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Abstract

Whether top-down feedback modulates perception has deep implications for cognitive theories. Debate
has been vigorous in the domain of spoken word recognition, where competing computational models
and agreement on at least one diagnostic experimental paradigm suggest that the debate may
eventually be resolvable. Norris and Cutler (2021) revisit arguments against lexical feedback in spoken
word recognition models. They also incorrectly claim that recent computational demonstrations that
feedback promotes accuracy and speed under noise (Magnuson, Mirman, Luthra, Strauss, & Harris,
2018) were due to the use of the Luce choice rule rather than adding noise to inputs (noise was in fact
added directly to inputs). They also claim that feedback cannot improve word recognition because
feedback cannot distinguish signal from noise. We have two goals in this paper. First, we correct the
record about the simulations of Magnuson et al. (2018). Second, we explain how interactive activation
models selectively sharpen signals via joint effects of feedback and lateral inhibition that boost
lexically-coherent sublexical patterns over noise. We also review a growing body of behavioral and
neural results consistent with feedback and inconsistent with autonomous (non-feedback) architectures,
and conclude that parsimony supports feedback. We close by discussing the potential for synergy

between autonomous and interactive approaches.
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Contra assertions, feedback improves word recognition:

How feedback and lateral inhibition sharpen signals over noise

Introduction

The decades-old feedback debate in spoken word recognition (SWR) has significant implications for
perception and cognition. It echoes similar debates in vision (Firestone & Scholl, 2016) and cognition
more generally (Clark, 2013). At stake are longstanding questions about modularity (Fodor, 1983) and
cognitive penetrability of perception (Pylyshyn, 1999), with implications for understanding the
cognitive and neurobiological bases of perception. The domain of SWR stands out because the debate
has revolved around predictions from implemented computational models — primarily the interactive
activation model, TRACE (McClelland & Elman, 1986) vs. autonomous models without feedback
(primarily Norris & McQueen, 2008; Norris, McQueen, & Cutler, 2000) — and a crucial experimental
paradigm that both sides agree could provide definitive evidence supporting the need for feedback
(lezically-mediated compensation for coarticulation; Elman & McClelland, 1988). This suggests that
the debate in SWR has high potential to be resolved, which would inform theories of perception and

cognition more generally.

This article was motivated by an erroroneous claim in Norris and Cutler (2021), who revisit the
feedback debate in SWR and devote substantial text to a critique of Magnuson et al. (2018). Magnuson
et al. made a comprehensive case for how feedback can improve SWR that included simulations (with
TRACE; McClelland & Elman, 1986) demonstrating that feedback promotes faster and more accurate
SWR as noise is added to inputs. Norris and Cutler (2021) claim that Magnuson et al. (2018)’s results
were an artifact of a flawed “workaround” in TRACE: emulating noise at a decision stage rather than
adding noise directly to inputs. Norris and Cutler were mistaken: Magnuson et al. (2018) clearly

describe adding noise to model inputs.

However, we do more in this article than simply correct the record on this point. We will review the
case against feedback raised by Norris, McQueen, and Cutler (2018), and we shall see that empirical
and computational results contradict this case, and that feedback is more parsimonious with extant
behavioral and neural data. We will also explain how joint effects of feedback and lateral inhibition
allow interactive activation models to selectively enhance signals over noise — the key to understanding
how feedback improves word recognition under noise. We conclude with suggestions for moving beyond
the feedback debate, and using the tension between autonomous and interactive theories to drive

synergistic advances in understanding SWR.
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The case against feedback in spoken word recognition

The case against feedback in SWR consists of four primary points.

1. Models without feedback should be preferred because feedforward systems are simpler (Norris et

al., 2000, pp. 299, 323).

2. Feedback would hinder processing: Mixing top-down and bottom-up information makes veridical

perception impossible and implies hallucination (Norris et al., 2000, p. 302).

3. Feedback is not necessary: Lexical influences on sublexical tasks can be simulated by adding a

post-perceptual phoneme decision pathway to a feedforward system (Norris et al., 2000).

4. Even in interactive activation models, feedback serves no useful purpose other than fitting data

(lexical influences on phoneme tasks; Norris & Cutler, 2021; Norris et al., 2000).

We disagree with each point. We are motivated to respond to Norris and Cutler (2021) because their
argument depends crucially upon a mistaken assertion about Magnuson et al. (2018)’s simulations and
misunderstandings about the Luce Choice Rule and dynamics of interactive activation models. We first
explain why the four points above are invalid, and provide a detailed explanation of how feedback in
interactive activation models — in concert with lateral inhibition — promotes accuracy and speed. We
conclude with discussions of parsimony, and the relative utility and potential complementarity of ideal
observer (e.g., Shortlist B; Norris & McQueen, 2008) and neurally-inspired algorithmic models (e.g.,
TRACE; McClelland & Elman, 1986).

Is the case against feedback supported?

Are systems without feedback simpler? This assertion could only be true if a feedforward system
could account for everything a feedback system can without additional mechanisms, or by adding a
simpler mechanism. However, a purely feedforward system cannot account for lexical effects on
sublexical decisions (e.g., Ganong, 1980; Rubin, Turvey, & Van Gelder, 1976; Samuel, 1981, 1996,
2001). Norris et al. (2000) added a special-purpose postperceptual decision mechanism to their Merge
model to account for such effects without feedback. This is at least as complex as adding feedback
(Figure 1): It requires duplicating the sublexical layer and adding two sets of weights; feedback adds

one layer of weights and no nodes.

Would feedback hinder perception? Norris and Cutler (2021) assert that feedback necessarily

hinders perception. However, interactive activation models are readily parameterized to provide strong
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Figure 1. Comparing the complexity of purely feedforward architecture (left) with the addition

of feedback (center), as in TRACE, or sublexical decision nodes (right), as in Merge (Norris et
al., 2000). Either feedback connections or decision nodes are required to account for lexical
effects on sublexical decisions. The decision-node architecture requires more additional nodes

and connections than feedback (dashed lines). Reproduced from Magnuson (2022b).

bottom-up priority — as Magnuson et al. (2018) discuss (p. 12; see also Magnuson, Mirman, & Harris,
2012; Magnuson, Mirman, & Myers, 2013; McClelland & Elman, 1986) — while also accurately
simulating human decision delays and misperceptions (McClelland, Mirman, Bolger, & Khaitan, 2014;
Mirman, McClelland, & Holt, 2005). The original TRACE parameters achieve a balance sufficient to
simulate dozens of aspects of human speech perception and SWR, while enforcing strong bottom-up
priority (Magnuson & Crinnion, 2022). Note that this is a remarkable aspect of the model; it is

unusual for a complex model to generalize to many phenomena with fixed parameters.

Is feedback necessary in theories of spoken word recognition? While a postperceptual
sublexical decision mechanism (Figure 1, right panel) can simulate lexical influences on some sublexical
tasks, there are crucial exceptions. Samuel (1997) makes a compelling case that lexically-driven
selective adaptation from phonemes replaced with noise supports interaction, but Norris et al. (2000)
argue the results could actually manifest at a lexical rather than sublexical level. While we disagree, it
is the case that both sides agree that lexically-mediated compensation for coarticulation (LCfC) (Elman
& McClelland, 1988) provides a diagnostic test for distinguishing feedforward and feedback accounts
(Norris, McQueen, & Cutler, 2016; Pitt & McQueen, 1998).

In LCLC, the question is whether a lexically-restored phoneme can drive a sublexical coarticulatory
effect (compensation for coarticulation; Mann & Repp, 1981), which would be consistent only with
feedback (on the logic that CfC involves a prelexical, phonetic-level interaction, and so lexical influence
on CfC would constitute what McClelland et al., 2014, call a ‘knock-on consequence’ of interaction).
Previous positive results (e.g., Elman & McClelland, 1988; Magnuson, McMurray, Tanenhaus, & Aslin,
2003; Samuel & Pitt, 2003) have been called into question due to replication failures (McQueen, Jesse,
& Norris, 2009), and evidence that transitional probabilities in nonwords can also drive phoneme

restoration that can drive CfC in the absence of lexical context (Pitt & McQueen, 1998). Recently,
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though, Luthra et al. (2021) observed that few studies verified that items could separately drive
phoneme restoration and CfC before being combined in LCfC; if items cannot drive the component
effects separately, they will not drive LCfC when combined. Luthra et al. (2021) reported robust,
replicable LCfC effects when they only used materials capable of generating phoneme restoration and
compensation for coarticulation separately before being combined in LCfC (including materials where

transitional probability and lexical context had opposite biases).!

There is remarkably strong neurophysiological evidence from monkeys that feedback connections from
higher levels in the visual system ‘serve to amplify and focus’ responses in lower levels (Hupé et al.,
1998). There are numerous neural studies that suggest feedback supports online human language
processing. Setting aside cases that Norris et al. (2016) argue are not sufficiently specific (though we do
not agree with this assessment; e.g., Gow & Olson, 2015; Gow, Segawa, Ahlfors, & Lin, 2008; Myers &
Blumstein, 2008), recent ERP evidence for early impact of lexical context suggests feedback is

necessary (Getz & Toscano, 2019; Noe & Fischer-Baum, 2020).

In light of this new evidence, we conclude that (a) feedback is necessary and (b) autonomous
alternatives to feedback (Norris & McQueen, 2008; Norris et al., 2000) are insufficient: they cannot
account for lexically-mediated compensation for coarticulation or early lexical modulation of low-level
neural responses because they prohibit lexical-level information from interacting with sublexical

computations.

Does feedback have a useful purpose? The assertion that feedback serves no useful purpose
follows from a misunderstanding about interactive activation and depends on two erroneous claims and

one outdated claim.

i. Claim: Feedback cannot distinguish signal from noise, so feedback can only ‘reinforce the status
quo’ (Norris & Cutler, 2021, pp. 3-4). Therefore, the claim is that the system can do no better
than to select the word with best fit to the bottom-up input (Norris et al., 2000, p. 301), and it
would be impossible for feedback to improve upon this, because feedback can only mirror input

(whether signal or noise).

ii. Claim: Feedback in TRACE does not promote faster word recognition. In TRACE simulations
comparing recognition times for 21 specially-selected words with feedback on or off (Frauenfelder
& Peters, 1998), as many words were recognized more quickly without feedback as were recognized
more quickly with feedback (cited as critical support by Norris et al., 2000, p. 302, p. 324).
1 McQueen, Jesse, and Mitterer (2023) argue that some unspecified combination of stimulus flaws, transitional

probabilities, and unknown factors could drive these new LC{C data. As Luthra, Crinnion, Saltzman, and Magnuson

(submitted) reply, though, this case is ad hoc, whereas interaction provides a coherent and parsimonious explanation.
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iii. Claim: Feedback does not promote faster or more accurate word recognition in noise. Norris and
Cutler (2021) (mistakenly) claim simulations in Magnuson et al. (2018) only appear to show
feedback advantages but are due to a “workaround” of posthoc application of the Luce Choice

Rule to activations, rather than direct addition of noise to model inputs.

Figure 2. Interactive activation example. Arrows denote excitatory connections (7 input
phonemes feed forward to 3 words, which send feedback to constituent phonemes). Edges with
bulb connectors indicate lateral inhibition links within layers. Reproduced from Magnuson

(2022a,).

First, consider claim (i), feedback cannot distinguish signal from noise. The assumption that feedback
cannot selectively reinforce signal over noise neglects lateral inhibition. Consider Figure 2. If the input
is /tel/, TELL would be most activated by the bottom-up signal, CAT and LOAD would be partially

activated by the signal, and all three would receive additional activation if noise were added.

Without lateral inhibition, feedback must simply mirror the bottom-up combination of signal plus
noise. However, so long as TELL has greater bottom-up support than other words, when it becomes
even slightly more activated than other words, it begins to inhibit CAT and LOAD, reducing the
feedback those nodes send to their constituent phonemes. The subsequently enhanced feedback from
TELL promotes greater activation of /t/, /e/, and /1/, shifting the balance of signal and noise already,
and lateral inhibition between phonemes further increases that advantage. As excitatory activation
iteratively resonates vertically (words <> phonemes) and inhibition flows laterally within each layer, the
signal will be sharpened (Figure 3). When inputs are noisy, signal is promoted and activation due to
noise is inhibited due to iterative refinement. Typically, this will drive faster target activation and,
under noise, better accuracy (as demonstrated via simulations by Magnuson et al., 2018, who observed
advantages in proportion correct of ~0.05 to ~0.2 at various levels of noise, as well as robust 5-10%
advantages in response times for correctly recognized items; see their Figure 3, as well as Figures Al

and A2 below).

Next, consider claim (ii): feedback does not promote faster word recognition. In simulations with only
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Figure 3. A schematic of iterative refinement (or signal sharpening, cf. Blank & Davis, 2016) in
interactive activation. (A) Given input consistent with ‘tell’, TELL becomes strongly activated
while CAT and LOAD become partially activated. (B) TELL inhibits CAT and LOAD. (C)
Words send feedback to constituent phonemes, with lateral inhibition at the phoneme level
enhancing the advantage for phonemes that are relatively strongly activated. (D) Over
subsequent cycles of excitatory and inhibitory activation flow, the activations for TELL and its
phonemes are iteratively enhanced / sharpened. Note that if random noise were added to the
inputs, the same refinement / sharpening would happen so long as the target word has at least
slightly higher activation than other words. The most important connections are highlighted in
red in each panel, with darker red indicating greater activation. Reproduced from Magnuson

(2023).
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21 words, as many words were recognized more quickly without feedback as were recognized more
quickly with feedback (Frauenfelder & Peters, 1998). However, that result is superseded by Magnuson
et al. (2018)’s simulations with hundreds of words. Magnuson et al. found that, even without noise,
57% of words from the original ~200-word TRACE lexicon were recognized more quickly with feedback
and 27% were slower (the rest did not change). With a ~900-word lexicon, without noise, 38% were
recognized more quickly with feedback, while 36% were recognized more slowly. However, for both
lexicons, progressively stronger feedback advantages emerged (in both speed and accuracy) as noise
increased (with substantial noise, ~60-80% were recognized more quickly with feedback, and accuracy

was substantially higher with feedback than without at even moderate levels of noise).

Finally, claim (iii) is that feedback advantages are artifactual (Norris & Cutler, 2021, p. 3):

...Can recognition of a degraded signal be improved by the kind of activation feedback
incorporated in TRACE? The answer is again no ... The degraded-speech case still
regularly causes confusion (e.g., [Magnuson et al., 2018]), and may have its origin in the
original version of TRACE, which ruled out noise both in the input and during processing
... (The effect of noise was simulated by adding a constant amount of noise to a decision
process — the Luce choice rule — operating on the output of the network.) In such a system,
where feedback and noise are operating at different levels, feedback (as part of processing)
can alter the relative activation of a word and its competitors but at the same time have no
effect at all on any noise (which operates separately on final outputs) ... because of a
workaround in the model, simulations using TRACE can give the impression that feedback
can improve performance. ... In a real system with degraded input, signal and noise are in
the same processed channel, and feeding activation back to the phoneme level will boost
both the signal and the noise equally. Feedback can here do nothing to improve the signal

to noise ratio.

Norris and Cutler (2021) mistakenly claim Magnuson et al. (2018) simulated noise by “adding a
constant amount of noise to a decision process - the Luce choice rule - operating on the output of the
network.” This is incorrect. Magnuson et al. did apply the choice rule to activations to generate
predicted response probabilities (standard in many previous simulations; e.g., Frauenfelder & Peters,
1998; McClelland & Elman, 1986), but this had nothing to do with noise. The noise procedure was
specified in a subsection labeled ‘Noise’ (Magnuson et al., 2018, pp. 3-4); noise was added before

response probabilities were calculated:

Gaussian noise was sampled from a normal distribution function and added independently
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to each element of the input stimulus vector for each time step (cf. McClelland, 1991).

Since noise was added to inputs, noise propagated forward and backward through the system, and thus
signal and noise were in the “same processed channel”. The Luce Choice Rule rescales values
(amplifying larger values and squashing smaller values). Thus, it could amplify differences present in
raw activations, but it could not gemerate differences that were not already there. To assuage potential
concerns, we present a replication of Magnuson et al’s feedback advantages using raw activations (i.e.,

with no use of the Luce Choice Rule) in the Appendix.?

The case against feedback is not supported. In summary, autonomous models are not simpler
(see Magnuson et al., 2018, for a technical case that the feedforward alternative is more complex); there
is mo evidence that feedback necessarily hinders perception (and there are many demonstration proofs
that feedback and feedforward gains can be balanced to provide benefits of feedback while maintaining
bottom-up priority); feedback is necessary to account for (a) robust effects (Luthra et al., 2021)
that autonomy proponents agree provide a gold-standard test for feedback (McQueen et al., 2009;
Norris et al., 2016; Pitt & McQueen, 1998) and (b) recent evidence for early lexical modulation of
low-level ERP responses to speech (e.g., Getz & Toscano, 2019; Noe & Fischer-Baum, 2020). Crucially
Magnuson et al. (2018) have demonstrated (and we have replicated in the Appendix) feedback’s useful
purpose (in concert with lateral inhibition): making the system robust against noise. Other potential
feedback benefits include predicting/anticipating inputs (Bar, 2003), attentional control, and

stabilization (Bonte, Parviainen, Hytonen, & Salmelin, 2005).

Parsimony

Given two explanations, so long as both account for relevant data, Occam counsels us to prefer the
simpler one. Proponents of autonomous models assert that SWR models without feedback are
“incontrovertibly simpler” (Norris et al., 2016), but have not provided a formal basis for this assertion
(Magnuson et al., 2018). Indeed, autonomous models add a special-purpose “decision” pathway outside
normal perception to account for lexical effects on sublexical tasks that is at least as complex as a
feedback pathway (Norris & McQueen, 2008; Norris et al., 2000), and arguably more complex
(Magnuson et al., 2018).

2 McClelland (1991) and Movellan and McClelland (2001) acknowledge that Massaro (1989) was correct that TRACE
activations converted to response probabilities via the Luce choice rule violate logistic additivity, but they also
demonstrate that adding noise to TRACE inputs and/or activations instead is preferable because the resulting
activations do not violate principles of Bayesian inference; thus, in many cases, modelers should add noise to TRACE (or
similar interactive activation models) rather than applying the Luce choice rule. However, to be clear, Magnuson et al.

(2018) only applied the Luce choice rule after applying noise to inputs.
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Autonomous models are increasingly incompatible with relevant data. As discussed, autonomous
models cannot explain LC{C (recently demonstrated to be robust when items are rigorously pretested
Luthra et al., 2021) or recent ERP evidence for rapid lexical impact on low-level responses to speech
(Getz & Toscano, 2019; Noe & Fischer-Baum, 2020). Other examples in speech and SWR, appear to
require feedback (e.g.: Blank & Davis, 2016; Bonte et al., 2005; Cope et al., 2017; Samuel, 1997;
Sohoglu & Davis, 2020; Sohoglu, Peelle, Carlyon, & Davis, 2012). Furthermore, there is pervasive
evidence for feedback in vision (e.g.: Bar et al., 2006; Delorme, Rousselet, Macé, & Fabre-Thorpe, 2004;
Hupé et al., 1998; McMains & Kastner, 2011; Mechelli, 2004; Zanto, Rubens, Bollinger, & Gazzaley,
2010; Zanto, Rubens, Thangavel, & Gazzaley, 2011; Zhang et al., 2014) and audition (e.g.: Alain,
Arnott, & Picton, 2001; Bendixen, SanMiguel, & Schroger, 2012; Davis & Johnsrude, 2007; Elhilali,
Xiang, Shamma, & Simon, 2009; Kazimierczak et al., 2022; Strait, Kraus, Parbery-Clark, & Ashley,

2010; Sussman, Winkler, Huotilainen, Ritter, & Néaatanen, 2002).

On balance, the principle of parsimony favors feedback. For extensive theoretical discussions that
extend beyond the domain of SWR, see Bar (2003), Clark (2013), Gilbert and Li (2013), Lupyan
(2015), and Spivey (2023).

Discussion

The case that autonomous models should be preferred to feedback does not hold. Behavioral (e.g.,
Luthra et al., 2021) and neural (e.g., Getz & Toscano, 2019; Noe & Fischer-Baum, 2020) empirical
results support sublexical impact of lexical knowledge in ways models without feedback (Norris &
McQueen, 2008; Norris et al., 2000) cannot accommodate, and simulations (Magnuson et al., 2018)
demonstrate how feedback in concert with lateral inhibition in interactive activation sharpens signals

relative to noise (see the Appendix for a replication using raw TRACE activations).

Proponents of interactive and autonomous theories appear, in recent publications, to have different
goals. Norris and Cutler (2021) claim that SWR systems cannot make better choices than to select the
word with best initial bottom-up match to input. To take this literally would be inconsistent with
Bayes’ theorem, which is why Shortlist B takes into account both prior probability and word

likelihoods when evaluating bottom-up input.

If one is primarily concerned with ‘computational adequacy’ (achieving the best possible performance;
McClelland & Elman, 1986), one could stop at choosing the best item with respect to priors and
likelihoods. However, we are interested in ‘psychological adequacy’ (McClelland & Elman): how
humans recognize spoken words, with the aim of developing theories that span behavior, cognition,

development, and neurobiology (cf. Magnuson et al., 2020). On this view, the criteria for model
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comparisons goes beyond how to most simply achieve highest performance, with the aim of providing
an explanation most compatible with human behavior and neurobiology; with the goal of advancing
theories towards comprehensive accounts of the cognitive and neural bases for human performance.
This view also endorses a search for algorithms that approach optimality via satisficing (Simon, 1956)
algorithms that reduce computational complexity (Gigerenzer & Goldstein, 1991), and may better
reflect mechanisms underlying human SWR, which must operate over an ambiguous signal via limited
cognitive resources under severe time pressure (cf. McClelland et al., 2014, who explicitly frame their
interactive activation hypothesis as the basis for humans to approrimate optimality under the

constraints of real-time processing and partial information).

Through this lens, feedback provides two interesting steps beyond an initial rational analysis / ideal
observer model. First, while Shortlist B is endowed with lexical knowledge (priors and likelihoods) and
the luxury of conditioning interpretation of bottom-up inputs on lexical knowledge (without
considering algorithmic or neural constraints), feedback in interactive activation instantiates an implicit
generative model that embodies approximate word likelihoods given input patterns (since words feed
back to their constituent phonemes), without the need to store a lookup table of likelihoods.? While
the TRACE architecture is not fully neurally plausible, its “neurally inspired” nature reduces the

distance towards developing more realistic models.

Second, feedback in concert with lateral inhibition provides ‘signal sharpening’ (cf. Blank & Davis,
2016) via a process of iterative refinement, schematized in Figure 3. Small bottom-up advantages are
amplified by successive cycles of lateral resonance (inhibition) and vertical resonance
(feedforward-feedback). As inputs become noisier, response times in our simulations become longer, as
it takes more iterations for signals to sharpen sufficiently to meet the decision threshold (and as inputs
become noisier, there is a greater chance of misses [targets failing to reach threshold] or false alarms

[non-targets exceeding threshold)).

If iterative refinement ideally settles on the word with the best bottom-up fit, how does it yield better
results than a system that would just choose the word with best bottom-up fit immediately (cf. Norris
et al., 2000)? This follows from having a decision policy (see Appendix). Norris (2006) points out that
when inputs are ambiguous, trade-offs of time constraints and error costs may modify ideal decision
policies. Decision policies (which may involve an absolute threshold, or the relative activation of the
most active item to the next-most active item; cf. Hannagan, Magnuson, & Grainger, 2013) can
implicitly represent confidence: e.g., more confidence is warranted when the top lexical candidate is

marginally more likely than many words with low likelihoods vs. one where the target has the same

3 Of course, one could respond that, e.g., frequency is ‘given’ in TRACE as a lookup table. However, phoneme — word

weights proportional to frequency are consistent with general learning principles (Dahan, Magnuson, & Tanenhaus, 2001).
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likelihood but is marginally more likely than a single item (while other items have much lower
likelihoods). Indeed, in the former case, iterative refinement via interaction will boost the target more

strongly.

With the goal of psychological adequacy, it is productive to consider how models like Shortlist B and
TRACE complement one another. Shortlist provides a baseline as an approximate ideal observer
model. Shortlist does not (yet) address how such a model could be implemented in a
biologically-plausible way, nor how such a system could develop. Shifting from a debate mode to the
aim of seeking synergy between autonomous and interactive approaches, we might focus on
understanding how human performance and/or neurobiology differ from the ideal observer baseline
(which would require developing falsifiable hypotheses from Shortlist), whether models like TRACE
differ from the ideal observer baseline in human-like ways (which would be facilitated by developing
new falsifiable hypotheses from TRACE), or developing information processing theories at all three of
Marr’s levels, and comparing theories that start either from assumptions of autonomy or interaction.
This might lead us to discover ways to improve or merge the approaches, which would be a welcome

shift from the current focus on debate.

While it is important to correct errors and misunderstandings (our motivation for writing this
response), the feedback debate must be resolved through empirical studies, model comparisons, and
working towards theories that integrate Marr’s three levels. This will serve what we assume is a shared
goal with our respected opponents in this debate: explaining the cognitive, perceptual, and

neurobiological bases of human language processing.
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Appendix

Simulation: Feedback and activations under noise

Procedure. In this simulation, we use the same approach as Magnuson et al. (2018) to
compare word recognition accuracy and recognition time in TRACE — with the important alteration

that we use raw activations rather than response probabilities.

We conducted simulations using jsTRACE, a recent reimplementation of TRACE in JavaScript
(Magnuson & Curtice, in preparation). jsSTRACE performs identically to JTRACE but updates
near-obsolete aspects of the Java implementation and provides the ability to do batch scripting via
external JavaScript code. We used the default slex TRACE lexicon, consisting of 212 words (as well as
the "silence" word used to represent a state of no input; the silence word was not included in analyses).
We used three levels of feedback (0.00, 0.015, and 0.03, the latter being the default level with small
lexicons in TRACE). We combined each level of feedback with seven levels of Gaussian noise (with
mean of zero and standard deviation ranging from 0.0 to 1.5 in steps of 0.25). A value sampled from the
distribution was added independently to each cell of the input matrix prior to the simulation. To ensure
that results under noise were robust, we conducted 10 simulations of every word in the lexicon at all

levels of noise greater than zero. We allowed simulations to run for 100 time steps (cycles) in TRACE.

Decision policy. To assess how quickly a model "identifies" a word, we need a decision policy. We
cannot simply take the maximum value, as a target’s activation may continue increasing throughout an
entire simulation. We use a simple threshold-based policy, where a correct identification is defined as
the target reaching or exceeding that threshold and no other item reaching it. Recognition time is the
cycle where the target’s activation first reaches or exceeds the threshold. We first identified the
activation threshold that would maximize accuracy for zero feedback without noise; this was 0.4. We
then applied that threshold to every simulation (that is, at every level of feedback and noise). Note
that any potential bias in this policy favors simulations without feedback, since the threshold optimizes

accuracy with zero noise and zero feedback.
Crucially, all analyses were applied to raw activations. We did not transform activations to

response probabilities.

Results

In Figure A1, we see a clear replication of the results of Magnuson et al. (2018) based on raw
activations. Recognition time is faster with feedback than without at every level of noise — with the

exception of sd = 1.50, where only 3 correct trials (out of 2120 trials) occurred with feedback set to 0.0
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Figure A1. Results of Simulation 1. Replication of Magnuson et al. (2018) using activations
instead of response probabilities. Each point represents the outcome of simulating every word in
the 212-word slex lexicon, with 10 simulations conducted with each word at each noise level
greater than zero. The recognition threshold was set to 0.4, which maximized accuracy with

feedback and noise set to zero.

(compared to 37 correct trials with feedback at 0.015 and 169 correct trials with feedback at 0.03),

rendering this point uninterpretable. Feedback allows higher accuracy once noise is added.

In Figure A2, we plot recognition times for words that were correctly recognized with feedback
at the default value of 0.03 and without feedback (set to 0.0) at each noise level. Again, we repeated
the simulation of each word 10 times at each level of noise greater than zero. A clear, consistent

advantage is observed for the majority of words at each level of noise.

Conclusions

Contra assertions by Norris and Cutler (2021), feedback promotes more robust word recognition
performance, and the results reported by Magnuson et al. (2018) were not an artifact of using response

probabilities rather than raw activations.
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Figure A2. Comparing activation-based recognition time with feedback (set to 0.03) and without
feedback (0.0) in Simulation 1. At each noise level greater than 0, there were 2120 simulations
(10 repetitions of each word with Gaussian noise added to the input). Results are plotted only
for words that were correctly recognized both with and without feedback. Items classified as
"faster" were recognized more quickly (reached the threshold) more quickly with feedback than
without; "equal" reached threshold at the same cycle with and without feedback; "slower" were

reached the threshold later with feedback than without.
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