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ABSTRACT

The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, 

Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model 

with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing 

most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK 

uses orders of magnitude fewer nodes and connections than TRACE. Although TISK 

performed remarkably similarly to TRACE in simulations reported by Hannagan et al., 

the original TISK implementation did not include lexical feedback, precluding simulation 

of top-down effects, and leaving open the possibility that adding feedback to TISK 

might fundamentally alter its performance. Here, we demonstrate that when lexical 

feedback is added to TISK, it gains the ability to simulate top-down effects without 

losing the ability to simulate the fundamental phenomena tested by Hannagan et al. 

Furthermore, with feedback, TISK demonstrates graceful degradation when noise is 

added to input, although parameters can be found that also promote (less) graceful 

degradation without feedback. We review arguments for and against feedback in 

cognitive architectures, and conclude that feedback provides a computationally 

efficient basis for robust constraint-based processing.

JAMES S. MAGNUSON 

HEEJO YOU 

THOMAS HANNAGAN** 

*Author affiliations can be found in the back matter of this article

**Work conducted while the author was at the University of Connecticut

Lexical Feedback in the 
Time-Invariant String Kernel 
(TISK) Model of Spoken 
Word Recognition



2Magnuson et al.  

Journal of Cognition  

DOI: 10.5334/joc.362

1. INTRODUCTION

Consider the speech signal. A series of rapid, overlapping articulatory events creates acoustic 

patterns that human listeners can map onto series of segments (consonants and vowels). 

Cues to word boundaries are rare and probabilistic; clear breaks in the signal are more likely 

to occur within words than between words in fluent speech (Cole, Jakimik, & Cooper, 1980; 

Lehiste, 1960). Even if listeners could perfectly extract a speaker’s intended segments from the 

speech signal in a bottom-up fashion (a virtual impossibility given phonetic and phonological 

processes such as coarticulation, assimilation, and reduction), considerable challenges would 

remain. Segment sequences must be mapped onto words in memory. Words are distinguished 

by order (the orderings of /k/, /æ/, and /t/ as /kæt/, /tæk/ and /ækt/ correspond to CAT, TACK, 

and ACT) and elements can be repeated (e.g., /to/ vs. /tot/, i.e., TOE vs. TOTE), so the encoding 

scheme for spoken word recognition must represent order and repeated elements. Recognition 

of embedded words must be avoided; when CATALOG is uttered, listeners hear the intended 

word, and are apparently unaware that they have also heard patterns that correspond to CAT, 

AT, A, CATTLE, LAW, and LOG (depending on dialect), or even a possible 3-word sequence (CAT 

A LOG). The system must tolerate variability that emerges from phonological processes such 

as assimilation that merge or alter phonetic properties of segments (e.g., GREEN BEAN may 

be realized as /grimbin/; e.g., Gow, 2003), and reductions that alter segments (e.g., TO as /tə/, 

or KIND OF as /kaində/) or even remove them. For example, RECOGNIZE SPEECH may reduce 

to /rɛk^naispit∫/. At first, one might consider that such an example could be disambiguated 

lexically, except that a plausible alternative parse would be WRECK A NICE BEACH (Picone, 

Goudie-Marshall, Doddington, & Fisher, 1986). In such cases, a broader semantic context might 

be needed to constrain lexical mapping and arrive at the correct parse.

In grappling with these challenges, theories of spoken word recognition have come to agree on 

three fundamental principles: As a word is heard (incrementality), words are activated (or their 

probability is estimated; Norris & McQueen, 2008) based on degree of phonetic overlap with the 

input and their prior probability (probabilistic similarity mapping), and activated words compete 

for recognition (parallel competition).1 Theories differ in similarity metrics, and in the mechanisms 

they posit for achieving parallel activation and implementing and resolving competition (ranging 

from lateral inhibition to bottom-up or top-down inhibition, or competition implicit in Bayesian 

normalization; for a review, see Magnuson, Mirman & Harris, 2012). However, a particularly 

vexing problem is how to deal with the sequential nature of speech, as we discuss next.

1.1. THE PROBLEM OF SEQUENCE ENCODING

Sequence encoding is a fundamental challenge for models of spoken word recognition; speech 

unfolds over time, and representing phonological word forms entails representing temporal 

order (CAT vs. TACK, i.e., /kæt/ vs. /tæk/) and repeated elements (SOUL vs. SOLO, i.e., /sol/ vs. 

/solo/). To illustrate this challenge, consider the simple network in Figure 1. Here, the only 

connections are forward ones from phoneme nodes to word nodes. Note that such a network 

cannot encode temporal order. Any word node receiving input from /k/, /æ/, and /t/ in any order 

(i.e., ACT /ækt/, CAT /kæt/, TACK /tæk/, or nonwords /tkæ/, /ktæ/, or /ætk/) would be equally 

activated by any ordering of the three phonemes. Neither could such a network distinguish 

words with the same constituent phonemes but differing in repeated elements (SOUL vs. SOLO). 

The second /o/ in /solo/ would simply be more evidence that /o/ had occurred; the network 

cannot represent two instances of /o/ in different temporal positions.

1	 Shortlist B (Norris & McQueen, 2008) is a provocative outlier both in its rejection of considering ‘activation’ 

in favor of probability, but also the lack of an explicit competition mechanism; when probabilities are calculated, 

‘competition’ is implied from the zero-sum ‘game’ of calculating probabilities.

Figure 1 A simple word 

recognition network incapable 

of encoding temporal order 

or repeated phonemes 

(Magnuson, 2018a).
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Note that a model like this could be used to investigate many aspects of word recognition. 

In fact, the Merge model (Norris et al., 2000) has this structure (as well as lateral inhibition), 

and can simulate many important aspects of spoken word recognition, despite being unable 

to encode order or repeated elements. Avoiding these challenges can only be a temporary 

simplifying assumption, however. Ultimately, models of spoken word recognition must grapple 

with the representation of order and repeated elements.

The TRACE model (McClelland & Elman, 1986) takes an innovative approach to the problem. 

TRACE translates time to space, by creating time-specific duplicates of feature, phoneme, and 

word nodes. A template for CAT is maximally activated by strongly activated /k/, /æ/,2 and /t/ 

phonemes aligned with a word node standing for CAT.

Figure 2 contains a schematic outlining the complex relationships between feature, phoneme, 

and word nodes in TRACE. At the bottom of the figure, black cells stand in for the distributed 

vector of pseudo-spectral representations used as TRACE inputs. Their horizontal extent 

represents their temporal extent. Although feature patterns for adjacent phonemes overlap 

in TRACE (providing a coarse analog to coarticulation), for the sake of simplicity, we do not 

attempt to depict that overlap here.

At each time step t in a TRACE simulation, pseudo-spectral input patterns are applied. Feature 

nodes aligned with input slice t (that is, time-specific feature nodes) are activated by the 

bottom-up input at time t. Subsequently (from step t + 1 onward), bottom-up input is not applied 

at slice t. However, feature detectors aligned at slice t that were activated by input continue 

to be active for many time steps, because their activations are a summative combination 

of their bottom-up input and previous activation. The latter is scaled by a decay parameter, 

such that a unit’s activation will eventually diminish to a defined baseline level in the absence 

of new input. Similarly, phoneme nodes are aligned at specific time slices, and receive input 

2	 TRACE only has 14 phonemes; typically, instances of /æ/ are coded as /a/ in TRACE.

Figure 2 TRACE’s time-as-

space encoding (Magnuson, 

2018b). At the bottom, inputs 

corresponding to /k/, /æ/, and 

/t/ have specific alignments 

(in TRACE, these would be 

distributed representations 

of over-time pseudo-spectral 

features). Those inputs 

activate phoneme templates 

aligned with them, which in 

turn activate aligned words. 

Darkness of shading indicates 

degree of activation. The 

maximally-activated copies 

of CAB, CAT and TAB are 

those aligned with the input, 

though degree of activation 

reflects amount and temporal 

distribution of phonetic 

overlap (CAB > CAT > TAB).
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from feature nodes aligned with them in time. As long as the aligned feature nodes are active, 

the aligned phoneme nodes will receive bottom-up input. Phoneme nodes’ activations are a 

function of bottom-up input and decay-scaled prior activation, as well as lateral inhibition from 

other phoneme nodes with which they overlap in time, and lexical feedback (described below). 

Phoneme nodes send bottom-up activation to nodes corresponding to words containing them 

that are aligned (at least partially) in time with the phoneme node. Word nodes also send 

feedback to phoneme nodes that send them bottom-up input. As “time” progresses in a TRACE 

simulation, inputs aligned with specific time points activate aligned features, phonemes, and 

words. This time-specific “reduplication” strategy – aligning copies of each feature, phoneme, 

and word in memory with specific time points – allows TRACE to represent temporally ordered 

sequences, including sequences with repeated elements. Thus, given the input /dæd/ (DAD), 

the first and second instances of /d/ would activate independent /d/ nodes.

This reduplication strategy is frequently criticized. Indeed, McClelland and Elman (1986) 

discussed plausibility concerns (p. 77). Some have argued that this scheme is simply implausible 

(e.g., Grossberg & Kazerounian, 2011; Norris, 1994), largely because of the numbers of nodes and 

connections it would take to implement a realistic phoneme inventory and lexicon. Magnuson 

(2015) presents a case for the TRACE architecture as a kind of echoic memory. Hannagan et al. 

(2013) estimate how many nodes and connections a realistically-sized version of TRACE would 

require, and estimate that a version with 40 phonemes and 20,000 words would require ~1.3 

million nodes and more than 40 billion connections. Given estimates that the human brain 

contains approximately 86 billion neurons and 150 trillion synapses (Azevedo et al., 2009), it is 

not clear that we can rule out the TRACE solution based on intuitions about the plausibility of 

numbers of units and connections required. However, it does raise the question of whether a 

more compact representation might be possible, which leads us to a discussion of the TISK model.

1.2. ORIGINS AND INNOVATIONS OF TISK

The idea of TISK originally came from discussions between Jonathan Grainger and TH, and 

eventually included JM. The aim was to keep the explanatory power of the TRACE model while 

dispensing with its duplicated time-specific units. Hannagan et al. (2013), inspired by models of 

visual word recognition developed by Grainger and others using open bigram codes (Whitney, 

2001; Grainger & van Heuven, 2003; Dehaene et al., 2005), asked whether a simpler interactive 

activation model of spoken word recognition could be implemented with a variant of open diphone 

coding. Open diphones are adjacent or non-adjacent phoneme pairs that occur in a string. For 

example, the (ordered) open diphones of ACT (/ækt/) are /æk/, /kt/, and /æt/ (see Table 1 for several 

more examples). As it turns out, such lists are highly distinctive. To encode the lists in a length-

independent fashion, we can create a phoneme × phoneme matrix (corresponding to all possible 

diphones),3 and simply enter the count of each diphone for a word. This then is a kind of string 

kernel4 for words: we can manipulate or compare representations of words of any size through 

vector/matrix operations (i.e., the operations are identical since they are computed over matrices).

TISK’s architecture is presented schematically in Figure 3. Time-specific phoneme input nodes 

feed to time-invariant N-phone nodes (corresponding single phone and diphone nodes), but 

via what Hannagan et al. dubbed a symmetry network (in recognition of prior work on the topic 

by Shawe-Taylor, 1993). The symmetry network does not activate all open diphones equally. 

It privileges ordered diphones and activation is inversely proportional to distance between 

diphone members (e.g., /st/ would be less activated by SPOT than STOP). This followed work 

by Dandurand, Hannagan and Grainger (2013) showing that weight gradients can emerge in 

3	 If we include a “blank” for the second position, we can also encode each single phoneme in a word, crucially 

providing a means for including words consisting of a single phoneme.

4	 A kernel function in mathematics translates a mapping (typically, a nonlinear mapping) to a matrix form 

where the original function can be expressed as a matrix operation (typically inner product). A string kernel is 

a variant of this where the mapping is between strings. For words, one of the key challenges this addresses is 

differences in word length. If we can recode words as the frequencies of occurrences of distinct diphones (in a 

phoneme-by-phoneme matrix, or as bigrams in a letter-by-letter matrix for visual words), we translate each word 

to a same-dimensional object (the element-by-element matrix). Then we can potentially compute things like 

word-to-word similarity using matrix operations. In TISK, we also leverage this idea to recode the ‘templates’ for 

words as the set of ordered (open) diphones they contain (open diphones allow gaps between phoneme pairs, 

such that /kæt/ has the ordered open diphones /kæ/, /kt/, and /æt/). This is what allows TISK to replace the large 

number of reduplicated, time-specific phoneme and word templates required by TRACE with time-invariant open 

diphones (as well as phoneme nodes).
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models of visual word recognition trained to be invariant to the location of the word input on 

a simulated retina. It also built on work by Hannagan and Grainger (2012), who noticed the 

similarity between N-gram schemes for visual word recognition, and a versatile technique called 

“string kernels” that has been used in text classification (Lodhi et al. 2002) and computational 

biology (Leslie & Kuang, 2004). Building on these two strands of work, the TISK symmetry network 

uses weight gradients as well as gating connections to accurately activate N-phone nodes, even 

in the presence of repeated phonemes. For more details about the symmetry network and TISK 

more generally, see Hannagan et al. (2013). Note that the full code for TISK is freely available 

(You & Magnuson, 2018; https://github.com/maglab-uconn/TISK1.0; also, updated code from 

this project is also available at https://github.com/maglab-uconn/TISK_FEEDBACK).

TISK thus may be viewed as a potential successor to or extension of TRACE that addresses the 

critique of time-specific nodes. However, TISK has not been tested on the entire broad range of 

results that TRACE accounts for (Magnuson & Crinnion, 2022). Hannagan et al. (2013) focused 

on a subset of particularly critical phenomena in spoken word recognition (the time course of 

phonological competition, and the relations between a variety of lexical dimensions and recognition 

time in TISK vs. TRACE) to establish initial plausibility of the model. However, they did not consider 

a broad class of phenomena in spoken word recognition that have particular relevance for ongoing 

theoretical debates: apparent top-down lexical effects. Our primary goal here is to address this gap.

1.3. FEEDBACK AND THEORIES OF SPOKEN WORD RECOGNITION

A particularly salient point of disagreement in theories of spoken word recognition concerns top-

down feedback from words to sublexical representations. TRACE (McClelland & Elman, 1986) is 

an interactive-activation model with arguably the deepest and broadest coverage of spoken 

word recognition (cf. Magnuson et al., 2012, Magnuson & Crinnion, 2021). Top-down effects in 

TRACE emerge from lexical-phonemic feedback. In contrast, Norris, McQueen, and Cutler (2000; 

Figure 3 Overall TISK 

architecture (Figure 3 from 

Hannagan et al., 2013). Inputs 

are presented one at a time 

on time-specific copies of each 

possible phoneme. Phonemes 

activate corresponding 

diphones and single nodes in 

the N-phone layer. N-phone 

units activate corresponding 

words. Lateral inhibition 

governs lexical competition 

(indicated by knobbed 

recurrent link in top right). The 

greyed out arrow from words 

to N-phones indicated that 

the original TISK model did not 

have lexical feedback (which is 

the only structural alteration 

in the model introduced in 

this paper). The symmetry 

network (not shown; see 

Figure 4 from Hannagan et al., 

2013) allows an input like /ba/ 

to activate both the /ba/ and 

/ab/ diphones, but activates 

the diphone corresponding to 

the input order much more 

strongly. See Hannagan et al. 

(2013, pp. 5–6) for details.

WORD ORDERED OPEN DIPHONES

CAT kæ, kt, æt

TACK tæ, tk, æk

ACT æk, æt, kt

DAD dæ, dd, æd

ADD æd

SOUL so, sl, ol

SOLO so x 2, sl, ol, oo

Table 1 Examples of ordered 

open diphones.
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see also 2016) have argued that purely feedforward systems can do anything a feedback system 

can do, so long as they include a mechanism for post-perceptual behavior consistent with top-

down influences (e.g., via post-lexical integration of phonemic input and lexical knowledge). As 

TISK is a derivative of TRACE, our goal here is to make TISK more comparable to TRACE and 

assess the possibility of adding feedback to TISK. Without feedback, top-down effects are out 

of scope for TISK. We will return briefly to theoretical disagreements concerning feedback in the 

Discussion.

Consider two important top-down effects in spoken word recognition. First, there is the Ganong 

(1980) effect, where phoneme identification is influenced by lexical status. For example, compared 

to a nonword continuum between iss and ish, where participants are asked to identify the final 

consonant, identification shifts towards /s/ if the continuum is instead between a word and 

nonword pair like kiss-*kish, but towards /∫/ given *fiss-fish. Thus, either lexical context modulates 

phonetic perception (the interactive or feedback assumption), or it has a post-perceptual 

influence on responses (the feedforward assumption). Another fundamental top-down effect 

in spoken word recognition is phoneme restoration (Samuel, 1981a, 1981b, 1996, 1997; Warren, 

1970). If a phoneme in a word is replaced by silence, it leaves a salient gap, and participants 

have no trouble reporting that the word is not intact and can identify which phoneme is missing. 

In contrast, when a phoneme is replaced by noise, participants typically report that the word 

is intact but has noise added to it. They have difficulty specifying which phoneme the noise is 

aligned with, and report perception consistent with lexical context (e.g., if noise, denoted as #, 

replaces a phoneme in the word after, the noise is heard as /t/ in /æf#^r/ but as /f/ in /æ#t^r/). 

This implies that noise provides enough bottom-up support for the missing phoneme to be filled 

in, either perceptually via lexical feedback or via post-perceptual lexical integration.

While such top-down effects are quite salient, a less obvious benefit of feedback is to make 

models more robust to noise. Top-down feedback (in concert with lateral inhibition in TRACE; 

Magnuson et al., 2024) promotes accuracy and faster processing given noisy inputs (Magnuson 

et al., 2018). While more subtle, this may be the more important impact of feedback.

2. ADDING LEXICAL FEEDBACK TO TISK

Again, there are several reasons to add feedback to TISK. Any comprehensive model of spoken 

word recognition must be able to account for top-down effects, and feedback allows TRACE to 

plausibly simulate many such effects (McClelland & Elman, 1986). As discussed above, however, 

at least some effects considered to be “top-down” can be simulated without feedback (Norris 

et al., 2000). However, graceful degradation is another important motivation for feedback in 

interactive activation models (Dell, Chang & Griffin, 1999; McClelland & Elman, 1986 [e.g., pp. 

6–7]; McClelland & Rumelhart, 1981, 1989), which turns out to have important implications 

for the feedback vs. autonomy debate. Graceful degradation seems to be less familiar to most 

cognitive scientists (e.g., it received no discussion in the Norris et al., 2000, target article or 

in the accompanying commentaries), although it is one of the original, primary motivations 

for feedback in interactive activation models (for example, when noise is added to inputs, 

feedback promotes gradual declines in performance rather than an abrupt collapse; McClelland 

& Rumelhart, 1981).

These points direct us to a clear agenda for simulations with feedback (from words to 

N-phones) added to TISK. First, can we identify a non-zero feedback parameter that will (a) 

afford plausible top-down effects while allowing robust word recognition, without impeding 

the model’s ability to simulate the phenomena attested by Hannagan et al. (2013), including 

(b) the time course of phonological competition and (c) item-specific correlations with TRACE 

and (d) lexical dimensions (word length, numbers of different competitor types, etc.)? Finally, 

(e) will feedback in TISK allow the model to exhibit graceful degradation given noisy inputs 

(i.e., will feedback preserve accuracy and processing efficiency)? We address these issues in 

the following order: parameter discovery, replication of earlier simulations (time course, similar 

item-specific recognition times as for the original TISK model and TRACE, similar item-specific 

correlations with lexical dimensions), simulations of crucial top-down phenomena in spoken 

word recognition, and performance in noise (testing for graceful degradation). All code required 

to reproduce our simulations, analyses, and figures is available at https://github.com/maglab-

uconn/TISK_FEEDBACK.
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2.1. SIMULATION 1: TIME COURSE AND LEXICAL DIMENSIONS

2.1.1. Parameters

We used a trial-and-error process for parameter exploration. We began with a value of positive 

feedback from words to their constituent N-phones. We assessed mean accuracy over the 

211-word (original TRACE) lexicon, and if accuracy was lower than approximately 80%, we 

examined errors for clues as to what was impeding accuracy. If we found a parameter setting 

that would allow reasonable accuracy, we then examined the model’s ability to simulate top-

down effects (with phenomena like those discussed below). If feedback was not strong enough 

for plausible top-down effects, or if error patterns implied parameter changes were needed, 

we would adjust parameters and retest. We iterated this process, gradually increasing our 

accuracy threshold.

After a few iterations, we determined that there were three key parameters that could be 

adjusted to provide the full complement of desired outcomes (a–e above). First, of course, we 

needed positive feedback from words to constituent N-phones. Second, feedback tended to 

cause resonance between word and N-phone layers that would lead to the activation of too 

many words. For example, given the input /dal/ (DOLL), the lexical node for DOLL would send 

feedback to /d/, /a/, /l/, /da/, /dl/, and /al/ nodes at the N-phone level. These would enhance 

activation of doll, but also any word containing any of these elements (e.g., SADDLE and DRILL 

would contain /dl/), allowing them to send feedback to elements that had not occurred. We 

discovered that we could avoid “runaway” activation by both increasing decay at the N-phone 

level and by including a small amount of negative feedback to a word’s non-constituents (i.e., a 

small amount of inhibition to every N-phone or single phone that is not part of a word, similar 

to top-down inhibition in early interactive activation models, e.g., McClelland & Rumelhart, 

1981). Table 2 lists key parameters we considered altering, with the three parameters that 

were ultimately altered in bold font. We have not searched the parameter space exhaustively. 

However, our explorations suggest that stable performance requires ratios among parameters 

similar to those in Table 2.

We also considered that the original TISK parameters might not provide the best possible 

performance in noise without feedback. We therefore explored the parameter space without 

feedback with the aim of finding parameters that would allow the model to continue to exhibit 

fundamental target behaviors described below while maximizing performance in noise. We 

present details of our parameter space exploration for models with and without feedback in 

Appendix 1. For now, because the most robust parameters for the model without feedback differ 

from the original TISK parameters, we will present results in the following simulations using the 

new parameter set (while noting that the original TISK model and the version with feedback and 

parameters optimized for graceful degradation differ only slightly and qualitatively in the following 

simulations – with the exception, of course, of the final graceful degradation simulations).

Before turning to top-down effects, let us consider whether TISK performs similarly with and 

without feedback on the tasks evaluated by Hannagan et al. (2013). Figure 4 addresses this 

by first examining mean activation over time for different categories of potential phonological 

PARAMETER ORIGINAL TISK OPTIMIZED 

WITHOUT FEEDBACK

OPTIMIZED WITH 

FEEDBACK

Input phoneme decay 0.010 0.001 0.001

N-phone decay 0.001 0.001 0.100

Word decay 0.010 0.050 0.050

Phoneme to N-phone 1.000 0.100 0.100

Diphone to word 0.050 0.050 0.050

Single phone to word 0.010 0.010 0.010

Word to word inhibition –0.005 –0.005 –0.010

Positive word to N-phone feedback 0.150

Negative word to N-phone feedback –0.050

Table 2 Original (without 

feedback) parameters for TISK, 

and parameters that promote 

high performance with 

feedback. Parameters in the 

‘optimized without feedback’ 

column that differ from 

original parameters are in bold. 

Parameters in the ‘optimized 

with feedback’ column that 

differ from parameters in the 

‘optimized without feedback’ 

and/or ‘original TISK’ columns 

are also in bold.
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relatives. To conduct this comparison, we conducted 211 simulations with TRACE and with two 

versions (with and without feedback) of TISK. For each model, there were 211 simulations (one 

for each word in the original TRACE lexicon). For every target word, we tracked target activation 

over time, as well as the mean activation of every item in two categories of phonological 

relatives (cohorts and rhymes) over time (e.g., for /dal/, the activation of every word beginning 

/da/ would be included in the [onset] cohort mean, and every three-phoneme word ending 

in /al/ would be in the rhyme category). If a word had no relatives in a category, it would 

not contribute to the mean for that category. As a baseline reference, we simply tracked the 

mean activation of all words; given 211 words, this mean approaches the minimum possible 

activation value. Although the mean values are somewhat damped when feedback is added 

to TISK, the crucial consideration is that the rank ordering of competitors is similar for all three 

models.5

Figure 5 extends our examination of how similar the performance of TISK is (with and without 

feedback) to TRACE by comparing item-specific recognition times (RTs) for each model. 

Recognition time was operationalized as the cycle at which the target word exceeded all other 

5	 The models differ in that 0.0 is the lowest possible activation in TISK while activations can become 

negative in TRACE; hence, rank order is the crucial concern. Note that negative activations in TRACE can be easily 

transformed to positive predictions using, e.g., the Luce choice rule (R.D. Luce, 1959; cf. Allopenna, Magnuson, & 

Tanenhaus, 1998).

Figure 4 Mean time course for 

targets and different classes 

of competitors in TRACE 

and TISK with and without 

feedback (including the original 

model, as well as the version 

with parameters ‘optimized’ 

for graceful degradation, as 

detailed later). Each line 

represents the mean for a 

class of items over all 211 

words in the original TRACE 

lexicon. Cohorts overlap in the 

first two phonemes. Rhymes 

overlap in all but the first 

phoneme. Unrelated is the 

mean activation of all words 

in the lexicon. Ribbons indicate 

standard error.



9Magnuson et al.  

Journal of Cognition  

DOI: 10.5334/joc.362

word’s activations by at least 0.05 and then continued to exceed all others by that amount for 

at least 10 cycles (cf. Hannagan et al., 2013), and subsequently remained the most activated 

word until the end of the simulation. Mean accuracies were 100% for TRACE, 99% for the original 

TISK without feedback (TISK), and 97% for TISK with feedback (TISKfb). As can be seen in Figure 

5, item-specific RTs for correctly recognized items were remarkably similar for the three models.

Figure 6 goes deeper by examining how item-specific RTs in the three models (plus a fourth 

variant: TISK without feedback with parameters optimized for accuracy in noise, as described 

in Simulation 5) relate to several lexical dimensions: word length (in phonemes), number of 

embeddings (words embedded in the target, e.g., CAT has AT embedded within it), number of 

cohort (onset) competitors (overlapping in the first two phonemes), number of “ex-embeddings” 

(words the target embeds within, e.g., CAT embeds within CATALOG), number of “DAS” neighbors 

(i.e., words differing from the target by a single phonemic deletion, addition, or substitution; 

Luce & Pisoni, 1998), and number of “rhyme” items (words differing from the target only in first 

position, whether by deletion, addition, or substitution; e.g., CAT’s rhymes include SCAT, BAT, 

MAT, SAT, and AT). The dimensions are ordered according to the sign and magnitude of their 

prediction on RT; longer words are recognized more slowly, having more embeddings or cohorts 

is associated with slower RT, and having more ex-embeddings, neighbors or rhymes is associated 

with faster RT. The potential reasons for these relationships is beyond the scope of this paper 

(Magnuson, in preparation, discusses this in detail); our focus is instead the similarities between 

models. All models show the similar patterns, and are even generally similar in the strength of 

each correlation (although TISK without feedback with parameters optimized for performance in 

noise [third row] differs for ex-embeddings, neighbors and rhymes, as we discuss in Section 2.5).

The results from Simulation 1 demonstrate that we can add feedback to TISK without disrupting 

the model’s similarity to TRACE. The time course of different kinds of phonological competition 

are quite similar, and TISK retains its high similarity to TRACE in item-specific RTs with feedback 

on, and there are only very subtle quantitative differences in item-specific RTs between TISK 

with and without feedback apparent in our examination of how a variety of lexical dimensions 

relate to recognition time. With this fundamental consideration of prior results resolved, we can 

turn to the details of specific top-down effects.

2.2. SIMULATION 2: GANONG EFFECT

For Simulation 2, we compared the ability of TISK with and without feedback to simulate the 

Ganong effect (Ganong, 1980). In the Ganong paradigm, we begin with a continuum from one 

phoneme to another (e.g., changing gradually from /s/ to /∫/, e.g., ess to esh) and establish a baseline 

identification pattern across the continuum (e.g., rate of “s” [vs. “sh”] responses at each step). If 

we add context such that the continuum changes from a word to a nonword (e.g., from bus /b^s/ 

to *buhsh /b^∫/, or from *russ /r^s/ to rush /r^∫/), human listeners’ identification rates will change. 

Specifically, they will make more responses consistent with the lexical endpoint, typically shifting 

the category boundary away from the lexical endpoint (e.g., for /b^s to /b^∫/, they will make more 

“s” responses, and the shift to “sh” responses will happen closer to the unambiguous /∫/ endpoint).

To simulate the Ganong effect with TISK, we selected ten 4-phoneme words from the lexicon 

(appeal, box, boost, duty, greet, least, school, shield, screw, and ugly). For each word, we conducted 

a Ganong simulation at each position by creating nonwords replacing the phoneme at the critical 

position, and then creating a continuum blending from the original phoneme to the replacement. 

For example, for /duti/ (duty), we created continua between /duti/ and four nonwords: /buti/, 

Figure 5 RT correlations 

for original TISK (without 

feedback), TISKfb (TISK with 

feedback), and TRACE. Left 

panel: TISKfb vs. TISK. Middle 

panel: TISKfb vs. TRACE. Right 

panel: original TISK vs. TRACE. 

Diagonal grey lines indicate 

the identity line, dashed lines 

indicate best linear fit.



Figure 6 item-specific RTs in TRACE, TISKfb (with feedback), TISK without feedback with parameters optimized for noise, and original 

TISK (without feedback), as a function of lexical dimensions for the 211-word TRACE lexicon. Dimensions: Length is number of phonemes, 

Embeddings is how many words embed within the target word (e.g., CAB and IN embed in CABINET), Onset competitors are cohorts (words 

overlapping in the first two phonemes), ex-Embeddings are the number of words the target word embeds into (e.g., CAB embeds in CABINET, 

CABARET, etc.), Neighbors are the number of words differing from the target by no more than a 1-phoneme deletion, addition, or substitution 

(so-called DAS neighbors), and Rhymes items are items that mismatch the target only at the first phoneme (by deletion, addition, or 

substitution; e.g., for CAT, these would include AT, SCAT, and BAT).

Figure 7 Lexical effects on phoneme activations (Ganong effects) for ten 4-phoneme words (Simulation 2). We observe robust Ganong effects 

(lexical restoration) at each position with lexical feedback enabled, with stronger effects in later positions. The key results are that (a) greater 

ambiguity is apparent for continuum steps near the nonword endpoint and (b) the upward shift for the center continuum step (4). Error ribbons 

indicate standard error.
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/d^ti/, /duri/, and /dut^/. So in Figure 7, for the Position 4 panel, the relevant simulation for /

duti/ would be the /duti/ to /dut^/ continuum. We aggregated results by averaging activations 

of the lexically-consistent phoneme and its nonword replacement, and calculating ‘predicted 

proportion of choices’ as the ratio of the peak activations for those two phonemes. In Figure 7, we 

observe robust Ganong effects (lexical restoration) at each position in the model with feedback, 

with stronger effects in later positions (consistent with TRACE simulations of phoneme restoration 

in TRACE reported by Magnuson, 2015). This increase of the effect at later positions is a result of 

greater lexical activation as more bottom-up input is received. Thus, feedback allows TISK to 

simulate the Ganong (lexically-driven phoneme restoration) effect.

2.3. SIMULATION 3: RETROACTIVE EFFECTS OF FEEDBACK

In Simulation 3, we focus on retroactive influences of lexical feedback on the activation of 

phonemes given ambiguous input, where the disambiguating lexical context only emerged 

at the final phoneme (so-called right-context effects; see simulations described by McClelland 

& Elman [1986] on the following pages for related results: pp. 27, 29, 30 [their Figures 8–11]; 

pp. 66–69). For this simulation, we used the lexical items plug and blush. If we replace the 

onsets of these items with a stimulus halfway between /p/ and /b/ (denoted by /#/), we create 

an ambiguity that will be sustained until the final phoneme is presented. We conducted 

simulations where the inputs were either the clear lexical inputs /pl^g/ or /bl^∫/ to establish 

baseline activations for /p/ and /b/ (we added blush to the TRACE lexicon for this simulation; 

note also that plush was not in the lexicon). Then we conducted simulations where the input 

was /#l^g/ (disambiguated as plug at the final phoneme) or /#l^∫/ (disambiguated as blush at 

the final phoneme).

The results are plotted in Figure 8. Left panels show results with the _lug context (either /pl^g/ 

when it is intact, or /#l^g/ when it is ambiguous); right panels show results with the _lush 

context (/bl^∫/ when it is intact, or /#l^∫/ when it is ambiguous). Upper panels show results with 

feedback; lower panels show results without feedback. In each panel, we plot activations for 

Figure 8 Retroactive phoneme 

restoration by following 

context (Simulation 3). In the 

lexicon, plug and blush are 

words, but *blug and *plush 

are not (even though plush 

is a word in English). Note 

that the delayed activations 

of ambiguous phonemes is 

due to failure to reach the 

activation threshold from the 

initial input. The discrete delay 

of 10 cycles is due to new TISK 

inputs ‘arriving’ every 10 cycles.
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/p/ and /b/ given intact vs. ambiguous inputs. Without feedback (lower panels), lexical contexts 

have no effects, and the ambiguous stimuli drive equivalent activations of /p/ and /b/. With 

feedback (upper panels), the initial phase of activation is identical for both contexts because 

it is driven purely by the bottom-up input. As more context arrives, we see changes primarily 

in diminished decay of lexically-consistent phonemes (e.g., ambiguous /p/ in the upper left 

panel). However, the effects are different for the two ambiguous contexts, with differences 

emerging around cycle 20. The initial differences are stronger activation of /p/ than /b/ prior 

to disambiguation. This occurs because there are more words that begin with /p/ than /b/ in 

the model’s lexicon. The effects are stronger for the _lush context; this emerges because there 

are 4 items with the diphone /^S/ in the lexicon, but 7 with /^g/. Since the items activated 

by feedback will compete with the ambiguous onset position, having a smaller number of 

items sharing the pattern leads to greater ultimate activation. Thus, Simulation 3 shows clear 

retroactive effects of feedback.

2.4. SIMULATION 4: PHONEME RESTORATION

In Simulation 4, we turn to another classic top-down effect using an analog to the phoneme 

restoration paradigm (Samuel, 1981a,b, 1996, 1997; Warren, 1970). In a phoneme restoration 

paradigm, a phoneme is replaced either with noise or with silence (typically in a lexical 

context where there is only one possible completion for the replaced phoneme, e.g., #uxury 

or _uxury [where # indicates noise and _ indicates silence] can only be restored as luxury). 

The two kinds of replacement yield very different effects. If a phoneme is replaced by noise, 

a listener typically reports hearing all the phonemes in the word, and will likely have difficulty 

identifying the precise location of the noise. If a phoneme is replaced by silence, the gap is 

salient, and listeners can report the precise location of the silence and which specific phoneme 

is missing. Another difference is that noise-replaced phonemes can drive selective adaptation 

(Samuel, 1997), as though the actual phoneme had been repeated, but silence cannot. The 

interpretation of this pattern is that noise provides sufficient bottom-up activation that the 

missing phoneme is “filled in” by feedback. As a result, the listener not only cannot reliably 

report which phoneme has been replaced, but is uncertain of the position of the noise. This 

means that the critical pattern a model must be able to simulate is (a) robust activation of a 

lexically-consistent phoneme when it is replaced with noise, but (b) weak or absent activation 

when it is replaced with silence (see Grossberg & Kazerounian, 2011, 2016 and Magnuson, 

2015, for a debate about how phoneme restoration should be modeled).

To test TISK’s ability to simulate phoneme restoration with and without feedback, we used the 

same ten 4-phoneme words from Simulation 2. For each item, we conducted 48 simulations; 

2 models (feedback of no feedback) × 4 phoneme positions × 6 input types (intact phoneme, 

silence replacement [the phoneme replaced by zero input], or noise replacement [silence plus 

noise with standard deviation of 0.2, 0.3, 0.4, or 0.8]). We examined the activations of the 

“expected” phonemes each position (e.g., /d/, /u/, /t/, and /i/ for duty) when they were intact 

versus when they were replaced with silence or increasingly strong noise. Again, in a successful 

simulation, replaced phonemes should be robustly activated given sufficient noise input, but 

should be activated weakly or not at all given replacement with silence.

The results are shown in Figure 9. First, consider the results without feedback (top row). There 

is no activation whatsoever of the replaced phoneme given silence replacement or noise with 

standard deviation of 0.2, and slightly graded activations given noise, very near the level of 

activation observed for intact phonemes.6 In contrast, large lexical effects are readily apparent 

with feedback (bottom row). Noise with SD greater than 0.2 drives robust activation of the 

‘expected’ phoneme on average, but activations from noise are much lower than activations 

from intact phonemes. Thus, TISK with feedback generates a plausible pattern of results that 

are transparently linkable to results with human subjects.

6	 Noise with SD > 0.2 drives similar phoneme activations as intact phonemes in TISK without feedback due to 

the threshold function governing activation. When the noise SD is 0.2 or less, total input to the phoneme node (a 

combination of bottom-up input and its own previous state adjusted by decay) does not reach threshold and so 

its resulting activation remains 0. When noise SD > 0.2, the threshold is reached, and the ‘missing’ phoneme still 

reaches saturation-level activation. With the parameters optimized for feedback, the maximum (saturation) level 

is approximately 0.62, but noise inputs do not drive phoneme activations near that level, resulting in qualitatively 

different levels of phoneme activation given silence, noise, or intact input.



2.5. SIMULATION 5: GRACEFUL DEGRADATION

The obvious impact of including feedback in a model is that it can provide a mechanism 

for simulating (and explaining) top-down effects. A less obvious but crucial consideration is 

that feedback promotes graceful degradation: gradual rather than catastrophic declines in 

performance given noise or parameter changes (see Magnuson, Mirman, Luthra, Strauss & 

Harris, 2018, for extended discussion as well as demonstrations that feedback in the TRACE 

model promotes higher accuracy and faster word recognition given noisy inputs). We tested 

TISK with and without feedback for graceful degradation with series of full-lexicon simulations 

(that is, one simulation for every word in the original 211-word TRACE lexicon) while gradually 

increasing the amount of Gaussian noise added to input patterns. At each of 15 levels of noise 

(SD 0.01 to 0.15 in steps of 0.01), we conducted 15 full-lexicon runs (with SD > 0, the noise 

would vary and therefore performance might as well; multiple runs allow us to establish more 

stable performance estimates).

However, there is no reason to suspect that the default TISK parameters represent the best 

possible performance without feedback; these parameters were originally chosen without 

any consideration for performance under noise. To ensure we were putting the autonomous 

(no feedback) and feedback versions of TISK on maximally equal footing, we explored the 

parameter space more fully both with and without feedback. The details of these parameter 

space explorations are presented in Appendix 1. These explorations led to the ‘optimized’ 

parameters with and without feedback presented in Table 2 above.

We present results in Figure 10 for accuracy and recognition time. With optimized parameters, 

TISK exhibits graceful degradation with or without feedback; that is, with a gradual decline in 

accuracy as noise increases, rather than a collapse (as we see for the original parameters without 

feedback). However, we do observe a significant advantage from feedback in terms of accuracy.

It is also notable that the optimized feedforward variant of TISK differs markedly from the other 

models in Figure 6, where we plot model RTs relative to various lexical dimensions. Specifically, 

it shows weaker associations with Neighbors and Rhymes, and a reversed relationship with ex-

embeddings. We have not attempted to determine why this model differs from the others in 

these ways, as we expect the theoretical gain from such inquiry would be slight at best.

We noted earlier that Magnuson et al. (2018) conducted similar explorations with TRACE. 

Magnuson et al. (2018) observed catastrophic degradation for TRACE without feedback, and 

graceful degradation with feedback. They also observed a recognition time advantage for 

feedback even without noise (see Magnuson et al., 2024, for a replication using raw TRACE 

activations rather than response probabilities). Curiously, as can be seen in the right panel of 

Figure 10, recognition times in TISK tend to be longer with feedback until we reach the highest 

Figure 9 Phoneme restoration 

given noise vs. silence 

(Simulation 4). Mean results 

from simulations with ten 

4-phoneme words. Top row: 

TISK without feedback. Bottom 

row: TISK with feedback. With 

feedback, moderate levels 

of noise (standard deviation 

≥ 0.3) drive restoration, 

although the resulting 

activation is always less than 

that observed with the intact 

phoneme. Without feedback, 

noise level matters little, and 

even modest levels of noise 

drive expected phonemes 

to saturation. Note that 

phoneme activations remain 

at approximately 0 given 

silence replacement. Error 

ribbons depict standard error.



levels of noise. What might explain this difference? The most notable difference is that the 

default parameters for TRACE were optimized for running the model with feedback. When 

Magnuson et al. compared TRACE with and without feedback, it was a matter of removing 

feedback from the feedback-optimized parameters. We took a different tack here, in terms 

of finding maximally robust parameters without feedback. A question for future research is 

whether better performance might be possible with TRACE without feedback.

However, another possibility is that the RT differences could be related to the accuracy 

differences. Specifically, the words that the model with feedback is able to recognize but are 

not recognized by the model without feedback could be particularly challenging items, and that 

could substantially raise the mean RT for the model with feedback. To investigate this possibility, 

we restrict the means to only include words that both models (with and without feedback) 

recognize. The results are showing in Figure 11. Here we see a more modest disadvantage for 

feedback, and a much earlier switch to a feedback advantage (when noise > 0.6).

To probe this further, we created scatter plots for one model run (Figure 12) and all 15 runs 

combined (Figure 13). These plots only include points for words that were recognized by both 

models at a particular noise level on a specific run. Each panel also includes annotations 

indicating how many valid cases (i.e., recognized words) there were with and without feedback, 

how many valid pairs could be plotted (those are words that were recognized by both models 

Figure 10 Effects of noise on 

accuracy and recognition time 

in TISK with feedback, and 

three variants of the model 

without feedback: the original, 

Hannagan et al. (2013) 

parameters, the no-feedback 

parameters optimized for 

graceful degradation, and 

the parameters optimized for 

feedback but with feedback 

turned off (Simulation 5). 

Ribbons indicate standard 

error. Feedback maximizes 

the ability of the model to 

exhibit graceful degradation: 

feedback preserves accuracy 

better under higher levels of 

noise. In contrast to results 

with TRACE (Magnuson et al., 

2018), the feedback benefit 

does not extend immediately 

to recognition time, though an 

advantage emerges at high 

levels of noise.

Figure 11 Effects of noise 

on accuracy and recognition 

time in TISK with feedback 

and without (with optimized 

parameters), but restricted to 

words that were recognized 

by both models. This reveals 

a smaller initial difference 

and earlier cross-over to 

a feedback advantage 

compared to Figure 10. This 

suggests that the apparent 

disadvantage for feedback is 

largely due to the additional 

words the model with 

feedback can recognize at 

higher levels of noise. Ribbons 

indicate standard error.



Figure 12 Effects of noise on recognition time in TISK with and without feedback for one model run. Each panel’s label indicates the noise level. 

Red squares plot mean RT with and without feedback.



Figure 13 Effects of noise on recognition time in TISK with and without feedback for all 15 model runs. Each panel’s label indicates the noise 

level. Red squares plot the mean RT values with and without feedback. Color indicates run.
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at that level of noise), and what proportion of words were recognized more quickly with or 

without feedback. Red squares in each panel plot mean RT for the two models. This mean value 

tends to be very close to the identity line even when RT is lower without feedback for a majority 

of items. Eventually, when noise level reaches 0.07, the mean point rises above the identity line 

(indicating faster mean RT with feedback than without). Compare this to Figure 10, where the 

RT lines cross later (at noise = 0.11). Thus, while the impact of feedback on RT is more modest 

than Magnuson et al. (2018) observed with the TRACE model, it seems that the tendency for 

higher RTs with feedback in Figure 10 is largely driven by the more challenging words that the 

model with feedback is able to continue recognizing at higher noise levels.

3. DISCUSSION

We set out to examine whether feedback could be added to the TISK model (a) without diminishing 

its ability to simulate phenomena to which it had already been applied by Hannagan et al. (2013) 

while (b) providing a basis for plausibly simulating classic top-down effects in spoken word 

recognition and (c) making the model capable of graceful degradation as inputs become noisy. 

Our five sets of simulations affirmed that all three of these were the case. Simulation 1 confirmed 

that with feedback added, TISK remains able to simulate effects to which it had previously been 

applied (Hannagan et al., 2013); it continues to perform similarly to TRACE (McClelland & Elman, 

1986) in terms of the time course of activation of targets and categories of phonological relatives, 

as well as in terms of item-specific recognition times, and associations of those recognition times 

with a variety of lexical dimensions (length, numbers of potential competitors, etc.). Simulations 

2–4 demonstrated the ability of TISK with feedback to plausibly simulate the Ganong effect, 

retroactive disambiguation from lexical context, and phoneme restoration, respectively. Finally, 

Simulation 5 demonstrated graceful degradation: as we added increasing levels of noise to 

inputs, and compared TISK with and without feedback, we found that (a) TISK exhibits graceful 

degradation with feedback, (b) without feedback (and with the original TISK parameters from 

Hannagan et al., 2013), TISK exhibits catastrophic degradation (sudden collapse of accuracy 

under modest levels of noise), although (c) we were able to find parameter combinations that 

promote more graceful degradation without feedback, but with a concomitant decline in the 

model’s ability to exhibit human-like time course of lexical activation and competition.

Simulation 5 is particularly critical with respect to theoretical debates in spoken word recognition. 

Norris, Cutler and McQueen (2000; 2016) have argued that there is no logical reason to include 

feedback in models of spoken word recognition. The crucial aspects of their argument are 

that (a) a system with feedback is more complex than one without, (b) any result that can be 

simulated with feedback can be simulated in a purely feedforward (“autonomous”) system, 

and therefore (c) there can be no general benefit of feedback; the best a system can do is tune 

its feedforward connections to provide the best estimate of the probability of each phoneme 

given some stretch of input, and appealing to lexical knowledge cannot improve recognition. 

The details of their argument are considered in depth by Magnuson et al. (2018), who also 

demonstrate that feedback in TRACE affords graceful degradation even more dramatically 

than we saw here for TISK.7 Magnuson, Crinnion, Luthra, Gaston and Grubb (2024) go further 

and detail how the joint effects of feedback and lexical activation selectively reinforce lexically-

coherent activation patterns over noise. However, Magnuson et al. (2018) did not explore the 

TRACE parameter space to determine whether parameter combinations are possible that 

would promote more graceful degradation in TRACE without feedback. This is a possibility that 

could be pursued in future research, but our primary concern here is the TISK model.

We also note that many findings in spoken word recognition have not yet been tested with TISK. 

Magnuson and Crinnion (2022) provide a table listing the ~30 distinct results TRACE simulates 

in spoken word recognition. This provides an obvious agenda for extending TISK in the future.

4. CONCLUSIONS

Our aim was primarily to gauge TISK’s plausibility by increasing its scope to top-down effects 

by adding lexical-to-N-phone feedback. TISK already exhibited remarkable similarity to TRACE 

7	 For more on this ongoing debate, see Magnuson and Luthra (under review), and for robust and replicated 

empirical support for interaction (feedback), see Luthra et al. (2021; and for discussion of those results, see 

McQueen, Jesse & Mitterer [2023] and Luthra et al. [in press]).
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without feedback (McClelland & Elman, 1986). With feedback, it retains its previous similarity to 

TRACE while providing plausible simulations of classic top-down phenomena and demonstrating 

graceful degradation given increasingly noisy inputs (all similar to results previously observed 

with the TRACE model).

These similarities are all the more remarkable given the architectural differences between 

TISK and TRACE. To solve the problems of encoding sequence order, including sequences with 

repeated elements, TRACE employs a “time-as-space” memory with many time-specific copies 

of each feature, phoneme, and word node. These copies allow TRACE to encode sequences and 

repeated elements (whether features, phonemes, or words) because each time-specific copy is 

independent. However, scaling to a realistic size (expanding from 14 phonemes to 40 and from 

200 words to 20,000) would require massive numbers of nodes and connections (approximately 

1.3 million nodes and more than 40 billion connections). As we discussed earlier (see also 

Hannagan et al., 2013), we would not argue that these counts by themselves suggest that 

TRACE’s solution is implausible (e.g., considered in the context of estimates of 86 billion neurons 

and 150 trillion in the typical adult human brain; Azevedo et al., 2009). However, they raise 

the question of whether a more computationally economical solution might be possible. TISK 

(Hannagan et al., 2013) replaces TRACE’s time-specific phoneme and word nodes with time-

invariant nodes – that is, single instances. It does this by using not just phonemes at the sublexical 

level, but also (semi-open) diphones (which is why that layer is called the N-phone layer). We 

describe the diphones as semi-open because, as discussed earlier, time-specific phonemic inputs 

are mapped to time-invariant diphones in a graded fashion. The /sa/ node would be slightly 

more activated given sock where its constituents are adjacent than in stock where there is a 

one-phoneme gap, which would activate /sa/ more than strong, where the gap would be two 

phonemes. Open diphone counts provide surprisingly distinctive codes; the gradient activation 

from symmetry coding is even more distinctive, and allows distinctive patterns of activation for 

ordered sequences and sequences including repeated elements. Feedback in TISK differs from 

that in TRACE in one other respect: it uses both positive and negative top-down lexical feedback. 

Positive feedback (to constituents) is much stronger, but we discovered that a small amount of 

negative feedback (to non-constituents) promoted stable performance.

Again, the similarities in performance despite these differences are remarkable. One might 

suppose they are attributable to fundamental aspects of the interactive activation architecture 

used by both TISK and TRACE. However, other models, including simple recurrent networks (Elman, 

1990) that are not interactive activation models exhibit remarkable similarity to TISK and TRACE 

(Magnuson, in preparation). It may be that the information processing constraints of spoken word 

recognition (mapping sequences “left-to-right” onto forms in lexical memory) are such that any 

system capable of simulating a few key aspects of the microstructure of human spoken word 

recognition (e.g., the time course of activation of words overlapping at onset and offset) will 

necessarily demonstrate similar time course (Figure 4) and associations with lexical dimensions 

(Figure 5). While we cannot conclude that there are no significant differences between TISK and 

TRACE, we have not yet discovered any. However, TISK’s successes reported here demonstrate 

that a key criticism of TRACE – concerning its reduplicated, time-specific nodes – does not apply to 

all instances of interactive activation models of human spoken word recognition.

APPENDIX 1: PARAMETER SPACE EXPLORATION

To optimize parameters with feedback, we explored the space defined by the parameters 

shown in Table 2. We do not present results from the full exploration, which involved thousands 

more simulations. In Figure A1, we present results across a range of positive and inhibitory 

feedback parameters (with other parameters already optimized). Panels highlighted in red with 

yellow or purple shading indicate combinations that yield robust Ganong effects (cf. Figure 

8) as well as robust graceful degradation (Figure 11). In Figure A2, we present retroactive 

phoneme restoration simulations (cf. Figure 8) as a function of feedback parameters. Yellow 

shading indicates robust phoneme restoration. Green shading indicate panels that show robust 

retroactive phoneme restoration as well as robust Ganong effects and graceful degradation 

(i.e., panels that would have yellow or purple highlighting and a red outline in Figure A1). In 

Figure A3, we present results from the parameter exploration without feedback. The purple-

shaded panels indicate parameter combinations that yield fairly robust graceful degradation 

results (cf. Figure 11).
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Figure A1 Exploration of 

positive (x-axis) and negative 

(y-axis) feedback. In each 

panel, the solid line is the 

‘graceful degradation’ result 

(see Figure 11) and the dashed 

line is the Ganong effect. The 

number in the upper right of 

each panel is mean accuracy 

over the full range of noise 

in the graceful degradation 

simulations. Panels are shaded 

yellow if mean accuracy in 

graceful degradation is > 0.5, 

or purple if mean accuracy 

was > 0.4. Panels have red 

outlines if there is a plausible 

Ganong effect (maximum 

difference ≥ 0.15, minimum 

> 0). Informally, we consider 

panels that are yellow or 

purple and highlighted in 

red to indicate parameter 

ranges that result in robust 

performance with feedback 

(approximately 16% of the 

combinations explored here).

Figure A2 Further exploration 

of positive (x-axis) and 

negative (y-axis) feedback. 

In each panel, retroactive 

lexical influence simulations 

(as in Figure 8) are plotted 

with different feedback 

parameters. For simplicity, 

intact or ambiguous cases 

that are lexically consistent 

or inconsistent are averaged. 

Cases where, given ambiguous 

input, the lexically consistent 

phoneme’s activation excedes 

the inconsistent phoneme’s 

by 0.05 and, given consistent 

input, the lexically inconsistent 

phoneme’s activation does 

not excede 0.05 are shaded 

yellow or green. Green shading 

indicates cases that yield 

robust graceful degredation 

in Figure A1 (yellow or purple 

shading with red outline). 

Thus, a fairly broad range 

of parameters yields robust 

performance with feedback 

(green shading corresponds 

to ~16% of explored 

combinations, which includes 

all cases shaded in yellow or 

purple and outlined in red in 

Figure A1).
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Figure A3 Parameter 

exploration without feedback. 

This figure shows graceful 

degradation results as a 

function of word-to-word 

inhibition (x-axis) and 

N-phone decay (y-axis) with 

other parameters already 

optimized. Parameters outside 

these ranges yield unstable 

results. A fairly narrow range 

of parameters (approximately 

4% of explored combinations) 

leads to fairly robust graceful 

degradation results (purple 

shading indicates combinations 

that yield mean accuracy over 

noise levels > 0.4).
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