. (14) by changing the shape of the triangular trajectory. 
Fig. 3 demonstrates an example of freely extending motions of Shockley partial dislocations based on Eqs. (17) and (18). The 

material constants needed for total energy calculation are referred to the one of HEAs (NiCoCrFeMn) with are a = 3.6 Å, µ = (C₁₁ – C₁₂)/ 
2 = 34.5 GPa, C₄₄ = 165 GPa, γus = 439 mJ/m2, and γisf = 8 mJ/m2 (Alkan et al., 2018a). Based on this input set, we investigate Etotal 
variation with the SFW by hypothetically changing γisf into the negative side. Hence, we can determine a base point of γisf , i.e. the 
critical value γcisf , for the given combination of the input set. Initially, γisf is set to be −50 mJ/m2, and sin

1 and sin
2 are 6 Å and 0 Å, which 

SFWin becomes 6 Å. The range of the SFW = s1 + s2 to be calculated is set up to 100 Å. In Fig. 3a, Etotal surface is depicted in the space of 
the positions (s1, s2) of Shockley partial dislocations. The one of the MEPs is determined in the loop over Eq. (14) and denoted as a black 
solid line. As shown in Fig. 3b, the MEP passes through the minimum valleys, as Etotal keeps decreasing. It is comparably different from 
the positive γisf case described in Fig. 2c, which has a global valley in Etotal. 

In Fig. 3c, Etotal is depicted along the MEP trajectory in the SFW axis by SFW = s1 + s2. Also, another solution (B) of the MEP is 
compared to the zig-zag trajectory (A). The solution B includes only one Shockley partial moving and the other being fixed at sin

1 or sin
2 . 

Fig. 4. Freely extending motions of dislocations and their energetics with slightly negative stacking fault energy. (a) Total energy landscape of 
screw dislocation in the space of the positions (s1, s2) of Shockley partials; The MEP is denoted as a black solid line; (b) Enlarged view of total energy 
surface plot to see a zig-zag motion of partials in free dissociation. Shockley partials traverse the minimum-energy path (MEP) including the points 
O, A, and O₁; (c) Equivalent energies from two different MEP solutions A and B; The LP is fixed for the solution B of the isolated motion; (d) Plot of 
derivative of total energy with respect to the SFW = s1 + s2, in the given SFW range up to 100 Å. Material constants used in this case are a = 3.559 Å, 
µ = 45.2 GPa, C₄₄ = 138.4 GPa, γus = 418 mJ/m2, and γisf = −10 mJ/m2, respectively. 
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Therefore, the MEP for the negative γisf in the screw character has four equivalent solutions at the same initial values. As an example, 
we show the solution B (isolated motion) for the TP being fixed at sin

2 = 0 Å, and find that the solution A and B have the same energetics. 
It can be also explained by the energy barrier needed for each Shockley partial to move, as shown in Fig. 3d as the schematic of the 
solution A. It describes that one partial dislocation (red) moves away, while the other (blue) is fixed. Then, the latter one starts to move 
in the same situation. In the perspective of continuous dissociation, either LP or TP moving cannot be distinguished. Likewise, the 
energetics of the solution B is also not distinguishable from the solution A. In Fig. 3c, we also find no positive derivative of Etotal with 
respect to the SFW, i.e., dEtotal

dSFW < 0, in the given range up to 100 Å. The main idea of this work is that the negative γisf contributes two 
partials to be continuously separated until Etotal reaches its local minimum. Hence, in the given material constant set with γisf 

modulated to −50 mJ/m2, two partials will continue the dissociation beyond the SFW range of 100 Å. 
Fig. 4 demonstrates another example of freely extending motions of Shockley partial dislocations, but based on the slightly negative 

γisf. The material constants used in this case are referred to the one of MEAs (NiCoCr) with are a = 3.559 Å (Huang et al., 2018), µ = (C₁₁ 
– C₁₂)/2 = 45.2 GPa, C₄₄ = 138.4 GPa (Laplanche et al., 2020). In this case, however, we modulate both SFEs (γus, γisf), since not all 
material constants are compatibly paired within the consistencies in MD or experiments. We here set γus = 418 mJ/m2, and γisf = −10 
mJ/m2. The γisf is chosen as a slightly negative value in the previous studies (Alkan et al., 2018a; Celebi et al., 2022; Chandran and 
Sondhi, 2011; Datta et al., 2009; Ding et al., 2018; Huang et al., 2018; LaRosa and Ghazisaeidi, 2022; Li et al., 2022; Niu et al., 2018; 
Shang et al., 2012; Siegel, 2005; Sun et al., 2021; Tian et al., 2017; Wang et al., 2018a; Zhang and Wang, 2022; Zhang et al., 2017a, 
2017b; Zhao et al., 2019, 2017), which are tabulated in Table S1 in Supplementary Material. Based on the parameter set, we also 
investigate Etotal variation with the SFW by hypothetically changing both γus and γisf into the negative γisf side. The initial values such as 
sin
1 , sin

2 , SFWin, and the range of SFW are also set to 6 Å, 0 Å, 6 Å, and 6–100 Å, respectively, as the same as the case in Fig. 3. In Fig. 4a, 
Etotal surface is depicted in the space of the positions (s1, s2) of Shockley partial dislocations. The one of the MEPs as a zig-zag solution A 
is also determined. In Fig. 4b, the MEP in this case also passes through the minimum valleys well, such as O, A, and O₁ as indicated. In 
Fig. 4c, Etotal is depicted along the MEP trajectory in the SFW axis, and the solution B also shows the equivalent energetics. Here, the 
solution B has the LP fixed at sin

1 = 0 Å, and we note that the solution B (isolated motion) is computationally more efficient than the 
solution A. Therefore, all further results after the demonstration are implemented by using the solution B. 

In Fig. 4c, we find a transition point from negative to positive derivative of Etotal in the given range 6–100 Å. This is described well 
with the derivative curve as shown in Fig. 4d. The fluctuations in dEtotal

dSFW stem from the variations in Etotal including Peierls valleys, which 
are based on the WS cell-based misfit energy. Among the multiple local minima, we find the first intersection of dEtotal

dSFW to initial zero 
dissociation stress at SFW = 55.5 Å. Therefore, the MEA NiCoCr with the given material constant set can have a least finite SFW at this 
point, since it starts to require positive stress for partials to continue the dissociation. Also, the MEA NiCoCr is reported to have 
multiple SFW varying 39.6 Å to 72.5 Å (56.3 Å on average) in the screw character (θ < ~3̊) (Laplanche et al., 2017; Liu et al., 2018; 
Shih et al., 2021), which agrees well with the calculation in this work. Nevertheless, if the external stress is continuously introduced at 
a higher level than the dissociation stress, the statement that two partials keep separating still holds, as a large variation of the SFW is 
shown in experiments. Therefore, we finally investigate the maximum dissociation stress by further extending partial separation. 

Fig. 5 represents the total energies and their dissociation stresses upon changing the SFW with modulating γisf in three scenarios 

Fig. 5. Total energies and dissociation stresses in screw dislocation upon the variation of SFW with various γisf cases; (a) Plot of total energy in the 
vicinity of the SFW for the global minimum (SFW₀) and the first local minimum (SFWmin). SFW0 for the zero or negative γisf is not defined; (b) 
Convergence of peak in the derivatives of total energy at high SFW. Critical intrinsic stacking fault energy (γcisf) is determined as closely at γisf =

−50 mJ/m2. Gray curve represents the fluctuations in the derivative of total energy for γisf = −50 mJ/m2; Material constants are a = 3.6 Å, µ = 34.5 
GPa, C₄₄ = 165 GPa, γus = 439 mJ/m2. The minimum threshold of SFW is given as SFW > 2ξP. 
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such as positive γisf = +50 mJ/m2, zero γisf = 0, and negative γisf = −50 mJ/m2. In Fig. 5a, Etotal is depicted in the narrow range where 
its local or global minimum can be defined in each case. In the case of zero or negative γisf, the global minimum cannot be defined since 
the strain-energy is continuously reduced and the WS cell-based misfit energy stays constant or decreases with its oscillation. Only the 
positive γisf (+50 mJ/m2) determines the global minimum of Etotal at its SFW denoted as the SFW₀ (18.6 Å). Also, the positive γisf (+50 
mJ/m2) introduces the multiple local minima including the global one. It can be easily identified with the multiple intersections in the 
dissociation stress dEtotal

dSFW as similarly seen in Fig. 4d. Among the multiple minima, Etotal at its first local one is denoted with the SFWmin 
(12.1 Å) where non-zero external stress is initially required to dissociate the partials. For the zero γisf, it has also multiple local minima, 
and the SFWmin is measured as 25.4 Å. However, there is no local minimum found for the negative γisf (−50 mJ/m2) in the given 
window. 

In Fig. 5b, we extend the dissociation into an infinitely large domain up to 2 × 10⁵ Å. The dissociation stress dEtotal
dSFW for the negative γisf 

(−50 mJ/m2) closely intersects with zero at infinitely large SFW, as compared to other cases γisf = 0 or + 50 mJ/m2. The intersections 
and flucuations are described in Fig. A1 in Appendix A. It implies that all γisf ≤ −50 mJ/m2 will result in the non-positive dissociation 
stress for any SFW, and therefore those types of materials will be unstable with respect to the dissociation. These materials hypo
thetically continue their dissociation of partial dislocations without external stress. It can be deduced that they may stand no longer 
belong to the FCC structure, since the continuous dissociation mechanism will accordingly create a deformation-induced phase 
transformation. The negative γisf (−50 mJ/m2) is therefore determined as the critical negative value γcisf for the given material 
constants (a = 3.6 Å, µ = 34.5 GPa, C₄₄ = 165 GPa, and γus = 439 mJ/m2). For γisf > γcisf, a positive external stress is required to further 
dissociate the partials beyond the first local minimum (SFWmin). Here we define the maximum dissociation stress dEtotal

dSFW as the CRSS in 
FCC materials with the negative γisf. The maximum derivative of Etotal is resolved in the one of MEPs as the same as the positive γisf case. 
In either case of the solution A or B, the OET approach is still applicable based on Eq. (16). In Fig. 4b for the solution A, we have s′

1(t)
> 0 and s′

2(t) = 0 in the segment OA, given the MEP beginning at point O. In section AO₁, similarly, we have s′
1(t) = 0 and s′

2(t) > 0. In 
other words, along the trajectory, there is an intermittent motion of the Shockley partials where in any given segment (OA or AO₁) only 
one partial is moving. Considering the segment OA, the gradient of SFW is given by, 

dSFW
dt

= s′
1(t) + s′

2(t) = s′
1(t) (19)  

CRSSMCS = SFF ⋅ max
(

1
(SFLP ⋅ s′

1(t))

1
bp

dEtotal

d SFW
.
d SFW

dt

)

(20)  

Then, the substitution of Eq. (19) into Eq. (20) results in, 

CRSSMCS = SFF ⋅ max
(

1
(SFLP)

1
bp

dEtotal

d SFW

)

(21)  

Therefore, the CRSS is rewritten as follows, 

CRSSMCS =
SFF

bp ⋅ SFLP
⋅ max

(
dEtotal

dSFW

)

(22)  

For the solution B of isolated motion, Eq. (19) is repeated for all segments (along either s1 or s2 axis), which also yields Eq. (22) from 
Eq. (16). The maximum derivative occurs at the convergence limit by using the partial dissociation for γcisf < γisf ≤ 0. The CRSS of the 
zero γisf case, for instance, is determined as 290 MPa with the given material constants. Based on the framework described, we study 
stability, SFW, and CRSS maps with various material constants in Section 3. 

3. Results and discussion 

3.1. Stability of partial dissociation 

The characteristics of the negative γisf in current MCS framework are defined in the stable dissociation regime. It is important to 
note that the specific combination of material variables to guarantee stability will depend on the given material constants. The non- 
zero solutions such as SFW and CRSS therefore require the determination of γcisf baseline in the given material constants such as a, and 
elastic moduli of C₁₁, C₁₂, and C₄₄ by modulating both γus and γisf. In Fig. 6, we calculate the stability regimes for each material 
parameter and correlate both γus and γisf in the domain, which are novel findings in the first place. Fig. 6 indicates stable and unstable 
regimes by varying lattice constant (a) within 3.6–5.6 Å. The other constants μ = (C₁₁-C₁₂)/2 and C₄₄ are fixed as 34.5 GPa and 165 GPa. 
In the positive region of γisf, the stability condition of γus > γisf is set to be always satisfied, which is already known in the conventional 
theory. In the negative region of γisf, as explained in Section 2.3, the determination of the initial zero derivative of Etotal is numerically 
implemented on each point of SFEs (γus, γisf) based on the given material constants. In a slightly negative γisf, the dissociation stress 
hypothetically requires a high level of γus to make the materials stable. Then, in a highly negative region, the increase falls short of 
ensuring stability. Any SFE (γus, γisf) points outside the envelopes are considered unstable ones that rarely follow FCC dislocation 
motion. As a increases, the baselines of stability move upward in the SFE (γus, γisf) domain. 
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In Fig. 6b and c, the determination of stable regimes is similarly implemented for each effect on elastic moduli. We investigate the 
envelopes for μ = (C₁₁ - C₁₂)/2 and C₄₄, and the lattice constant is fixed as a = 3.6 Å. As μ and C₄₄ decrease, the baselines of stability also 
move upward in (γus, γisf) domain. Therefore, all three material constants (a, μ, and C₄₄) contribute to the stability of FCC dissociation. 
The distinctive correlations between those constants and the CRSS have been also verified in the previous work (You et al., 2023). 
Similarly, the dependencies of a, µ, and C₄₄ on the stabilities can be deduced by the equilibrium core-widths (ξ0

LP, ξ0
TP), as determined in 

Eq. (18). The decreases in the elastic moduli µ and C₄₄ consequently result in narrower cores in each partial dislocation, which are 
mediated by the strain-energy Estrain between two partials and the WS cell-based misfit energy Emisfit in the FCC lattice slip plane. As the 
material constants (a, μ, and C₄₄) are reduced, the Estrain is lowered in the interaction of two partials, and for a given Emisfit the 
dislocation cores become narrower. The stability of materials with respect to a is also similarly related to ξ0

LP and ξ0
TP, based on the 

contribution of lattice spacing in Emisfit. The findings in this work suggest the correlations between material constants, stabilities, SFW, 
and the CRSS. In the following results, the SFW and CRSS are also described, and the characteristics are similarly mediated by the effect 
of narrower ξ0

LP and ξ0
TP. 

3.2. Finite stacking fault width 

Fig. 7 demonstrates the SFW contours upon stable regimes of both SFEs (γus, γisf) domains. In Fig. 7a, we plot the global equilibrium 
SFW (SFW₀) as only determined in the positive γisf using Eq. (10). As the SFEs (γus, γisf) approach closer to the conventional stability 
condition (γus ≈ γisf), SFW₀ results in no solution (closely zero SFW). As the positive γisf decreases and approaches zero, then SFW₀ 
diverges as infinity. This is also consistent with the classical formula, as stated in Eq. (1). γus can also contribute to the SFW₀ at the 
overall domain, while γisf becomes dominant at a higher level of γus. Fig. 7b depicts the SFW for the first local minimum (SFWmin) of 
Etotal. Similarly, SFWmin is bounded by the stability conditions of γus > γisf as well as γus > γcisf. The baseline γcisf is determined in Fig. 6 
based on material constants are a = 3.6 Å, µ = 34.5 GPa, and C₄₄ = 165 GPa, respectively. The SFWmin also yields no solution as SFEs 
(γus, γisf) approach to the conventional stability condition (γus ≈ γisf). However, both SFEs (γus, γisf) are critical to determining the 
SFWmin at the overall domain, which is not fundamentally established before. Then, the SFWmin keeps increasing toward infinity as the 
SFEs (γus, γisf) approach the new stability condition baseline with the γcisf. 

From both contours of SFW₀ and SFWmin in Fig. 7, any FCC materials can be investigated for finite SFWs. Based on the stability 
regime, one may identify how much the level of SFEs (γus, γisf) is required to get finite SFW at both positive and negative γisf sides. For 
the positive γisf, there is the maximum limit converged for the SFW (Fig. 7a), although the least possible SFW can be characterized as 
well (Fig. 7b). This can be applied as a variation of SFW in the practical experiments. For the negative γisf, the non-zero solutions of 

Fig. 6. Stable and unstable regimes (a) varying lattice constant (a), and elastic moduli of (b) μ = (C₁₁ - C₁₂)/2, and (c) C₄₄; All critical negative γcisf 
points (baselines) are numerically determined at each unstable stacking fault energy (γus) by using the given material constants a, C₄₄, and μ. The 
initial envelope has a = 3.6 Å, μ = 34.5 GPa, and C₄₄ = 165 GPa, and each material constant is respectively varied (arrow) to determine the stable 
envelope of SFEs. In the positive region of γisf, the stability condition of γus > γisf is set to be always satisfied. Any regimes that are out of the 
envelopes are considered unstable dissociations which rarely follow FCC dislocation motion. Stable regimes are gradually colored as a red shading 
for each material constant, where the most stable regime is colored as the strongest red. 

D. You et al.                                                                                                                                                                                                            



International Journal of Plasticity 170 (2023) 103770

12

SFW are available in the stability regime. The SFW for the negative γisf can also diverge at the new criterion of baseline. Therefore, 
materials with negative γisf may result in a large variation of SFW. We note that, however, all the other material constants (a, µ, C₄₄, and 
γus) should be precisely measured since they are critically paired with the determination stability and SFWs. Along the contour with the 
same level of SFWmin, there are multiple solutions for SFEs (γus, γisf), so theoretical studies on SFEs are independently recommended. 
All the SFEs outside the stability hypothetically imply that no FCC materials can stand with respect to the dissociation of Shockley 
partials. Therefore, if three material constants (a, µ, and C₄₄) are only known without prior experimental knowledge, one can 

Fig. 7. Stacking fault width (SFW) contours upon stable regimes of stacking fault energies (γus, γisf): (a) the SFW for the global minimum (SFW₀) of 
total energy, and (b) the SFW for the first local minimum (SFWmin) of total energy; SFW₀ is bounded by γisf > 0 and γus > γisf since it goes to infinite 
or is not defined at γisf ≤ 0 and γus ≤ γisf. Similarly, SFWmin is bounded by two stability conditions of γus > γcisf and γus > γisf on the negative and 
positive sides of γisf, respectively. Material constants are a = 3.6 Å, µ = 34.5 GPa, and C₄₄ = 165 GPa. 

Fig. 8. Contours upon stable regimes of stacking fault energies (γus, γisf): (a) Critical resolved shear stress (CRSS), and (b) core-widths (ξ); CRSS is 
bounded by two stability conditions of γus > γcisf and γus > γisf on the negative and positive sides of γisf, respectively, as it becomes undefined 
outward the stable curves. Material constants are a = 3.6 Å, µ = 34.5 GPa, and C₄₄ = 165 GPa, respectively. 
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theoretically deduce which level of SFEs yields finite SFW with stable dissociation or other phases with different dissociation in un
stable regimes. 

3.3. CRSS and core-widths 

Fig. 8 represents the CRSS and core-widths computed along the MEP on the Etotal landscape in this study. In Fig. 8a, the CRSS 
contours include the results based on both Eqs. (16) and (22). Along the stability conditions of both γus > γcisf and γus > γisf, the CRSS 
approaches zero. It also yields no solution outside the conditions, which is negative dissociation stress. The CRSS exponentially in
creases as γus rises, which is also known for the positive side of γisf in the previous study (You et al., 2023). The elevation of γisf is also 
distinctive to characterize the CRSS, although it has a fluctuating trend. This usually stems from the discretization of misfit energy 
along the MEP. For the WS cell-based Emisfit in Eq. (9), the number of WS cell area is divided as cumulative summation within integers. 
Also, Emisfit variation along the MEP has distinctive WS cells to calculate the resolved path and slope of Etotal. Therefore, the intrinsic 
stacking fault point coming from the disregistry domain also reflects discontinuous variation followed by its correlation with the CRSS, 
which is different from the SFW trend. 

In Fig. 8b, we plot equilibrium core-widths of partial dislocations (ξ0
LP, ξ0

TP), as both denoted as (ξ) for a screw dislocation. It includes 
the results from both minimization Eqs. (10) and (18). The equilibrium core-widths (ξ) on the negative side of γisf in this material 
constants (a = 3.6 Å, µ = 34.5 GPa, and C₄₄ = 165 GPa) are usually less than 3 Å. We have narrower symmetric cores for the negative γisf 
in each partial dislocation. As we demonstrate the correlation of material constants and core-widths, they are mediated by the strain- 
energy Estrain between two partials and the WS cell-based misfit energy Emisfit in the FCC lattice slip plane. The narrowly concentrated 
dislocation cores, therefore, result in possibly higher CRSS. This is also validated with the positive γisf materials in the previous study 
(You et al., 2023). As the SFEs (γus, γisf) approach the origin, the equilibrium core-widths (ξ) diverge and yield the zero CRSS where 
infinite SFWs are found in both SFW₀ and SFWmin. 

3.4. Comparison of results with experimental data 

We demonstrate the MCS framework in extended region of the SFEs (γus, γisf) to illustrate stability, finite SFW, and CRSS. Here, we 
further benchmark how the formalism works well with well-known material with a negative γisf. Most of the MHEAs have been shown 
to possibly have negative γisf. Still, some of them are reported to have finite SFW in experiments. Therefore, one of the MHEAs can be an 
excellent candidate to validate the formalism in this work. Nevertheless, not all material constants are compatibly available within the 
consistencies in MD or experiments. Hence, we choose NiCoCr MEA, demonstrated in Section 2.3 and Fig. 4. NiCoCr MEA is the one, to 
the best of our knowledge, that shows the most consensus to have a negative γisf in the previous studies (Alkan et al., 2018a; Celebi 
et al., 2022; Chandran and Sondhi, 2011; Datta et al., 2009; Ding et al., 2018; Huang et al., 2018; LaRosa and Ghazisaeidi, 2022; Li 
et al., 2022; Niu et al., 2018; Shang et al., 2012; Siegel, 2005; Sun et al., 2021; Tian et al., 2017; Wang et al., 2018a; Zhang and Wang, 
2022; Zhang et al., 2017a, 2017b; Zhao et al., 2019, 2017). Other MHEAs can have varying γisf on both positive and negative sides, but 
some benchmarks are made in Table B1 in the Appendix B. We choose γisf = −10 mJ/m2 for NiCoCr case, demonstrated in Section 2.3 
(γus = 418 mJ/m2) and Fig. 4, which is a slightly negative value among the independent theoretical results of γisf. In Appendix B, other 
hypothetical combinations of (γus, γisf) for NiCoCr are demonstrated in Fig. B1. We tabulate the reported γisf of equiatomic MHEAs 
available in Table S1 in Supplementary Material. By carefully choosing other material constants (a = 3.559 Å (Huang et al., 2018), µ =
(C₁₁ – C₁₂)/2 = 45.2 GPa, C₄₄ = 138.4 GPa (Laplanche et al., 2020)), the stability, SFW, and CRSS can be achieved. If the moduli and 
lattice constants differ (i.e., lower values), it is possible that γisf value lower than −10 mJ/m2 could give a finite SFW as well. The 
critical curves point to strong sensitivity to moduli and lattice constants. We utilized the values for the single crystal constants obtained 
from the literature experiment as described in the paper. For the screw case, we systematically demonstrate the procedure for 
determining the SFW in Section 2.3 and Fig. 4. 

Regarding the SFW we offer the following discussion. The classical relationship, Eq. (1) has been used with a positive SFW to infer 
γisf, usually in the range of +10 to +20 mJ/m2. However, by using the negative value of γisf in this work, the theory predicts the finite 
experimental SFW without recourse to Eq. (1). The current study accounts well for all the phenomena mentioned earlier involved in the 
motion of the extended dislocation of non-positive γisf in FCC materials. We also acknowledge that other factors influence the SFWs 
such as short-range ordering (SRO), atomic-level compositional variations, i.e., solute effects, and non-straight dislocation lines (with 
local curvature). These aspects might have an impact on compositionally complex alloys. The current study corrects the computation of 
the classical SFEs (γus, γisf) and SFW by including a first-order effect that has not been considered in previous publications. Future 
studies will need to focus on further improvements to account for other factors as well. 

Then, we further calculate the properties, including the CRSS in different dislocation characters such as θ = 60◦ In the range of 
experimental results, the SFWmin and CRSS agree well with the MCS formalism, as shown in Table 1. The predictions for pure screw and 
60◦ are similar (148 MPa) and agree with experiments at 77 K (140–160 MPa) that pinpoint precisely the onset of slip. There have been 
debates on the role of solid solution hardening (SSH) versus SRO in NiCoCr. Suffice it to say that these other effects are manifested 
through the fault energies associated with multi-elements on the slip plane (WS lattice). The SSH contribution calculations in the 
literature for the edge dislocation case result in 124.1 MPa at low temperatures (see Appendix D), which is below the experimentally 
reported results. It is our intention to address these calculations in later studies. 
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3.4. Distribution of stacking fault energy 

Experimental findings point to various stacking fault widths in NiCoCr alloys. A similar distribution of the SFE in the microstructure 
is expected due to local variations in chemistry and the positioning of atoms along the slipped region. Therefore, we can demonstrate 
an extended MCS framework for hypothetical variations in SFEs in NiCoCr, based on the reported values (mean 30 mJ/m2, and 
standard deviation 31 mJ/m2) (Ding et al., 2018). In Fig. 9a, the normal distribution of probability in γisf is depicted as an inset, and the 
calculated SFWmin values based on the sampled γisf are represented. The sampled region of γisf distribution covers −32 mJ/m2 ~ 92 
mJ/m2, while the unstable dissociation stress is found at γisf < −16.5 mJ/m2. In the stable negative γisf region, the SFWmin extends from 
38.4 Å to 77.4 Å corresponding to −1 mJ/m2 to −16.5 mJ/m2. Therefore, as γisf approaches its critical point, the probability of SFWmin 
remains a narrow fraction of the skewed distribution, since the SFWmin exponentially increases. This is unlike the normal distribution 
of the γisf. In Fig. 9b, the exponential increases of two functionals of SFW₀ and SFWmin are depicted with respect to γisf. The hypothetical 
probability is symmetric on the mean γisf ~ 30 mJ/m2 (SFWmin ~ 18.8 Å, SFW₀ ~ 33.4 Å), so possibly γisf ~ −16.5 mJ/m2 (SFWmin ~ 
77.4 Å) and γisf ~ 76.5 mJ/m2 (SFWmin ~ 11.9 Å) have the same probabilities. The skewed SFW distribution shape can also be found in 
experimental observations in water-quenched NiCoCr (Zhang et al., 2020), compared to the aged sample showing the normal dis
tribution and lower SFW (possibly higher γisf). Thus, the results provide further insight into the role of a possible γisf distribution in 
generating a skewed SFW distribution. 

3.5. Character effect in stable/unstable operational regimes 

As shown in Fig. 2, the character effect is denoted by the angle θ. For general hypothetical materials with negative γisf, the 
dislocation character effect can be further investigated. In the main results above (Figs. 3–9), we demonstrated that for the pure screw 
character case, and the intermittent motion of partial dislocations is energetically equivalent to the isolated motion with fixed one 
partial. We here apply the isolated motion for varying dislocation characters from the pure screw (θ = 0̊) to the pure edge (θ = 90̊). In 
Fig. 10, the maximum dissociation stresses at the convergence are shown for slightly negative γisf material (−5 mJ/m2) based on two 
different scenarios: i) LP is moving, and TP is fixed, or ii) vice versa. γus is selected as the maximum hypothetical limit of 740 mJ/m2, 
and the elastic constants are taken from NiCoCr ones (a = 3.559 Å (Huang et al., 2018), µ = 45.2 GPa, C₄₄ = 138.4 GPa (Laplanche 
et al., 2020)). Pure screw, 30̊, 60̊, and pure edge characters only represent the stable (positive) dissociation of dislocation, while other 

Table 1 
A summary of results for NiCoCr medium entropy alloy. For the cases of experimental SFWs and CRSS, the ranges are shown. For the negative γisf, a 
slightly low value of −10 mJ/m2 is chosen in the simulations. The framework in this work is in excellent conversion to the experiments based on the 
negative γisf, particularly considering the dislocation character effects (screw and 60◦ cases). The experimental SFWs and CRSS are from elsewhere 
(Abuzaid and Patriarca, 2020; Laplanche et al., 2017; Liu et al., 2018; Shih et al., 2021).  

Material γisf SFW (Expt.) SFWmin (this study) CRSS (Expt.) CRSS (this study) 

NiCoCr −10 mJ/ 
m2 

3.96 ~ 7.25 nm (screw, θ <
~3◦) 

5.55 nm (pure screw, θ =
0◦) 

140 ~ 160 MPa (Single crystal at 77 
K) 

148.3 MPa (pure screw, θ =
0◦) 

7.72 ~ 14.92 nm (θ = ~60◦) 10.76 nm (θ = 60◦) 148.5 MPa (θ = 60◦)  

Fig. 9. (a) Probability of SFWmin distribution based on its γisf (inset), and (b) two functionals of SFW₀ and SFWmin for the MCS framework with 
respect to γisf. Datapoints in the positive and negative γisf region are colored blue and orange in both figures. 
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minor characters are unstable (negative stress), as shown in the inset figure. This implies that γcisf will increase on most of dislocation 
characters, compared to pure screw, as the dissociation stress decreases except 60◦ mixed dislocation. Either screw and 60̊ case can be 
the maximum peak for a given material, which agrees well with the CRSS variation from the previous works (Celebi et al., 2023). In 
two different isolated motions, pure screw and pure edge characters have a symmetricity, i.e., irrespective of whether one partial is 
moving or fixed, the result remains the same. 

On the other hand, the other characters present asymmetry (Fig. 10). This asymmetry becomes substantial for 30̊ and 60̊ characters, 

Fig. 10. Dissociation stresses upon varying dislocation characters from pure screw (θ = 0̊) to the pure edge (θ = 90̊). For the validation of stability, 
the maximum dissociation stress at the convergence state (SFW > 2 × 10⁴ Å) is taken. Dislocation characters with unstable dissociation are enlarged 
in the inset figure. Each black or red datapoint represents which partial dislocation is respectively moving. 

Fig. 11. Different scenarios of dislocation motion concerning γisf and dislocation character (TP=trailing partial, LP=leading partial). (i) Energet
ically favorable intermittent motion for γisf > 0. The red moves- blue is fixed (second row), followed by blue moves- red is fixed (third row), then red 
moves- blue is fixed (fourth row). Such motion produces flow at lower CRSS. For mixed dislocation characters, the CRSS is direction-dependent 
(motion to the right versus left) (ii) Intermittent motion for γisf ≤ 0-for all characters; two different directions (forward versus reverse) are ener
getically the same. (iii) Isolated motion where one partial is fixed (TP in this case) and the other is freely moving for γisf ≤ 0. For pure screw (θ = 0◦) 
and edge (90◦) characters, both cases for which LP or TP is fixed are energetically the same as the intermittent motion. However, for mixed 
characters, the intermittent ((i) and (ii)) and the isolated motions (iii) with LP or TP moving have all different energetics. 
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representing the higher dissociation stress for TP when LP is fixed. Therefore, the dissociation of partials is relatively stable and 
favorable in the direction of TP motion. We elaborate on this finding in the next section. 

3.6. Intermittent versus isolated motion of partials 

The solution for slip motion exhibits asymmetry for mixed dislocation characters, i.e., the CRSS corresponding to LP and TP 
motions differ. This behavior is not only confined to the negative γisf but can occur in positive γisf regimes, but the details differ, as we 
explain below. We describe all possible scenarios in Fig. 11 for the two γisf regimes. We first discuss the γisf > 0 cases. For materials with 
γisf > 0, (i) the intermittent motion in either direction is energetically preferable where one of the partials moves first, followed by the 
other partial. This scenario holds since there is a positive contribution by misfit energy for increasing the SFW as discussed in Fig. 1. In 
Fig. 11 for γisf > 0 in the mixed dislocation case (i), two different directions (e.g., right or left in the figure) are not equivalent, 
preferring one over the other. 

However, for γisf ≤ 0, there are two possible scenarios: (ii) the partials can still dissociate intermittently, or (iii) TP can be fixed in 
position when LP is freely moving, or vice versa. Since no energy component increases for the γisf ≤ 0 cases, the global equilibrium is at 
infinity, and the local equilibrium exists at a finite dissociation. 

Nevertheless, for pure screw and edge dislocation characters, at γisf ≤ 0, (ii) intermittent motions are energetically the same as (iii) 
isolated motion(s). For mixed dislocation characters, however, their energetics differ. Therefore, for γisf ≤ 0 in the mixed dislocation 
case, (ii) the intermittent motion is still energetically the same in forward vs. reverse motion directions. But, for the (iii) case of isolated 
motion, (last column) the energetics are different. The forward motion is shown as an example. This may have implications for tension- 
compression asymmetry in FCC materials, including the MHEAs. 

Fig. A1. Derivatives of total energy Etotal at low SFW region. (a) γisf = −50 mJ/m2, (b) γisf = 0 mJ/m2, and (c) γisf = +50 mJ/m2. Material constants 
are a = 3.6 Å, µ = 34.5 GPa, C₄₄ = 165 GPa, γus = 439 mJ/m2. The minimum threshold of SFW is SFW > 2ξP. 

Table B1 
Benchmarks of the extended MCS framework on different alloys. Among input material constants, γus and γisf are hypothetically changed since these 
materials have inconsistencies in the reported γisf.  

Materials a [Å] C₁₁ [GPa] C₁₂ [GPa] C₄₄ [GPa] γus [mJ/m2] γisf [mJ/m2] CRSSMCS [MPa] CRSSExpt. [MPa] 

Ni33.3Co66.7 3.52 238.7 155.3 131.5 205 +20 4.2, 13.8* ~15a 

(RT) 205 0 ~ 0 
NiCoCrFe 3.53 219 126 130 303 −11 Unstable ~99b 

(77 K) 374 +10 125 
374 0 121.7 
360 0 92.7 
364 0 99.1 
374 −5 87.0 

NiCoCrFeMn 3.60 221 152 165 281 −7 Unstable ~172c 

(77 K) 281 0 9.2 
380 −31 Unstable 
380 0 111.8 
400 0 159.5 
439 +8 177  

* 60̊ mixed dislocation. 
a Ref. (Chowdhury et al., 2015). 
b Ref. (Wu et al., 2015). 
c Ref. (Abuzaid and Sehitoglu, 2017). 
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4. Final comments 

We draw attention to the determination of dislocation core-widths and SFW, the assumptions commonly made in the literature, and 
their implications. The widely stated assumptions have been the following: (1) The dislocation core-widths are assumed to be 
approximately 1.5bF (Nag et al., 2020), (2) the SFW is assumed to exceed 6–8bF and the results are assumed insensitive to its value, (3) 
the elastic moduli are assumed to have a negligible effect on the results, and (4) one partial moves while the other is stationary, or both 
partials translate simultaneously in unison. These assumptions may hold in limited cases, but they will not generally lead to successful 
prediction of experimental results. For example, if the dislocation core-width is overpredicted, the strength attributed to other con
tributions is magnified, which could lead to incorrect interpretations. We address this point by changing the elastic anisotropy of 
NiCoCr case in Appendix C. While (2) is valid for equiatomic NiCoCr, (1) is not. For example, for the binary alloy, Ni64V36, where the 
γisf is close to the γus, (2) is not valid, while (1) may be approximately valid. For pure Al, (1) is approximately valid, but (2) is not valid 
(Celebi et al., 2023). While (4) is valid for NiCoCr, it is not for Ni64V36, Al, Ni, and many FCC metals. 

We emphasize that we are describing a wide range of hypothetical compositions of FCC materials with intrinsic SFEs in the range of 
750 to −200 mJ/m2. In arriving at these energy values for specific alloy compositions, the standard procedure has been to utilize 
density functional theory (DFT) or molecular dynamics (MD). The DFT is preferred because reliable interatomic potentials for multi- 
element alloys are not available in MD. However, in the DFT calculations, substantial computational resources are needed when the 

Fig. B1. CRSS contours upon hypothetically changing SFEs (γus, γisf) for NiCoCr based on the material constants a = 3.559 Å, µ = 45.2 GPa, and C₄₄ 
= 138.4 GPa, respectively. 

Fig. C1. Effect of elastic anisotropy in NiCoCr: (a) The hypothetical variation of the anisotropy ratio, A, for various values of the single crystal 
constants. All the constants produce the same μV

avg and vV
avg corresponding to NiCoCr. The specific single crystal constants (C₁₁ = 249.4 GPa, C₁₂ =

159 GPa, and C₄₄ = 138.4 GPa) are marked with red triangles; (b) Simulations of CRSS corresponding to hypothetical values of the anisotropy ratio 
A. The value A = 3.02 corresponds to the specific NiCoCr alloy resulting in the CRSS of 148.3 MPa; (c) The assumption of dislocation core-width/ 
burgers vector (ξ/bF) as 1.5 in the literature is compared to the MCS model simulations (shown with data points). The A = 3.02 corresponds to 
NiCoCr and results in a ratio of 0.887. The consequence of this result is that the previous models will underpredict the lattice resistance. 

D. You et al.                                                                                                                                                                                                            



International Journal of Plasticity 170 (2023) 103770

18

number of atoms exceeds a few hundred. The following must be carefully noted: the placement of the atoms on the slip plane within the 
simulation box dictates the SFEs in alloys. To construct the atom distribution to mimic alloys, special attention must be devoted to 
obtaining energetically favorable configurations (Ding et al., 2018; van de Walle et al., 2013) with a finite number of atoms; then the 
slip cuts would result in the SFE that varies similar to real materials. The current simulations considered a distribution of SFEs in 
general conformity with experiments (Fig. 9). 

The presence of SRO domains will also contribute to the local variations in the generalized energy levels (Zhang et al., 2020) and 
specifically the γisf. Such variations, including positive and negative SFEs, will produce a variation in SFWs (Chowdhury and Sehitoglu, 
2017a; Laplanche et al., 2017). The model can predict the trends in the evolution of SFWs as the microstructure transitions to higher 
chemical SRO manifested through changes in energy levels. With an increase in SRO, the narrower SFW in experiments has been found 
in the 5 ~ 10 nm range, compared to 10 ~ 20 nm for smaller SRO cases in NiCoCr (Zhang et al., 2020). These trends are consistent with 
the findings in this work. If there are drastic changes in elastic constants due to compositional differences, the model will accommodate 
via the elastic strain-energy calculations. The role of elastic strain-energy Estrain has yet to be well understood. Still, it is clearly 
incorporated in the current model and can explain variations with a composition that is not evident based on the GSFE values alone. 
Further investigations are needed to explain all the trends observed experimentally. 

We note the need to measure the CRSS in experiments precisely. Experiments on single crystals with digital image correlation 
resulted in a more precise level of 140–160 MPa (Abuzaid and Patriarca, 2020). If only polycrystalline data or RT is available, one must 
carefully evaluate the assumptions when correcting the polycrystalline data and thermal activation theory for temperature effects to 
obtain CRSS values. Also, regarding the temperature effect in the SFE, one may consider alternative methods such as ab-initio MD (de 
Koning et al., 1998; Wirth et al., 2022), and thermodynamic models (Curtze et al., 2011; Olson and Cohen, 1976; Togo and Tanaka, 
2015). These studies noted that the SFE increases with increasing temperature for low γisf materials. In this study, we note that 
Figs. 6–8 cover a very wide range of SFE values, but we are not specifying the corresponding temperatures. This is outside the scope of 
our study. 

Our approach’s lattice resistance alone for screw and 60◦ cases agrees closely with the experimental results. The current results for 

Fig. C2. Stable and unstable regimes varying the anisotropy ratio, A; The critical negative γcisf points are based on the data in Fig. 6c, by fixing 
lattice constant a = 3.6 Å, modulus μ = 34.5 GPa. Any regimes that are out of the envelopes, including the conventional stability condition (γus >

γisf), are considered unstable ones which rarely follow FCC dislocation motion. Stable regimes are gradually colored as a red scale for anisotropy 
ratio, A, where the most commonly stable is colored as the strongest red. 

Table D1 
A summary of the solid solution hardening (SSH) contribution in CRSS of edge dislocation in medium and high entropy alloys (MHEAs). Equiatomic 
ternary NiCoCr is one of multicomponent alloys that have negative SFEs in multiple independent studies. CRSSSSH for other alloys (NiCoCrFe, 
NiCoCrFeMn, Ni33.3Co66.7), suggested in Table B1 in Appendix B, are also tabulated here under the fixed core-width assumption ξ /bF = 1.5.  

CRSS NiCoCr NiCoCrFe NiCoCrFeMn Ni33.3Co66.7 

CRSSSSH [MPa] 124.1* 85.5* 83.4* 5.2 (RT) 
CRSSExpt [MPa] ~ 150 (77 K) ~ 99 (77 K) ~ 172 (77 K) ~ 15 (RT)  

* Extracted from the previous works by (Varvenne et al., 2016; Yin et al., 2020). 
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strength elevation due to lattice resistance are sufficient to capture the experimental values. Therefore, the lattice resistance deter
mination of negative SFE multi-component alloys, as proposed in this study, is a significant step toward advancing the understanding 
of mechanics of muti-component alloys. If the edge dislocation is considered, one would argue that the contributions from SRO or SSH 
are substantial. We investigate the SSH contribution in edge dislocation of MHEAs in Appendix D. In Appendix D, we show that the 
core-width assumption of ξ/bF = 1.5 provides underestimation of experimental CRSS, depending on materials. In addition, we note 
that the SRO represents domains that undergo fault energy elevation upon slip, producing strengthening. The formulation for the SRO 
of negative SFE case and its change upon slip (Cohen and Fine, 1962) requires further studies and would provide further insights into 
CRSS contributions and will be considered in future work. 
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Appendix A. Derivative of total energy and finite stacking fault width 

For γisf ≤ 0, the derivative of total energy Etotal, including strain and misfit energies, is assessed as the dissociation stress of partials. 
The fluctuations that stem from Peierls valleys can intersect with zero dissociation stress, which results in the least finite SFW (SFWmin) 
for all regimes of γisf. In Fig. A1, the derivatives for three γisf cases are represented for γisf = −50 mJ/m2, 0 mJ/m2, and +50 mJ/m2. For 
γisf = −50 mJ/m2, the infinite SFW is required to intersect zero dissociation stress, while the finite SFWs are available for γisf = 0 mJ/ 
m2, and +50 mJ/m2. Meanwhile, the global equilibrium (SFW₀) cannot be resolved for the γisf = 0 mJ/m2 case since no misfit energy 
component attracts the lattice repulsed by the strain-energy. For γisf = +50 mJ/m2, SFW₀ is found at the balance between the strain and 
misfit energies. 

Appendix B. Hypothetical variation of SFEs in alloys and CRSS 

Most reported MHEAs can theoretically have multiple γisf on both positive and negative sides, as tabulated in Table S1 in Sup
plementary Material. Nevertheless, we select a few materials to benchmark the extended model by hypothetically changing γus and γisf. 
In Table B1, we tabulate input material constants (a, C₁₁, C₁₂, C₄₄, γus, and γisf) and the resultant CRSS of each case for three alloys 
(Ni33.3Co66.7, NiCoCrFe, and NiCoCrFeMn). The input constants can be found elsewhere in (Alkan et al., 2018a; Chowdhury et al., 
2015; Huang et al., 2018; Niu et al., 2018, 2016; Zhang and Wang, 2022) or Table S1 in Supplementary Materials. Among the reported 
equiatomic MHEAs, the NiCoCr case has the least inconsistency in theoretical SFEs and mostly shows γisf ≤ 0 in Table S1 in Sup
plementary Material. We also further modulate both γus and γisf for NiCoCr in Fig. B1. For any alloys, including NiCoCr, the possible 
SFEs (γus, γisf) can be resolved in the current model, which are in agreement well with the experiments (Abuzaid and Patriarca, 2020; 
Abuzaid and Sehitoglu, 2017; Chowdhury et al., 2015; Wu et al., 2015). Therefore, the careful determination on SFEs (γus, γisf) is 
necessary, although other input constants (a, C₁₁, C₁₂, and C₄₄) also sensitively vary the result. 

D. You et al.                                                                                                                                                                                                            

https://doi.org/10.1016/j.ijplas.2023.103770


International Journal of Plasticity 170 (2023) 103770

20

Appendix C. Elastic anisotropy with negative stacking fault energy 

We demonstrate the effect of elastic anisotropy (Zener) ratio, A = 2C44
C11−C12

, for the case of equiatomic NiCoCr in Fig. C1a. The 
reference elastic constants are C₁₁ = 249.4 GPa, C₁₂ = 159 GPa, and C₄₄ = 138.4 GPa (Laplanche et al., 2020), as A = 3.02, which is 
considered high. The other points on the curve are constructed upon keeping the Voigt shear modulus (μV

avg = C11−C12+3C44
5 ) and 

Poisson’s ratio (vV
avg =

3B−2μV
avg

2(3B+μV
avg)

) constant for the same alloy. This choice was made to assess the role of A on the CRSS and the 

dislocation core-widths in the following steps. 
The influence of anisotropy is frequently thought to have a less than 15% effect on the results. However, those models use the 

incorrect assumption that the core-width is independent of the elastic strain-energy. We make the following observations on the 
current model. The elastic anisotropy in this work (the MCS model) is known to affect the elastic strain-energy. Since the core-width is 
determined from the minimization of total energy (which includes both elastic strain and misfit energies), the elastic strain-energy 
calculation is critical to calculating the dislocation core-width. The elastic strain-energy varies with dislocation character produc
ing different core-widths. Fig. C1b demonstrates our finding that CRSS significantly depends on the A ratio. In fact, for A < 1, the CRSS 
levels are unstable. For A > 1, the CRSS increases with A, and the value of A = 3.02 for NiCoCr corresponds to 148.3 MPa. These results 
are for the screw dislocation case. 

To comprehend the simulation results of the MCS-based model, we demonstrate the role of the anisotropy on the core-width di
mensions. There has been a tacit assumption that the core-width to burgers vector (full dislocation) ratio is approximately 1.5. This 
level is marked in Fig. C1c with a horizontal line, along with our simulations that show that the ratio is 0.887, which is far less than 1.5 
for most values of the parameter A. However, it is vital to note that the partial dislocations and their corresponding burgers vector must 
be considered when analyzing low SFE materials. Compared to experiments, the CRSS prediction in this work is accurate as we do not 
use the ξ/bF = 1.5 assumptions. 

In Fig. C2, we also investigate the stability envelope for the anisotropy ratio, A, by fixing lattice constant a = 3.6 Å, modulus μ =
34.5 GPa, and varying C₄₄, as it is similarly implemented for C₄₄ in Fig. 6c. As A decreases, the baseline (γcisf) of stability moves 
downward in SFE (γus, γisf) domain. The anisotropy ratio can also be a parameter to classify the stability of FCC dissociation. Then, the 
narrower equilibrium core-widths (ξ0

LP, ξ0
TP) in each partial dislocation would consequently result from the decreases in anisotropy 

ratio. This is mediated by the strain-energy Estrain between two partials and the WS cell-based misfit energy Emisfit in the FCC lattice slip 
plane. 

Appendix D. Solid solution hardening effect in edge dislocation 

The origin of strengthening in MHEAs is an ongoing debate. The SSH-effect studies have several inherent assumptions regarding 
elastic anisotropy and the treatment of dislocation core-widths, and the models should be treated as semi-empirical. Consequently, it is 
important to understand its relative contribution in comparison with lattice resistance. We undertake such a comparison for four 
materials employing the treatment by Varvenne et al. (2016) and Yin et al. (2020) for edge dislocations based on original derivations 
from Labusch (1970). 

The main equation given in the SSH theory is given below. 

CRSSSSH = Aτ

(
Γ
b2

F

)−1
3
(

μV
avg

1 + vV
avg

1 − vV
avg

)4
3
(∑

cnΔV2
n

b6
F

)2
3

(D1)  

where Γ = αμ110/111b2
F is line tension energy, α = 0.125 is line tension parameter, μ110/111 = C11−C12+C44

3 is shear modulus in {111} plane 
in 〈110〉 direction, cn is composition of constituent elements, and ΔVn is misfit volume parameter. The Voigt average of shear moduli 
μV

avg and Poisson’s ratio vV
avg, pre-factor Aτ (which depends on the anisotropy), the dislocation core-width, and finally the SFW, are also 

reflected in this equation. The following equation is utilized for volume misfit, 

ΔVn =
∂Valloy

∂cn
−

∑N

m=1
cm

∂Valloy

∂cm
(D2)  

where Valloy = Valloy(c1, c2, …, cN−1) and ∂Valloy
∂cN

= 0 where compositions are known for a given alloy and the change in volume with 
concentration are calculated from atomistic methods. The assumed dislocation core-width, ξ/bF = 1.5 is taken as a universal 
parameter for FCC metals and leads to Aτ = 0.01785. We showed in Appendix C that the ξ/bF = 1.5 assumption is inaccurate for 
NiCoCr. Neverthless, our aim is to establish SSH values in conformity with previous treatments and compare the results with the lattice 
resistance. So, for the purposes of consistentcy with previous SSH work (Yin et al., 2020), the same input parameters were used for 
NiCoCr (C₁₁ = 252 GPa, C₁₂ = 158 GPa, and C₄₄ = 142 GPa), and the misfit parameters were taken as follows (ΔVNi = −0.493 Å3, ΔVCo 

= −0.497 Å3, and ΔVCr = +0.990 Å3). Then, the SSH contribution, i.e., CRSSSSH at 0 K, is obtained as 124.1 MPa using Eq. (D1). This 
prediction is below the average experimental level of 150 MPa at low temperatures (Abuzaid and Patriarca, 2020) and below the lattice 
resistance predictions in this work. 

We also evaluate CRSSSSH for the NiCoCrFe and NiCoCrFeMn alloys (Varvenne et al., 2016). The results are shown with asterisks in 
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Table D1 and the SSH model underestimates the experimentally measured CRSS levels in all cases. 
For the Ni33.3Co66.7 binary alloy, there were no CRSSSSH estimates to the best of our knowledge. So, we derive the misfit parameters 

based on the lattice constants for binary Ni-Co system from elsewhere (Nishizawa and Ishida, 1983), which gives Valloy = 11.13 −

0.1841cNi, ΔVNi = − 0.123, and ΔVCo = + 0.307. The experimental results Ni33.3Co66.7 are only available at room temperature. The 
thermal activation correction based on the equation below has been widely used, 

CRSSSSH(T, ε̇) = CRSSSSH

[

1 −

(
kT

ΔEb
ln

ε̇0

ε̇

)2
3
]

(D3)  

where ε̇0 = 104 s−1 is reference strain-rate, ε̇ = 5 × 10−5 s−1 the applied strain-rate for Ni33.3Co66.7 used in the experiment 
(Chowdhury et al., 2015), and ΔEb the energy barrier for thermal activation which is defined as, 

ΔEb = AE

(
Γ
b2

F

)1
3

b3
F

(

μV
avg

1 + vV
avg

1 − vV
avg

)2
3
(∑

cnΔV2
n

b6
F

)1
3

(D4)  

and the assumption of ξ/bF = 1.5 results in the pre-factor AE is 1.5618 and Aτ is 0.01785. The resulting SSH value (5.2 MPa) un
derestimates the experimental value (15 MPa)- see Table D1. 

In summary, we showed that the ξ/bF = 1.5 assumption does not hold for a wide range of FCC materials in Appendix C. The core- 
width ξ/bF cannot be assumed and must be derived from energy minimization which was undertaken in the main text. We also showed 
that the SSH predictions in Table D1 underestimate the CRSS for the four benchmark FCC alloys (including the negative SFE cases) in 
comparison with lattice resistance calculations given in Tables 1 and B1. 
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