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Abstract

Recent breakthroughs in computing power have made it feasible to use machine learning and deep learning
to advance scientific computing in many fields, including fluid mechanics, solid mechanics, materials science,
etc. Neural networks, in particular, play a central role in this hybridization. Due to their intrinsic architecture,
conventional neural networks cannot be successfully trained and scoped when data is sparse, which is the case
in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect
physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct
neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs),
(ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These
methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multi-
physics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension
to these new simulation paradigms, especially when the real-time prediction of complex multi-physics systems
is required. All these models also come with their own unique drawbacks and limitations that call for further
fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs,
PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their
applications are reviewed, limitations are discussed, and future research opportunities in terms of improving
algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers
are presented. This critical review provides researchers and engineers with a solid starting point to comprehend
how to integrate different layers of physics into neural networks.

Keywords: Physics-guided Neural Networks, Physics-informed Neural Networks, Physics-encoded Neural
Networks, Solid Mechanics, Fluid Mechanics, Machine Learning, Deep Learning, Scientific Computing

1. Introduction

Machine learning (ML) and deep learning (DL) are becoming the key technologies to advance scientific
research and computing in a variety of fields, such as fluid mechanics [1], solid mechanics [2], materials
science [3], etc. The emergence of multiteraflop machines with thousands of processors for scientific computing
combined with advanced sensory-based experimentation has heralded an explosive growth of structured and
unstructured heterogeneous data in science and engineering fields. ML and DL approaches were first introduced
to scientific computing to address the lack of efficient data modeling procedures, which prevented scientists
from interacting quickly with heterogeneous and complex data [4]. These approaches show transformative
potential because they enable the exploration of vast design spaces, the identification of multidimensional
connections, and the management of ill-posed issues [5] [6] [7]. However, conventional ML and DL methods are
unable to extract interpretative information and expertise from complex multidimensional data. They may be
effective in mapping observational or computational data, but their predictions may be physically irrational
or dubious, resulting in poor generalization [8| [9, [10]. For this reason, scientists initially considered these
methodologies as a magic black box devoid of a solid mathematical foundation and incapable of interpretation.
Notwithstanding, learning techniques constitute a new paradigm for accurately solving scientific and practical
problems orders of magnitude faster than conventional solvers.

Deep learning (i.e., neural networks mimicking the human brain) and scientific computing share common
historical and intellectual links that are normally unrealized, e.g., differentiability [8]. Figure [I| shows a
schematic representation of the history of development for a plethora of scientific computing and DL approaches
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Figure 1: A schematic representation of the history of development, including only seminal works, for scientific
computing and DL approaches. For scientific computing, the following are listed: Finite Difference Method
(FDM) [23], Molecular Dynamics (MD) [24], Finite Element Method (FDM) [25], Large Eddy Simulation
(LES) [26], Discrete Element Method (DEM) [27], Finite Volume Method (FVM) [28], Immersed Boundary
Method (IBM) [29], Smoothed Particle Hydrodynamics (SPH) [30], Lattice Boltzmann Method (LBM) [31],
and Discontinuous Galerkin (DG) [32]. For deep learning, the following are listed: Deep Neural Network (DNN)
[33], Recurrent Neural Network (RNN) [34], Physics-guided Neural Network (PgNN) [35], Convolutional Neural
Network (CNN) [36], Generative Adversarial Network (GAN) [37], Physics-informed Neural Network (PiNN)
[38], Neural Operators (NOs) [39], and Physics-encoded Neural Network (PeNN) [40].

(only seminal works are included). In the last decade, breakthroughs in DL and computing power have
enabled the use of DL in a broad variety of scientific computing, especially in fluid mechanics [1l [10 [11], solid
mechanics 2] [12] [13], and materials science [14} [15] [16], albeit at the cost of accuracy and loss of generality
[17]. These data-driven methods are routinely applied to fulfill one of the following goals: (i) accelerate
direct numerical simulations using surrogate modeling [18], (ii) accelerate adjoint sensitivity analysis [§], (iii)
accelerate probabilistic programming [19], and (iv) accelerate inverse problems [20]. For example, in the first
goal, the physical parameters of the system (e.g., dimensions, mass, momentum, temperature, etc.) are used
as inputs to predict the next state of the system or its effects (i.e., outputs), and in the last goal, the outputs of
a system (e.g., a material with targeted properties) are used as inputs to infer the intrinsic physical attributes
that meet the requirements (i.e., the model’s outputs). To accomplish these goals, lightweight DL models can
be constructed to partially or fully replace a bottleneck step in the scientific computing processes [17, 21 [22].

Due to the intrinsic architecture of conventional DL methods, their learning is limited to the scope of the
datasets with which the training is conducted (e.g., specific boundary conditions, material types, spatiotem-
poral discretization, etc.), and inference cannot be successfully scoped under any unseen conditions (e.g., new
geometries, new material types, new boundary conditions, etc.). Because the majority of the scientific fields
are not (big) data-oriented domains and cannot provide comprehensive datasets that cover all possible condi-
tions, these models trained based on sparse datasets are accelerated but not predictive [22]. Thus, it is logical
to leverage the wealth of prior knowledge, the underlying physics, and domain expertise to further constrain
these models while training on available, sparse data points. Neural networks (NNs) are better suited to
digest physical-driven or knowledge-based constraints during training. Based on how the underlying physics is
incorporated, the authors categorized neural network applications in scientific computing into three separate
types: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii)
physics-encoded neural networks (PeNNs).

In PgNN-based models, off-the-shelf supervised DL techniques are used to construct surrogate mappings
between formatted inputs and outputs that are generated using experiments and computations in a controlled
setting and curated through extensive processes to ensure compliance with physics principles and fundamental
rules [22]. Such models require a rich and sufficient dataset to be trained and used reliably. A PgNN-based
model maps a set of inputs x to a related set of outputs y using an appropriate function F with unknown
parameters w such that y = F(x;w). By specifying a particular structure for F, a data-driven approach
generally attempts to fine-tune the parameters w so that the overall error between true values, y, and those
from model predictions, y, is minimized [7]. For complex physical systems, the data is likely sparse due to
the high cost of data acquisition [41]. The vast majority of state-of-the-art PgNNs lack robustness and fail to
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fulfill any guarantees of generalization (i.e., interpolation [38] [42] and extrapolation [43]). To remediate this
issue, PiNNs have been introduced to perform supervised learning tasks while obeying given laws of physics
in the form of general non-linear differential equations [44] [10] [45] [46] [6].

The PiNN-based models respect the physical laws by incorporating a weakly imposed loss function con-
sisting of the residuals of physics equations and boundary constraints. They leverage automatic differentiation
[47] to differentiate the neural network outputs with respect to their inputs (i.e., spatiotemporal coordinates
and model parameters). By minimizing the loss function, the network can closely approximate the solution
[48, [49]. As a result, PiNNs lay the groundwork for a new modeling and computation paradigm that enriches
DL with long-standing achievements in mathematical physics [38], [44]. The PiNN models face a number of
limitations relating to theoretical considerations (e.g., convergence and stability [50, 6] [51]) and implementa-
tion considerations (e.g., neural network design, boundary condition management, and optimization aspects)
[40, [10]. In addition, in cases where the explicit form of differential equations governing the complex dynamics
is not fully known a priori, PINNs encounter serious limitations [52]. For such cases, another family of DL
approaches known as physics-encoded neural networks (PeNN) has been proposed [40].

The PeNN-based models leverage advanced architectures to address issues with data sparsity and the lack
of generalization encountered by both PgNNs and PiNNs models. PeNN-based models forcibly encode the
known physics into their core architecture (e.g., NeuralODE [53]). By construction, PeNN-based models extend
the learning capability of a neural network from instance learning (imposed by PgNN and PiNN architectures)
to continuous learning [53]. The encoding mechanisms of the underlying physics in PeNNs are fundamentally
different from those in PiNNs [54] 55], although they can be integrated to achieve the desired non-linearity of
the model. In comparison to PgNNs and PiNNs, the neural networks generated by the PeNN paradigm offer
better performance against data sparsity and model generalizability [40].

There is another family of supervised learning methods that do not fit well under PgNN, PiNN, and
PeNN categories as defined above. These models, dubbed as neural operators, learn the underlying linear and
nonlinear continuous operators, such as integrals and fractional Laplacians, using advanced architectures (e.g.,
DeepONet [39]156]). The data-intensive learning procedure of a neural operator may resemble the PgNN-based
models learning, as both enforce the physics of the problem using labeled input-output dataset pairs. However,
a neural operator is very different from a PgNN-based model that lacks generalization properties due to under-
parameterization. A neural operator can be combined with PINN and PeNN methods to train a model that
can learn complex non-linearity in physical systems with extremely high generalization accuracy [43]. The
robustness of neural operators for applications requiring real-time inference is a distinguishing characteristic
[57].

This review paper is primarily intended for the scientific computing community interested in the appli-
cation of neural networks in computational fluid and solid mechanics. It discusses the general architectures,
advantages, and limitations of PgNNs, PiNNs, PeNNs, and neural operators and reviews the most prominent
applications of these methods in fluid and solid mechanics. The remainder of this work is structured as fol-
lows: In Section 2, the potential of PgNNs to accelerate scientific computing is discussed. Section 3 provides
an overview of PiINNs and discusses their potential to advance PgNNs. In Section 4, several leading PeNN
architectures to address critical limitations in PgNNs and PiNNs are discussed. Section 4 reviews the recent
developments in neural operators. Finally, in Section 6, an outlook for future research directions is provided.

2. Physics-guided Neural Networks, PgNNs

PgNNs use off-the-shelf supervised DL models to statistically learn the known physics of a desired phe-
nomenon by extracting features or attributes from training datasets obtained through well-controlled ex-
periments and computations [568]. PgNNs consist of one or a combination of Multilayer Perceptron (MLP,
alternatively called artificial neural networks, ANN, or deep neural networks, DNN, in different studies rele-
vant to this review) [58], CNN [58], RNN [58], GAN [59], and graph neural networks (GRNN) [60]. Although
GAN models are categorized as unsupervised learning, they can be classified as PgNNs, in the context of this
paper, because their underlying training is framed as a supervised learning problem [59] 61]. A schematic
representation of a sample PgNN architecture is illustrated in Fig. [2l Any physical problem includes a set of
independent features or input features as x = [X1, Xo, X3, ..., X;;] and a set of dependent variables or desired
outputs as y = [¥1,Ya,Ys,...,Y,]. The data describing this physical phenomenon can be generated by experi-
mentation (e.g., sensor-based observation, etc.), closure laws (e.g., Fourier’s law, Darcy’s law, drag force, etc.),
or the solution of governing ordinary differential equations (ODE) and/or partial differential equations (PDE),
e.g., Burger’s equation, Navier-Stokes equations, etc. The dependent variables and independent features thus
comply with physics principles, and the trained neural network is guided inherently by physics throughout
training.

In PgNNs, the neurons in each layer are connected to the neurons in the next layer through a set of
weights. The output of each node is obtained by applying an activation function (e.g., rectified linear unit
(ReLU), Tanh, Sigmoid, Linear, etc.) to the weighted sum of the outputs of the neurons in the preceding
layer plus an additional bias [62]. This procedure sequentially obtains the output of the neurons in each layer,
starting with the input. This process is typically called forward propagation. A loss function (or, alternatively,
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a cost function) is subsequently defined and calculated in order to evaluate the accuracy of the prediction.
Commonly used loss functions for regression are L1 [63] and mean-squared-error (MSE) [63]. The next step in
training involves error backpropagation, which calculates the partial derivatives/gradients of the cost function
with respect to weights and biases (i.e., 8 as shown in Fig. [2)). Finally, an optimization technique, such as
gradient descent [64], stochastic gradient descent [64], or mini-batch gradient descent [64], is used to minimize
the loss function and simultaneously compute and update € parameters using the calculated gradients from
the backpropagation procedure. The process is iterated until the desired level of accuracy is obtained for a
PgNN.
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Figure 2: A schematic architecture of PgNNs. Panel (a) shows the typical generation of training datasets
using known closure laws, direct numerical simulation of PDEs and ODEs, or experimentation to comply with
physical principles. Panel (b) shows the architecture of a PgNN model consisting of a simple feed-forward neural
network (which can be replaced with any other network type). The loss function made of Ly, Ly regularization,
MSE, or other user-defined error functions is minimized iteratively in the training phase. 6 is the learnable
parameter corresponding to weights/biases in the neural network that can be learned simultaneously while
minimizing the loss function.

In recent years, PgNN has been extensively used to accelerate computational fluid dynamics (CFD) [65],
computational solid mechanics [66], and multi-functional material designs [67]. It has been employed in all
computationally expensive and time-consuming components of scientific computing, such as (i) pre-processing
[68, 65 [69], e.g., mesh generation; (ii) discretization and modeling [70} [71] [72], e.g., Finite Difference (FDM),
Finite Volume (FVM), Finite Element (FEM), Discrete Element Method (DEM), Molecular Dynamics (MD),
etc.; and (iil) post-processing, e.g., output assimilation and visualization [73}[74,[75]. These studies are arranged
(i) to train shallow networks on small datasets to replace a bottleneck (i.e., a computationally expensive step)
in conventional forward numerical modeling, e.g., drag coefficient calculation in concentrated complex fluid
flow modeling [22] [76] 77, 78] [79]; or (ii) to train relatively deep networks on larger datasets generated for
a particular problem, e.g., targeted sequence design within the coarse-grained polymer genome [80]. These
networks acknowledge the physical principles upon which the training data is generated and accelerate the
simulation process [75] [22].

Although the training of PgNNs appears to be straightforward, generating the data by tackling the
underlying physics for complex physical problems could require a substantial computational cost [6l [13]. Once
trained, a PgNN can significantly accelerate the computation speed for the phenomena of interest. It is
worth noting that while a PgNN model may achieve a good accuracy on the training set based on numerous
attempts, it is more likely to memorize the trends, noise, and detail in the training set rather than intuitively
comprehend the pattern in the dataset. This is one of the reasons that PgNNs lose their prediction ability when
inferred /tested outside the scope of the training datasets. PgNNs’ overfitting can be mitigated in different ways
[81L 182} [83] to enhance the predictability of the model within the scope of the training data. In the following
subsections, we review the existing literature and highlight some of the most recent studies that applied PgNNs
to accelerate different steps in scientific computing for applications in fluid and solid mechanics.

2.1. Pre-Processing

Pre-processing is often the most work-intensive component in scientific computing, regardless of the nu-
merical model type (e.g., FEM, FDM, FVM, etc.). The main steps in this component are the disassembly of
the domain into small, but finite, parts (i.e., mesh generation, evaluation, and optimization) and the upscaling
and/or downscaling of the mesh properties to use a spatiotemporally coarse mesh while implicitly solving for
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unresolved fine-scale physics. These two steps are time-consuming and require expert-level knowledge; hence,
they are potential candidates to be replaced by accelerated PgNN-based models.

2.1.1. Mesh Generation

Mesh generation is a critical step for numerical simulations. Zhang et al. [68] proposed the automatic
generation of an unstructured mesh based on the prediction of the required local mesh density throughout the
domain. For that purpose, an ANN was trained to guide a standard mesh generation algorithm. They also
proposed extending the study to other architectures, such as CNN or GRNN, for future studies including larger
datasets and/or higher-dimensional problems. Huang et al. [65] adopted a DL approach to identify optimal
mesh densities. They generated optimized meshes using classical CFD tools (e.g., Simcenter STAR-CCM+
[84]) and proposed training a CNN to predict optimal mesh densities for arbitrary geometries. The addition
of an adaptive mesh refinement version accelerated the overall process without compromising accuracy and
resolution. The authors proposed learning optimal meshes (generated by corresponding solvers with adjoint
functionality) using ANN, which may be utilized as a starting point in other simulation tools irrespective of the
specific numerical approach [65]. Wu et al. [69] also proposed a mesh optimization method by integrating the
moving mesh method with DL in order to solve the mesh optimization problem. With the experiments carried
out, a neural network with high accuracy was constructed to optimize the mesh while preserving the specified
number of nodes and topology of the initially given mesh. Using this technique, they also demonstrated that
the moving mesh algorithm is independent of the CFD computation [69].

In mesh generation, a critical issue has been the evaluation of mesh quality due to a lack of general and
effective criteria. Chen et al. [85] presented a benchmark dataset (i.e., the NACA-Market reference dataset)
to facilitate the evaluation of a mesh’s quality. They presented GridNet, a technique that uses a deep CNN to
perform an automatic evaluation of the mesh’s quality. This method receives the mesh as input and conducts
the evaluation. The mesh quality evaluation using a deep CNN model trained on the NACA-Market dataset
proved to be viable with an accuracy of 92.5 percent [85].

2.1.2. Cross-scaling Techniques

It is always desirable to numerically solve a multi-physics problem on a spatiotemporally coarser mesh
to minimize computational cost. For this reason, different upscaling [86l [87], downscaling [88], and cross-
scaling [89] methods have been developed to determine accurate numerical solutions to non-linear problems
across a broad range of length- and time-scales. One viable choice is to use a coarse mesh that reliably
depicts long-wavelength dynamics and accounts for unresolved small-scale physics. Deriving the mathematical
model (e.g., boundary conditions) for coarse representations, on the other hand, is relatively hard. Bar-Sinai
et al. [87] proposed a PgNN model for learning optimum PDE approximations based on actual solutions to
known underlying equations. The ANN outputs spatial derivatives, which are then optimized in order to
best satisfy the equations on a low-resolution grid. Compared to typical discretization methods (e.g., finite
difference), the recommended ANN method was considerably more accurate while integrating the set of non-
linear equations at a resolution that was 4 to 8 times coarser [87]. The main challenge in this approach,
however, is to systematically derive these kinds of solution-adaptive discrete operators. Maddu et al. [86]
developed a PgNN, dubbed as STENCIL-NET, for learning resolution-specific local discretization of non-linear
PDEs. By combining spatially and temporally adaptive parametric pooling on regular Cartesian grids with
knowledge about discrete time integration, STENCIL-NET can accomplish numerically stable discretization of
the operators for any arbitrary non-linear PDE. The STENCIL-NET model can also be used to determine PDE
solutions over a wider spatiotemporal scale than the training dataset. In their paper, the authors employed
STENCIL-NET for long-term forecasting of chaotic PDE solutions on coarse spatiotemporal grids to test their
hypothesis. Comparing the STENCIL-NET model to baseline numerical techniques (e.g., fully vectorized
WENO [90]), the predictions on coarser grids were faster by up to 25 to 150 times on GPUs and 2 to 14 times
on CPUs, while maintaining the same accuracy [86].

Table[I]reports a non-exhaustive list of recent works that leveraged PgNNs to accelerate the pre-processing
part of scientific computing. These studies collectively concluded that PgNN can be successfully integrated to
achieve a considerable speed-up factor in mesh generation, mesh evaluation, and cross-scaling, which are vital
for many complex problems explored using scientific computing techniques. The next subsection discusses the
potential of PgNN to be incorporated into the modeling components, hence yielding a higher speed-up factor
or greater accuracy.

2.2. Modeling and Post-processing

2.2.1. PgNNs for Fluid Mechanics

PgNN has gained considerable attention from the fluid mechanics’ community. The study by Lee and
Chen [94] on estimating fluid properties using ANN was among the first studies that applied PgNN to fluid
mechanics. Since then, the application of PgNNs in fluid mechanics has been extended to a wide range of
applications, e.g., laminar and turbulent flows, non-Newtonian fluid flows, aerodynamics, etc., especially to
speed up the traditional computational fluid dynamics (CFD) solvers.



Table 1: A non-exhaustive list of recent studies that leveraged PgNNs to accelerate the pre-processing part
in scientific computing.

Area of application NN Type Objective Reference
Mesh Generation ANN Generating unstructured mesh [68]
CNN Predicting meshes with optimal density and ac- [65]

celerating meshing process without compromising
performance or resolution

ANN Generating high quality tetrahedral meshes [91]
ANN Developing a mesh generator tool to produce high- [92]
quality FEM meshes
ANN Generating finite element mesh with less complex- [93]
ities
Mesh Evaluation CNN Conducting automatic mesh evaluation and qual- [85]

ity assessment

Mesh Optimisation ANN Optimizing mesh while retaining the same number [69]
of nodes and topology as the initially given mesh

Cross-scaling ANN Utilizing data-driven discretization to estimate [87]
spatial derivatives that are tuned to best fulfill
the equations on a low-resolution grid.

ANN Providing solution-adaptive discrete operators to 136]
gg%NCIL- predict PDE solutions on bigger spatial domains

and for longer time frames than it was trained

For incompressible laminar flow simulations, the numerical procedure to solve Navier—Stokes equations is
considered as the main bottleneck. To alleviate this issue, PgNNs have been used as a part of the resolution
process. For example, Yang et al. [95] proposed a novel data-driven projection method using an ANN to avoid
iterative computation of the projection step in grid-based fluid simulations. The efficiency of the proposed
data-driven projection method was shown to be significant, especially in large-scale fluid flow simulations.
Tompson et al. [96] used a CNN for predicting the numerical solutions to the inviscid Euler equations for fluid
flows. An unsupervised training that incorporates multi-frame information was proposed to improve long-term
stability. The CNN model produced very stable divergence-free velocity fields with improved accuracy when
compared to the ones obtained by the commonly used Jacobi method [97]. Chen et al. [98] later developed a
U-net-based architecture, a particular case of a CNN model, for the prediction of velocity and pressure field
maps around arbitrary 2D shapes in laminar flows. The CNN model is trained with a dataset composed of
random shapes constructed using Bézier curves and then by solving Navier-Stokes equations using a CFD
solver. The predictive efficiency of the CNN model was also assessed on unseen shapes, using ad hoc error
functions, specifically, the MSE levels for these predictions were found to be in the same order of magnitude
as those obtained on the test subset, i.e., between 1.0 x 107® and 5.0 x 10~ for both pressure and velocity,
respectively.

Moving from laminar to turbulent flow regimes, PgNNs have been extensively used for the formulation of
turbulence closure models [99]. Ling et al. [100] used a feed-forward MLP and a specialized neural network
to predict Reynolds-averaged Navier—Stokes (RANS) and Large Eddy Simulation (LES) turbulence problems.
Their specialized neural network embeds Galilean invariance [101] using a higher-order multiplicative layer.
The performance of this model was compared with that of MLP and ground truth simulations. They concluded
that the specialized neural network can predict the anisotropy tensor on an invariant tensor basis, resulting
in significantly more accurate predictions than MLP. Maulik et al. [L02] presented a closure framework for
subgrid modeling of Kraichnan turbulence [103]. To determine the dynamic closure strength, the proposed
framework used an implicit map with inputs as grid-resolved variables and eddy viscosities. Training an ANN
with extremely subsampled data obtained from high-fidelity direct numerical simulations (DNSs) yields the
optimal map. The ANN model was found to be successful in imbuing the decaying turbulence problem with
dynamic kinetic energy dissipation, allowing accurate capture of coherent structures and inertial range fidelity.
Later, Kim and Lee [104] used simple linear regression, SLinear, multiple linear regression, MLinear, and a
CNN to predict the turbulent heat transfer (i.e., the wall-normal heat flux, ¢, ) using other wall information,
including the streamwise wall-shear stress, spanwise wall-shear stress or streamwise vorticity, and pressure



fluctuations, obtained by DNSs of a channel flow (see Fig. [3[a)). The constructed network was trained using
adaptive moment estimation (ADAM) [105] [106], and the grid searching method [107, [108] was performed to
optimize the depth and width of the CNN. Their finding showed that the PgNN model is less sensitive to the
input resolution, indicating its potential as a good heat flux model in turbulent flow simulation. Yousif et al.
[109] also proposed an efficient method for generating turbulent inflow conditions based on a PgNN formed
by a combination of a multiscale convolutional auto-encoder with a subpixel convolution layer (MSCSP-AE)
[110} [111] and long short-term memory (LSTM) [112 [113] model. The proposed model was found to have the
capability to deal with the spatial mapping of turbulent flow fields.

PgNNs have also been applied in the field of aerodynamics. Kou and Zhang [114] presented a review
paper on typical data-driven methods, including system identification, feature extraction, and data fusion,
that have been employed to model unsteady aerodynamics. The efficacy of those data-driven methods is
described by several benchmark cases in aeroelasticity. Wang et al. [115] described the application of ANN to
the modeling of the swirling flow field in a combustor (see Fig. [3(b)). Swirling flow field data from particle
image velocimetry (PIV) was used to train an ANN model. The trained PgNN model was successfully tested
to predict the swirling flow field under unknown inlet conditions. Chowdhary et al. [116] studied the efficacy of
combining ANN models with projection-based (PB) model reduction techniques [117, [118] to develop an ANN-
surrogate model for computationally expensive, high-fidelity physics models, specifically for complex hypersonic
turbulent flows. The surrogate model was used to perform Bayesian estimation of freestream conditions and
parameters of the SST (shear stress transport) turbulence model. The surrogate model was then embedded in
the high-fidelity (Reynolds-averaged Navier—Stokes) flow simulator, using shock-tunnel data. Siddiqui et al.
[119] developed a non-linear data-driven model, encompassing Time Delay Neural Networks (TDNN), for
a pitching wing. The pitch angle was considered as the input to the model, while the lift coefficient was
considered as the output. The results showed that the trained models were able to capture the non-linear
aerodynamic forces more accurately than linear and semi-empirical models, especially at higher offset angles.
Wang et al. [120] also proposed a multi-fidelity reduced-order model based on multi-task learning ANNs to
efficiently predict the unsteady aerodynamic performance of an iced airfoil. The results indicated that the
proposed model achieves higher accuracy and better generalization capability compared with single-fidelity
and single-task modeling approaches.

The simulation of complex fluid flows, specifically using fluids that exhibit viscoelastic nature and non-
linear rheological behaviors, is another topic where PgNNs have been applied [122] [123]. The dynamics of
these fluids are generally governed by non-linear constitutive equations that lead to stiff numerical problems
[124] [125]. Faroughi et al. [22] developed a PgNN model to predict the drag coefficient of a spherical particle
translating in viscoelastic fluids (see Fig. c)) The PgNN considered a stacking technique (i.e., ensembling
Random Forrest [126], Extreme Gradient Boosting [127] and ANN models) to digest inputs (Reynolds number,
Weissenberg number, viscosity ratio, and mobility factor considering both Oldroyd-B and Giesekus fluids) and
outputs drag predictions based on the individual learner’s predictions and an ANN meta-regressor. The
accuracy of the model was successfully checked against blind datasets generated by DNSs. Lennon et al. [128]
also developed a tensor basis neural network (TBNN) allowing rheologists to construct learnable constitutive
models that incorporate essential physical information while remaining agnostic to details regarding particular
experimental protocols or flow kinematics. The TBNN model incorporates a universal approximator within a
materially objective tensorial constitutive framework that, by construction, respects physical constraints, such
as frame-invariance and tensor symmetry, required by continuum mechanics. Due to the embedded TBNN,
the developed rheological universal differential equation quickly learns simple yet accurate and highly general
models for describing the provided training data, allowing a rapid discovery of constitutive equations.

Lastly, PgNNs have also been extensively used to improve both the accuracy and speed of CFD solvers.
Stevens and Colonius [121] developed a DL model (the weighted essentially non-oscillatory neural network,
WENO-NN) to enhance a finite-volume method used to discretize PDEs with discontinuous solutions, such
as the turbulence-shock wave interactions (see Fig. [3(d)). Kochkov et al. [18] used hybrid discretizations,
combining CNNs and subcomponents of a numerical solver, to interpolate differential operators onto a coarse
mesh with high accuracy. The training of the model was performed within a standard numerical method
for solving the underlying PDEs as a differentiable program, and the method allows for end-to-end gradient-
based optimization of the entire algorithm. The method learns accurate local operators for convective fluxes
and residual terms and matches the accuracy of an advanced numerical solver running at 8 to 10 times finer
resolution while performing the computation 40 to 80 times faster. Cai et al. [129] implemented a least-
squares ReLU neural network (LSNN) for solving the linear advection-reaction problem with a discontinuous
solution. They showed that the proposed method outperformed mesh-based numerical methods in terms of
the number of DOFs (degrees of freedom). Haber et al. [130] suggested an auto-encoder CNN to reduce the
resolution cost of a scalar transport equation coupled to the Navier—Stokes equations. Lara and Ferrer [131]
proposed to accelerate high-order discontinuous Galerkin methods using neural networks. The methodology
and bounds were examined for a variety of meshes, polynomial orders, and viscosity values for the 1D Burgers’
equation. List et al. [I32] employed CNN to train turbulence models to improve under-resolved, low-resolution
solutions to the incompressible Navier—Stokes equations at simulation time. The developed method consistently
outperforms simulations with a two-fold higher resolution in both spatial and temporal dimensions. For mixing
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Figure 3: Panel (a) shows a comparison of the high-order moments of the heat flux data obtained from DNS of
turbulent heat transfer and predictions obtained by SLinear, MLinear, and CNN (i.e., PgNN) models developed
by Kim and Lee [104]. Notice that gy rms is the root-mean-squared-error (RMSE) of ¢, k denotes the index
of the weights in the network and the angle bracket denotes the average over all test points. Panel (b) shows
the comparison of a PgNN model and PIV technique for the prediction of the swirling flow field in a combustor
[115]. The changes in maximum and minimum vorticity, w (1/s), in a swirling flow field are shown for several
pressure drops, Ap (MPa). Panel (c) shows the performance of the PgNN model developed by Faroughi et al.
against the blind dataset generated to predict the drag coefficient of a spherical particle translating in a
Giesekus fluid at Reynolds number Re = 75, retardation ratio { = 0.8 and mobility parameter o = 0.4. Panel
(d) shows a comparison of the L% error (E) and simulation run time of WENO-NN, weighted ENO-Jiang Shu
(WENOS5-JS) scheme convergent at fifth order, and weighted ENO (WENO1) scheme convergent at first order,
to simulate shock wave interactions Stevens and Colonius [121].

layer cases, the hybrid model on average resembles the performance of three-fold reference simulations, which
corresponds to a speed-up of 7.0 times for the temporal layer and 3.7 times for the spatial mixing layer.

Table [2 reports a non-exhaustive list of recent studies that leveraged PgNN to model fluid flow problems.
These studies collectively concluded that PgNNs can be successfully integrated with CFD solvers or used as
standalone surrogate models to develop accurate and yet faster modeling components for scientific computing
in fluid mechanics. In the next section, the potential application of PgNNs in computational solid mechanics
is discussed.

2.2.2. PgNNs for Solid Mechanics

Physics-guided neural networks (PgNNs) have also been extensively adopted by the computational solid
mechanics’ community. The study by Andersen et al. [35] on welding modeling using ANN was among the first
studies that applied PgNN to solid mechanics. Since then, the application of PgNN has been extended to a
wide range of problems, e.g., structural analysis, topology optimization, inverse materials design and modeling,
health condition assessment, etc., especially to speed up the traditional forward and inverse modeling methods
in computational mechanics.

In the area of structural analysis, Tadesse et al. [137] proposed an ANN for predicting mid-span deflections
of a composite bridge with flexible shear connectors. The ANN was tested on six different bridges, yielding a
maximum root-mean-squared error (RMSE) of 3.79%, which can be negligible in practice. The authors also
developed ANN-based close-form solutions to be used for rapid prediction of deflection in everyday design.
Gilineyisi et al. [138] employed ANN to develop a new formulation for the flexural overstrength factor for steel
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Table 2: A non-exhaustive list of studies that leveraged PgNNs to model fluid computational flow problems.

Area of application NN Type Objective Reference
Laminar Flows CNN Calculating numerical solutions to the inviscid Euler [96]
equations
CNN Predicting the velocity and pressure fields around ar- [98]
bitrary 2D shapes
Turbulent Flows ANN Developing a model for the Reynolds stress anisotropy [100]
tensor using high-fidelity simulation data
ANN Modelling of LESs of a turbulent plane jet flow con- [133]
figuration
CNN Designing and training artificial neural networks based [134]
on local convolution filters for LES
ANN Developing subgrid modelling of Kraichnan turbu- [102]
lence
CNN Estimating turbulent heat transfer based on other wall [104]
information acquired from channel flow DNSs
CNN-LSTM  Generating turbulent inflow conditions with accurate [109]
statistics and spectra
Aerodynamics CNN-MLP Predicting incompressible laminar steady flow field [135]
over airfoils
ANN Developing a high-dimensional PgNN model for high [136]
Reynolds number turbulent flows around airfoils
ANN Modeling the swirling flow field in a combustor [115]
PCA-ANN Creating surrogate models of computationally expen- [116]
sive, high-fidelity physics models for complex hyper-
sonic turbulent flows
ANN Predicting unsteady aerodynamic performance of iced [120]
airfoil
Viscoelastic Flows ANN Predicting drag coefficient of a spherical particle trans- [22]
lating in viscoelastic fluids
ANN Constructing learnable constitutive models using a [128]
universal approximator within a materially objective
tensorial constitutive framework
Enhance CFD Solvers ANN Developing an improved finite-volume method for sim- [121]
ulating PDEs with discontinuous solutions
CNN Interpolating differential operators onto a coarse mesh [18]
with high accuracy
LSNN Solving the linear advection-reaction problem with [129]
discontinuous solution
CNN Modeling the scalar transport equation to reduce the [130]
resolution cost of forced cooling of a hot workpiece in
a confined environment
CNN Accelerating high order discontinuous Galerkin meth- [131]
ods
CNN Developing turbulence model to improve under- [132]

resolved low-resolution solutions to the incompressible
Navier—Stok@s equations at simulation time




beams. They considered 141 experimental data samples with different cross-sectional typologies to train the
model. The results showed a comparable training and testing accuracy of 99 percent, indicating that the ANN
model provided a reliable tool to estimate beams’ over-strength. Hung et al. [139] leveraged ANN to predict
the ultimate load factor of a non-linear, inelastic steel truss. They considered a planar 39-bar steel truss to
demonstrate the efficiency of the proposed ANN. They used the cross-sections of members as the input and
the load-factor as the output. The ANN-based model yielded a high degree of accuracy, with an average loss
of less than 0.02, in predicting the ultimate load-factor of the non-linear inelastic steel truss. Chen et al.
[140] also used ANN to solve a three-dimensional (3D) inverse problem of a collision between an elastoplastic
hemispherical metal shell and a rigid impactor. The goal was to predict the position, velocity, and duration
of the collision based on the shell’s permanent plastic deformation. For static and dynamic loading, the ANN
model predicted the location, velocity, and collision duration with high accuracy. Hosseinpour et al. [141] used
PgNN for buckling capacity assessment of castellated steel beams subjected to lateral-distortional buckling.
As shown in Fig. a), the ANN-based model provided higher accuracy than well-known design codes, such as
AS4100 [142], AISC [143], and EC3 [144] for modeling and predicting the ultimate moment capacities.

Topology optimization of materials and meta-materials is yet another domain where PgNNs have been
employed [145] [146]. Topology optimization is a technique that identifies the optimal materials placed inside
a prescribed domain to achieve the optimal structural performance [147]. For example, Abueidda et al. [148]
developed a CNN model that performs real-time topology optimization of linear and non-linear elastic materials
under large and small deformations. The trained model can predict the optimal designs with great accuracy
without the need for an iterative process scheme and with very low inference computation time. Yu et al. [149)
suggested an integrated two-stage technique made up of a CNN-based encoder and decoder (as the first stage)
and a conditional GAN (as the second stage) that allows for the determination of a near-optimal topological
design. This integration resulted in a model that determines a near-optimal structure in terms of pixel values
and compliance with considerably reduced computational time. Banga et al. [I50] also proposed a 3D encoder-
decoder CNN to speed up 3D topology optimization and determine the optimal computational strategy for
its deployment. Their findings showed that the proposed model can reduce the overall computation time by
40% while achieving accuracy in the range of 96%. Li et al. [I51] then presented a GAN-based non-iterative
near-optimal topology optimizer for conductive heat transfer structures trained on black-and-white density
distributions. A GAN for low resolution topology was combined with a super resolution generative adversarial
network, SRGAN, [152] [153] for a high resolution topology solution in a two-stage hierarchical prediction-
refinement pipeline. When compared to conventional topology optimization techniques, they showed this
strategy has clear advantages in terms of computational cost and efficiency.

PgNN has also been applied for inverse design and modeling in solid mechanics. Messner [156] employed a
CNN to develop surrogate models that estimate the effective mechanical properties of periodic composites. As
an example, the CNN-based model was applied to solve the inverse design problem of finding structures with
optimal mechanical properties. The surrogate models were in good agreement with well-established topology
optimization methods, such as solid isotropic material with penalization (SIMP) [157], and were sufficiently
accurate to recover optimal solutions for topology optimization. Lininger et al. [158] also used CNN to solve
an inverse design problem for meta-materials made of thin film stacks. The authors demonstrated the CNN’s
remarkable ability to explore the large global design space (up to 1012 parameter combinations) and resolve
all relationships between meta-material structure and associated ellipsometric and reflectance/transmittance
spectra [159] [158]. Kumar et al. [I54] proposed a two-stage ANN model, as shown in Fig. [f[b), for inverse
design of meta-materials. The model generates uniform and functionally graded cellular mechanical meta-
materials with tailored anisotropic stiffness and density for spinodoid topologies. The ANN model used in
this study is a combination of two-stage ANN, first ANN (i.e., inverse PgNN) takes query stiffness as input
and outputs design parameters, e.g., ©. The second ANN (i.e., forward PgNN) takes the predicted design
parameters as input and reconstructs the stiffness to verify the first ANN results. The prediction accuracy
for stiffness and the design parameter was validated against ground truth data for both networks; sample
comparisons and their corresponding R-squared values are shown in Fig. b). Ni and Gao [155] proposed a
combination of representative sampling spaces and conditional GAN, cGAN [160| [161], to address the inverse
problem of modulus identification in the field of elasticity. They showed that the proposed approach can
be deployed with high accuracy, as shown in Fig. c) while avoiding the use of costly iterative solvers used
in conventional methods, such as the adjoint weighted approach [162]. This model is especially suitable for
real-time elastography and high-throughput non-destructive testing techniques used in geological exploration,
quality control, composite material evaluation, etc.

The PgNN models have also been used to overcome some of the computational limitations of multiscale
simulations in solid mechanics. This is achieved by (i) bypassing the costly lower-scale calculations and thereby
speeding the macro-scale simulations [66], or (ii) replacing a step or the complete simulation with surrogate
models [66]. For example, Liang et al. [163] developed an ANN model that takes finite element-based aorta
geometry as input and output the aortic wall stress distribution directly, bypassing FEM calculation. The
difference between the stress calculated by FEM and the one estimated by the PgNN model is practically
negligible, while the PgNN model produces output in just a fraction of the FEM computational time. Mozaffar
et al. [164] successfully employed RNN-based surrogate models for material modeling by learning the reversible,
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Figure 4: Panel (a) shows a comparison between ANN and other international codes’ accuracy (e.g., R-squared
and RMSE) to predict the ultimate moment capacities of castellated beams subjected to lateral-distortional
buckling (adapted from Hosseinpour et al. ). Panel (b) shows a two-stage PgNN architecture for predicting

the design parameters of meta-materials for spindoid topologies. The first ANN (i.e.,

inverse PgNN) takes

the query stiffness as input and outputs the design parameters. The second ANN (i.e., forward PgNN) takes

the predicted design parameters and reconstructs the stiffness to verify inverse network accuracy. R-squared

values for prediction of stiffness component C1111 and design parameter p are shown in the subsets (adapted
from Kumar et al. [I54]). Panel (c) shows a comparison between conditional GAN and ground truth made by
elastography to predict elastic modulus from strain data (adapted from Ni and Gao [155]).
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irreversible, and history-dependent phenomena that occur when studying material plasticity. Mianroodi et al.
[2] used a CNN-based solver to predict the local stresses in heterogeneous solids with the highly non-linear
material response and mechanical contrast features. When compared to common solvers like FEM, the CNN-
based solver offered an acceleration factor of 8300x for elasto-plastic materials. Im et al. [5] proposed a PgNN
framework to construct a surrogate model for a high-dimensional elasto-plastic FEM model by integrating an
LSTM network with the proper orthogonal decomposition (POD) method [165] [166]. The suggested POD-
LSTM surrogate model allows rapid, precise, and reliable predictions of elasto-plastic structures based on the
provided training dataset exclusively. For the first time, Long et al. [L67] used a CNN to estimate the stress
intensity factor of planar cracks. Compared to FEM, the key benefit of the proposed light-weight CNN-based
crack evaluation methodology is that it can be installed on an unmanned machine to automatically monitor
the severity of a crack in real-time.

Table [3| reports a non-exhaustive list of recent studies that leveraged PgNNs in solid mechanics and
materials design problems. These studies collectively concluded that PgNNs can be successfully integrated
with conventional solvers (e.g., FEM solvers) or used as standalone surrogate models to develop accurate and
yet faster modeling components for scientific computing in solid mechanics. Albeit, PgNNs come with their
own limitations and shortcomings that might compromise solutions under different conditions, as discussed in
the next section.

2.3. PgNNs Limitations

Even though PgNN-based models show great potential to accelerate the modeling of non-linear phenomena
described by input-output interdependencies, they suffer from several critical limitations and shortcomings.
Some of these limitations become more pronounced when the training datasets are sparse.

e The main PgNNs’ limitation stems from the fact that their training process is solely based on statistics
[58]. Even though the training datasets are inherently constrained by physics (e.g., developed by direct
numerical simulation, closure laws, and de-noised experimentation), PgNN generates models based on
correlations in statistical variations. The outputs (predictions), thus, are naturally physics-agnostic
[38, [176] and may violate the underlying physics [6].

e Another important limitation of PgNNs stems from the fact that training datasets are usually sparse,
especially in the scientific fields discussed in this paper. When the training data is sparse and does not
cover the entire range of underlying physiochemical attributes, the PgNN-based models fail in blind-
testing on conditions outside the scope of training [43], i.e., they do not offer extrapolation capabilities
in terms of spatiotemporal variables and/or other physical attributes.

e PgNN'’s predictions might be severely compromised, even for inputs within the scope of sparse training
datasets [22]. The lack of interpolation capabilities is more pronounced in complex and non-linear
problems where the range of the physiochemical attributes is extremely wide (e.g., the range of Reynolds
numbers from creeping flow to turbulent flow).

e PgNNs may not fully satisfy the initial conditions and boundary conditions using which the training
datasets are generated [38]. The boundary conditions and computational domain vary from one problem
to another, making the data generation and training process prohibitively costly. In addition, a significant
portion of scientific computing research involves inverse problems in which unknown physiochemical
attributes of interest are estimated from measurements or calculations that are only indirectly related to
these attributes [177, 178,10, [13]. For instance, in groundwater flow modeling, we leverage measurements
of the pressure of a fluid immersed in an aquifer to estimate the aquifer’s geometry and/or material
characteristics [179]. Such requirements further complicate the process of developing a simple neural
network that is predictive under any conditions.

e PgNNs-based models are not resolution-invariant by construction [180], hence they cannot be trained
on a lower resolution and be directly inferred on a higher resolution. This shortcoming is due to the
fact that PgNN is only designed to learn the solution of physical phenomena for a single instance (i.e.,
inputs-outputs).

e Through the training process, PgNN-based networks learn the input-output interdependencies across the
entire dataset. Such a process could potentially consider slight variations in the functional dependencies
between different input and output pairs as noise, and produce an average solution. Consequently, while
these models are optimal with respect to the entire dataset, they may produce suboptimal results in
individual cases.

e PgNN models may struggle to learn the underlying process when the training dataset is diverse, i.e.,
when the interdependencies between different input and output pairs are drastically different. Although
this issue can be mitigated by increasing the model size, more data is required to train such a network,
making the training costly and, in some cases, impractical.
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Table 3: A non-exhaustive list of studies that leveraged PgNNs to model solid mechanics problems.

Area of application NN Type Objective Reference
Accelerating Simulations ANN Predicting the aortic wall stress distribution using [163]
FEM aorta geometry

RNN Developing surrogate models for material model- [164]
ing by learning reversible, irreversible, and history-
dependent phenomena
CNN Predicting local stresses in heterogeneous solids 2]
with the highly non-linear material response and
mechanical contrast features
CNN Estimating stress intensity factor of planar cracks [167]
Topology Optimization CNN Optimizing topology of linear and non-linear elastic [148]
materials under large and small deformations
CNN-GAN Determining near-optimal topological design [149]
CNN Accelerating 3D topology optimization [150]
GAN- Generating near-optimal topologies for conductive [151]
SRGAN heat transfer structures
Inverse Modeling CNN Estimating effective mechanical properties for peri- [156]
odic composites
CNN Solving an inverse design problem for meta- [158]
materials made of thin film stacks
cGAN Addressing inverse problem of modulus identifica- [155]
tion in elasticity
CVAE Designing nano-patterned power splitters for pho- [155]
tonic integrated circuits
Structural Elements ANN Predicting non-linear buckling load of an imperfect [168]
reticulated shell
ANN Optimizing dynamic behavior of thin-walled lami- [169]
nated cylindrical shells
ANN Determining and identifying loading conditions for [140]
shell structures
Structural Analysis CNN Forecasting stress fields in 2D linear elastic can- [1770]
tilevered structures subjected to external static
loads
ANN Estimating the thickness and length of reinforced [171]
walls based on previous architectural projects
Condition Assessment Auto- Learning mapping between vibration characteristics [172]
encoder-NN  and structural damage
CNN Providing a real-time crack assessment method [173]
RNN Nonparametric identification of large civil struc- [174]
tures subjected to dynamic loadings
CNN Damage Identification of truss structures using [175]

noisy incomplete modal data

13



One way to resolve some of the PgNNs’ limitations is to generate more training data. However, this is
not always a feasible solution due to the high cost of data acquisition. Alternatively, PgNNs can be further
constrained by governing physical laws without any prior assumptions, reducing the need for large datasets.
The latter is a plausible solution because, in most cases, the physical phenomenon can be fully and partially
described using explicit ODEs, PDEs, and/or closure laws. This approach led to the development of a physics-
informed neural network [38| [44], which is described and reviewed in the next section.

3. Physics-informed Neural Networks, PiNNs

In scientific computing, physical phenomena are often described using a strong mathematical form con-
sisting of governing differential equations as well as initial and boundary conditions. At each point inside a
domain, the strong form specifies the constraints that a solution must meet. The governing equations are
usually linear or non-linear PDEs and/or ODEs. Some of the PDEs are notoriously challenging to solve, e.g.,
the Navier-Stokes equations to explain a wide range of fluid flows [10], Féppl-von Kdrman equations to de-
scribe large deflections in solids [181] [181], etc. Other important PDE examples are heat equations [182], wave
equation [183], Burgers’ equation [184], Laplace’s equation [185], Poisson’s equation [186], amongst others.
This wealth of well-tested knowledge can be logically leveraged to further constrain PgNNs while training on
available data points if any [38]. To this end, mesh-free physics-informed neural networks (PiNNs) have been
developed [38] [44], quickly extended [187], [188], and extensively deployed in a variety of scientific and applied
fields [189) [190] [191) [192] (193] [194]. Readers are referred to Karniadakis et al. [6] and Cai et al. [10] for the
foundational review on how PiNNs function. This section briefly reviews the PiNN’s core architecture and
its state-of-the-art applications in computational fluid and solid mechanics and discusses some of the major
limitations.

A schematic representation of a vanilla PINN architecture is illustrated in Fig.[p} In PiNNs, the underlying
physics is incorporated outside the neural network architecture to constrain the model while training, thereby
ensuring outputs follow known physical laws. The most common method to emulate this process is through a
weakly imposed penalty loss that penalizes the network for not following the physical constraints. As shown in
Fig. |5 a neural network with spatiotemporal features (i.e., x and ¢) as input parameters and the PDE solution
elements as output parameters (i.e., u) can be used to emulate any PDE.
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Figure 5: A schematic architecture of Physics-informed Neural Networks (PiNNs). The network digests
spatiotemporal coordinates (x,t) as inputs to approximate the multi-physics solution @. The last layer gener-
ates the derivatives of the predicted solution u with respect to inputs, which are calculated using automatic
differentiation (AD). These derivatives are used to formulate the residuals of the governing equations in the
loss function, which is composed of multiple terms weighted by different coefficients. § and A\ are the learnable
parameters for weights/biases and unknown PDE parameters, respectively, that can be learned simultaneously
while minimizing the loss function.

The network’s outputs are then fed into the next layer, which is an automated differentiation layer. In
this instance, multiple partial derivatives are generated by differentiating the outputs with regard to the input
parameters (x and t). With the goal of optimizing the PDE solution, these partial derivatives are used to
generate the required terms in the loss function. The loss function in PiNN is a combination of the loss owing
to labelled data (Lpata), governing PDEs (Lppg), applied initial conditions (L;¢) and applied boundary
conditions (Lp¢) [10]. The Lpc ensures that the PINN’s solution meets the specified boundary constraints,
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whereas Lpgs, assures that the PINN follows the trend in the training dataset (i.e., historical data, if any).
Furthermore, the structure of the PDE is enforced in PiNN through the £ppg, which specifies the collocation
points where the solution to the PDE holds [38]. The weights for the loss due to the initial conditions,
boundary conditions, data, and PDE can be specified as w;, wsy, wq, and wy, respectively. The next step is to
check, for a given iteration, if the loss is within the accepted tolerance, €. If not, the learnable parameters of
the network (6) and unknown PDE parameters (\) are updated through error backpropagation. For a given
number of iterations, the entire cycle is repeated until the PINN model produces learnable parameters with loss
functions less than e. Note that the training of PiNNs is more complicated compared to PgNNs, as PiNNs are
composed of sophisticated non-convex and multi-objective loss functions that may result in instability during
optimization [38], 6] [10].

Dissanayake and Phan-Thien [195] were the first to investigate the incorporation of prior knowledge into
a neural network. Subsequently, Owhadi [196] introduced the concept of physics-informed learning models
as a result of the ever-increasing computing power, which enables the use of increasingly complex networks
with more learnable parameters and layers. The PiNN, as a new computing paradigm for both forward and
inverse modeling, was introduced by Raissi et al. in a series of papers [38] [197] [44]. Raissi et al. [38] deployed
two PiNN models, a continuous and a discrete-time model, on examples consisting of different boundary
conditions, critical non-linearities, and complex-valued solutions such as Burgers’, Schrodinger’s, and Allen-
Cahn’s equations. The results for Burgers’ equation demonstrated that, given a sufficient number of collocation
points (i.e., as the basis for the continuous model), an accurate and data-efficient learning procedure can be
obtained [38].

In continuous PiNN models, when dealing with higher-dimensional problems, the number of collocation
points increases exponentially, making learning processing difficult and computationally expensive [38] [6].
Raissi et al. [38] presented a discrete time model based on the Runge-Kutta technique [198] to address the
computational cost issue. This model simply takes a spatial feature as input, and over time steps, PiNN
converges to the underlying physics. For all the examples explored by Raissi et al. [38], continuous and discrete
PiNN models were able to satisfactorily build physics-informed surrogate models. Nabian et al. [199] proposed
an alternate method for managing collocation points. They investigated the effect of sampling collocation
points according to distribution and discovered that it was proportional to the loss function. This concept
requires no additional hyperparameters and is simpler to deploy in existing PINN models. In their study, they
claimed that a sampling approach for collocation points enhanced the PINN model’s behavior during training.
The results were validated by deploying the hypothesis on PDEs for solving problems related to elasticity,
diffusion, and plane stress physics.

In order to use PiNN to handle inverse problems, the loss function of the deep neural network must satisfy
both the measured and unknown values at a collection of collocation sites distributed throughout the problem
domain. Raissi et al. [44] showcased the potential of both continuous and discrete time PINN models to solve
benchmark inverse problems such as the propagation of non-linear shallow-water waves (Korteweg—De Vries
equation) [200] and incompressible fluid flows (Navier-Stokes equations) [201].

Compared to PgNNs, the PINN models provide more accurate predictions for forward and inverse model-
ing, particularly in scenarios with high non-linearities, limited data, or noisy data [202]. As a result, it has been
implemented in several fundamental scientific and applied fields. Aside from forward and inverse problems,
the PiNN can also be used to develop partial differential equations for unknown phenomena if training data
representing the phenomenon’s underlying physics is available [44]. Raissi et al. [44] leveraged both continuous
time and discrete time PiNN models for generating universal PDEs depending on the type and structure of
the available data. In the remainder of this section, we review the recent literature on PiNN’s applications in
the computational fluid and solid mechanics fields.

8.1. PiNNs for Fluid Mechanics

The application of PiNNs to problems involving fluid flow is an active, ongoing field of study [203]
204]. Raissi et al. [197], in a seminal work, developed a PiNN, so-called hidden fluid mechanics (HFM),
to encode physical laws governing fluid motions, i.e., Navier-Stokes equations. They employed underlying
conservation laws to derive hidden quantities of interest such as velocity and pressure fields from spatiotemporal
visualizations of a passive scalar concentration, e.g., dye, transported in arbitrarily complex domains. Their
algorithm to solve the data assimilation problem is agnostic to the boundary and initial conditions as well
as to the geometry. Their model successfully predicted 2D and 3D pressure and velocity fields in benchmark
problems inspired by real-world applications. Figure @ adapted from Raissi et al. [197], compares the PiNN
prediction with the ground truth for the classical problem of a 2D flow past a cylinder. The model can be
used to extract valuable quantitative information such as wall shear stresses and lift and drag forces for which
direct measurements are difficult to obtain.

Zhang et al. [205] also developed a PiNN framework for the incompressible fluid flow past a cylinder
governed by Navier-Stokes equations. PiNN learns the relationship between simulation output (i.e., velocity
and pressure) and the underlying geometry, boundary, initial conditions, and inherently fluid properties. They
demonstrated that the generalization performance is enhanced across both the temporal domain and design
space by including Fourier features [206], such as frequency and phase offset parameters. Cheng and Zhang
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Figure 6: A comparison between ground truth simulation results and PiNN predictions for a 2D flow past
a circular cylinder. Comparisons are shown for the concentration of passive scalar, c(¢,z,y), and resulting
velocity fields, u,v, and pressure field, p (adapted from Raissi et al. [197]).

[207] developed Res-PiNN (i.e., Resnet blocks along with PiNN) for simulating cavity flow and flow past a
cylinder governed by Burgers’ and Navier-Stokes equations. Their results showed that Res-PiNN had better
predictive ability than conventional PgNN and vanilla PiNN algorithms. Lou et al. [208] also demonstrated the
potential of PINN for solving inverse multiscale flow problems. They used PiNN for inverse modeling in both
the continuum and rare-field regimes represented by the Boltzmann-Bhatnagar-Gross-Krook (BGK) collision
model. The results showed that PINN-BGK is a unified method (i.e., it can be used for forward and inverse
modeling), easy to implement, and effective in solving ill-posed inverse problems [208].

Wessels et al. [209] employed PiNN to develop an updated Lagrangian method for the solution of incom-
pressible free surface flow subject to the inviscid Euler equations, the so-called Neural Particle Method (NPM).
The method does not require any specific algorithmic treatment, which is usually necessary to accurately re-
solve the incompressibility constraint. In their work, it was demonstrated that NPM is able to accurately
compute a pressure field that satisfies the incompressibility condition while avoiding topological constraints on
the discretization process [209]. In addition, PiNN has also been employed to model complex non-Newtonian
fluid flows involving non-linear constitutive PDEs able to characterize the fluid’s rheological behavior [210].

Haghighat et al. [211] trained a PINN model to solve the dimensionless form of the governing equations
of coupled multiphase flow and deformation in porous media. Almajid and Abu-Al-Saud [212] compared the
predictions of PINN with those of PgNN, i.e., a conventional artificial neural network, for solving the gas
drainage problem of water-filled porous media. The study showed that PgNN performs well under certain
conditions (i.e., when the observed data consists of early and late time saturation profiles), while the PiINN
model performs robustly even when the observed data contains only an early time saturation profile (where
extrapolations are needed). Depina et al. [213] applied PINN to model unsaturated groundwater flow problems
governed by the Richards PDE and van Genuchten constitutive model [214]. They demonstrated that PiNNs
can efficiently estimate the van Genuchten model parameters and solve the inverse problem with a relatively
accurate approximation of the solution to the Richards equation.

Some of the other variants of PINN models employed in fluid mechanics are: mn-PiNN, where PINN
is employed to solve constitutive models in conjunction with conservation of mass and momentum for non-
Newtonian fluids [210]; ViscoelasticNet, where PiNN is used for stress discovery and viscoelastic flow models
selection , such as Oldroyd-B [124], Giesekus and Linear PTT [216]; RhINN which is a rheology-informed
neural networks employed to solve constitutive equations for a Thixotropic-Elasto-Visco-Plastic complex fluid
for a series of flow protocols [189]; CA N-PiNN, which is a coupled-automatic-numerical differential framework
that combines the benefits of numerical differentiation (ND) and automatic differentiation (AD) for robust
and efficient training of PINN [217]; ModalPiNN, which is a combination of PINN with enforced truncated
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Fourier decomposition [218] for periodic flow reconstruction [219]; GA PiNN, which is a geometry aware PINN
consisted of variational auto encoder, PINN and boundary constraining network for real-world applications
with irregular geometries without parameterization [220]; Spline- PiNN, which is a combination of PINN and
Hermite spline kernels based CNN employed to train a PINN without any pre-computed training data and
provide fast, continuous solutions that generalize to unseen domains [221]; ¢PiNN, which is a conservative
physics-informed neural network consisting of several PINNs communicating through the sub-domain interfaces
flux continuity for solving conservation laws [187]; SA-PiNN, which is a self-adaptive PINN to address the
adaptive procedures needed to force PiNN to fit accurately the stubborn spots in the solution of stiff PDEs
[50]; and XPiNN, which is an extended PiNN to enhance the representation and parallelization capacity of
PiNN and generalization to any type of PDEs with respect to ¢cPINN [18§].

Table 4| reports a non-exhaustive list of recent studies that leveraged PINN to model fluid flow problems.
Furthermore, Table 5| reports a non-exhaustive list of recent studies that developed other variants of PiNN
architectures to improve the overall prediction accuracy and computational cost in fluid flow problems.

3.2. PiNNs for Solid Mechanics

The application of PiNNs in computational solid mechanics is also an active field of study. The study by
Haghighat et al. [234] on modeling linear elasticity using PINN was among the first papers that introduced
PiNN in the solid mechanics community. Since then, the framework has been extended to other solid-mechanics
problems (e.g., linear and non-linear elastoplasticity, etc.).

Shukla et al. [235] used PiNN for surrogate modeling of the micro-structural properties of poly-crystalline
nickel. In their study, in addition to employing the PINN model, they applied an adaptive activation function
to accelerate the convergence of numerical modeling. The resulting PINN-based surrogate model demonstrated
a viable strategy for non-destructive material evaluation. Henkes et al. [236] modeled non-linear stress and
displacement fields induced by inhomogeneities in materials with sharp phase transitions using PiNN. To
overcome the PiNN’s convergence issues in this problem, they used adaptive training approaches and domain
decomposition [209]. According to their results, the domain decomposition approach is capable of properly
resolving non-linear stress, displacement, and energy in heterogeneous microstructures derived from real-world
uCT-scans images [236]. Zhang and Gu [237] trained a PINN model with a loss function based on the minimal
energy criteria to investigate digital materials. The model tested on 1D tension, 1D bending, and 2D tensile
problems demonstrated equivalent performance when compared to supervised DL methods (i.e., PgNNs). By
adding a hinge loss for the Jacobian matrix, the PINN method was able to properly approximate the logarithmic
strain and rectify any erroneous deformation gradient.

Rao et al. [238] proposed a PiNN architecture with mixed-variable (displacement and stress component)
outputs to handle elastodynamic problems without labeled data. The method was found to boost the network’s
accuracy and trainability in contrast to the pure displacement-based PiNN model. Figure 7| compares the
ground truth stress fields generated by the FEM with the ones estimated by mixed-variable PiNN for an
elastodynamic problem [238]. It can be observed that stress components can be accurately estimated by
mixed-variable PINN. Rao et al. [238] also proposed a composite scheme of PINN to enforce the initial and
boundary conditions in a hard manner as opposed to the conventional (vanilla) PINN with soft initial and
boundary condition enforcement. This model was tested on a series of dynamics problems (e.g., the defected
plate under cyclic uni-axial tension and elastic wave propagation), and resulted in the mitigation of inaccuracies
near the boundaries encountered by PiNN.

Fang and Zhan [239] proposed a PiNN model to design the electromagnetic meta-materials used in various
practical applications such as cloaking, rotators, concentrators, etc. They studied PiNN’s inference issues for
Maxwell’s equation [240] with a high wave number in the frequency domain and improved the activation
function to overcome the high wave number problems. The proposed PiNN recovers not only the continuous
functions but also piecewise functions, which is a new contribution to the application of PINN in practical
problems. Zhang et al. [241] employed PiNN to identify nonhomogenous materials in elastic imaging for
application in soft tissues. Two PiNNs were used, one for the approximate solution of the forward problem
and another for approximating the field of the unknown material parameters. The results showed that the
unknown distribution of mechanical properties can be accurately recovered using PiNN. Abueidda et al. [242]
employed PiNN to simulate 3D hyperelasticity problems. They proposed an Enhanced-PiNN architecture
consisting of the residuals of the strong form and the potential energy [243], producing several loss terms
contributing to the definition of the total loss function to be minimized. The enhanced PiNN outperformed
both the conventional (vanilla) PINN and deep energy methods, especially when there were areas of high
solution gradients.

Haghighat et al. [13] tested a different variant of PINN to handle inverse problems and surrogate modeling
in solid mechanics. Instead of employing a single neural network, they implemented a PINN with multiple
neural networks in their study. They deployed the framework on linear elastostatic and non-linear elasto-
plasticity problems and showed that the improved PiINN model provides a more reliable representation of the
physical parameters. In addition, they investigated the domain of transfer learning in PINN and found that the
training phase converges more rapidly when transfer learning is used. Yuan et al. [244] proposed an auxiliary
PiNN model (dubbed as A-PiNN) to solve inverse problems of non-linear integro-differential equations (IDEs).
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Table 4: A non-exhaustive list of recent studies that leveraged PINN to model fluid flow problems.

Area of Application

Objectives

Reference

Incompressible Flows

Turbulent Flows

Geofluid Flows

Non-Newtonian Flows

Biomedical Flows

Supersonic Flows

Surface Water Flows

Accelerating the modeling of Navier-Stokes equations to infer the
solution for various 2D and 3D flow problems

Learning the relationship between output and underlying geometry
as well as boundary conditions

Simulating ill-posed (e.g., lacking boundary conditions) or inverse
laminar and turbulent flow problems

Solving vortex-induced and wake-induced vibration of a cylinder
at high Reynolds number

Simulating turbulent incompressible flows without using any spe-
cific model or making turbulence assumptions

Reconstructing Reynolds stress disparities described by Reynolds-
averaged Navier-Stokes equations

Solving well-based groundwater flow equations without utilizing
labeled data

Predicting high-fidelity multi-physics data from low-fidelity fluid
flow and transport phenomena in porous media

Estimating Darcy’s law-governed hydraulic conductivity for both
saturated and unsaturated flows

Solving solute transport problems in homogeneous and heteroge-
neous porous media governed by the advection-dispersion equation

Predicting fluid flow in porous media by sparse observations and
physics-informed PointNet

Solving systems of coupled PDEs adopted for non-Newtonian fluid
flow modeling

Simulating linear viscoelastic flow models such as Oldroyd-B,
Giesekus, and Linear PTT

Simulating direct and inverse solutions of rheological constitutive
models for complex fluids

Enabling the seamless synthesis of non-invasive in-vivo measure-
ment techniques and computational flow dynamics models derived
from first physical principles

Enhancing the quantification of near-wall blood flow and wall shear
stress arterial in diseased arterial flows

Solving inverse supersonic flow problems involving expansion and
compression waves

Solving ill-posed strongly non-linear and weakly-dispersive surface
water waves governed by Serre-Green-Naghdi equations using only
data of the free surface elevation and depth of the water.

44]

[205]

[222]

1223]

1224]

1225

[226]

[227]

[228]

1229]

[210]

1215]

[189]

[230]

[231]

[204]

[232]
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Table 5: A non-exhaustive list of different variants of PINN architectures used in modeling computational
fluid flow problems.

PiNN Structure Objective Reference

CAN-PINN Providing a PINN with more accuracy and efficient training by integrat- [217]
ing ND- and AD-based approaches

ModalPiNN Providing a simpler representation of PINN for oscillating phenomena [219]
to improve performance with respect to sparsity, noise and lack of syn-
chronization in the data

GA-PiNN Enhancing PiNN to develop a parameter-free, irregular geometry-based [220]
surrogate model for fluid flow modeling

Spline-PiNN Improving the generalization of PINN by combining it with Hermite [221]
splines CNN to solve the incompressible Navier-Stokes equations

cPiNN Enhancing PiNN to solve high dimensional non-linear conservation laws [187]
requiring high computational and memory requirements

SA-PiNN Improving the PINN’s convergence and accuracy problem for stiff PDEs [50]
using self-adaptive weights in the training

XPiNN Improving PiNN and cPiNN in terms of generalization, representation, [188]
parallelization capacity, and computational cost

PiPN overcoming the shortcoming of regular PiNNs that need to be retrained [233]
for any single domain with a new geometry

A-PiNNs circumvent the limitation of integral discretization by establishing auxiliary output variables in the
governing equation to represent the integral(s) and by substituting the integral operator with automated dif-
ferentiation of the auxiliary output. Therefore, A-PiNN, with its multi-output neural network, is constructed
such that it determines both primary and auxiliary outputs to approximate both the variables and integrals
in the governing equations. The A-PiNNs were used to address the inverse issue of non-linear IDEs, including
the Volterra equation [245]. As demonstrated by their findings, the unknown parameters can be determined
satisfactorily even with noisy data.

Some of the other variants of PINN used in computational solid mechanics are: PhySRNet, which is a
PiNN-based super-resolution framework for reconstructing high resolution output fields from low resolution
counterparts without requiring high-resolution labelled data [246]; PDDO-PiNN, which is a combination of
peridynamic differential operator (PDDO) [247] and PiNN to overcome degrading performance of PiINN under
sharp gradients [248]; PiELM, which is a combination of PINN and extreme learning machine (ELM) [249]
employed to solve direct problems in linear elasticity [250]; DPiNN, which is a distributed PiNN utilizing a
piecewise-neural network representation for the underlying field, instead of the piece-polynomial representation
commonly used in FEM [51]; and PiNN-FEM, which is a mixed formulation based on PiNN and FE for
computational mechanics in heterogeneous domain [251].

Table 6] reports a non-exhaustive list of recent studies that leveraged PiNN in computational solid mechan-
ics. Furthermore, Table[7|reports a non-exhaustive list of recent studies that developed other variants of PINN
architectures to improve overall prediction accuracy and computational cost in solid mechanics modeling.

3.3. PiNNs Limitations

PiNNs show a great potential to be used in modeling dynamical systems described by ODEs and/or PDEs,
however, they come with several limitations and shortcomings that must be considered:

e Vanilla PiNNs use deep networks consisting of a series of fully connected layers and a variant of gradient
descent optimization. The learning process and hyperparameter tuning are conducted manually and are
sample size- and problem-dependent. Their training, thus, may face gradient vanishing problems and can
be prohibitively slow for practical three-dimensional problems [264]. In addition, vanilla PiNNs impose
limitations on low-dimensional spatiotemporal parameterization due to the usage of fully connected layers
[40].

e For linear, elliptic, and parabolic PDEs, Shin et al. [265] provided the first convergence theory with
respect to the number of training data. They also discussed a set of conditions under which convergence
can be guaranteed. However, there is no ”solid” theoretical proof of convergence for PINNs when applied
to problems governed by non-linear PDEs. Note that deep learning models generally fail to realize
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Table 6: A non-exhaustive list of recent studies that leveraged PiNN in computational solid mechanics.

Area of Application Objectives Reference

Elasticity Solving forward and inverse problems in linear elastostatic and [13]
non-linear elasticity problems
Simulating forward and discovery problems for linear elasticity [234]
Resolving the non-homogeneous material identification problem [241]
in elasticity imaging
Estimating elastic properties of tissues using pre- and post- [252]
compression images of objects mimicking properties of tissues
Estimating mechanical response of elastic plates under different [253]
loading conditions
Finding optimal solutions to reference biharmonic problems of [254]
elasticity and elastic plate theory
Simulating elastodynamic problems, e.g., elastic wave propaga- [238]
tion, deflected plate under periodic uniaxial strain, without la-
beled data

Heterogeneous Materials Inferring the spatial variation of compliance coeflicients of mate- [235]
rials (e.g., speed of the elastic waves) to identify microstructure
Resolving non-linear stress, displacement, and energy fields in [236]
heterogeneous microstructures
Solving coupled thermo-mechanics problems in composite mate- [255]
rials
Predicting the size, shape, and location of the internal structures [256]
(e.g., void, inclusion) using linear elasticity, hyperelasticity, and
plasticity constitutive models

Structural Elements Predicting the small-strain response of arbitrarily curved shells [257]
Solving mechanical problems of elasticity in one-dimensional el- [190]
ements such as rods and beams
Predicting creep-fatigue life of components (316 stainless steel) [258]
at elevated temperatures

Structural Vibrations Estimating and optimizing vibration characteristics and system [259]
properties of structural mechanics and vibration problems

Digital Materials Resolving physical behaviors of digital materials to design next- [237]
generation composites

Fracture Mechanics Reconstructing the solution of displacement field after damage [260]
to predict crack propagation for quasi-brittle materials

Elasto-viscoplasticity Modeling the strain-rate and temperature dependence of the de- [261]
formation fields (i.e., displacement, stress, plastic strain)

Additive Manufacturing Predicting finite fatigue life in materials containing defects [191]

Solid Mechanics Providing a detailed introduction to programming PiNN-based [262]

computational solid mechanics from 1D to 3D problems
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Figure 7: A comparison between mixed-variable PINN’s prediction and ground truth generated by FEM to
predict the stress fields in a defected plate under uni-axial load (adapted from Rao et al. [238]).

Table 7: A non-exhaustive list of different variants of PINN architectures used in computational solid me-
chanics problems.

PiNN Architecture Objectives Reference

PhySRNet Enhancing PiNN using super resolution techniques to reconstruct down- [246]
scaled fields from their upscaled counterparts

Enhanced PiNN Improving the interpolation and extrapolation ability of PiNN by in- [242]
tegrating potential energy, collocation method, and deep learning for
hyperelastic problems

PDDO-PiNN Improving the performance of PiNN in presence of sharp gradient by [248]
integrating PDDO and PiNN methods to solve elastoplastic deformation
problems

PiELM Accelerating PiNN’s training process by integrating PINN and ELM [250]

methods to model high dimensional shell structures

PiELM Accelerating PiNN’s training process by integrating PiINN and ELM
methods to model biharmonic equations

g

DPiNN Providing a truly unified framework for addressing problems in solid
mechanics Solving high dimensional inverse in heterogeneous media such
as linear elasticity

2

A-PiNN Improving PINN model to solve inverse problems of non-linear integro-
differential equations

E

PiNN-FEM Hybridizing FEM and PiNN to solve heterogeneous media problems such
as elasticity and poisson equation

E
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theoretically established global minima; thus, this limitation is not specific to PiNNs and holds for all
deep learning models. [6]

e PiNNs contain several terms in the loss function with relative weighting that greatly affects the predicted
solution. There are, currently, no guidelines for selecting weights optimally [51]. Different terms in the
loss function may compete with each other during training, and this competition may reduce the stability
of the training process. PiNNs also suffer during training when confronted by an ill-posed optimization
problem due to their dependence on soft physical constraints [40].

e PiNNs suffer from low-frequency induced bias and frequently fail to solve non-linear PDEs for problems
governed by high-frequency or multiscale structures [266]. In fact, PINNs may experience difficulty
propagating information from initial conditions or boundary conditions to unseen parts of the domain
or to future times, especially in large computational domains (e.g., unsteady turbulent flow) [43].

e PiNNs are solution learning algorithms, i.e., they learn the solutions to a given PDE for a single instance.
For any given new instance of the functional parameters or coefficients, PINNs require training a new
neural network [49]. This is because, by construction, PiNNs cannot learn the physical operation of a
given phenomenon, and that limits their generalization (e.g., spatiotemporal extrapolation). The PINN
approach, thus, suffers from the same computational issue as classical solvers, especially in 3D problems
(e.g., FEM, FVM, etc.), as the optimization problem needs to be solved for every new instance of PDE
parameters, boundary conditions, and initial conditions [57].

e PiNNs encounter difficulties while learning the solutions to inverse problems in heterogeneous media, e.g.,
a composite slab composed of several materials [264]. In such cases, the parameters of the underlying
PDE (e.g., conductivity or permeability coefficients) change across the domain, yet a PiNN outputs
unique parameter values over the whole domain due to its inherent design.

Despite the shortcomings, PiNNs offer a strong promise for complex domains that are hard to mesh
and practical problems where data acquisition is expensive. To circumvent some of the limitations of vanilla
PiNN, several techniques have been proposed. For instance, to address the first limitation listed above,
discrete learning techniques using convolutional filters, such as HybridNet [267], dense convolutional encoder-
decoder network [268], auto-regressive encoder-decoder model [269], TF-Net [270], DiscretizationNet [271], and
PhyGeoNet [272], just to name a few, have been employed that exceed vanilla PINN in terms of computational
efficiency. As another example, to address the last limitation listed above, Dwivedi et al. [264] proposed a
Distributed PINN (DPiNN) that has potential advantages over existing PiNNs to solve the inverse problems
in heterogeneous media, which are most likely to be encountered in engineering practices. Some of the other
solutions to solve high dimensional inverse problems are Conservative PINN (cPiNN) [187] and Self-Adaptive
PiNN [50]. Further, XPiNN [188], with its intrinsic parallelization capabilities to deploy multiple neural
networks in smaller subdomains, can be used to considerably reduce the computational cost of PiNNs in large
(three-dimensional) domains. However, these modifications and alternatives do not solve the generalization
problem of PiNNs as the resultant models lack the ability to enforce the existing physical knowledge. To this
end, physics-encoded neural networks (PeNNs) have started to emerge. In the next section, we will review the
recent literature on physics-encoded neural networks.

4. Physics-encoded Neural Networks, PeNNs

Physics-encoded Neural Networks (PeNNs) are another family of mesh-free algorithms used in scientific
computing, mostly in the fluid mechanics and solid mechanics fields, that strive to hard-encode underlying
physics (i.e., prior knowledge) into the core architecture of the neural networks. Note that, by construction,
PeNN-based models extend the learning capability of a neural network from instance learning (imposed by
PgNN and PiNN architectures) to continuous learning [53| 40l 273]. To hard-encode physical laws (in terms
of ODEs, PDEs, closure laws, etc.) into a neural network, different approaches have been recently proposed
[40, (53], [180L [8]. PeNN is not a completely new notion, as there has been a long trajectory of research
that has proposed the philosophy of building physics constraints constructively into the architectures. For
example, one can refer to preserving convexity [274] using Deterministic Annealing Neural Network (DANN),
preserving positivity [275], enforcing symmetries in physics using Lagrangian neural networks (LaNN) [276]
277, capturing trajectories using symplectic recurrent neural networks (SRNNs) [278] 279], enforcing exact
physics and extracting structure-preserving surrogate models using data-driven exterior calculus (DDEC) on
graphs [280], etc. In this section, we review the most two prominent approaches for encoding physics in neural
network architectures and their applications in computational fluid and solid mechanics: (i) Physics-encoded
Recurrent Convolutional Neural Network (PeRCNN) [40], 273], and (ii) Differential Programming (DP) or
Neural Ordinary Differential Equations (NeuralODE) [53] [§].
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Figure 8: A schematic architecture for Physics-encoded Recurrent Convolutional Neural Network [40]. The
architecture consists of X as initial inputs, convolutional layers, X, as full resolution initial state, uncon-
ventional convolutional block (7 block), and the predicted output layer Y’. Further, the 7 block consists of
multiple parallel convolutional layers whose operations are defined as S, X W,,, where n is the number of
layers; 7 carries out element-wise product and + carries out element-wise addition.

4.1. Physics-encoded Recurrent Convolutional Neural Network (PeRCNN)

Rao et al. [40] introduced the PeRCNN model, which hard encodes prior knowledge governing non-
linear systems into a neural network. The PeRCNN architecture shown in Fig. |8 facilitates learning in a
data-driven manner while forcibly encoding the known physics knowledge. This model exceeds PgNN and
PiNN’s capabilities for phenomena in which the explicit formulation of PDEs does not exist and very limited
measurement data is available (e.g., Earth or climate system modeling [52]). The proposed encoding mechanism
of physics, which is fundamentally different from the penalty-based physics-informed learning, ensures the
network rigorously obeys the given physics. Instead of using non-linear activation functions, they proposed
a novel element-wise product operation to achieve the non-linearity of the model. Numerical experiments
demonstrated that the resulting physics-encoded learning paradigm possesses remarkable robustness against
data noise/scarcity and generalizability compared with some state-of-the-art models for data-driven modeling.

As shown in Fig. [, PeRCNN is made of: an input layer, which is constituted by low-resolution noisy
initial state measurements X = [X7, X, X3, ..., X},]; a fully convolutional network, as the initial state generator
(ISG), which downscales/upsamples the low resolution initial state to a full resolution initial state, dubbed as
modified X,, to be used as input to further recurrent computations. For the purpose of recurrent computing,
an unconventional convolutional block, dubbed as 7, is employed [40]. In the 7 block, which is the core of
PeRCNN, the modified X, goes through multiple parallel convolutional layers, whose feature maps will then
be fused via an element-wise product layer. Further, a one-by-one (1 X 1) convolutional layer [281], is appended
after the product operation to aggregate multiple channels into the output of the desired number of channels.
Assuming the output of the 1 X 1 convolution layer approximates the non-linear function, it can be multiplied
by the time spacing dt to obtain the residual of the dynamical system at time tg, i.e., Ug. Ultimately, the
last layer generates predictions Y/ = [Y{,Y;, Y4, ..., Y,/] by element-wise addition. These operations are shown
schematically in Fig.

The PeRCNN architecture was tested on two datasets representing 2D Burgers and 3D Gray-Scott
reaction-diffusion equations [40]. In both cases, PeRCNN was compared with Convolutional LSTM [282],
Deep Residual Network [283], and Deep Hidden Physics Models [176] in terms of accuracy (root-mean-squared-
error, RMSE), data noise/scarcity, and generalization. The comparison for the 2D Burgers’ dataset is shown in
Fig. [[a), adapted from [40]. The accumulative RMSE for PeRCNN began with a larger value in the training
region (due to 10 percent Gaussian noise in the data) and reduced as additional time steps were assessed. The
accumulative RMSE for PeRCNN slightly increases in the extrapolation phase (as a measure of the model’s
generalization), but clearly surpasses all other algorithms in terms of long-term extrapolation. Rao et al. [273]
also used PeRCNN for discovering spatiotemporal PDEs from scarce and noisy data and demonstrated its
effectiveness and superiority compared to baseline models.

Ren et al. [284] proposed a hybrid algorithm combining PeRCNN and PiNN to solve the limitations
in low-dimensional spatiotemporal parameterization encountered by PgNNs and PiNNs. In the resultant
physics-informed convolutional-recurrent network, dubbed as PhyCRNet, an encoder-decoder convolutional
LSTM network is proposed for low-dimensional spatial feature extraction and temporal evolution learning. In
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Figure 9: Panel (a) shows a comparison of error propagation in the training and extrapolation phases for
a physics encoded recurrent convolutional neural network (PeRCNN), deep hidden physics model (DHPM),
and a convolutional LSTM (ConvLSTM) modeling 2D Burgers’ dataset (adapted from Rao et al. [40]). Panel
(b) shows a comparison between the predictions by PhyCRNet and PiNN for 2D Burgers’ equations. The
predicted velocity field in x direction is compared at the training time of ¢ = 1 s, and at the extrapolation
time of ¢ = 3 s (adapted from Ren et al. [284]).

PhyCRNet, the loss function is specified as aggregated discretized PDE residuals. The boundary conditions
are hard-coded in the network via designated padding, and initial conditions are defined as the first input
state variable for the network. Autoregressive and residual connections that explicitly simulate time marching
were used to enhance the networks. This method ensures generalization to a variety of initial and boundary
condition scenarios and yields a well-posed optimization problem in network training. Using PhyCRNet, it
is also possible to simultaneously enforce known conservation laws into the network (e.g., mass conservation
can be enforced by applying a stream function as the solution variable in the network for fluid dynamics)
[284]. Ren et al. evaluated and validated the performance of PhyCRNet using several non-linear PDEs
compared to state-of-the-art baseline algorithms such as the PINN and auto-regressive dense encoder-decoder
model [269]. A comparison between PhyCRNet and PiNN to solve Burgers’ equation is shown in Fig. [9|(b)
[284]. Results obtained by Ren et al. [284] clearly demonstrated the superiority of the PhyCRNet methodology
in terms of solution accuracy, extrapolability, and generalizability.

4.2. Neural Ordinary Differential Equations (NeuralODE)

The neural ordinary differential equations (NeuralODE) method is another family of PeNN models in
which the hidden state of the neural network is transformed from a discrete sequence to a continuous non-
linear function by parametrizing the hidden state derivative using a differentiable function [53]. The output
of the network is then computed using a traditional differential equation solver. During training, the error
is back-propagated through the network as well as through the ODE solver without access to its internal
operations. This architecture is feasible due to the fact that numerical linear algebra is the common underlying
infrastructure for both scientific computing and deep learning, which is bridged by automated differentiation
(AD) [285]. Because differential equations and neural networks are both differentiable, standard optimization
and error backpropagation techniques can be used to optimize the network’s weights during training. Instead
of learning the non-linear transformation directly from the training data, the model in NeuralODE learns the
structures of the non-linear transformation. Therefore, due to the fact that the neural network optimization
equations are differentiable, the physical differential equations can be encoded directly into a layer as opposed
to adding more layers (e.g., deeper networks). This results in a shallower network mimicking an infinitely deep
model that can be inferred continuously at any desired accuracy at reduced memory and computational cost
[286]).

These continuous-depth models offer features that are lacking in PINN and PgNNs, such as (i) a reduced
number of parameters for supervised learning, (ii) constant memory cost as a function of depth, and (iii) contin-
uous time-series learning (i.e., training with datasets acquired at arbitrary time intervals), just to name a few
[53]. However, the error backpropagation may cause technical difficulties while training such continuous-depth
networks. Chen et al. [53] computed gradients using the adjoint sensitivity method [287] while considering the
ODE solver as a black box. They demonstrated that this method uses minimal memory, can directly control
numerical error, and, most importantly, scales linearly with the problem size.

Ma et al. [288] compared the performance of discrete and continuous adjoint sensitivity analysis. They
indicated that forward-mode discrete local sensitivity analysis implemented via AD is more efficient than
reverse-mode and continuous forward and/or adjoint sensitivity analysis for problems with approximately
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fewer than 100 parameters. However, in terms of scalability, they showed that the continuous adjoint method
is more efficient than the discrete adjoint and forward methods.

Several computational libraries have been implemented to facilitate the practical application of Neu-
ralODE. Poli et al. [289] implemented the TorchDyn library to train NeuralODE models and be as accessible
as regular plug-and-play deep learning primitives. Innes et al. [§] and Rackauckas et al. [286] developed GPU-
accelerated Zygote and DiffEqFlux libraries in the Julia coding ecosystem to bring differentiable programming
and universal differential equation solver capabilities together. As an example, they encoded the ordinary dif-
ferential equation of motion, as the transformation function, into a neural network to simulate the trebuchet’s
inverse dynamics [8]. As shown in Fig. the network with classical layers takes the target location and wind
speed as input and estimates the weight and angle of the projectile to hit the target. These outputs are fed
into the ODE solver to calculate the achieved distance. The model compares the predicted value with the
target location and backpropagates the error through the entire chain to adjust the weights of the network.
This PeNN model solves the trebuchet’s inverse dynamics on a personal computer 100x faster than a classical
optimization algorithm for this inverse problem. Once trained, this network can be used to aim at any blind
target, not just the ones it was trained on; hence, the model is both accelerated and predictive.

NeuralODE and differentiable programming Classical Layers Physics Layers with an

Algorithm to encode Trebuchet’s physics in ANN ODE to caleulate distance
r Step 1: Classical layers take two inputs and output the Q o 1
trebuchet settings (the mass of the counterweight AN ) Estimated
and the angle of release). e Angle
2 B\ h @ -
Step 2: Physics layer encoded by ordinary differential ) . 7 \
equations of motion calculates the distance based Wind Velocty S Q@ o -0 ®
on the given trebuchets’s settings Target Location @ Q O O ®
\ \
Step 3: The calculated distance is compared to the target O SR ©) . @
location, and the error is backpropagated through Trebuchet ©2 X\ Estimated
the entire chain O . & Weight
L Step 4: Adjust the weights for network’s classical nodes

Error Backpropagation

Figure 10: A NeuralODE architecture that leverages differentiable programming to model the inverse dy-
namics of a trebuchet. This simple network is 100x faster than direct optimization (adapted from Innes et al.

[8])-

NeuralODE has also been integrated with PINN models, dubbed as PINODE, in order to further constrain
the network with known governing physics during training. Such an architecture consists of a neural network
whose hidden state is parameterized by an ODE with a loss function similar to the PiNN’s loss function (see
Fig. . The loss function penalizes the algorithm based on data and the strong form of the governing ODEs
and backpropagates the error through the application of the adjoint sensitivity methods [288], to update the
learnable parameters in the architecture. PINODE can be deployed to overcome high bias (due to the use of
first principles in scientific modeling) and high variance (due to the use of pure data-driven models in scientific
modeling) problems. In other words, using PINODE, prior physics knowledge in terms of ODE is integrated
where it is available, and function approximation (e.g., neural networks) is used where it is not available.
Lai et al. [290] used PINODE to model the governing equations in the field of structural dynamics (e.g., free
vibration of a 4-degree-of-freedom dynamical system with cubic non-linearity). They showed that PINODE
provides an adaptable framework for structural health monitoring (e.g., damage detection) problems. Roehrl
et al. [291] tested PINODE using a forward model of an inverted pendulum on a cart and showed the approach
can learn the non-conservative forces in a real-world physical system with substantial uncertainty.

The application of neural differential equation has also been extended to learn the dynamics of PDE-
described systems. Dulny et al. [292] proposed NeuralPDE by combining the Method of Lines (which represents
arbitrarily complex PDEs by a system of ODEs) and Neural ODE through the use of a multi-layer convolutional
neural network. They tested NeuralPDE on several spatiotemporal datasets generated from the advection-
diffusion equation, Burgers’ equation, wave propagation equation, climate modeling, etc. They found that
NeuralPDE is competitive with other DL-based approaches, e.g., ResNet [293]. The NeuralPDE’s limitations
are set by the limitations of the Method of Lines, e.g., it cannot be used to solve elliptical second-order PDEs.
Table [9 reports a non-exhaustive list of leading studies that leveraged PeNN to model different scientific
problems.
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Table 8: A non-exhaustive list of recent studies that leveraged PeNN to model different scientific problems.

PeNN Structure Objective Reference

PeRCNN Hard-encoding prior knowledge into a neural network to model non- [40]
linear systems

PhyCRNet Leveraging the benefits of PeERCNN and PiNN into a single architecture [284]

Neural ODE Developing a continuous-depth network by parametrizing the hidden [53]
state derivative using a differentiable function

Zygote / DifEqFlux  Providing libraries in the Julia coding ecosystem to facilitate the prac- 8] 286]
tical application of NeuralODE.

PiNODE Integrating PINN and NeuralODE to provide an adaptable framework [290]
for structural health monitoring

NeuralPDE Combining the Method of Lines and NeuralODE to learn the dynamics [292]
of PDE-described systems

LaNN Capturing symmetries in physical problems such as relativistic particle [276]
and double pendulum

SRNNs Capturing dynamics of hamiltonian systems such as three-body and [278]
spring-chain system from observed trajectories

DDEC Enforcing exact physics and extracting structure-preserving surrogate [280]
models

4.3. PeNNs Limitations

Despite the advancement of numerous PeNN models and their success in modeling complex physical sys-
tems, these new architectures also face several challenges. The most important one is attributed to the training.
PeNN-based models promote continuous learning using the development of continuous-depth networks, which
makes PeNNs more difficult to train than PgNNs and PiNNs. Considering this, most of the limitations faced
by PgNN and PiNN (e.g., convergence rate, stability, scalability, sample size- and problem-dependency) are
also faced by PeNN. In addition, PeNNs usually have complex architectures, and their implementation is
not as straightforward as PiNNs or PgNNs. In spite of PeNNs’ implementation complexity, their efficient
algorithms in the finite-dimensional setting, their ability to provide transferable solutions, their robustness
against data scarcity, and their generalizability compared to PgNN and PiNN make them have a great poten-
tial to significantly accelerate traditional scientific computing for applications in computational fluid and solid
mechanics.

5. Neural Operators, NOs

Most of the scientific deep learning methods discussed so far, e.g., PeNNs, PiNNs, and PeNNs, are generally
designed to map the solution of a physical phenomenon for a single instance (e.g., a certain spatiotemporal
domain and boundary conditions to solve a PDE using PiNN), and thus, must re-trained or further trained (e.g.,
transfer learning [294]) to map the solution under a different instant. Another way to alleviate this problem
is to use neural operators that learn nonlinear mappings between function spaces [39, [295] [296]. Neural
operators, thus, form another simulation paradigm that learns the underlying linear and nonlinear continuous
operators using advanced architecture. These models, similar to PgNNs, enforce the physics of the problem
using labelled input-output dataset pairs but provide enhanced generalization, interpretability, continuous
learning, and computational efficiency compared to PgNNs as well as PiINNs and PeNNs [180} 53] [43].

This new paradigm uses mesh-invariant, infinite-dimensional operators based on neural networks that do
not require a prior understanding of PDEs. Neural operators merely work with data to learn the resolution-
invariant solution to the problem of interest [43]. In other words, neural operators can be trained on one
spatiotemporal resolution and successfully inferred on any other [296]. This resolution-invariant feature is
achieved using the fact that a neural operator learns continuous functions rather than discretized vectors, by
parameterizing the model in function spaces [43], 296]. Note that PgNNs and PiNNs, for example using MLP,
may also guarantee a small generalization error, but that is only achieved by sufficiently large networks. One
distinct feature of neural operators is their robustness for applications requiring real-time inference [57]. Three
main neural operators have been proposed recently, namely (i) deep operator networks (DeepONets) [56], (ii)
Fourier neural operator (FNO) [180], and (iii) graph neural operator (GNO) [296] 297]. A recent review by

26



Goswami et al. [57] extensively compared these neural operators. In this section, we briefly review DeepONets
and FNO as the two prominent neural operators to be applied in computational fluid and solid mechanics.

5.1. Deep Operator Networks (DeepONets)

Lu et al. [39] developed deep operator networks (DeepONets) based on the universal approximation
theorem for operators [298] that can be used to learn operators accurately and efficiently with very small
generalization errors. Lu et al. [56] proposed two architectures known as stacked and unstacked for DeepONet.
The stacked DeepONet architecture is shown in Fig. a), which consists of one trunk network and multiple
stacked branch networks, & = 1,2...,p. The stacked DeepONet is formed by selecting the trunk network
as a one-layer network with width p and each branch network as a one-hidden-layer network with width
n. To learn an operator G:s — G(s), the stacked DeepONet architecture takes function s as the input to
branch networks and y (i.e., points in the domain of G(s)) as the input to the trunk network. Here, the
vector [(z1), (z2), .., (xm)] represents the finite locations of data, alternatively dubbed as sensors. The trunk
network outputs [t1,ta, ...,tp]T € RP, and each branch network outputs a scalar represented by b, € R,
where £k = 1,2...,p. Next, the outputs generated by trunk and branch networks are integrated together
as G(s)(y) = Y r_; bi(s(z1), s(x2),...5(xm))tk(y). The unstacked DeepONet architecture is also shown in
Fig. [L1fa), which consists of only one branch network (depicted in dark blue) and one trunk network. The
unstacked DeepONet may be considered as a stacked DeepONet, in which all of the branch networks share the
same set of parameters [56]. DeepONet was first used to learn several explicit operators, including integral and
fractional Laplacians, along with implicit operators that represented deterministic and stochastic differential
equations Lu et al. [56]. The two main advantages of DeepONets discussed by Lu et al. [56] are (i) small
generalization error and (ii) rapid convergence of training and testing errors with respect to the quantity of
the training data.
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Figure 11: DeepONet for computational mechanics. Panel(a) depicts the general architecture of stacked
DeepONets to learn an operator G:s — G(s). The stacked DeepONet reduces to an unstacked DeepONet
when only one branch network (e.g., the one shown in dark blue) is used. Alternatively, the unstacked
DeepONet may be considered as a stacked DeepONet, in which all of the branch networks share the same set
of parameters [56]. Panel(b) shows a comparison between DeepONet and LSTM (i.e., PgNN) to model sparse
and dense datasets representing the formation of a single bubble in response to time-varying changes in the
ambient liquid pressure (adapted from Lin et al. [299]).

Lin et al. [299] showed the effectiveness of DeepONet against data density and placement, which is
advantageous when no prior knowledge is available on how much training data is required or when there
are strict limits on data acquisition (e.g., location accessibility). To this end, they employed DeepONet and
LSTM (i.e., PgNN) to model datasets representing the formation of a single bubble in response to time-
varying changes in the ambient liquid pressure. To generate datasets, they used Rayleigh—Plesset (R-P) as
a macroscopic model and dissipative particle dynamics (DPD) as a microscopic model. They used Gaussian
random fields to generate different pressure fields, which serve as input signals for this dynamical system. The
results of the comparison are shown in Fig. (b) The top row shows the prediction results for the liquid
pressure trajectory when only 20 data points are known per trajectory, i.e., sparse training data, and the
bottom row shows the same but when 200 data points are known per trajectory, i.e., dense training data. As
shown, regardless of how sparse the training data was, DeepONet was able to outperform LSTM to predict
the liquid pressure trajectory.

In addition, they examined a case where the input was not contained inside the training input range, i.e.,
when the correlation length of the pressure field was outside of the training range. In this case, they were
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initially unable to make accurate predictions, but mitigated the issue by transferring learning to a pre-trained
DeepONet trunk network and fine-tuning it with only a few additional data points. They also demonstrated
that DeepONet can learn the mean component of the noisy raw data for the microscopic model without
any additional data processing and that the computational time can be reduced from 48 CPU hours to a
fraction of a second. These results confirmed that the DeepONet model can be applied across macroscopic
and microscopic regimes of bubble growth dynamics, establishing the foundation for a unified neural network
model that can seamlessly predict physics interacting across scales.

Oommen et al. [300] combined convolutional autoencoder architecture with DeepONet (CA-DeepONet)
to learn the dynamic development of a two-phase mixture and speed up the time-to-solution for microstructure
evolution prediction. In low-dimensional latent space, the convolutional autoencoder was utilized to provide
a compact representation of microstructure data, while DeepONet was employed to learn mesoscale dynamics
of microstructure evolution from the autoencoder’s latent space. Then, the decoder component of the convo-
lutional autoencoder reconstructs the evolution of the microstructure based on DeepONet’s predictions. The
trained DeepOnet architecture can then be used to speed up the numerical solver in extrapolation tasks or
substitute the high-fidelity phase-field numerical solver in interpolation problems.

By taking inspiration from PiNNs for sparse data domains, DeepONets can also be trained with very sparse
labeled datasets while incorporating known differential equations into the loss function. This approach results
in Physics-informed DeepONets (Pi-DeepONets) [301), 302]. Wang et al. [301] employed Pi-DeepONets for
benchmark problems such as diffusion reaction, Burger’s equation, advection equation, and eikonal equation.
In comparison to vanilla DeepONet, the result reveals significant improvements in predictive accuracy, gener-
alization performance, and data efficiency. Furthermore, Pi-DeepONets can learn a solution operator without
any paired input-output training data, allowing them to simulate nonlinear and non-equilibrium processes in
computational mechanics up to three orders of magnitude quicker than traditional solvers [301].

Goswami et al. [302] used a physics-informed variational formulation of DeepONet (Pi-V-DeepONet) for
brittle fracture mechanics. The training of the Pi-V-DeepONet was conducted using the governing equations
in a variational form and some labeled data. They used the Pi-V-DeepONet framework to determine failure
pathways, failure zones, and damage along failure in brittle fractures for quasi-brittle materials. They trained
the model to map the initial configuration of a defect (e.g., crack) to the relevant fields of interest (e.g., damage
and displacements, see Fig. . They showed that their model can rapidly predict the solution to any initial
crack configuration and loading steps. In brittle fracture mechanics, the proposed model can be employed to
enhance the design, evaluate reliability, and quantify uncertainty.
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Figure 12: A comparison between Pi-V-DeepONet and isogeometric FEM analysis to predict the final damage
path for the shear failure of a single-edge notched plate. The initial geometry of the single-edge notched plate,
shear loading, and the initial configuration of the crack are shown on the left panels. The right panels show
the comparisons for the phase field, ¢(z), and displacement along the x-axis, u(x), as well as the corresponding
error between the prediction and ground truth (adapted from Goswami et al. [302]).

Due to the high cost of evaluating integral operators, DeepONets may face difficulty to develop effective
numerical algorithms capable of replacing convolutional or recurrent neural networks in an infinite-dimensional
context. Li et al. [180] made an effort along this line and developed an operator regression by parameterizing
the integral kernel in the Fourier space and termed it the Fourier neural operator (FNO). In the next section,
we discuss the core architecture of FNO and the recent developments around it.

5.2. Fourier Neural Operator (FNO)

In order to benefit from neural operators in infinite-dimensional spaces, Li et al. [180] developed a neural
operator in the Fourier space, dubbed as FNO, with a core architecture schematically shown in Fig. The
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training starts with an input X, which is subsequently elevated to a higher dimensional space by a neural
network S. The second phase entails the use of several Fourier layers of integral operators and activation
functions. In each Fourier layer, the input is transformed using (i) a Fourier transform, F’; (ii) a linear
transform, 7', on the lower Fourier modes that filters out the higher modes; and (iii) an inverse Fourier
transform, F~1. The input is also transformed using a local linear transform, W, before the application of the
activation function, . The Fourier layers are designed to be discretization-invariant due to the fact that they
learn from functions that are discretized arbitrarily. Indeed, the integral operator is applied in convolution
and is represented as a linear transformation in the Fourier domain, allowing the FNO to learn the mapping
over infinite-dimensional spaces. The result of the Fourier layer is projected back to the target dimension in
the third phase using another neural network M, which eventually outputs the desired output Y’ [180]. Unlike
other DL methods, the FNO model’s error is consistent regardless of the input and output resolutions (e.g.,
in PgNN methods, the error grows with the resolution).
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Figure 13: A schematic architecture of the Fourier Neural Operator (FNO) [180]. Here, X is the inputs,
S and M are the neural network for dimensional space operation, and Y’ is the predicted outputs. Each
of the Fourier layers consists of v(x) as the initial state, F layer that performs Fourier transform, T layer
that performs linear transform, F~! layer that performs inverse Fourier transform, W layer for local linear

transform, 4 block that carries out element-wise addition on W, and the final output from the 7~ layer. The
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Li et al. [180] employed FNO on three different test cases, including the 1D Burgers’ equation, the 2D
Darcy flow equation, and the 2D Navier-Stokes equations. For each test case, FNO was compared with state-
of-the-art models. In particular, for Burgers’ and Darcy’s test cases, the methods used for comparison were
the conventional ANN (i.e., PgNN), reduced bias method [303], fully convolutional networks [304], principal
component analysis as an encoder in the neural network [295], graph neural operator [296], and low-rank
decomposition neural operator (i.e., unstacked DeepONet [39]). In all test cases, FNO yielded the lowest
relative error. The models’ error comparisons for 1D Burgers’ and 2D Darcy flow equations are depicted in

Fig. adapted from [180].
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Figure 14: Error comparison between FNO and other state-of-the-art methods (reduced bias method (RBM),
fully convolutional network (FCN), graph neural operator (GNO), and graph convolutional network (GCN))
for (a) Burgers’ equation and (b) Darcy’s Flow equation at different resolutions (adapted from Li et al. [180]).

The FNO model, as stated, can be trained on a specific resolution and tested on a different resolution. Li
et al. [180] demonstrated this claim by training a FNO on the Navier-Stokes equations for a 2D test case with a
resolution of 64x64x20 (ns, ny, n:) standing for spatial (x, y) and time resolution, and then evaluating it with
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a resolution of 256x256x80, as shown in Fig. a). In comparison to other models, the FNO was the only
technique capable of performing resolution downscaling both spatially and temporally [180]. FNOs can also
achieve several orders of magnitude speedup factors over conventional numerical PDE solvers. However, they
have only been used for 2D or small 3D problems due to the large dimensionality of their input data, which
increases the number of network weights significantly. With this problem in mind, Grady et al. [305] proposed
a parallelized version of FNO based on domain-decomposition to resolve this limitation. Using this extension,
they were able to use FNO in large-scale modeling, e.g., simulating the transient evolution of the CO2 plume
in subsurface heterogeneous reservoirs as a part of the carbon capture and storage (CCS) technology [306], see
Fig. [15]b). The input to the network (with a similar architecture to the one proposed by Li et al. [180]) was
designed to be a tensor containing both the permeability and topography fields at each 3D spatial position using
a 60x60 x64 (ng,n,,n.) resolution and the output was 60x60x64xn,. For a time resolution of n, = 30 s,
they found that the parallelized FNO model was 271 times faster (without even leveraging GPU) than the
conventional porous media solver while achieving comparable accuracy. Wen et al. [307] also proposed U-FNO,
an extension of FNO, to simulate multiphase flows in porous media, specifically CO2-water multiphase flow
through a heterogeneous medium with broad ranges of reservoir conditions, injection configurations, flow rates,
and multiphase flow properties. They compared U-FNO with FNO and CNN (i.e., PgNN) and showed that the
U-FNO architecture provides the best performance for both gas saturation and pressure buildup predictions
in highly heterogeneous geological formations. They also showed that the U-FNO architecture enhances the
training accuracy of the original FNO, but does not naturally enable the flexibility of training and testing at
multiple discretizations.
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Figure 15: A qualitative comparison between predictions made by the Fourier neural operator (FNO) and
ground truth values. Panel (a) shows the comparison for a FNO model trained on 64x64x20 resolution
(ng, ny,ny) and evaluated on 256x256x80 resolution to solve 2D Navier-Stokes equations (adapted from Li
et al. [180]). Panel (b) shows the comparison for a parallelized FNO model trained to solve large-scale 3D
subsurface CO2 flow modeling evaluated at 60x60x64xn; resolution (adapted from Grady et al. [305]).

You et al. [308] proposed an implicit Fourier neural operator (IFNO) to model the complex responses
of materials due to their heterogeneity and defects without using conventional constitutive models. The
IFNO model captures the long-range dependencies in the feature space, and as the network becomes deeper, it
becomes a fixed-point equation that yields an implicit neural operator (e.g., it can mimic displacement/damage
fields). You et al. [308] demonstrated the performance of IFNO using a series of test cases such as hyperelastic,
anisotropic, and brittle materials. Fig. depicts a comparison between IFNO and FNO for the transient
propagation of a glass-ceramic crack [308]. As demonstrated, IFNO outperforms FNO (in terms of accuracy)
and conventional constitutive models (in terms of computational cost) to predict the displacement field.

The FNO model has also been hybridized with PiNN to create the so-called physics-informed neural
operator (PiNO) [43]. The PiNO framework is a combination of operating-learning (i.e., FNO) and function-
optimization (i.e., PINN) frameworks that improves convergence rates and accuracy over both PiNN and
FNO models. This integration was suggested to address the challenges in PiNN (e.g., generalization and
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optimization, especially for multiscale dynamical systems) and the challenges in FNO (e.g., the need for
expensive and impractical large training datasets) [43]. Li et al. [43] deployed the PINO model on several
benchmark problems (e.g., Kolmogorov flow, lid-cavity flow, etc.) to show that PINO can outperform PiNN
and FNO models while maintaining the FNO’s exceptional speed-up factor over other solvers.
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Figure 16: A comparison between the implicit Fourier neural operator (IFNO) and FNO models to predict
crack propagation and damage field within a region of interest (ROI) in a pre-cracked glass-ceramics experiment
with randomly distributed material property fields (adapted from You et al. [308]).

Table 9: A non-exhaustive list of recent studies that leveraged Neural Operators to model different scientific
problems.

NO Structure Objective Reference

DeepONets Learning non-linear operators accurately and efficiently with [56]
low generalization error

CADeepONet Learning dynamic development of a two-phase mixture and [300]
reducing solution time for predicting microstructure evolu-
tion

Pi-DeepONets Integrating DeepONets and PiNN to relax the requirement [301]
for a large training dataset while improving generalization
and predictive accuracy

V-DeepONet Generating a fast and generalizable surrogate model for brit- [302]
tle fracture mechanics

FNO Providing a mesh- and discretization-invariant model to be [180]
inferred at any arbitrary spatiotemporal resolutions

Parallelized FNO Extending FNO based on domain-decomposition to model [305]
large-scale three-dimensional problems

U-FNO Enhancing the training and testing accuracy of FNO for [307]
large-scale, highly heterogeneous geological formations

IFNO capturing the long-range dependencies in the feature space [308]
that yields an implicit neural operator to model the complex
responses of materials due to their heterogeneity and defects

PINO Integrating PINN and FNO to relax the requirement for a [43]

large training dataset while enhancing generalization and op-
timization

5.3. NOs Limitations

DeepONet [39] and FNO [180], as the two most common neural operators to date, share some common-
alities while also having significant differences. The DeepONet architecture was inspired by Chen and Chen
[298]’s universal approximation theorems, whereas the FNO was architecture established on parameterizing
the integral kernel in Fourier space. However, FNO in its continuous form can be viewed as DeepONet with a
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specific architecture of the trunk (expressed by a trigonometric basis) and branch networks [309]. FNO, unlike
DeepONet, discretizes both the input function and output function via point-wise evaluations in an equally
spaced mesh. Therefore, after network training, FNO can only predict the solution in the same mesh as the
input function, but DeepONet can make predictions at any arbitrary location. FNO also requires a full field
of observation data for training, whereas DeepONet is more flexible, with the exception of POD-DeepONet
[310], which requires a full field of observation data to calculate the proper orthogonal decomposition (POD)
modes [310]. DeepONet, FNO, and their various variants still face some limitations, especially when applied
to large multi-physics problems, that necessitate further investigations.

e Neural operators are purely data-driven and require relatively large training datasets, therefore they face
constraints when applied to problems where data acquisition is complex and/or costly [310]. Integration
with PiNN can resolve this issue to some extent for problems where the underlying physics is fully known
and can be integrated into the loss function [301]. Also, for practical applications, training the NOs just
based on the governing equations in the loss function may produce inaccurate predictions; instead, a
hybrid physics-data training is recommended [301].

e DeepONet and FNO are typically limited to basic geometry and/or structured data (e.g., 2D or small
3D problems) due to the large dimensionality of their input data that increases the number of network
weights significantly) [310]. They are also prone to over-fitting as the number of trainable parameters
increases, making the training process more difficult [311]. IFNOs have addressed this challenge to some
extent [308]. In IFNO, the solution operator is first formulated as an implicitly defined mapping and
then modeled as a fixed point. The latter aims to overcome the challenge of network training in the
case of deep layers, and the former minimizes the number of trainable parameters and memory costs.
Nonetheless, due to the finite size of the neural network architecture, the convergence of NOs (e.g.,
DeepONet) error with respect to the size of the training data becomes algebraic for large datasets; it is
desired to be exponential [310].

e FNO might not be reliable for discontinuous functions as it relies on the Fourier transformation. This is
mitigated to some extent by DeepONet, as it was shown to perform well for functions with discontinuity
(e.g., compressible Euler equations) [310].

Despite these limitations, neural operators are the leading algorithms in a variety of real-time inference
applications, including autonomous systems, surrogates in design problems, and uncertainty quantification
[57].

6. Conclusions and Future Research Directions

A considerable number of research topics collectively support the efficacy of combining scientific computing
and deep learning approaches. In particular, this combination improves the efficiency of both forward and
inverse modeling for high-dimensional problems that are prohibitively expensive, contain noisy data, require a
complex mesh, and are governed by non-linear, ill-posed differential equations. The ever-increasing computer
power will continue to further furnish this combination by allowing the use of deeper neural networks and
considering higher-dimensional interdependencies and design space.
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Table 10: A comparison of the main characteristics of PgNNNs, PiNNs, PeNNs, and NOs to model non-linear
multiscale phenomena in computational fluid and solid mechanics.

Feature PgNNs PiNNs PeNNs NOs
Accelerating Capability v v v v
Mesh-free Simulation v v v v
Straightforward Network Training v X X X
Training without Labeled Data X v X X
Physics-informed Loss Function X v v v
Continuous Solution X v v v
Spatiotemporal Interpolation X v v v
Physics Encoding X X v X
Efficient Operator Learning X X X v
Continuous-depth Models X X v X
Spatiotemporal Extrapolation X X v v
Solution Transferability X X v v
Efficient Real-time Predictions X X X v

The combination of scientific computing and deep learning approaches also surpasses traditional compu-
tational mechanics solvers in a number of prevalent scenarios in practical engineering. For example, a sparse
dataset obtained experimentally for a complex (i.e., hard-to-acquire data) phenomenon cannot be simply in-
tegrated with traditional solvers. Whereas using DL, the following tasks can be performed: (i) PgNN-based
models can be applied to the sparse data to extract latent interdependencies and conduct spatiotemporal
downscaling or upscaling (i.e., interpolated data); (ii) PiNN-based models can be applied to the interpolated
data to deduce governing equations and potentially unknown boundary or initial conditions of the phenomena
(i.e., strong mathematical form); (iii) PeNN-based models can be used to combine the interpolated data and
the strong mathematical form to conduct extrapolation exploration; and (iv) NO-based models can be applied
to make real-time predictions of the complex dynamics. Therefore, the combination of DL-based methods and
traditional scientific computing methods provides scientists with a cost-effective toolbox to explore problems
across different scales that were deemed far-fetched computationally. To this end, several other breakthroughs
in DL are required to enable the use of PgNNs, PiNNs, PeNNs, and NOs in large-scale three-dimensional (or
multi-dimensional) problems. For instance, the training of complex DL models (e.g., PINNs, PeNNs, and NOs)
should be accelerated using different parallelization paradigms.

Table [10| compares the main characteristics of the PgNNs, PiNNs, PeNNs, and NOs. The PgNN-based
models suffer mainly from their statistical training process, for which they require large datasets. They map
carefully curated training datasets only based on correlations in statistical variations, and hence, their predic-
tions are naturally physics-agnostic. The PiNN-based models suffer mainly from the presence of competing
loss terms that may destabilize the training process. PiNN is also a solution learning algorithm with limited
generalizability due to its inability to learn the physical operation of a specific phenomenon. Models based
on PeNNs and NOs, on the other hand, may experience low convergence rates and require a large volume of
paired, structured datasets, leading to highly expensive training.

Considering the effectiveness of this new challenge of combining scientific computing and DL, future stud-
ies can be divided into three distinct categories: (i) Improving algorithms: Developing advanced variants
of PgNNs, PiNNs, PeNNs and NOs that offer simpler implementation with enhanced convergence rate; faster
training in multi-dimensional and multi-physics problems; higher accuracy and generalization to unseen condi-
tions while using sparse training datasets, more robust to be used in real time forecasting; better adaptability
to multi-spatiotemporal-resolutions, more flexibility to encode various types of governing equations (e.g., all
PDE types, closure laws, data-driven laws, etc.), and provide a closer tie with a plethora of traditional solvers;
(ii) Considering causalities: Developing a causal training algorithm (e.g., causal Q-learning [312]) that re-
stores physical causality during the training of PgNN, PINN, and PeNN models by re-weighting the governing
equations (e.g., PDEs) residual loss at each iteration. This line of research will allow for the development
of causality-conforming variants of PgNN, PiNN, and PeNN algorithms that can bring new opportunities
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for the application of these algorithms to a wider variety of complex scenarios across diverse domains; (iii)
Expanding applications: Leveraging the potentials of PgNNs, PiNNs, PeNNs, and NOs in problems with
complex anisotropic materials (e.g., flow in highly heterogeneous porous media, metal and non-metal partic-
ulate composites, etc.); problems with multiscale multi-physics phenomena (e.g., magnetorheological fluids,
particle-laden fluids, dry powder dynamics, reactive transport, unsaturated soil dynamics, etc.); problems with
multi-resolution objectives and extensive spatiotemporal downscaling or upscaling (e.g., global and regional
climate modeling, geosystem reservoir modeling, etc.); and structural health monitoring (e.g., crack identifi-
cation and propagation, hydrogen pipeline leakage, CO2 plume detection, etc.); and (iv) Coupling solvers:
Coupling PgNNs, PiNNs, and PeNNs as well as NOs with open-source computational mechanics packages
such as OpenlFEM, OpenFOAM, Palabos, LAMMPS, LIGGGHTS, MOOSE, etc. This line of research will
allow for faster surrogate modeling and, hence, faster development of next-generation solvers. It also expedites
community and industry adoption of the combined scientific-DL computational paradigm.
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