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ABSTRACT

The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan,
Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model
with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing
most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK
uses orders of magnitude fewer nodes and connections than TRACE. Although TISK
performed remarkably similarly to TRACE in simulations reported by Hannagan et al.,
the original TISK implementation did not include lexical feedback, precluding simulation
of top-down effects, and leaving open the possibility that adding feedback to TISK
might fundamentally alter its performance. Here, we demonstrate that when lexical
feedback is added to TISK, it gains the ability to simulate top-down effects without
losing the ability to simulate the fundamental phenomena tested by Hannagan et al.
Furthermore, with feedback, TISK demonstrates graceful degradation when noise is
added to input, although parameters can be found that also promote (less) graceful
degradation without feedback. We review arguments for and against feedback in
cognitive architectures, and conclude that feedback provides a computationally
efficient basis for robust constraint-based processing.
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1. INTRODUCTION

Consider the speech signal. A series of rapid, overlapping articulatory events creates acoustic
patterns that human listeners can map onto series of segments (consonants and vowels).
Cues to word boundaries are rare and probabilistic; clear breaks in the signal are more likely
to occur within words than between words in fluent speech (Cole, Jakimik, & Cooper, 1980;
Lehiste, 1960). Even if listeners could perfectly extract a speaker’s intended segments from the
speech signal in a bottom-up fashion (a virtual impossibility given phonetic and phonological
processes such as coarticulation, assimilation, and reduction), considerable challenges would
remain. Segment sequences must be mapped onto words in memory. Words are distinguished
by order (the orderings of /k/, /ze/, and /t/ as /kaet/, /taek/ and /aekt/ correspond to CAT, TACK,
and ACT) and elements can be repeated (e.g., /to/ vs. /tot/, i.e., TOE vs. TOTE), so the encoding
scheme for spoken word recognition must represent order and repeated elements. Recognition
of embedded words must be avoided; when CATALOG is uttered, listeners hear the intended
word, and are apparently unaware that they have also heard patterns that correspond to CAT,
AT, A, CATTLE, LAW, and LOG (depending on dialect), or even a possible 3-word sequence (CAT
A LOG). The system must tolerate variability that emerges from phonological processes such
as assimilation that merge or alter phonetic properties of segments (e.g., GREEN BEAN may
be realized as /grimbin/; e.g., Gow, 2003), and reductions that alter segments (e.g., TO as /to/,
or KIND OF as /kainda/) or even remove them. For example, RECOGNIZE SPEECH may reduce
to /rek™naispitf/. At first, one might consider that such an example could be disambiguated
lexically, except that a plausible alternative parse would be WRECK A NICE BEACH (Picone,
Goudie-Marshall, Doddington, & Fisher, 1986). In such cases, a broader semantic context might
be needed to constrain lexical mapping and arrive at the correct parse.

In grappling with these challenges, theories of spoken word recognition have come to agree on
three fundamental principles: As a word is heard (incrementality), words are activated (or their
probability is estimated; Norris & McQueen, 2008) based on degree of phonetic overlap with the
input and their prior probability (probabilistic similarity mapping), and activated words compete
for recognition (parallel competition).! Theories differ in similarity metrics, and in the mechanisms
they posit for achieving parallel activation and implementing and resolving competition (ranging
from lateral inhibition to bottom-up or top-down inhibition, or competition implicit in Bayesian
normalization; for a review, see Magnuson, Mirman & Harris, 2012). However, a particularly
vexing problem is how to deal with the sequential nature of speech, as we discuss next.

1.1. THE PROBLEM OF SEQUENCE ENCODING

Sequence encoding is a fundamental challenge for models of spoken word recognition; speech
unfolds over time, and representing phonological word forms entails representing temporal
order (CAT vs. TACK, i.e., /kaet/ vs. /tek/) and repeated elements (SOUL vs. SOLO, i.e., /sol/ vs.
/solo/). To illustrate this challenge, consider the simple network in Figure 1. Here, the only
connections are forward ones from phoneme nodes to word nodes. Note that such a network
cannot encode temporal order. Any word node receiving input from /k/, /ze/, and /t/ in any order
(i.e., ACT /aekt/, CAT /keet/, TACK /tzek/, or nonwords /tkae/, /ktae/, or /aetk/) would be equally
activated by any ordering of the three phonemes. Neither could such a network distinguish
words with the same constituent phonemes but differing in repeated elements (SOUL vs. SOLO).
The second /o/ in /solo/ would simply be more evidence that /o/ had occurred; the network
cannot represent two instances of /o/ in different temporal positions.

1 Shortlist B (Norris & McQueen, 2008) is a provocative outlier both in its rejection of considering ‘activation’
in favor of probability, but also the lack of an explicit competition mechanism; when probabilities are calculated,
‘competition’ is implied from the zero-sum ‘game’ of calculating probabilities.
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Figure 1 A simple word
recognition network incapable
of encoding temporal order

or repeated phonemes
(Magnuson, 2018a).



Note that a model like this could be used to investigate many aspects of word recognition.
In fact, the Merge model (Norris et al., 2000) has this structure (as well as lateral inhibition),
and can simulate many important aspects of spoken word recognition, despite being unable
to encode order or repeated elements. Avoiding these challenges can only be a temporary
simplifying assumption, however. Ultimately, models of spoken word recognition must grapple
with the representation of order and repeated elements.

The TRACE model (McClelland & Elman, 1986) takes an innovative approach to the problem.
TRACE translates time to space, by creating time-specific duplicates of feature, phoneme, and
word nodes. A template for CAT is maximally activated by strongly activated /k/, /ze/,> and /t/
phonemes aligned with a word node standing for CAT.

Figure 2 contains a schematic outlining the complex relationships between feature, phoneme,
and word nodes in TRACE. At the bottom of the figure, black cells stand in for the distributed
vector of pseudo-spectral representations used as TRACE inputs. Their horizontal extent
represents their temporal extent. Although feature patterns for adjacent phonemes overlap
in TRACE (providing a coarse analog to coarticulation), for the sake of simplicity, we do not
attempt to depict that overlap here.

TAB | TAB | TAB | TAB
B | TAB | TAB | TAB
| TAB | TAB | TAB
| TAB | TAB | TAB |
TAB | TAB | TAB |

L e | b |

At each time step t in a TRACE simulation, pseudo-spectral input patterns are applied. Feature
nodes aligned with input slice t (that is, time-specific feature nodes) are activated by the
bottom-up input at time t. Subsequently (from step t + 1 onward), bottom-up input is not applied
at slice t. However, feature detectors aligned at slice t that were activated by input continue
to be active for many time steps, because their activations are a summative combination
of their bottom-up input and previous activation. The latter is scaled by a decay parameter,
such that a unit’s activation will eventually diminish to a defined baseline level in the absence
of new input. Similarly, phoneme nodes are aligned at specific time slices, and receive input

2 TRACE only has 14 phonemes; typically, instances of /z/ are coded as /a/ in TRACE.
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Figure 2 TRACE’s time-as-
space encoding (Magnuson,
2018b). At the bottom, inputs
corresponding to /k/, /e/, and
/t/ have specific alignments
(in TRACE, these would be
distributed representations
of over-time pseudo-spectral
features). Those inputs
activate phoneme templates
aligned with them, which in
turn activate aligned words.
Darkness of shading indicates
degree of activation. The
maximally-activated copies
of CAB, CAT and TAB are
those aligned with the input,
though degree of activation
reflects amount and temporal
distribution of phonetic
overlap (CAB > CAT > TAB).



from feature nodes aligned with them in time. As long as the aligned feature nodes are active,
the aligned phoneme nodes will receive bottom-up input. Phoneme nodes’ activations are a
function of bottom-up input and decay-scaled prior activation, as well as lateral inhibition from
other phoneme nodes with which they overlap in time, and lexical feedback (described below).
Phoneme nodes send bottom-up activation to nodes corresponding to words containing them
that are aligned (at least partially) in time with the phoneme node. Word nodes also send
feedback to phoneme nodes that send them bottom-up input. As “time” progresses in a TRACE
simulation, inputs aligned with specific time points activate aligned features, phonemes, and
words. This time-specific “reduplication” strategy - aligning copies of each feature, phoneme,
and word in memory with specific time points - allows TRACE to represent temporally ordered
sequences, including sequences with repeated elements. Thus, given the input /daed/ (DAD),
the first and second instances of /d/ would activate independent /d/ nodes.

This reduplication strategy is frequently criticized. Indeed, McClelland and Elman (1986)
discussed plausibility concerns (p. 77). Some have argued that this scheme is simply implausible
(e.g., Grossberg & Kazerounian, 2011; Norris, 1994), largely because of the numbers of nodes and
connections it would take to implement a realistic phoneme inventory and lexicon. Magnuson
(2015) presents a case for the TRACE architecture as a kind of echoic memory. Hannagan et al.
(2013) estimate how many nodes and connections a realistically-sized version of TRACE would
require, and estimate that a version with 40 phonemes and 20,000 words would require ~1.3
million nodes and more than 40 billion connections. Given estimates that the human brain
contains approximately 86 billion neurons and 150 trillion synapses (Azevedo et al., 2009), it is
not clear that we can rule out the TRACE solution based on intuitions about the plausibility of
numbers of units and connections required. However, it does raise the question of whether a
more compact representation might be possible, which leads us to a discussion of the TISK model.

1.2. ORIGINS AND INNOVATIONS OF TISK

The idea of TISK originally came from discussions between Jonathan Grainger and TH, and
eventually included JM. The aim was to keep the explanatory power of the TRACE model while
dispensing with its duplicated time-specific units. Hannagan et al. (2013), inspired by models of
visual word recognition developed by Grainger and others using open bigram codes (Whitney,
2001; Grainger & van Heuven, 2003; Dehaene et al., 2005), asked whether a simpler interactive
activation model of spoken word recognition could be implemented with a variant of open diphone
coding. Open diphones are adjacent or non-adjacent phoneme pairs that occur in a string. For
example, the (ordered) open diphones of ACT (/aekt/) are /aek/, /kt/, and /zet/ (see Table 1 for several
more examples). As it turns out, such lists are highly distinctive. To encode the lists in a length-
independent fashion, we can create a phoneme x phoneme matrix (corresponding to all possible
diphones),* and simply enter the count of each diphone for a word. This then is a kind of string
kernel* for words: we can manipulate or compare representations of words of any size through
vector/matrix operations (i.e., the operations are identical since they are computed over matrices).

TISK’s architecture is presented schematically in Figure 3. Time-specific phoneme input nodes
feed to time-invariant N-phone nodes (corresponding single phone and diphone nodes), but
via what Hannagan et al. dubbed a symmetry network (in recognition of prior work on the topic
by Shawe-Taylor, 1993). The symmetry network does not activate all open diphones equally.
It privileges ordered diphones and activation is inversely proportional to distance between
diphone members (e.g., /st/ would be less activated by SPOT than STOP). This followed work
by Dandurand, Hannagan and Grainger (2013) showing that weight gradients can emerge in

3 If we include a “blank” for the second position, we can also encode each single phoneme in a word, crucially
providing a means for including words consisting of a single phoneme.

4 Akernel function in mathematics translates a mapping (typically, a nonlinear mapping) to a matrix form
where the original function can be expressed as a matrix operation (typically inner product). A string kernel is

a variant of this where the mapping is between strings. For words, one of the key challenges this addresses is
differences in word length. If we can recode words as the frequencies of occurrences of distinct diphones (in a
phoneme-by-phoneme matrix, or as bigrams in a letter-by-letter matrix for visual words), we translate each word
to a same-dimensional object (the element-by-element matrix). Then we can potentially compute things like
word-to-word similarity using matrix operations. In TISK, we also leverage this idea to recode the ‘templates’ for
words as the set of ordered (open) diphones they contain (open diphones allow gaps between phoneme pairs,
such that /kaet/ has the ordered open diphones /kae/, /kt/, and /aet/). This is what allows TISK to replace the large
number of reduplicated, time-specific phoneme and word templates required by TRACE with time-invariant open
diphones (as well as phoneme nodes).
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models of visual word recognition trained to be invariant to the location of the word input on
a simulated retina. It also built on work by Hannagan and Grainger (2012), who noticed the
similarity between N-gram schemes for visual word recognition, and a versatile technique called
“string kernels” that has been used in text classification (Lodhi et al. 2002) and computational
biology (Leslie & Kuang, 2004). Building on these two strands of work, the TISK symmetry network
uses weight gradients as well as gating connections to accurately activate N-phone nodes, even
in the presence of repeated phonemes. For more details about the symmetry network and TISK
more generally, see Hannagan et al. (2013). Note that the full code for TISK is freely available
(You & Magnuson, 2018; https://github.com/maglab-uconn/TISK1.0; also, updated code from
this project is also available at https://github.com/maglab-uconn/TISK_FEEDBACK).

WORD ORDERED OPEN DIPHONES
CAT kae, kt, et
TACK tee, tk, ek
ACT ek, aet, kt
DAD dee, dd, aed
ADD ed
SOUL so, sl, ol
SOLO so x 2, sl, ol, oo
Word level / /bark/ /bat/ o000 {tabj /.)

Time invariant / Fi /

i}

/aj/b/ ooco /S/

Nphone level
Time invariant

Symmetry network |
Phoneme

l {a/,/b/, 000 [S/, [a/1/b/; 000 /S/;
evel 000

Time specific

INPUT

TISK thus may be viewed as a potential successor to or extension of TRACE that addresses the
critique of time-specific nodes. However, TISK has not been tested on the entire broad range of
results that TRACE accounts for (Magnuson & Crinnion, 2022). Hannagan et al. (2013) focused
on a subset of particularly critical phenomena in spoken word recognition (the time course of
phonological competition, and the relations between a variety of lexical dimensions and recognition
time in TISK vs. TRACE) to establish initial plausibility of the model. However, they did not consider
a broad class of phenomena in spoken word recognition that have particular relevance for ongoing
theoretical debates: apparent top-down lexical effects. Our primary goal here is to address this gap.

1.3. FEEDBACK AND THEORIES OF SPOKEN WORD RECOGNITION

A particularly salient point of disagreement in theories of spoken word recognition concerns top-
down feedback from words to sublexical representations. TRACE (McClelland & Elman, 1986) is
an interactive-activation model with arguably the deepest and broadest coverage of spoken
word recognition (cf. Magnuson et al., 2012, Magnuson & Crinnion, 2021). Top-down effects in
TRACE emerge from lexical-phonemic feedback. In contrast, Norris, McQueen, and Cutler (2000;
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Table 1 Examples of ordered
open diphones.

Figure 3 Overall TISK
architecture (Figure 3 from
Hannagan et al., 2013). Inputs
are presented one at a time
on time-specific copies of each
possible phoneme. Phonemes
activate corresponding
diphones and single nodes in
the N-phone layer. N-phone
units activate corresponding
words. Lateral inhibition
governs lexical competition
(indicated by knobbed
recurrent link in top right). The
greyed out arrow from words
to N-phones indicated that
the original TISK model did not
have lexical feedback (which is
the only structural alteration
in the model introduced in
this paper). The symmetry
network (not shown; see
Figure 4 from Hannagan et al.,
2013) allows an input like /ba/
to activate both the /ba/ and
/ab/ diphones, but activates
the diphone corresponding to
the input order much more
strongly. See Hannagan et al.
(2013, pp. 5-6) for details.



see also 2016) have argued that purely feedforward systems can do anything a feedback system
can do, so long as they include a mechanism for post-perceptual behavior consistent with top-
down influences (e.g., via post-lexical integration of phonemic input and lexical knowledge). As
TISK is a derivative of TRACE, our goal here is to make TISK more comparable to TRACE and
assess the possibility of adding feedback to TISK. Without feedback, top-down effects are out
of scope for TISK. We will return briefly to theoretical disagreements concerning feedback in the
Discussion.

Consider two important top-down effects in spoken word recognition. First, there is the Ganong
(1980) effect, where phoneme identificationis influenced by lexical status. For example, compared
to a nonword continuum between iss and ish, where participants are asked to identify the final
consonant, identification shifts towards /s/ if the continuum is instead between a word and
nonword pair like kiss-*kish, but towards /§/ given *fiss-fish. Thus, either lexical context modulates
phonetic perception (the interactive or feedback assumption), or it has a post-perceptual
influence on responses (the feedforward assumption). Another fundamental top-down effect
in spoken word recognition is phoneme restoration (Samuel, 1981a, 1981b, 1996, 1997; Warren,
1970). If a phoneme in a word is replaced by silence, it leaves a salient gap, and participants
have no trouble reporting that the word is not intact and can identify which phoneme is missing.
In contrast, when a phoneme is replaced by noise, participants typically report that the word
is intact but has noise added to it. They have difficulty specifying which phoneme the noise is
aligned with, and report perception consistent with lexical context (e.g., if noise, denoted as #,
replaces a phoneme in the word after, the noise is heard as /t/ in /af#"r/ but as /f/ in /e#t r]).
This implies that noise provides enough bottom-up support for the missing phoneme to be filled
in, either perceptually via lexical feedback or via post-perceptual lexical integration.

While such top-down effects are quite salient, a less obvious benefit of feedback is to make
models more robust to noise. Top-down feedback (in concert with lateral inhibition in TRACE;
Magnuson et al., 2024) promotes accuracy and faster processing given noisy inputs (Magnuson
et al,, 2018). While more subtle, this may be the more important impact of feedback.

2. ADDING LEXICAL FEEDBACK TO TISK

Again, there are several reasons to add feedback to TISK. Any comprehensive model of spoken
word recognition must be able to account for top-down effects, and feedback allows TRACE to
plausibly simulate many such effects (McClelland & Elman, 1986). As discussed above, however,
at least some effects considered to be “top-down” can be simulated without feedback (Norris
et al., 2000). However, graceful degradation is another important motivation for feedback in
interactive activation models (Dell, Chang & Griffin, 1999; McClelland & Elman, 1986 [e.g., pp.
6-71; McClelland & Rumelhart, 1981, 1989), which turns out to have important implications
for the feedback vs. autonomy debate. Graceful degradation seems to be less familiar to most
cognitive scientists (e.g., it received no discussion in the Norris et al,, 2000, target article or
in the accompanying commentaries), although it is one of the original, primary motivations
for feedback in interactive activation models (for example, when noise is added to inputs,
feedback promotes gradual declines in performance rather than an abrupt collapse; McClelland
& Rumelhart, 1981).

These points direct us to a clear agenda for simulations with feedback (from words to
N-phones) added to TISK. First, can we identify a non-zero feedback parameter that will (a)
afford plausible top-down effects while allowing robust word recognition, without impeding
the model’s ability to simulate the phenomena attested by Hannagan et al. (2013), including
(b) the time course of phonological competition and (c) item-specific correlations with TRACE
and (d) lexical dimensions (word length, numbers of different competitor types, etc.)? Finally,
(e) will feedback in TISK allow the model to exhibit graceful degradation given noisy inputs
(i.e., will feedback preserve accuracy and processing efficiency)? We address these issues in
the following order: parameter discovery, replication of earlier simulations (time course, similar
item-specific recognition times as for the original TISK model and TRACE, similar item-specific
correlations with lexical dimensions), simulations of crucial top-down phenomena in spoken
word recognition, and performance in noise (testing for graceful degradation). All code required
to reproduce our simulations, analyses, and figures is available at https://github.com/maglab-
uconn/TISK_FEEDBACK.
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2.1. SIMULATION 1: TIME COURSE AND LEXICAL DIMENSIONS

2.1.1. Parameters

We used a trial-and-error process for parameter exploration. We began with a value of positive
feedback from words to their constituent N-phones. We assessed mean accuracy over the
211-word (original TRACE) lexicon, and if accuracy was lower than approximately 80%, we
examined errors for clues as to what was impeding accuracy. If we found a parameter setting
that would allow reasonable accuracy, we then examined the model’s ability to simulate top-
down effects (with phenomena like those discussed below). If feedback was not strong enough
for plausible top-down effects, or if error patterns implied parameter changes were needed,
we would adjust parameters and retest. We iterated this process, gradually increasing our
accuracy threshold.

After a few iterations, we determined that there were three key parameters that could be
adjusted to provide the full complement of desired outcomes (a-e above). First, of course, we
needed positive feedback from words to constituent N-phones. Second, feedback tended to
cause resonance between word and N-phone layers that would lead to the activation of too
many words. For example, given the input /dal/ (DOLL), the lexical node for DOLL would send
feedback to /d/, /a/, /\/, /da/, /dl/, and /al/ nodes at the N-phone level. These would enhance
activation of doll, but also any word containing any of these elements (e.g., SADDLE and DRILL
would contain /dl/), allowing them to send feedback to elements that had not occurred. We
discovered that we could avoid “runaway” activation by both increasing decay at the N-phone
level and by including a small amount of negative feedback to a word’s non-constituents (i.e., a
small amount of inhibition to every N-phone or single phone that is not part of a word, similar
to top-down inhibition in early interactive activation models, e.g., McClelland & Rumelhart,
1981). Table 2 lists key parameters we considered altering, with the three parameters that
were ultimately altered in bold font. We have not searched the parameter space exhaustively.
However, our explorations suggest that stable performance requires ratios among parameters
similar to those in Table 2.

PARAMETER ORIGINAL TISK OPTIMIZED OPTIMIZED WITH
WITHOUT FEEDBACK  FEEDBACK
Input phoneme decay 0.010 0.001 0.001
N-phone decay 0.001 0.001 0.100
Word decay 0.010 0.050 0.050
Phoneme to N-phone 1.000 0.100 0.100
Diphone to word 0.050 0.050 0.050
Single phone to word 0.010 0.010 0.010
Word to word inhibition -0.005 -0.005 -0.010
Positive word to N-phone feedback 0.150
Negative word to N-phone feedback -0.050

We also considered that the original TISK parameters might not provide the best possible
performance in noise without feedback. We therefore explored the parameter space without
feedback with the aim of finding parameters that would allow the model to continue to exhibit
fundamental target behaviors described below while maximizing performance in noise. We
present details of our parameter space exploration for models with and without feedback in
Appendix 1. For now, because the most robust parameters for the model without feedback differ
from the original TISK parameters, we will present results in the following simulations using the
new parameter set (while noting that the original TISK model and the version with feedback and
parameters optimized for graceful degradation differ only slightly and qualitatively in the following
simulations - with the exception, of course, of the final graceful degradation simulations).

Before turning to top-down effects, let us consider whether TISK performs similarly with and
without feedback on the tasks evaluated by Hannagan et al. (2013). Figure 4 addresses this
by first examining mean activation over time for different categories of potential phonological
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Table 2 Original (without
feedback) parameters for TISK,
and parameters that promote
high performance with
feedback. Parameters in the
‘optimized without feedback’
column that differ from
original parameters are in bold.
Parameters in the ‘optimized
with feedback’ column that
differ from parameters in the
‘optimized without feedback’
and/or ‘original TISK’ columns
are also in bold.



relatives. To conduct this comparison, we conducted 211 simulations with TRACE and with two
versions (with and without feedback) of TISK. For each model, there were 211 simulations (one
for each word in the original TRACE lexicon). For every target word, we tracked target activation
over time, as well as the mean activation of every item in two categories of phonological
relatives (cohorts and rhymes) over time (e.g., for /dal/, the activation of every word beginning
/da/ would be included in the [onset] cohort mean, and every three-phoneme word ending
in /al/ would be in the rhyme category). If a word had no relatives in a category, it would
not contribute to the mean for that category. As a baseline reference, we simply tracked the
mean activation of all words; given 211 words, this mean approaches the minimum possible
activation value. Although the mean values are somewhat damped when feedback is added
to TISK, the crucial consideration is that the rank ordering of competitors is similar for all three
models.®

TRACE TISKfb (with feedback)
0.7 0.5
0.6
- Target - Target
051 | ™ Cohort 0.41 | = Cohort
. -+ Rhyme -+ Rhyme
Unrelated Unrelated
0.4
c 0.3
203
©
2
5 0.2
< 0.2
0.1
0 0 saoooliiy, 01
-0.1
-0.2 0.0
0 25 50 75 100 0 25 50 75 100
05 TISK (no feedback, original) 05 TISK (no feedback, optimized)
- Target - Target
0.41{ | = Cohort 0.41{ | = Cohort
-+ Rhyme -+ Rhyme
Unrelated Unrelated
§ 0.3 0.3
©
2
53]
<0.2 0.2
0.1 0.1
0.0 = 0.0
0 25 50 75 100 0 25 50 75 100
Time (processing cycles) Time (processing cycles)

Figure 5 extends our examination of how similar the performance of TISK is (with and without
feedback) to TRACE by comparing item-specific recognition times (RTs) for each model.
Recognition time was operationalized as the cycle at which the target word exceeded all other

5  The models differ in that 0.0 is the lowest possible activation in TISK while activations can become
negative in TRACE; hence, rank order is the crucial concern. Note that negative activations in TRACE can be easily
transformed to positive predictions using, e.g., the Luce choice rule (R.D. Luce, 1959; cf. Allopenna, Magnuson, &
Tanenhaus, 1998).
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Figure & Mean time course for
targets and different classes
of competitors in TRACE

and TISK with and without
feedback (including the original
model, as well as the version
with parameters ‘optimized’
for graceful degradation, as
detailed later). Each line
represents the mean for a
class of items over all 211
words in the original TRACE
lexicon. Cohorts overlap in the
first two phonemes. Rhymes
overlap in all but the first
phoneme. Unrelated is the
mean activation of all words
in the lexicon. Ribbons indicate
standard error.



word’s activations by at least 0.05 and then continued to exceed all others by that amount for
at least 10 cycles (cf. Hannagan et al,, 2013), and subsequently remained the most activated
word until the end of the simulation. Mean accuracies were 100% for TRACE, 99% for the original
TISK without feedback (TISK), and 97% for TISK with feedback (TISKfb). As can be seen in Figure
5, item-specific RTs for correctly recognized items were remarkably similar for the three models.

1001 100 100
w
[ —_ —_
o r=0.97 [ r=0.84 a2 r=0.84
2 75 o 75 S 75
) 3 3
o o%e 0" - e o u -
£ 50 & g 50 =% g 50 i
x / : R ™
7] E B
E = Y XK = e‘&
[ [ v
e 25 7 25 25
25 50 75 100 25 50 75 100 25 50 75 100
RT (TISKfb cycles) RT (TISKfb cycles) RT (TISK [no fb] cycles)

Figure 6 goes deeper by examining how item-specific RTs in the three models (plus a fourth
variant: TISK without feedback with parameters optimized for accuracy in noise, as described
in Simulation 5) relate to several lexical dimensions: word length (in phonemes), number of
embeddings (words embedded in the target, e.g., CAT has AT embedded within it), number of
cohort (onset) competitors (overlapping in the first two phonemes), number of “ex-embeddings”
(words the target embeds within, e.g., CAT embeds within CATALOG), number of “DAS” neighbors
(i.e., words differing from the target by a single phonemic deletion, addition, or substitution;
Luce & Pisoni, 1998), and number of “rhyme” items (words differing from the target only in first
position, whether by deletion, addition, or substitution; e.g., CAT’s rhymes include SCAT, BAT,
MAT, SAT, and AT). The dimensions are ordered according to the sign and magnitude of their
prediction on RT; longer words are recognized more slowly, having more embeddings or cohorts
is associated with slower RT, and having more ex-embeddings, neighbors or rhymes is associated
with faster RT. The potential reasons for these relationships is beyond the scope of this paper
(Magnuson, in preparation, discusses this in detail); our focus is instead the similarities between
models. All models show the similar patterns, and are even generally similar in the strength of
each correlation (although TISK without feedback with parameters optimized for performance in
noise [third row] differs for ex-embeddings, neighbors and rhymes, as we discuss in Section 2.5).

The results from Simulation 1 demonstrate that we can add feedback to TISK without disrupting
the model’s similarity to TRACE. The time course of different kinds of phonological competition
are quite similar, and TISK retains its high similarity to TRACE in item-specific RTs with feedback
on, and there are only very subtle quantitative differences in item-specific RTs between TISK
with and without feedback apparent in our examination of how a variety of lexical dimensions
relate to recognition time. With this fundamental consideration of prior results resolved, we can
turn to the details of specific top-down effects.

2.2. SIMULATION 2: GANONG EFFECT

For Simulation 2, we compared the ability of TISK with and without feedback to simulate the
Ganong effect (Ganong, 1980). In the Ganong paradigm, we begin with a continuum from one
phoneme to another (e.g., changing gradually from /s/ to /§/, e.g., ess to esh) and establish a baseline
identification pattern across the continuum (e.g., rate of “s” [vs. “sh”] responses at each step). If
we add context such that the continuum changes from a word to a nonword (e.g., from bus /b”s/
to *buhsh /b {/, or from *russ /rs/ to rush /r§/), human listeners’ identification rates will change.
Specifically, they will make more responses consistent with the lexical endpoint, typically shifting
the category boundary away from the lexical endpoint (e.g., for /b”s to /b”f/, they will make more
“s” responses, and the shift to “sh” responses will happen closer to the unambiguous /§/ endpoint).

To simulate the Ganong effect with TISK, we selected ten 4-phoneme words from the lexicon
(appeal, box, boost, duty, greet, least, school, shield, screw, and ugly). For each word, we conducted
a Ganong simulation at each position by creating nonwords replacing the phoneme at the critical
position, and then creating a continuum blending from the original phoneme to the replacement.
For example, for /duti/ (duty), we created continua between /duti/ and four nonwords: /buti/,
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Figure 5 RT correlations

for original TISK (without
feedback), TISKfb (TISK with
feedback), and TRACE. Left
panel: TISKfb vs. TISK. Middle
panel: TISKfb vs. TRACE. Right
panel: original TISK vs. TRACE.
Diagonal grey lines indicate
the identity line, dashed lines
indicate best linear fit.



Figure 6 item-specific RTs in TRACE, TISKfb (with feedback), TISK without feedback with parameters optimized for noise, and original

TISK (without feedback), as a function of lexical dimensions for the 211-word TRACE lexicon. Dimensions: Length is number of phonemes,
Embeddings is how many words embed within the target word (e.g., CAB and IN embed in CABINET), Onset competitors are cohorts (words
overlapping in the first two phonemes), ex-Embeddings are the number of words the target word embeds into (e.g., CAB embeds in CABINET,
CABARET, etc.), Neighbors are the number of words differing from the target by no more than a 1-phoneme deletion, addition, or substitution
(so-called DAS neighbors), and Rhymes items are items that mismatch the target only at the first phoneme (by deletion, addition, or
substitution; e.g., for CAT, these would include AT, SCAT, and BAT).
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Figure 7 Lexical effects on phoneme activations (Ganong effects) for ten 4-phoneme words (Simulation 2). We observe robust Ganong effects
(lexical restoration) at each position with lexical feedback enabled, with stronger effects in later positions. The key results are that (a) greater
ambiguity is apparent for continuum steps near the nonword endpoint and (b) the upward shift for the center continuum step (4). Error ribbons
indicate standard error.
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/d”if, /duri/, and /dut™/. So in Figure 7, for the Position 4 panel, the relevant simulation for /
duti/ would be the /duti/ to /dut”/ continuum. We aggregated results by averaging activations
of the lexically-consistent phoneme and its nonword replacement, and calculating ‘predicted
proportion of choices’ as the ratio of the peak activations for those two phonemes. In Figure 7, we
observe robust Ganong effects (lexical restoration) at each position in the model with feedback,
with stronger effects in later positions (consistent with TRACE simulations of phoneme restoration
in TRACE reported by Magnuson, 2015). This increase of the effect at later positions is a result of
greater lexical activation as more bottom-up input is received. Thus, feedback allows TISK to
simulate the Ganong (lexically-driven phoneme restoration) effect.

2.3. SIMULATION 3: RETROACTIVE EFFECTS OF FEEDBACK

In Simulation 3, we focus on retroactive influences of lexical feedback on the activation of
phonemes given ambiguous input, where the disambiguating lexical context only emerged
at the final phoneme (so-called right-context effects; see simulations described by McClelland
& Elman [1986] on the following pages for related results: pp. 27, 29, 30 [their Figures 8-11];
pp. 66-69). For this simulation, we used the lexical items plug and blush. If we replace the
onsets of these items with a stimulus halfway between /p/ and /b/ (denoted by /#/), we create
an ambiguity that will be sustained until the final phoneme is presented. We conducted
simulations where the inputs were either the clear lexical inputs /pl*g/ or /bl*f/ to establish
baseline activations for /p/ and /b/ (we added blush to the TRACE lexicon for this simulation;
note also that plush was not in the lexicon). Then we conducted simulations where the input
was /#*g/ (disambiguated as plug at the final phoneme) or /#1*§/ (disambiguated as blush at
the final phoneme).

The results are plotted in Figure 8. Left panels show results with the _lug context (either /pl*g/
when it is intact, or /#l"g/ when it is ambiguous); right panels show results with the _lush
context (/bl"f/ when it is intact, or /#1§/ when it is ambiguous). Upper panels show results with
feedback; lower panels show results without feedback. In each panel, we plot activations for
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Figure 8 Retroactive phoneme
restoration by following
context (Simulation 3). In the
lexicon, plug and blush are
words, but *blug and *plush
are not (even though plush

is a word in English). Note

that the delayed activations
of ambiguous phonemes is
due to failure to reach the
activation threshold from the
initial input. The discrete delay
of 10 cycles is due to new TISK
inputs ‘arriving’ every 10 cycles.



/p/ and /b/ given intact vs. ambiguous inputs. Without feedback (lower panels), lexical contexts
have no effects, and the ambiguous stimuli drive equivalent activations of /p/ and /b/. With
feedback (upper panels), the initial phase of activation is identical for both contexts because
it is driven purely by the bottom-up input. As more context arrives, we see changes primarily
in diminished decay of lexically-consistent phonemes (e.g., ambiguous /p/ in the upper left
panel). However, the effects are different for the two ambiguous contexts, with differences
emerging around cycle 20. The initial differences are stronger activation of /p/ than /b/ prior
to disambiguation. This occurs because there are more words that begin with /p/ than /b/ in
the model’s lexicon. The effects are stronger for the _lush context; this emerges because there
are 4 items with the diphone /AS/ in the lexicon, but 7 with /*g/. Since the items activated
by feedback will compete with the ambiguous onset position, having a smaller number of
items sharing the pattern leads to greater ultimate activation. Thus, Simulation 3 shows clear
retroactive effects of feedback.

2.4, SIMULATION 4: PHONEME RESTORATION

In Simulation 4, we turn to another classic top-down effect using an analog to the phoneme
restoration paradigm (Samuel, 1981a,b, 1996, 1997; Warren, 1970). In a phoneme restoration
paradigm, a phoneme is replaced either with noise or with silence (typically in a lexical
context where there is only one possible completion for the replaced phoneme, e.g., #uxury
or _uxury [where # indicates noise and _ indicates silence] can only be restored as luxury).
The two kinds of replacement yield very different effects. If a phoneme is replaced by noise,
a listener typically reports hearing all the phonemes in the word, and will likely have difficulty
identifying the precise location of the noise. If a phoneme is replaced by silence, the gap is
salient, and listeners can report the precise location of the silence and which specific phoneme
is missing. Another difference is that noise-replaced phonemes can drive selective adaptation
(Samuel, 1997), as though the actual phoneme had been repeated, but silence cannot. The
interpretation of this pattern is that noise provides sufficient bottom-up activation that the
missing phoneme is “filled in” by feedback. As a result, the listener not only cannot reliably
report which phoneme has been replaced, but is uncertain of the position of the noise. This
means that the critical pattern a model must be able to simulate is (a) robust activation of a
lexically-consistent phoneme when it is replaced with noise, but (b) weak or absent activation
when it is replaced with silence (see Grossberg & Kazerounian, 2011, 2016 and Magnuson,
2015, for a debate about how phoneme restoration should be modeled).

To test TISK’s ability to simulate phoneme restoration with and without feedback, we used the
same ten 4-phoneme words from Simulation 2. For each item, we conducted 48 simulations;
2 models (feedback of no feedback) x 4 phoneme positions x 6 input types (intact phoneme,
silence replacement [the phoneme replaced by zero input], or noise replacement [silence plus
noise with standard deviation of 0.2, 0.3, 0.4, or 0.8]). We examined the activations of the
“expected” phonemes each position (e.qg., /d/, /u/, /t/, and /i/ for duty) when they were intact
versus when they were replaced with silence or increasingly strong noise. Again, in a successful
simulation, replaced phonemes should be robustly activated given sufficient noise input, but
should be activated weakly or not at all given replacement with silence.

The results are shown in Figure 9. First, consider the results without feedback (top row). There
is no activation whatsoever of the replaced phoneme given silence replacement or noise with
standard deviation of 0.2, and slightly graded activations given noise, very near the level of
activation observed for intact phonemes.® In contrast, large lexical effects are readily apparent
with feedback (bottom row). Noise with SD greater than 0.2 drives robust activation of the
‘expected’ phoneme on average, but activations from noise are much lower than activations
from intact phonemes. Thus, TISK with feedback generates a plausible pattern of results that
are transparently linkable to results with human subjects.

6  Noise with SD > 0.2 drives similar phoneme activations as intact phonemes in TISK without feedback due to
the threshold function governing activation. When the noise SD is 0.2 or less, total input to the phoneme node (a
combination of bottom-up input and its own previous state adjusted by decay) does not reach threshold and so
its resulting activation remains 0. When noise SD > 0.2, the threshold is reached, and the ‘missing’ phoneme still
reaches saturation-level activation. With the parameters optimized for feedback, the maximum (saturation) level
is approximately 0.62, but noise inputs do not drive phoneme activations near that level, resulting in qualitatively
different levels of phoneme activation given silence, noise, or intact input.
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2.5. SIMULATION 5: GRACEFUL DEGRADATION

The obvious impact of including feedback in a model is that it can provide a mechanism
for simulating (and explaining) top-down effects. A less obvious but crucial consideration is
that feedback promotes graceful degradation: gradual rather than catastrophic declines in
performance given noise or parameter changes (see Magnuson, Mirman, Luthra, Strauss &
Harris, 2018, for extended discussion as well as demonstrations that feedback in the TRACE
model promotes higher accuracy and faster word recognition given noisy inputs). We tested
TISK with and without feedback for graceful degradation with series of full-lexicon simulations
(that is, one simulation for every word in the original 211-word TRACE lexicon) while gradually
increasing the amount of Gaussian noise added to input patterns. At each of 15 levels of noise
(SD 0.01 to 0.15 in steps of 0.01), we conducted 15 full-lexicon runs (with SD > 0, the noise
would vary and therefore performance might as well; multiple runs allow us to establish more
stable performance estimates).

However, there is no reason to suspect that the default TISK parameters represent the best
possible performance without feedback; these parameters were originally chosen without
any consideration for performance under noise. To ensure we were putting the autonomous
(no feedback) and feedback versions of TISK on maximally equal footing, we explored the
parameter space more fully both with and without feedback. The details of these parameter
space explorations are presented in Appendix 1. These explorations led to the ‘optimized’
parameters with and without feedback presented in Table 2 above.

We present results in Figure 10 for accuracy and recognition time. With optimized parameters,
TISK exhibits graceful degradation with or without feedback; that is, with a gradual decline in
accuracy as noise increases, rather than a collapse (as we see for the original parameters without
feedback). However, we do observe a significant advantage from feedback in terms of accuracy.

Itis also notable that the optimized feedforward variant of TISK differs markedly from the other
models in Figure 6, where we plot model RTs relative to various lexical dimensions. Specifically,
it shows weaker associations with Neighbors and Rhymes, and a reversed relationship with ex-
embeddings. We have not attempted to determine why this model differs from the others in
these ways, as we expect the theoretical gain from such inquiry would be slight at best.

We noted earlier that Magnuson et al. (2018) conducted similar explorations with TRACE.
Magnuson et al. (2018) observed catastrophic degradation for TRACE without feedback, and
graceful degradation with feedback. They also observed a recognition time advantage for
feedback even without noise (see Magnuson et al., 2024, for a replication using raw TRACE
activations rather than response probabilities). Curiously, as can be seen in the right panel of
Figure 10, recognition times in TISK tend to be longer with feedback until we reach the highest

Figure 9 Phoneme restoration
given noise vs. silence
(Simulation 4). Mean results
from simulations with ten
4-phoneme words. Top row:
TISK without feedback. Bottom
row: TISK with feedback. With
feedback, moderate levels

of noise (standard deviation
> 0.3) drive restoration,
although the resulting
activation is always less than
that observed with the intact
phoneme. Without feedback,
noise level matters little, and
even modest levels of noise
drive expected phonemes

to saturation. Note that
phoneme activations remain
at approximately O given
silence replacement. Error
ribbons depict standard error.



levels of noise. What might explain this difference? The most notable difference is that the
default parameters for TRACE were optimized for running the model with feedback. When
Magnuson et al. compared TRACE with and without feedback, it was a matter of removing
feedback from the feedback-optimized parameters. We took a different tack here, in terms
of finding maximally robust parameters without feedback. A question for future research is
whether better performance might be possible with TRACE without feedback.
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However, another possibility is that the RT differences could be related to the accuracy
differences. Specifically, the words that the model with feedback is able to recognize but are
not recognized by the model without feedback could be particularly challenging items, and that
could substantially raise the mean RT for the model with feedback. To investigate this possibility,
we restrict the means to only include words that both models (with and without feedback)
recognize. The results are showing in Figure 11. Here we see a more modest disadvantage for
feedback, and a much earlier switch to a feedback advantage (when noise > 0.6).
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To probe this further, we created scatter plots for one model run (Figure 12) and all 15 runs
combined (Figure 13). These plots only include points for words that were recognized by both
models at a particular noise level on a specific run. Each panel also includes annotations
indicating how many valid cases (i.e., recognized words) there were with and without feedback,
how many valid pairs could be plotted (those are words that were recognized by both models

Figure 10 Effects of noise on
accuracy and recognition time
in TISK with feedback, and
three variants of the model
without feedback: the original,
Hannagan et al. (2013)
parameters, the no-feedback
parameters optimized for
graceful degradation, and

the parameters optimized for
feedback but with feedback
turned off (Simulation 5).
Ribbons indicate standard
error. Feedback maximizes
the ability of the model to
exhibit graceful degradation:
feedback preserves accuracy
better under higher levels of
noise. In contrast to results
with TRACE (Magnuson et al.,
2018), the feedback benefit
does not extend immediately
to recognition time, though an
advantage emerges at high
levels of noise.

Figure 11 Effects of noise

on accuracy and recognition
time in TISK with feedback
and without (with optimized
parameters), but restricted to
words that were recognized
by both models. This reveals
a smaller initial difference
and earlier cross-over to

a feedback advantage
compared to Figure 10. This
suggests that the apparent
disadvantage for feedback is
largely due to the additional
words the model with
feedback can recognize at
higher levels of noise. Ribbons
indicate standard error.



Figure 12 Effects of noise on recognition time in TISK with and without feedback for one model run. Each panel’s label indicates the noise level.
Red squares plot mean RT with and without feedback.
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Figure 13 Effects of noise on recognition time in TISK with and without feedback for all 15 model runs. Each panel’s label indicates the noise
level. Red squares plot the mean RT values with and without feedback. Color indicates run.
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at that level of noise), and what proportion of words were recognized more quickly with or
without feedback. Red squares in each panel plot mean RT for the two models. This mean value
tends to be very close to the identity line even when RT is lower without feedback for a majority
of items. Eventually, when noise level reaches 0.07, the mean point rises above the identity line
(indicating faster mean RT with feedback than without). Compare this to Figure 10, where the
RT lines cross later (at noise = 0.11). Thus, while the impact of feedback on RT is more modest
than Magnuson et al. (2018) observed with the TRACE model, it seems that the tendency for
higher RTs with feedback in Figure 10 is largely driven by the more challenging words that the
model with feedback is able to continue recognizing at higher noise levels.

3. DISCUSSION

We set out to examine whether feedback could be added to the TISK model (a) without diminishing
its ability to simulate phenomena to which it had already been applied by Hannagan et al. (2013)
while (b) providing a basis for plausibly simulating classic top-down effects in spoken word
recognition and (c) making the model capable of graceful degradation as inputs become noisy.
Our five sets of simulations affirmed that all three of these were the case. Simulation 1 confirmed
that with feedback added, TISK remains able to simulate effects to which it had previously been
applied (Hannagan et al., 2013); it continues to perform similarly to TRACE (McClelland & Elman,
1986) in terms of the time course of activation of targets and categories of phonological relatives,
as well as in terms of item-specific recognition times, and associations of those recognition times
with a variety of lexical dimensions (length, numbers of potential competitors, etc.). Simulations
2-4 demonstrated the ability of TISK with feedback to plausibly simulate the Ganong effect,
retroactive disambiguation from lexical context, and phoneme restoration, respectively. Finally,
Simulation 5 demonstrated graceful degradation: as we added increasing levels of noise to
inputs, and compared TISK with and without feedback, we found that (a) TISK exhibits graceful
degradation with feedback, (b) without feedback (and with the original TISK parameters from
Hannagan et al., 2013), TISK exhibits catastrophic degradation (sudden collapse of accuracy
under modest levels of noise), although (c) we were able to find parameter combinations that
promote more graceful degradation without feedback, but with a concomitant decline in the
model’s ability to exhibit human-like time course of lexical activation and competition.

Simulation 5is particularly critical with respect to theoretical debates in spoken word recognition.
Norris, Cutler and McQueen (2000; 2016) have argued that there is no logical reason to include
feedback in models of spoken word recognition. The crucial aspects of their argument are
that (a) a system with feedback is more complex than one without, (b) any result that can be
simulated with feedback can be simulated in a purely feedforward (“autonomous”) system,
and therefore (c) there can be no general benefit of feedback; the best a system can do is tune
its feedforward connections to provide the best estimate of the probability of each phoneme
given some stretch of input, and appealing to lexical knowledge cannot improve recognition.
The details of their argument are considered in depth by Magnuson et al. (2018), who also
demonstrate that feedback in TRACE affords graceful degradation even more dramatically
than we saw here for TISK.” Magnuson, Crinnion, Luthra, Gaston and Grubb (2024) go further
and detail how the joint effects of feedback and lexical activation selectively reinforce lexically-
coherent activation patterns over noise. However, Magnuson et al. (2018) did not explore the
TRACE parameter space to determine whether parameter combinations are possible that
would promote more graceful degradation in TRACE without feedback. This is a possibility that
could be pursued in future research, but our primary concern here is the TISK model.

We also note that many findings in spoken word recognition have not yet been tested with TISK.
Magnuson and Crinnion (2022) provide a table listing the ~30 distinct results TRACE simulates
in spoken word recognition. This provides an obvious agenda for extending TISK in the future.

4. CONCLUSIONS

Our aim was primarily to gauge TISK’s plausibility by increasing its scope to top-down effects
by adding lexical-to-N-phone feedback. TISK already exhibited remarkable similarity to TRACE

7 For more on this ongoing debate, see Magnuson and Luthra (under review), and for robust and replicated
empirical support for interaction (feedback), see Luthra et al. (2021; and for discussion of those results, see
McQueen, Jesse & Mitterer [2023] and Luthra et al. [in press]).
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without feedback (McClelland & Elman, 1986). With feedback, it retains its previous similarity to
TRACE while providing plausible simulations of classic top-down phenomena and demonstrating
graceful degradation given increasingly noisy inputs (all similar to results previously observed
with the TRACE model).

These similarities are all the more remarkable given the architectural differences between
TISK and TRACE. To solve the problems of encoding sequence order, including sequences with
repeated elements, TRACE employs a “time-as-space” memory with many time-specific copies
of each feature, phoneme, and word node. These copies allow TRACE to encode sequences and
repeated elements (whether features, phonemes, or words) because each time-specific copy is
independent. However, scaling to a realistic size (expanding from 14 phonemes to 40 and from
200 words to 20,000) would require massive numbers of nodes and connections (approximately
1.3 million nodes and more than 40 billion connections). As we discussed earlier (see also
Hannagan et al,, 2013), we would not argue that these counts by themselves suggest that
TRACE’s solution is implausible (e.g., considered in the context of estimates of 86 billion neurons
and 150 trillion in the typical adult human brain; Azevedo et al., 2009). However, they raise
the question of whether a more computationally economical solution might be possible. TISK
(Hannagan et al.,, 2013) replaces TRACE’s time-specific phoneme and word nodes with time-
invariant nodes - that is, single instances. It does this by using not just phonemes at the sublexical
level, but also (semi-open) diphones (which is why that layer is called the N-phone layer). We
describe the diphones as semi-open because, as discussed earlier, time-specific phonemic inputs
are mapped to time-invariant diphones in a graded fashion. The /sa/ node would be slightly
more activated given sock where its constituents are adjacent than in stock where there is a
one-phoneme gap, which would activate /sa/ more than strong, where the gap would be two
phonemes. Open diphone counts provide surprisingly distinctive codes; the gradient activation
from symmetry coding is even more distinctive, and allows distinctive patterns of activation for
ordered sequences and sequences including repeated elements. Feedback in TISK differs from
that in TRACE in one other respect: it uses both positive and negative top-down lexical feedback.
Positive feedback (to constituents) is much stronger, but we discovered that a small amount of
negative feedback (to non-constituents) promoted stable performance.

Again, the similarities in performance despite these differences are remarkable. One might
suppose they are attributable to fundamental aspects of the interactive activation architecture
used by both TISK and TRACE. However, other models, including simple recurrent networks (Elman,
1990) that are not interactive activation models exhibit remarkable similarity to TISK and TRACE
(Magnuson, in preparation). It may be that the information processing constraints of spoken word
recognition (mapping sequences “left-to-right” onto forms in lexical memory) are such that any
system capable of simulating a few key aspects of the microstructure of human spoken word
recognition (e.g., the time course of activation of words overlapping at onset and offset) will
necessarily demonstrate similar time course (Figure 4) and associations with lexical dimensions
(Figure 5). While we cannot conclude that there are no significant differences between TISK and
TRACE, we have not yet discovered any. However, TISK’s successes reported here demonstrate
that a key criticism of TRACE - concerning its reduplicated, time-specific nodes - does not apply to
all instances of interactive activation models of human spoken word recognition.

APPENDIX 1: PARAMETER SPACE EXPLORATION

To optimize parameters with feedback, we explored the space defined by the parameters
shown in Table 2. We do not present results from the full exploration, which involved thousands
more simulations. In Figure A1, we present results across a range of positive and inhibitory
feedback parameters (with other parameters already optimized). Panels highlighted in red with
yellow or purple shading indicate combinations that yield robust Ganong effects (cf. Figure
8) as well as robust graceful degradation (Figure 11). In Figure A2, we present retroactive
phoneme restoration simulations (cf. Figure 8) as a function of feedback parameters. Yellow
shading indicates robust phoneme restoration. Green shading indicate panels that show robust
retroactive phoneme restoration as well as robust Ganong effects and graceful degradation
(i.e., panels that would have yellow or purple highlighting and a red outline in Figure Al). In
Figure A3, we present results from the parameter exploration without feedback. The purple-
shaded panels indicate parameter combinations that yield fairly robust graceful degradation
results (cf. Figure 11).
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Figure A1 Exploration of
positive (x-axis) and negative
(y-axis) feedback. In each
panel, the solid line is the
graceful degradation’ result
(see Figure 11) and the dashed
line is the Ganong effect. The
number in the upper right of
each panel is mean accuracy
over the full range of noise

in the graceful degradation
simulations. Panels are shaded
yellow if mean accuracy in
graceful degradation is > 0.5,
or purple if mean accuracy
was > 0.4. Panels have red
outlines if there is a plausible
Ganong effect (maximum
difference > 0.15, minimum
> 0). Informally, we consider
panels that are yellow or
purple and highlighted in

red to indicate parameter
ranges that result in robust
performance with feedback
(approximately 16% of the
combinations explored here).

«

Figure A2 Further exploration
of positive (x-axis) and
negative (y-axis) feedback.

In each panel, retroactive
lexical influence simulations
(as in Figure 8) are plotted
with different feedback
parameters. For simplicity,
intact or ambiguous cases
that are lexically consistent

or inconsistent are averaged.
Cases where, given ambiguous
input, the lexically consistent
phoneme’s activation excedes
the inconsistent phoneme’s
by 0.05 and, given consistent
input, the lexically inconsistent
phoneme’s activation does
not excede 0.05 are shaded
yellow or green. Green shading
indicates cases that yield
robust graceful degredation

in Figure A1 (yellow or purple
shading with red outline).
Thus, a fairly broad range

of parameters yields robust
performance with feedback
(green shading corresponds
to ~16% of explored
combinations, which includes
all cases shaded in yellow or
purple and outlined in red in
Figure Al).
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Figure A3 Parameter
exploration without feedback.
This figure shows graceful
degradation results as a
function of word-to-word
inhibition (x-axis) and
N-phone decay (y-axis) with
other parameters already
optimized. Parameters outside
these ranges yield unstable
results. A fairly narrow range
of parameters (approximately
4% of explored combinations)
leads to fairly robust graceful
degradation results (purple
shading indicates combinations
that yield mean accuracy over
noise levels > 0.4).
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