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Magnetorheological fluids (MRFs) are smart materials consisting of micro-scale magnetizable particles sus-
pended in a carrier fluid. The rheological properties of a MRF can be changed from a fluid-state to a solid-state
upon the application of an external magnetic field. This study reports the development of a particle-level
simulation code for magnetic solid spheres moving through an incompressible Newtonian carrier fluid. The
numerical algorithm is implemented within an open-source finite-volume solver coupled with an immersed
boundary method (FVM-IBM) to perform fully-resolved simulations. The particulate phase of the MRF is
modeled using the discrete element method (DEM). The resultant force acting on the particles due to the
external magnetic field (i.e., magnetostatic polarization force) is computed based on the Clausius—-Mossotti
relationship. The fixed and mutual dipole magnetic models are then used to account for the magnetic (MAG)
interactions between particles. Several benchmark flows were simulated using the newly-developed FVM-IBM-
DEM-MAG algorithm to assess the accuracy and robustness of the calculations. First, the sedimentation of two
spheres in a rectangular duct containing a Newtonian fluid is computed without the presence of an external
magnetic field, mimicking the so-called drafting—kissing—tumbling (DKT) phenomenon. The numerical results
obtained for the DKT case study are verified against published data from the scientific literature. Second, we
activate both the magnetostatic polarization and the dipole-dipole forces and resultant torques between the
spheres for the DKT case study. Next, we study the robustness of the FVM-IBM-DEM-MAG solver by computing
multi-particle chaining (i.e., particle assembly) in a two-dimensional (2D) domain for area fractions of 20%
(260 particles) and 30% (390 particles) under vertical and horizontal magnetic fields. Finally, the fourth
computational experiment describes the multi-particle chaining in a three-dimensional (3D) domain allowing to
study fully-resolved MRF simulations of 580 magnetic particles under vertical and horizontal magnetic fields.

1. Introduction substances dissolved in sea water are captured and recovered using

magnetic particles subjected to an externally applied magnetic field.

Magnetic particle suspensions, also known as magnetorheological
fluids (MRFs), appear in a variety of applications in science and en-
gineering (Satoh, 2017; Kumar et al., 2019). In the traditional fluid
engineering field, the magnetorheological effect has been applied to
develop mechanical actuators and dampers (Bullough, 1996; Wereley,
2013). In the newly emerged bio-engineering and drug delivery fields,
there have been strong efforts to synthesize magnetic-based multifunc-
tional particles (Kuznetsov et al., 1999; Weingart et al., 2013). In
addition, in the field of natural resource and environmental engineer-
ing (Girginova et al., 2010; Lan et al., 2013), precious metals or harmful
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When a magnetically polarizable particle is subjected to an exter-
nally applied magnetic field, they acquire dipole moments and become
magnetized (Chow, 2006; Grant and Phillips, 2008). A magnetized par-
ticle starts interacting with neighboring magnetized particles leading
to the formation of chain-like structures or clusters of particles aligned
with the magnetic field direction (i.e., particle assembly) (Kang et al.,
2008). To date, numerous studies have investigated the dynamics of
MRFs under magnetic fields. Hayes et al. (2001) studied magnetic parti-
cles in microchannels by describing reversible self-assembled regularly
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spaced structures, when particles were exposed to an external magnetic
field. From their study, they concluded that magnetic particles can be
used in an extensive variety of on-chip applications and unique mi-
crofabrication techniques, automating the laboratory procedures. Melle
and Martin (2003) also developed a chain model for magnetorheologi-
cal fluids in rotating magnetic fields. Through single-chain simulations
as well as through experimental measurements, they showed that the
chain shape and orientation depends strongly on the magnetic perme-
ability of the particles y,. Subsequently, Keaveny and Maxey (2008)
developed a finite-dipole model, where the magnetization of a particle
is represented as a distribution of current density. This was proposed
to estimate the magnetic forces between magnetic particles accurately
and efficiently such that it can be applicable for systems with thousands
of particles. In their model, the induced magnetization of a particle is
represented as a localized Gaussian distribution of current that is added
as a source term in the Poisson equation for the vector potential of the
magnetic field (Kang et al., 2008). The procedure yields very accurate
solutions to collinear three-body problems. However, the scheme is not
as accurate when considering other configurations with a large number
of particles, because there is the need to include more information from
the far field (e.g., quadrupole moments). Han et al. (2010) presented
a two-stage computational procedure for the numerical modeling of
magnetorheological fluids. At the first stage, the particle dynamics
is modeled using the discrete element method (DEM), whereas the
hydrodynamic forces on the particles are approximated simply using
the Stokes’ law (i.e., the fluid flow was not explicitly resolved) (Stokes,
1901). At the second stage, they deployed a combined approach using
lattice Boltzmann method (LBM) and DEM to fully resolve the fluid
fields, particle-particle, and particle-fluid hydrodynamic interactions.
However, they raised an issue related to the accuracy of the magnetic
interaction models while retaining the computational simplicity and
efficiency. Subsequently, Ke et al. (2017) developed a fully-resolved
scheme based on lattice Boltzmann, immersed boundary, and discrete
element methods (LBM-IBM-DEM) to simulate the behavior of magnetic
particles moving in a fluid subject to an external magnetic field. The
numerical results obtained showed that the LBM-IBM-DEM scheme
was able to capture the major physical features of magnetic particle’s
motion in a fluid. Specifically, they showed that particles first form
fragmented chains along the magnetic direction. These chain-like clus-
ters then continue to grow and align, and eventually, they approach an
near steady state configuration. Additionally, it was shown that with
the increase of the magnetic field a faster particle motion or merging
between short chains occurs. Recently, Zhang et al. (2019) devel-
oped a two-phase numerical simulation method using LBM-IBM-DEM
approach to investigate the yielding phenomena during the start-up
process of a MRF flowing through a microchannel under a transverse
uniform magnetic field. The yielding of the MRF flowing through the
microchannel was studied as a proxy to the deformation of the chains
composed of magnetic particles. They showed that the yielding of a
single-chain at different inlet velocities was regular. However, for a
multi-chain system where chains are entangled, the yielding behavior
presented an unpredictable regularity. Zhou et al. (2019) also studied
the motion of magnetic particles in a 3D microchannel flow modulated
by the alternating gradient magnetic field. They used the LBM-IBM
numerical simulation scheme, and showed that magnetic particles ini-
tially agglomerate due to their magnetic dipole force and then move
together with the carrier fluid. They also showed that, in an alternating
gradient magnetic field, magnetic particles oscillate along the flow
direction, disturb the flow field, and increase the overall turbulence
intensity. Leps and Hartzell (2021) modeled the dynamics of MRFs
using DEM method alone leveraging the open source LIGGGHTS (DCS
Computing GmbH, 2015) software. The algorithm is based on the
mutual-dipole model to allow for the use of a large number of magnetic
particles with several close neighbors while keeping a good trade-
off between model accuracy and computational cost. Using accurate
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particle size distributions, high heritage contact models, and an un-
coupled fluid model, Leps and Hartzell (2021) were able to match
the experimentally derived yield stress results for MRFs more closely
than using mono-disperse particle size distributions. Lastly, Tajfirooz
et al. (2021) presented an Eulerian-Lagrangian approach for simulating
the magneto-Archimedes separation of neutrally buoyant non-magnetic
spherical particles within MRFs. A four-way coupled point-particle
method (Zhou et al., 2010; Fernandes et al., 2018, 2023) was employed,
where all relevant interactions between an external magnetic field, a
magnetic fluid and immersed particles were taken into account. First,
the motion of rigid spherical particles in a magnetic liquid was studied
in single- and two-particle systems. It was shown that numerical results
of single- and two-particle configurations were in good agreement with
detailed experimental results on particle position. Subsequently, the
magneto-Archimedes separation of particles with different mass densi-
ties in many-particle systems interacting with the fluid was also studied.
It was concluded that history effects and inter-particle interactions
significantly influence the levitation dynamics of particles and have a
detrimental impact on the separation performance.

Most of the aforementioned numerical studies around MRFs focus
on the formation of magnetorheological structures using the simplified
Stokes drag law and the fixed dipole-dipole interaction model, exclud-
ing the hydrodynamic interactions between particles mediated by base
fluid (Faroughi and Huber, 2014, 2015a,b) and higher order mutual
magnetic interactions. The flow characteristics and chain formation
features induced by coupled hydrodynamic and magnetic interactions
are still missing in the literature. This is mainly due to the lack of
proper numerical models that can take into account both inter-particle
magnetic and hydrodynamic interactions, in addition to other relevant
attributes (e.g., particle type, size, etc.), in a fully coupled algorithm.

Direct numerical simulation (DNS) is necessary to obtain a precise
characterization of the micro-structures present in a magnetorheolog-
ical fluid (Kang et al., 2013). By numerically solving the governing
equations of the fluid flow and the magnetic problem, a more ac-
curate calculation of the hydrodynamic and magnetic interactions is
achieved. Kang et al. (2008) introduced a finite element method (FEM)
that incorporates a fictitious domain technique to model the movement
of solid paramagnetic bodies. Kang et al. (2012) also utilized the DNS
approach to investigate the shear behavior of magnetic chains in a two-
dimensional domain. They examined the system’s apparent viscosity by
observing specific test cases and correlating it with the Mason number
(i.e., the ratio of viscous force to magnetic force). Kang and Suh (2011)
introduced an immersed-boundary finite volume method for direct
simulation of flows with suspended paramagnetic particles possessing
a smooth distribution of magnetic permeability. Hashemi et al. (2016)
developed a smooth particle hydrodynamic (SPH) method for direct
simulation of paramagnetic solid bodies suspended in a Newtonian
fluid under the influence of an external magnetic field. The proposed
algorithm was applied to a benchmark problem involving a suspended
paramagnetic solid body experiencing motion under the influence of a
non-uniform magnetic field. The validity of their method was further
confirmed through simulations of the magnetohydrodynamic interac-
tion between two suspended circular cylinders. Lastly, a more complex
test case involving the evolution of a suspended magnetic chain un-
der the influence of a rotating magnetic field was also simulated to
demonstrate the capabilities of their method.

In this work, we develop a fully-resolved simulation algorithm
using a combination of the finite-volume, immersed boundary and
discrete element methods to couple both hydrodynamic and magnetic
interactions among magnetic particles suspended in Newtonian fluids.
The newly-developed algorithm, so-called FVM-IBM-DEM-MAG solver,
is able to describe flows with suspended magnetic particles immersed
in a fluid subject to an external magnetic field. The magnetic force
exerted on the particles is computed using the gradient of the magnetic
field strength, which is obtained from the imposed external magnetic
field (Ke et al., 2017). The magnetic interactions between the particles
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Fig. 1. Typical immersed boundary computational mesh configuration using dynamic refinement of the control-volumes (cells) near the particles’ surface. 2, and €, are the fluid

and solid domains, respectively, with boundaries denoted by 02, and 02,.

are implemented using a mutual dipole model (Leps and Hartzell, 2021)
allowing the magnetic fields of other particles to contribute to the
magnetization and motion of the particle under consideration. The
presented numerical algorithm has several advantages, specifically: (i)
it is based on open-source libraries, OpenFOAM and LIGGGHTS, which
allows the extension of the algorithm for other applications (e.g., sim-
ulation of viscoelastic fluids with suspended magnetic particles); and
(ii) it employs a direct particle-level simulation methodology to re-
solve both hydrodynamic and magnetic interactions allowing accurate
predictions of the flow patterns and particle assembly. We focus on
simulations of spherical particles suspended in a Newtonian fluid in
order to introduce the numerical algorithm and study its feasibility
for extension to more complex flows, involving fluids with non-linear
rheological behavior, and also particle with different shapes. In fact, a
consistent and efficient implementation for the moving solid boundary
is used (CFDEMcoupling, 2011) with the advantage of being able to
apply dynamic mesh refinement near the solids surface, which allows
to alleviate the computational efforts far way from the solids region.
In addition, the proposed magnetostatic solver is coupled with the
hydrodynamic solver through the Newton’s law governing the motion
of paramagnetic solid bodies, with the implementation relying only on
open-source software (CFDEMcoupling, 2011).

The remainder of this work is structured as follows. In Section 2,
we present the underlying physics and mathematical formulation de-
scribing the motion of magnetic particles in a Newtonian fluid. In
Section 3, we present the particle-level numerical methodology leading
to the FVM-IBM-DEM-MAG solver that couples the continuum and
discrete phases in MRFs. In Section 4, we present four case studies
with different level of complexities to test the developed algorithm,
namely the motion and interaction of two magnetic spheres settling in
an incompressible Newtonian fluid under external magnetic field, and
the 2D and 3D flow behaviors of random arrays of magnetic spheres
immersed in an incompressible Newtonian fluid. Finally, in Section 5,
we summarize the main conclusions of this work.

2. Underlying physics

The magnetorheological fluids (MRFs) considered in this study
contain micro-scale magnetic particles with no-Brownian motion sus-
pended in a non-magnetic incompressible Newtonian carrier fluid.
MRFs deform and self-organize into mesoscopic structures depend-
ing on the internal (e.g., particle concentration) and external stimuli

24d

I\
<
[€

od

Fig. 2. Configuration of the drafting—kissing-tumbling (DKT) benchmark case study,
where the transient motion of two spheres is considered while settling through an
initially quiescent viscous fluid confined in a duct of width 64 and height 24d, where
d = 1/6 cm is the sphere diameter. The schematic diagram illustrates the computa-
tional domain including the coordinate system, the boundary walls, the gravitational
acceleration g, and the initial positions of the spheres located on (0.5,0.5,3.5) and
(0.5,0.49,3.16).

(e.g., temperature, flow, and magnetic fields). Among these stimuli, the
application of magnetic fields is shown to provide instant action and
contactless control of the mesoscopic physical structures, causing a re-
versible transition from a fluid-like to a solid-like state. When subjected
to an external magnetic field, particle assembly occurs that provides
the fluid with the ability to transmit force. In that state, the effective
viscosity of the fluid increases to the extent of becoming a viscoelastic
solid. The particle assembly promoted by magnetic field can be con-
trolled, i.e., destroyed, deformed, or delayed. To accurately predict the
particle assembly and chain formation in MRFs, the coupled interac-
tions between the magnetic field, fluid, and particles must be resolved.
The dynamics of MRFs, thus, present a multi-physics problem across
different scales. In this section, we present the underlying physics
governing the dynamics of MRFs made of rigid micro-scale magnetic
spheres suspended in non-magnetic incompressible Newtonian carrier
fluids under a static magnetic field.
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Fig. 3. A comparison of the z-component of the spheres’ (a) center location, and
(b) translation velocity as function of time for the drafting—kissing—tumbling (DKT)
benchmark case study obtained using Algorithm 1 and those computed by Glowinski
et al. (2001).

2.1. Magnetostatic fields

Macroscopic  electromagnetic =~ phenomena are  described
using Maxwell’s fundamental equations (Satoh, 2017; Chow, 2006).
In this study, we assume the quantities of interest (e.g., magnetic
field strength) do not vary with time, and there is no interaction
between electric and magnetic fields. Therefore, we can decouple
electrostatic and magnetostatic fields, and consider the problem of mag-
netostatic field with no free electric currents. The Maxwell’s equations
for magnetostatic cases reduce to,

V-B=0, (€9)

VxH=0, 2
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where B is the magnetic flux density, and H is the magnetic field
strength. Here V denotes the gradient operator, V- denotes the diver-
gence operator, and Vx denotes the curl tensor operations. For a linear
isotropic domain (matrix) with a constant magnetic permeability, u, the
constitutive equation relating the two field quantities, B and H, reads
as,

B =uH, 3

where

U
u=<""
Hy

with u, and u, denoting the particles and base fluid’s magnetic per-
meability, respectively. Notice that y is discontinuous at fluid—particle
interfaces, and, therefore, should be evaluated by following a similar
interpolation of material properties as the one used in the level set
method (Kang et al., 2008; Osher and Fedkiw, 2003). Hereafter, con-
sider that the total computational domain is represented by
Q=9,uQ, where @ is solid (“solid particles”) domain, and £ r
is the fluid domain. The total domain, solid and fluid boundaries are
represented by 002, 02, and 9Q,, respectively.

To solve the first-order differential equations involving the two
magnetic field quantities, Egs. (1) and (2), we first convert them into
a second-order differential equation involving only one magnetic field
quantity. For that purpose, Eq. (2) admits the existence of a scalar
potential, ¢, such that,

in the particle domain,
P )

in the fluid domain,

H=-V, ®)

which can be substituted into Eq. (1) with the aid of Eq. (3) to yield
the following second-order differential equation,

V2 (ugp) = 0. (6)

2.1.1. Magnetic forces and torques

In order to describe the particle motion and the flow around it
influenced by a magnetic field, a relationship between the applied
magnetic field and the resultant force acting on the particles is needed.
This force, known as magnetostatic polarization force (Ke et al., 2017),
on particle i can be evaluated as (Ke et al., 2017),

F/ = /Q (nsx,HVH) dQ, 7
where y, stands for the particle’s magnetic susceptibility given by the
Clausius—-Mossotti relationship (Jackson, 1999),

3u,

=3+/41,’ ®

Xe
The torque generated by the magnetostatic polarization force on parti-
cle i is computed as,

T = /Q Y (upxMxH) dQ,. ©

Another fundamental force in MRFs is the magnetic dipoles evi-
denced by particles with opposite magnetic point poles (Gontijo and
Cunha, 2017). Therefore, in MRFs, particle motion is affected not
only by an external magnetic field, but also by other nearby mag-
netized particles since each particle has a permanent magnetic mo-
ment, m. The dipole-dipole interactions between particles i and j
results in dipole-dipole inter-particle magnetic force (Ff'i'_ 4y and torque
(Tfj’d ) that are calculated using the dipole-dipole contact model (Fer-
raro, 1961; Large-scale Atomic/Molecular Massively Parallel Simulator,
2022) as,

(10)
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Fig. 4. The drafting-kissing-tumbling (DKT) benchmark case study simulated using Algorithm 1 with no magnetic field. The positions of spheres at ¢ = 0.01, 0.30, 0.35, 0.45, 0.50
and 0.65 s and the contour of the longitudinal (z—component) fluid velocity, u, (cm/s), at the midplane x = 0.5 cm are shown.

and

. 1 3
T‘.’.d:—r—s[(m,-xm/-)—r—z(mj«r) (m, xr)]. an

where m; and m; are the magnetic moment vectors of the two particles,
r is the separation vector between the two particles, and r is the mag-
nitude of the separation vector r. For MRFs consisting of N particles,
a direct evaluation of the dipole-dipole interaction alone is O(N?)
operations. This puts a severe computational constraint on the number
of particles that can be simulated with a direct computation of the inter-
particle dipole-dipole force. To compute the magnetic moment of each
particle, m, the fixed dipole model (Han et al., 2010) or the mutual
dipole model (Leps and Hartzell, 2021) can be used. In dilute MRFs
(i.e., low concentration of magnetic particles), it is often acceptable
to use the magnetic moment calculated from the background mag-
netic field (i.e., fixed dipole model). However, in concentrated MRFs
(i.e., high concentration of magnetic particles), the induced magnetic
fields from magnetized neighboring particles begin to have a significant

effect on the particles magnetic moment vector. Therefore, for accuracy
in force calculations, a more complex model (i.e., mutual dipole model)
should be leveraged.

2.1.2. Fixed dipole model

When the effect of the extra magnetic field generated by neighbor-
ing magnetized particles is negligible on particles dynamics, then it is
safe to assume that any particle is theoretically magnetized only by the
externally applied magnetic field. Therefore, each particle is considered
as a point dipole and the magnetic force between the particles are
pairwise only. In this model, the magnetic moment of particle i is given
by (Han et al., 2010),

x—1
m; = 4z pn 2HO, 12)

where y = u,/u, is the relative susceptibility of the particles over the
carrier fluid, and H, is the magnetic field strength of the externally
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applied uniform magnetic field. Notice that as the carrier fluid is
assumed to be non-magnetic, its permeability is the same as that of
a vacuum, ie., py = py = 4z X 10~7 [T m/Al, where T is Tesla, m is
meter, and A is Ampere. This model is accurate when the two particles
are far apart, and it loses accuracy when the separation distance of
the particles decreases. The accuracy of the model also depends on the
relative susceptibility, y. It has been shown by Keaveny and Maxey
(2008) that, at y = 5, the fixed dipole model underestimates the
maximum attractive force by around 35%, whereas overestimates the
maximum repulsive force by 50% or more, and the errors increase for
larger y values.

2.1.3. Mutual dipole model

In disperse mixtures of MRFs, it is often acceptable to computation-
ally consider the dipole-dipole magnetic moment calculated from the
magnetic field strength of the externally applied magnetic field only
(fixed dipole method). However, in the dense mixtures of MRFs, the
magnetic fields induced by neighboring magnetized particles begin to
have a significant effect. To capture the magnetic effect of neighbor-
ing particles, we implemented a mutual dipole method (Keaveny and
Maxey, 2008). In the mutual dipole method, particles are all magne-
tized using the background magnetic field. Then, the dipole moments
are recalculated using the background magnetic field plus the magnetic
fields created by all near neighbors. This calculation is iterated until
the dipole moments of the individual particles converges. The mutual
dipole model (Keaveny and Maxey, 2008) allows for the magnetic fields
of the neighboring particles to contribute to the magnetization of the
particle under consideration. A particle, thus, is subjected not only to
the primary magnetization due to the external magnetic field, but also
to a secondary magnetization from the other particles’ magnetic fields.
Considering the mutual magnetization of N magnetizable particles with
their centers at x; (i = 1,...,N) in a uniform magnetic field with
strength H,,, the magnetic moment of the particle i, m;, is given by (Leps
and Hartzell, 2021),

X

-1
m, :471'r3x+2 [Hy + H(x))] (i=1,..,N), (13)

where H(x;) represents the total secondary magnetic field strength
generated by other magnetized particles. The total secondary magnetic
field strength can be expressed as (Leps and Hartzell, 2021),

N N R
H(x;) = Z Hm,r)=Y —

— e~ Ar
Joi#i o T

f'i.)—m.
—, a4

with r;; = x; - x;, r;; = |r;;|, and #;; = r;;/r;;. Once the m; values are

computed for all particles, the inter-particle dipole-dipole force and
torque between any two pairs are obtained using Eqgs. (10) and (11),
respectively.

2.2. Incompressible fluid flow

In the MRFs considered in this study, the carrier fluid is considered
to be a non-magnetic incompressible Newtonian fluid. The governing
equations for the flow of these fluids consist of the continuity equation,
Vau=0 in Q, (15)
and the Cauchy momentum equation,

d _
—+u~V)u=—V+ Vu in Q. 16
Py ( o Ptihs f (16)

Here p, and u are the fluid density and velocity vector, respectively,
t is the time, p is the pressure, and 7 is the viscosity of the Newtonian
fluid. To complete the strong mathematical form describing the flow of
MRFs, the following initial and boundary conditions are considered,

ux,r =0)=uy(x) in Q,
ux,?) =u,;, on agf,

on 08,

(=pL+ng (Vu+Vu')) -fi= 0,0

an
ux, ) =u;

on 0d48;.
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Fig. 5. Configuration of the drafting—kissing-tumbling (DKT) benchmark case study
with application of an external magnetic field potential in the (a) vertical (z-axis) and
(b) horizontal (y-axis) directions. The schematic diagram illustrates the computational
domain including the coordinate system, the gravitational acceleration g, the potential
magnetic field, and the initial positions of the spheres located on (0.5,0.5,3.5) and
(0.5,0.49,3.16).

In Eq. (17), f is the outward normal unit vector to 082, oyp_ is
the stress vector acting from the fluid on the solid body surface, and
u; is the (unknown) velocity of the solid—fluid interface. The initial
velocity u,, is required to satisfy Eq. (15), and the boundary velocity u,,
should satisfy the compatibility condition (last equation in Eq. (17)) at
all times.

The motion of magnetic particles is strongly affected by short-range
and long-range hydrodynamic forces (drag, lift, etc.), and the resultant
torques, when they are dispersed in a viscous incompressible fluid. The
hydrodynamic force acting on the surface of particle i can be obtained
using (Glowinski et al., 2001; Fernandes et al., 2019),

Fh =/ (=Vp+ngV?u) de,. 18)
The resultant hydrodynamic torques on particle i, denoted by Tf’, can
be then calculated by taking the cross product between the position
vector r (pointing from the fluid cell centroid to the particle centroid)
and the total force from Eq. (18) that reads as,

Tf’:/ {rx(—Vp+115V2u)} aQ,. (19)
QS

The force contribution arising from pressure does not give rise to
any torque contribution, due to symmetry of spherical magnetic parti-
cles. Thus, normal forces acting perpendicular to the particle surface,
such as pressure, do not induce any torque. This is not the case if par-
ticle shape departs from the spherical shape (e.g., spheroids (Faroughi
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Fig. 6. A comparison of the z-component of the spheres’ (a) center location, and
(b) translation velocity as function of time obtained using Algorithm 1 to simulate
the drafting—kissing-tumbling (DKT) benchmark case study under no magnetic field,
vertical magnetic field, and horizontal magnetic field.

and Huber, 2017, 2023)). In MRFs, particles also experience the buoy-
ancy force, denoted by F¥, which is given by the weight of the displaced
fluid. The buoyancy force can be calculated as,

FE = / (0,8 dQ,. 20)
QA'

where g is the gravitational acceleration vector.

2.3. Particle transient motion

The transient motion of dispersed magnetic particles (i.e., solid
phase), can be modeled using the Newton’s second law of motion as,

nt peut

du? :

- d—d h 8

m— - = _ 1F,.”I. + _ZIF"J' +F" +F! +F%, (2D
J= J=
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and
C cut
do’ U "
_ q d—d h
"'d_f—ZT?ﬁZTU +T +T7, 22)
s =

for the conservation of linear and angular momentum of the particle
i with mass m; and moment of inertia I;, respectively. Here, U} and
! denote the translational and angular velocities of particle i, respec-
tively, F{; and T}, are the contact force and contact torque resulting
from the particle—particle and particle-wall interactions (with the num-
ber of total contacts, ¢, for particle i) that can be calculated using
different contact models (Renzo and Maio, 2004; Kloss et al., 2012),
F{~ and T¢ " are the dipole-dipole inter-particle magnetic force and
torque for a number of n{* possible interactions in the admissible cut-
off region, respectively, F/" and T are the magnetostatic polarization
force and torque due to the external magnetic field, respectively, F/
and T/ are the hydrodynamic force and torque acting on particle i,
respectively, and F¥ is the buoyancy force. It is important to note
that, in this work, the neighbor-length (cut-off) is set to infinity, which
approximates the entire system with a second-order approximation.
With this assumption, the higher-order terms beyond the dipole are
neglected.

We leverage DEM, developed by Cundall and Strack (1979) and im-
plemented in LIGGGHTS open-source library (DCS Computing GmbH,
2015), to model the transient motion of dispersed magnetic particles
described by Egs. (21) and (22). In DEM, multiple search algorithms
are employed to identify contacting pairs of discrete particles (Nezami
et al,, 2004), and different contact models are developed to inte-
grate various mechanisms and effects such as elasticity, plasticity,
viscoelasticity, friction, cohesion, damage, fracture, etc. in the contact
points (DCS Computing GmbH, 2015). In this study, we adopted the
spring—dashpot contact model that can be extended to other non-linear
models depending on the chosen stiffness and damping parameters as
function of the particle overlap displacement (Kloss et al., 2012). In
this model, the total contact force between particle i and particle j is
calculated using (Lu et al., 2021),

Ffj = (Ffj),, + (Ffj)p (23)
where (Fl?j),, is the normal contact force,
(F,L/)n =—k,6,n—7y, (Ulpj)n’ (24

and (Ffj ), is the tangential contact force,

) 5
(F;)), = min (—k, 8, = 7 (U)o By 1B, W) , (25)
with
8" =6,V 4+ (U), Ar. (26)

In Egs. (24), (25) and (26), n is the unit vector in the normal
direction, k, and k, are the elastic stiffness for normal and tangen-
tial contacts, respectively, y, and y, denote the damping coefficients
in normal and tangential directions, respectively, §, is normal over-
lap displacement between two particles. In the present work, the
Tsuji model (Tsuji et al., 1992), based on the Hertz theory for the
normal forces (Johnson, 1985; Hertz, 1882) is combined with the
Mindlin model for the tangential forces (Mindlin, 1949; Mindlin and
Deresiewicz, 1953). These models link the stiffness and the damping
coefficients to the Young’s modulus of the material, its Poisson ra-
tio, and the coefficient of normal restitution. (U';’j),1 and (Ufj), are
relative velocities in normal and tangential directions of particle i
relative to particle j, respectively, with the relative velocity defined as
Ufj =0 —Uj.’ , B, is the sliding friction coefficient, 5[(") and 6,("_” are the
tangential overlap at the current and previous step, and 4t is the time
step. The resultant contact torque on particle i due to its contact with
particle j, denoted by Tfj, can be then calculated by taking the cross
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Fig. 7. The change in drafting—kissing—tumbling (DKT) benchmark case study under vertical magnetic field simulated using Algorithm 1. The positions of spheres at ¢ =
0.01, 0.30, 0.35, 0.45, 0.50 and 0.65 s, and the contour of the longitudinal (z—component) fluid velocity, u, (cm/s), at the midplane x = 0.5 cm are shown.

product between the total contact force from Eq. (23) and the position
vector leading to,

T, = F; X (x. = X)), (27)

where x, and x; are the position of contact point and particle i centroid,
respectively.

3. Numerical methodology

This section presents the numerical formulation for an algorithm
using the FVM, IBM and DEM that is able to efficiently handle the
rigid body motion of magnetic spherical particles surrounded by a
Newtonian fluid. The algorithm considers a fictitious domain formu-
lation, which provides a rigorous basis for the immersed boundary
(IB) implementation performed in the open source framework code
CFDEMcoupling (Fernandes et al., 2019; Faroughi et al., 2020; Fer-
nandes et al., 2022; Hager et al., 2014; Aycock et al., 2017). The open

source IB solver originally developed by Hager et al. (2014) is modified
and improved for this study to take into account both hydrodynamic
and magnetic interactions between the fluid continuum phase and
the particulate disperse phase in a fully coupled manner. Algorithm
1 summarizes the so-called FVM-IBM-DEM-MAG solver describing the
solution procedure of the fluid phase and magnetic field equations, the
DEM approach to handle the particle’s motion, and the IBM scheme to
fully couple the continuum phase with the particulate phase.

At time ¢+ = 0, the fluid and particle initial and boundary condi-
tions are read from the case study input files (step 1(a) in Algorithm
1). Additionally, the DEM solver sends the particle initial position
and velocities to the CFD solver (step 1(b) in Algorithm 1). At time
t = t + At, the numerical algorithm starts with the location of the
magnetic particles, saving the cell ID of the center position of each
particle. This procedure, then, allows to compute the particle volume
fraction in each cell (step 2(a) in Algorithm 1). To represent a particle
within the mesh, a “smooth representation” is employed, where the
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Fig. 8. The change in drafting-kissing-tumbling (DKT) benchmark case study under horizontal magnetic field simulated using Algorithm 1. The positions of spheres at
t=0.01, 0.30, 0.35, 0.45, 0.50 and 0.65 s, and the contour of the longitudinal (z—component) fluid velocity, u, (cm/s), at the midplane x = 0.5 cm are shown.

method accounts for the degree to which the cell is filled with fluid or
solid (particle). The steps for calculating the volume of solid occupying
a cell includes: (i) dividing the spherical particle into a core and a
corona; (ii) verifying the relative positions of all cells detected within
the particle’s area. If they are located inside the core, their volume
fraction is set to one. If they are covered by the corona, a loop over all
vertices belonging to the cell starts. If the vertex is inside the particle,
the volume fraction of the cell is increased by one eighth (as each
cell possesses eight vertices when using 3D hexahedral cells). If the
vertex lies outside the corona, the intersecting point of particle hull
and the connection between cell center and edge is computed; and (iii)
calculating the new volume fraction of a cell by adding one-eighth
of the relative length of the line connecting the cell center and the
intersection point to the current volume fraction of the cell (Hager,
2014).

The simplicity of the above method and the low computational costs
allowed an efficient way for calculating the volume of solid occupying
a cell, which could not be achieved, for example, by calculating it
analytically for each affected cell using volume integration. In addition,
notice that accurate results require the representation of an object
by at least eight cells per particle diameter. For detailed information
about the IBM bridging particle-fluid interactions, the reader is referred
to Hager et al. (2014), Hager (2014). Subsequently, as shown in Fig. 1,
the algorithm uses dynamic mesh refinement near the particles’ surface
(092,) to accurately capture the fluid (domain 2 f) forces developed
on those regions (step 2(b) in Algorithm 1). OpenFOAM provides a
refinement-plug-in called dynamic local mesh refinement. In this ap-
proach, the background mesh is chosen according to the requirements
of the CFD calculation. Regions, which are covered by solids and thus
need more cells, can be refined during the calculations. As soon as
the particles leave the area, a re-coarsening operation can be carried
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Algorithm 1 Fully-resolved FVM-IBM-DEM-MAG algorithm to model magnetorheological fluids

step 1: at time r =0

(a) Set initial and boundary conditions

(b) Send initial particle position and velocities to CFD solver from DEM solver

step 2: at time r =t + At

(a) Compute particle volume fraction
(b) Dynamic mesh refinement

(c) Calculate loads on particles (hydrodynamic and magnetic external forces, Ff’ and F}™, respectively, and torques, Tf’ and T}, respectively;
particle—particle contact force and torque, Ffj and Tfj, respectively; magneto dipole-dipole force and torque, Ffj_d and Tl‘.’j‘d , respectively;

and buoyancy force Ff, etc.) given by
F/ =% o (“Vp+15V2W(e) - V()
T = Xz, [10) X (=Vp +n15V20)(O)] - V(©)

me _
F =

me _
T =

X o7, oz HVH)(©) - V (0)
Zcefh (”Oer X H)(C) . V(C)

Ffj and Ti”j are calculated using the non-linear elastic Hertz—Mindlin contact model.

Fid -3
ij »
T3 = =k | (my xmy) - 3 (m; 1) (m; x)

F =37, (08 V()
@

ut

du?

[(m,--mj)r—r%(m,--r) (m; ~r)r+(mj-r)ml-+(m,-~r)mj]

Solve Newton-Euler equations (Velocity-Verlet integration) to obtain new particle position, and linear and angular velocities (in £2,)

_ oy e m" d—d | mme | mh
=X+ XL T T+ T,

Lt i pd—d h do;
mt =3 F+ XL F T+ F + F +F L=t
(e) Solve fluid governing equations subjected to an external magnetic field (in Q)
V2 (up) =0
V-u=0

a
Py (0—': +u-Vu) =-Vp+ngViu

(H) Impose the rigid-body motion of the particles on the fluid velocity field

(g) Correct velocity and pressure fields

out. The method allows choosing the “degree of refinement” and then
divides the affected cells into a number of smaller ones. For avoiding
large aspect ratios between neighboring cells, the refinement is carried
out in layers. The idea of the process is the following: a marker field
indicates the cells that need refinement. After being identified they are
sub-divided layer by layer. The resolution of the area in close proximity
of two spheres is higher than in the remaining domain.

Using the fluid solution from the last time-step in the regions
marked by the particle volume fraction, the hydrodynamic, magneto-
static polarization, and buoyancy forces, F‘" Tf’, Fl'e, T, Ff, that act on
each particle’s surface are computed (step 2(c) in Algorithm 1). The
hydrodynamic force acting on the surface of particle i, denoted by Ff‘
and defined by Eq. (18), can be rewritten as,

s

where, x is an arbitrary region within the domain £, and 6, = 1 if
X € Q,, otherwise §, = 0. Assuming that 7}, is a decomposition of
consisting of computational cells ¢, we can approximate Eq. (28) as,

(=Vp+ngV?u) do =/ (=Vp+nsV?u) s, dQ, (28)

Q

s

/ (—Vp+115V2u) 0 dQ = 2 / (—Vp+r]SV2u) g dV(c), (29)
Q ceT, 1V (©)

where V(c) is the volume of cell ¢. Notice that for notation purposes
we use the parentheses (c) to evaluate a function on cell ¢. Numerical
integration of Eq. (29) leads to the final form of the hydrodynamic
forces acting on the particle,

F = Z (=Vp+ngV?u) (©)- V(c),

c€Ty

(30)

where T, is the set of all cells covered, in full or in part, by a magnetic
particle. The resultant hydrodynamic torque on particle i, denoted by
Tf‘ and defined by Eq. (19), can be then approximated by taking the
cross product between the position vector r and the total force from

10

Eq. (30) that reads as,
T/ = 3 {r@ % (~Vp+nsV?u) @ } - V(o).

c€T),

(€19)

Similarly, the magnetostatic polarization force and torque, defined by
Egs. (7) and (9), are approximated numerically as,

Fe = 3 (upr HVH)O) - V (o), (32)
c€T,

and

T = ) (mox HXH)(C) - V(). (33)

ceTy,

The buoyancy force, defined by Eq. (20), can be also approximated
numerically by integrating the fluid density (p,) over the volume of
the solid region in the mesh, i.e., V(c¢) with ¢ € Th, to obtain the total
displaced fluid mass, i.e., p,V(c) with c € T, Next, by multiplying the
fluid mass by the gravitational acceleration vector (g), the buoyancy
force can be calculated as,

Fi= Y (0,00 V(.
ceTy

As the next step in the FVM-IBM-DEM-MAG algorithm, the resulting
forces and torques for each particle are returned to the DEM solver.
Additionally, if collision between particles or particle-wall are de-
tected, the collision force and torque, Ffj and Tfj, are calculated using
Egs. (23)-(27). Finally, the dipole-dipole magnetic force and torque,
F:.i.’ 4 and Tff 4. are calculated using Egs. (10) and (11) with either the
fixed dipole model for dilute suspensions or the mutual dipole model
for non-dilute suspensions to retrieve the particle dipole moment.

A data exchange model is also used to run a DEM script, which
computes the particles’ positions, translational and angular veloci-
ties (Egs. (21)—(22)), using Velocity-Verlet integration (Verlet, 1967)
(step 2(d) in Algorithm 1). The particles’ new positions and veloci-
ties are then transferred to the CFD solver. The CFD solver proceeds

(34
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Fig. 9. Configuration of the multi-particle problem where spheres centers are located
on a 2D plane and with application of an external magnetic potential field in the (a)
vertical (y-axis) and (b) horizontal (x-axis) directions. The schematic diagram illustrates
the computational domain including the coordinate system, the potential magnetic field,
the gravitational acceleration g, and random position of particles.

with the PISO (Pressure-Implicit with Splitting of Operators) algo-
rithm (Issa, 1986) (step 2(e) in Algorithm 1), which solves the magneto-
static potential equation, Eq. (6), and fluid flow governing equations,
Egs. (15)-(17). An intermediate velocity field u is first obtained by
solving the momentum balance equations, Eq. (16), and then an inter-
mediate pressure p is obtained from the continuity equation, Eq. (15),
which results in a Poisson equation for the pressure correction.

The next step is to correct the intermediate velocity field @ in the
particle region by imposing the rigid body velocity provided by the
DEM calculation (step 2(f) in Algorithm 1). This correction is equivalent
to adding a body force per unit volume defined as,

J ~
f—ﬂaﬁ—u), (35)
in the momentum balance equations, Eq. (16), to obtain a corrected
velocity field W. Here U = U” + @, x r is defined only for the cells
within the solid body. The translational and angular velocities, UY and
w;, respectively, were previously computed in step 2(d).

The previous step introduces a discontinuity in the velocity field
at the interface, giving rise to a non-zero divergence in that location.
Hence, the velocity field U and the pressure field p need to be corrected
(step 2(g) in Algorithm 1). For that purpose, U is projected onto a
divergence-free velocity space, u, by using a scalar field v, as:

T=1-Vy, (36)
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where y is obtained by solving the following Poisson equation,

Viy =V . 37)

Then u is calculated by Eq. (36). The last step is equivalent to adding a
pressure force —pY¥ in the momentum conservation equations, which
requires the pressure field to be corrected by,
yre

The parallel matrix solver employed in this study were the follow-
ing: The Poisson-type equations for pressure resultant from Rhie-Chow
interpolation (Rhie and Chow, 1983), for the immersed boundary flux
v (Eq. (37)), and for the scalar magnetic potential ¢ (Eq. (6)) are solved
with a conjugate gradient method with Cholesky preconditioner; and
the velocity linear system is solved using BiCGstab with Incomplete
Lower-Upper (ILU) preconditioning (Jacobs, 1980; Ajiz and Jennings,
1984; Lee et al., 2003). The absolute tolerance for pressure, immersed
boundary flux, and magnetic potential is set as 10~® and for velocity
is set as 1075, This new FVM-IBM-DEM-MAG solver is implemented
within the CFDE M coupling (CFDEMcoupling, 2011) framework.

p=p+ (38)

4. Results and discussion

This section presents the validation of the proposed FVM-IBM-
DEM-MAG solver against several benchmark case studies. The first
case study is devoted to the sedimentation of two sphere’s in a rect-
angular duct containing a Newtonian fluid, mimicking the so-called
drafting-kissing-tumbling (DKT) phenomenon. We start by turning off
the external magnetic field to verify the solver’s capabilities to simulate
the motion and interaction of the two settling spheres. Subsequently, in
the second case study, we activate both the external magnetic field and
the dipole-dipole force (and resultant torque) between the spheres for
the DKT problem. This case study allows us to test the implementation
of the magnetic force acting on the particles induced by the external
magnetic field and the nearby magnetized particles. The magnetic
potential gradient is applied in the vertical and horizontal directions
to verify the ability of the algorithm to predict particle chaining in
both directions. The third case study tests the robustness of the FVM-
IBM-DEM-MAG solver by computing multi-particle chaining with 260
and 390 spheres whose centers are located in a 2D plane. Finally, the
fourth case study describes the multi-particle chaining when particles
are randomly distributed in a 3D domain.

4.1. DKT phenomenon under zero magnetic field

The objective of this test case is to simulate the motion and the
interaction of two equal rigid spheres settling in a duct as shown in
Fig. 2. The spherical particles are placed vertically with a distance equal
to four particle’s radius. The leading sphere (i.e., the one in below)
is slightly off-centered to avoid the symmetric solution. In this case,
we expect the simulations to reproduce the well-documented DKT phe-
nomenon, which has been observed in laboratory experiments (Fortes
et al., 1987) and modeled through numerical simulations using differ-
ent computational methods (Ke et al., 2017; Hu et al., 1992; Johnson
and Tezduyar, 1996; Feng et al., 1994). This benchmark is specifically
selected to test the accuracy and effectiveness of the FVM-IBM-DEM-
MAG algorithm, when the magnetic field is set to zero (Fernandes et al.,
2019; Hager et al., 2014).

The computational domain is 2 = [0, 1] x [0, 1] X [0,4] cm>. The
diameter of the spheres is d = 1/6 cm. The initial positions of the
spheres centers are (0.5,0.5,3.5) and (0.5,0.49,3.16), and the fluid and
spheres are initially at rest. On the boundary of the channel, no-slip
fluid velocity is imposed. The fluid density is p, = 1 g/cm?, the
sphere’s density is p, = 1.14 g/cm?, and the fluid kinematic viscosity
is v = 0.01 ecm?/s (Glowinski et al., 2001). For the potential inter-
particle contacts and particle-wall contacts, the coefficient of normal
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Fig. 10. Behavior of a random array of magnetic spheres on a 2D domain with 20% particle area fraction at r =0, 0.05, 0.1, 0.2, 0.4 and 0.6 s under the action of gravity and

an external magnetic field applied in the vertical direction.
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Fig. 11. Behavior of a random array of magnetic spheres on a 2D domain with 30% particle area fraction at r =0, 0.05, 0.1, 0.2, 0.4 and 0.6 s under the action of gravity and

an external magnetic field applied in the vertical direction. (Multimedia view).

restitution, coefficient of friction, Poisson’s ratio and Young’s modulus
are considered to be 0.97, 0.10, 0.45, and 2 x 10° Pa, respectively.
The numerical experiments were performed using two hexahe-
dral meshes with initial configuration M1: 40 x 40 x 160 and M2:
60 x 60 x 240 grid cells. In addition, dynamic mesh capability
(dynamicRefineFvMesh) (Jasak, 2009) is used to refine the mesh
near the solid—fluid interface at each time-step. In this work, the
maxRefinement parameter (a property of the dynamic mesh method
defining the maximum number of layers of refinement that a cell can
experience) is equal to two layers. The simulation time-step is set to
At = 107* s corresponding to an average Courant number of 0.1. The
total computational elapsed time for the simulations was 1h52 m and

12

6h16 m for M1 and M2, respectively, executed on a 3.00-GHz 48 cores
Intel Xeon Gold 6248R CPU processor with 128 GB of RAM.

Fig. 3 shows the z-component of the spheres centers, z!, and the
z-component of the spheres translation velocities, (Uz)f , as function
of time for calculations using M1 and M2 meshes. Additionally, the
results obtained by Glowinski et al. (2001) using two levels of mesh
refinement, h, = 1/60 and h, = 1/80, are included for comparison
purposes. Our results for M1 and M2 meshes obtained using the newly-
developed algorithm (Algorithm 1) are in good agreement indicating
that the results are mesh independent. As can be observed, the particle
on top (following particle) is first carried by the wake generated by the
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Fig. 13. Behavior of a random array of magnetic spheres on a 2D domain with 30% particle area fraction at r =0, 0.05, 0.1, 0.2, 0.4 and 0.6 s under the action of gravity and

an external magnetic field applied in the horizontal direction.

particle on the bottom (leading particle) forcing to the so-called draft-
ing phenomenon (0 < ¢ < 0.14 s). Then, the following particle velocity
increases, the distance between the two particle’s centers decreases, and
ultimately a contact forms between them forcing to the so-called kissing
phenomenon (0.14 < ¢t < 0.35 s). Since the vertical configuration is
unstable and particles cannot stay attached (Huang et al., 1994), the
particles start tumbling and are found side by side, which is known as
tumbling phenomenon (0.35 < ¢ < 0.5 s). Subsequently, the following
particle passes ahead of the leading particle causing the deviation of the
leading particle from the middle of the channel influenced by the fluid’s
back-flows along the wall. Ultimately, the particle stagnate against the
wall (¢ ~ 0.65 s) (Ritz and Caltagirone, 1999).

When comparing our results with the results computed by Glowinski
et al. (2001) with A, = 1/60 and h,, = 1/80, it can be seen that they
both predicted similar physical behaviors but with small discrepancy on
timing. It must be noted that the kissing, drafting, and tumbling (DKT)
benchmark case study is a non-smooth case involving several symmetry
breaking. The exact agreement between different numerical algorithms
after the kissing phenomenon is difficult to achieve, in part due to
the lack of achieving mesh-independent results, or the use of different
inter-particle contact models that influences the particles’ position
drastically. To show the completeness of our solution, Fig. 4 presents
particles location and the contour distribution for the longitudinal fluid
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velocity, u, (cm/s), obtained at the middle plane x = 0.5 cm for times
t = 0.01, 0.30, 0.35, 0.45, 0.50, and 0.65 s obtained with M2. One can
distinctly observe that the drafting (+ = 0.3 s), kissing (t = 0.35 s),
and tumbling (+ = 0.45 s) phenomena are indeed taking place. Next
test-cases explore how the DKT benchmark case study changes when
particles are magnetized under a constant magnetic field.

4.2. DKT phenomenon under magnetic field

This computational experiments examines the effect of the applica-
tion of an external magnetic field on the DKT benchmark case study
described in Section 4.1. We apply the external magnetic field both
vertically (see Fig. 5(a)) and horizontally (see Fig. 5(b)), and explore
how the magnetic field affects the sedimentation of the two magnetic
spheres, i.e., the DKT phenomenon (Ke et al., 2017). In both cases,
the applied magnetic potential gradient field, V¢, is set to 50 A/m.
In addition, the fixed dipole model (see Eq. (12)) is employed to
magnetize the particles with a relative susceptibility of y = 2000 (Ly
et al., 1999).

Fig. 6 shows the z-component of the spheres centers, z7, and of the
z-component of the spheres translation velocities, (Uz)f , as function of
time for the calculations using mesh M2. In addition, the results of
the DKT benchmark case study under no magnetic field (obtained in
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(a)

Fig. 14. Configuration of the multi-particle problem where spheres centers are located
on the 3D spatial domain and with application of an external magnetic potential field in
the (a) vertical (z-axis) and (b) horizontal (x-axis) directions. The schematic diagram
illustrates the computational domain including the coordinate system, the potential
magnetic field, the gravitational acceleration g, and random position of particles.

Section 4.1) are also shown for comparison purposes. When the external
magnetic field is applied in the vertical direction, the two magnetic
particles are attracted together forming a string (¢ ~ 0.5 s). The string
last until they contact the bottom wall of the domain. On the other turn,
when the external magnetic field is induced in the horizontal direction,
the spherical particles do not approach each other, but instead they
tumble side-by-side. During the rest of the sedimentation process, the
wake generated by the leading particle leads to a faster settling of
the following particle (+ > 0.5 s), also see Fig. 8 for an illustrative
representation of this phenomenon.

Fig. 7 presents particles settling under vertical magnetic field. The
particle location and the contour distribution for the longitudinal fluid
velocity, u, (cm/s), obtained at the midplane x = 0.5 cm for times
t = 0.01, 0.30, 0.35, 0.45, 0.50, and 0.65 s are shown. As can be seen,
the particles experience longer drafting period, and form a tight string
that does not get separated in the rest of the sedimentation process.

Fig. 8 shows the settling of the spherical particles under an horizon-
tal magnetic field. The particle location and the contour distribution
for the longitudinal fluid velocity, u, (cm/s) obtained at the midplane
x = 0.5 cm for times ¢ = 0.01, 0.30, 0.35, 0.45, 0.50, and 0.65 s are
shown in Fig. 8. In this case, the direction of the particles sedimentation
is transverse to the magnetic field direction, and hence, particles form a
repulsive magnetic force (Ke et al., 2017). For that reason, the particles,
instead of approaching and contacting each other, just tumble as a
non-kissing pair (+ ~ 0.50 s). Shortly after the tumble, the particles
approach the vertical walls, where the external magnetic field is applied
(t = 0.65 s).
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4.3. Multi-particle chaining under magnetic field: 2D

In this test case, we analyze the motion of a random array of
magnetic particles whose centers are located at the midplane of a
rectangular box filled with a Newtonian fluid under the influence of
external magnetic fields (Han et al., 2010; Ke et al., 2017; Ly et al.,
1999). Two computational domains are employed as 2, = [0,4] x
[0,1] % [0,1] ecm® and 2, = [0,1] x [0,4] x [0, 1] cm?® (see Fig. 9). The
initial positions of the spheres centers, with diameter d = 1/16 cm and
density of p, = 1.01 g/cm?, are randomly generated and constrained
such that the minimum distance between particles and between the
particles and walls is equal to 1.5d. The spheres move under the action
of gravity, hydrodynamic forces, mutual dipole-dipole forces, and the
applied external magnetic force (Ke et al., 2017).

Two area fractions of spheres were tested, 20% and 30%, corre-
sponding to 260 and 390 spheres under the effect of both a vertical
and horizontal magnetic fields with magnetic potential gradient of
V¢ = 50 A/m. The fluid and the spheres are initially at rest. On
the channel walls, the no-slip boundary condition is applied for the
fluid velocity. A cyclic boundary condition is applied on the other
boundaries. In addition, the fluid density and kinematic viscosity are
set to p, = 1 g/em® and v = 0.01 cm?/s, respectively. The dipole-
dipole magnetic forces and torques are calculated using the mutual
dipole model, see Eq. (13), with a relative susceptibility of y = 2000 (Ly
et al., 1999). For the inter-particle contacts and particle-wall contacts,
the coefficient of normal restitution, coefficient of friction, Poisson’s
ratio and Young’s modulus are considered to be 0.90, 0.33, 0.33, and
7 x 108 Pa, respectively (Ke et al., 2017).

The calculations were performed in an hexahedral mesh with initial
configuration 128 x 32 x 32 grid cells for the horizontal domain (M)
and 32 x 128 x 32 grid cells for the vertical domain (M,). Again,
the dynamic mesh refinement was employed in the calculations with
two levels of refinement. The time-step used in the simulations is
At = 107* s corresponding to a maximum Courant number of 0.1. The
total computational elapsed time for the simulations was approximately
2h05 m and 2h35 m for the 20% and 30% particle’s area fractions
executed on a 3.00-GHz 48 cores Intel Xeon Gold 6248R CPU processor
with 128 GB of RAM.

Figs. 10 and 11 (Multimedia view) show the snapshots of 260 and
390 particles moving in the rectangular channel under the effect of
gravity and an external magnetic field applied in the vertical direction.
At the initial instants of the simulations (r < 0.2 s), short fragmented
chains or clusters of particles are formed in the y—direction (the same
as the applied external magnetic field direction). Subsequently, at later
instants (0.4 < ¢ < 0.6 s), the short chains start to merge together
and form long chains, i.e., they form mesoscale structures made of
magnetic particles with shapes and orientations comparable to the
results presented by Han et al. (2010), Ke et al. (2017) and Ly et al.
(1999).

Figs. 12 and 13 show the snapshots of 260 and 390 particles
moving in the rectangular channel under the action of gravity and of
an external magnetic field applied in the horizontal direction. Again,
at the initial instants of the simulations (+ < 0.2 s), short fragmented
chains or clusters of particles are formed in the x—direction (the same
as the applied external magnetic field direction). Then, at later instants
(0.4 <1 <0.6 5), the short chains start to merge together and form long
horizontally aligned chains, i.e., they form mesoscale structures made
of magnetic particles with distinct shapes and orientations.

Figs. 10 to 13 also show the presence of isolated magnetic particles
and a number of chains with shorter lengths. Predominantly, these
chains are linear as head-to-tail aggregation of magnetic dipoles, but
as claimed by Ke et al. (2017), Mohebi et al. (1996) and Fermigier and
Gast (1992), it is also observed thick particle clusters due to the lateral
merging of the linear chains.
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Fig. 15. Behavior of a random array of magnetic spheres in a 3D domain with 1.85% particle volume fraction at t =0, 0.5, 1, 1.5, 2 and 3 s under the action of gravity and an
external magnetic field applied in the vertical direction with magnetic potential ¢ =25 A. (Multimedia view).

4.4. Multi-particle chaining under magnetic field: 3D

In this subsection, we analyze the robustness of the proposed FVM-
IBM-DEM-MAG solver by studying the chain formation in MRFs within
a three-dimensional (3D) domain. A random array of magnetic spheres
is placed in a rectangular box filled with a Newtonian fluid under the
influence of gravity and external magnetic fields applied in different
directions (Han et al., 2010). The computational domain employed
was 2 = [0,2] x [0,2] x [0, 1] cm? (see Fig. 14). The diameter of the
spheres is d = 1/16 cm. The initial positions of the spheres centers are
randomly generated with a restriction such that the minimum distance
between particles and between the particles and walls is higher than
1.5d. The spheres move under the action of gravity, hydrodynamic
forces, mutual dipole-dipole forces, and the applied external magnetic
force. The sphere volume fraction was fixed at 1.85%, corresponding to
580 spheres. We considered an external magnetic field with magnetic
gradient potential V¢p = 50 A/m applied vertically or horizontally. The
fluid and the spheres are initially at rest. On the channel walls, the
no-slip boundary condition is imposed for the fluid velocity. A cyclic
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boundary condition is applied on the other boundaries. The fluid and
particle densities are p, = 1 g/cm® and p; = 1.01 g/cm’, respectively.
The fluid kinematic viscosity is v = 0.01 cm?/s. The dipole-dipole
magnetic forces and torques are calculated using the mutual dipole
model, see Eq. (13), with a relative susceptibility of y =2000 (Ly et al.,
1999). For the inter-particle contacts and particle-wall contacts, the
coefficient of normal restitution, coefficient of friction, Poisson’s ratio
and Young’s modulus are considered to be 0.90, 0.33, 0.33, and 7 x 108
Pa, respectively (Ke et al., 2017).

The calculations were performed in an hexahedral mesh with initial
configuration of 64 x 64 x 32 grid cells. Again, the dynamic mesh
refinement was employed in the calculations with maxRefinement = 2.
The time-step used in the simulations is Ar = 10~* s, corresponding to a
maximum Courant number of 0.1. The total computational elapsed time
for the simulations was approximately 18h12m executed on a 3.00-GHz
48 cores Intel Xeon Gold 6248R CPU processor with 128 GB of RAM.

Figs. 15 (Multimedia view) and 16 depict the evolution of the
particles at six time instants for the two directions of the imposed ex-
ternal magnetic potential field. It can be seen that with the application
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Fig. 16. Behavior of a random array of magnetic spheres in a 3D domain with 1.85% particle volume fraction at t =0, 0.5, 1, 1.5, 2 and 3 s under the action of gravity and an
external magnetic field applied in the horizontal direction with magnetic potential ¢ =50 A.

of the magnetic field, the particles become magnetized and acquire
a magnetic dipole moment (Han et al., 2010), which promotes the
particles to aggregate and form short fragmented chains (r < 1 s).
As time advances, these short chains merge together and form longer
chains (i.e., mesoscopic structures) that align in the direction of the
applied magnetic field (Han et al., 2010).

Given the significance of the magnetic field intensity, it is important
to investigate its influence on particle motion by varying the magnitude
of the horizontal magnetic field. Figs. 17 and 18 illustrate the particle
evolution under different magnitudes of the horizontal magnetic field,
namely ¢ = 25 A and ¢ = 100 A, which represent half and double
the strength applied in the case study presented in Fig. 16. When a
lower magnetic field potential is applied (¢ = 25 A), the resulting
chains are shorter containing fewer particles, and there are several
dispersed single particles, doublets and triplets. Conversely, with a
higher magnetic field potential (¢ = 100 A), particles tend to aggregate
into much larger strings, with only a few dispersed throughout the
domain.
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5. Conclusions

A numerical formulation for fully-resolved simulation of magne-
torheological fluids (MRF) consisting of solid magnetic particles sus-
pended in a Newtonian carrier fluid was presented. The implementation
was carried out by extending the open-source CFDE M coupling frame-
work with a force calculation at the particles surface due to the applied
external magnetic field, and with the implementation of the fixed and
mutual dipole-dipole magnetic models to account for the magnetic
interactions between the particles. The overall algorithm procedure
solves a second-order differential equation for the magnetic potential
field, followed by the flow equations, including the continuity and
momentum balance equations, and an immersed boundary algorithm
to model the flow around discrete magnetic particles present in the
flow domain. This approach guarantees a tight coupling between the
dynamics of the fluid and the magnetic solid discrete phase. The
coupling is provided by the calculation of the net hydrodynamic and
magnetic forces and torques exerted by the fluid on the solid particles.



C. Fernandes and S.A. Faroughi

International Journal of Multiphase Flow 169 (2023) 104604

Fig. 17. Behavior of a random array of magnetic spheres in a 3D domain with 1.85% particle volume fraction at t =0, 0.5, 1, 1.5, 2 and 3 s under the action of gravity and an
external magnetic field applied in the horizontal direction with magnetic potential ¢ =25 A (half of the one applied in Fig. 16).

The algorithm subsequently uses the discrete element method to model
the particle motion, comprising linear and rotational motions, as well as
the particles magnetic moment, which in turn provides new boundary
conditions for the fluid domain.

The accuracy and robustness of the proposed FVM-IBM-DEM-MAG
algorithm were evaluated using four benchmark studies. First, for
the sedimentation of two spheres in a rectangular duct containing a
Newtonian fluid without the presence of an external magnetic field
(mimicking the drafting-kissing-tumbling, DKT, phenomena), the parti-
cles velocity and location were compared with numerical data available
in the literature and a good agreement was obtained. The velocity
contour profiles of the particles falling through the Newtonian fluid
distinctly showed several symmetry breaking physical aspects of the
non-smooth DKT phenomenon. We also demonstrated the capability of
the algorithm to predict the dynamics of two magnetic particles falling
under the action of gravity and an external magnetic field, i.e., the
simulation of the DKT benchmark case study but with activating the
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magnetic forces calculations. For a vertical magnetic field, the particles
experience a longer drafting period and form a tight string which
does not separate during the rest of the sedimentation process. For a
horizontal magnetic field, the particles just tumble as a non-kissing
pair and approach the vertical walls of the domain, where the external
magnetic field is applied. The FVM-IBM-DEM-MAG solver was also used
to study the multi-particle chaining when particles are placed randomly
on a 2D-plane. Two area fractions of spheres were tested, 20% and
30%, corresponding to 260 and 390 spheres under the effect of gravity
and a vertical or horizontal magnetic fields. The snapshots of the
particles locations showed that, at the initial instants, short fragmented
chains or clusters of particles are formed. With time advancing, the
short chains merge together and form longer column-like chains always
aligned with the direction of the externally imposed magnetic field.
Finally, the robustness of the FVM-IBM-DEM-MAG solver was tested
in a 3D domain, where an array of 580 randomly distributed magnetic
particles were subjected to gravity and a horizontal or vertical magnetic
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Fig. 18. Behavior of a random array of magnetic spheres in a 3D domain with 1.85% particle volume fraction at t =0, 0.5, 1, 1.5, 2 and 3 s under the action of gravity and an
external magnetic field applied in the horizontal direction with magnetic potential ¢ = 100 A (double of the one applied in Fig. 16).

field. Again, the snapshots of the particles location demonstrated the
formation of long column-like chains in the direction of the applied
magnetic field.

In summary, the results presented in this study show that the newly
developed code can accurately predict the flow patterns and particle
assembly in MRF for a number of benchmark problems. For further
research we expect to implement an extension of the current algorithm
for non-Newtonian viscoelastic flows and also be able to use particles
with non-spherical shapes.
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